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ABSTRACT
The standard approach to computer-aided language transla-
tion is post-editing: a machine generates a single translation
that a human translator corrects. Recent studies have shown
this simple technique to be surprisingly effective, yet it un-
derutilizes the complementary strengths of precision-oriented
humans and recall-oriented machines. We present Predictive
Translation Memory, an interactive, mixed-initiative system
for human language translation. Translators build translations
incrementally by considering machine suggestions that update
according to the user’s current partial translation. In a large-
scale study, we find that professional translators are slightly
slower in the interactive mode yet produce slightly higher qual-
ity translations despite significant prior experience with the
baseline post-editing condition. Our analysis identifies sig-
nificant predictors of time and quality, and also characterizes
interactive aid usage. Subjects entered over 99% of characters
via interactive aids, a significantly higher fraction than that
shown in previous work.
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Language translation has all the makings of a mixed-initiative
task [11]. Some translations are straightforward and can be rou-
tinized while others require linguistic and world knowledge that
is difficult to represent. Consider the French word interprète,
which can mean ‘interpreter’, ‘artist’, ‘performer’, ‘spokesper-
son’, or even the pejorative ‘mouthpiece.’ Whether one is
a spokesperson or a mouthpiece depends greatly on context.
Recall-oriented machines can instantly generate all of these
translations, but humans, equipped with world knowledge, may
be needed to select the appropriate one. Interactive machine
translation—in which humans and machines collaborate—has
thus intrigued the research community for decades [8], yet has
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Figure 1: Example of three interactive aids in PTM. The system predicts
which French input words have been translated and shades them in blue.
The gray text in the typing box shows the best system prediction for the
rest of the translation. The user can accept parts of the system suggestion
from the dropdown.

largely failed in user studies. We hypothesize that classic traps
in mixed-initiative design [24], in addition to machine transla-
tion (MT) quality, are to blame and are partially responsible
for slow commercial uptake.

We present Predictive Translation Memory (PTM), an interac-
tive, mixed-initiative system for language translation. Transla-
tion memory is a standard term that refers to a set of bilingual
string-string mappings usually consulted via text queries. Our
system can be seen as an intelligent translation memory that
interactively suggests translations based on user activity. The
interface provides source (input language) term lookups, local
target (output language) suggestions at the point of text entry
(Figure 1), and full translation suggestions to support gisting
of meaning. All suggestions update in real-time according
to the user-specified partial translation, yet this updating is
discreet to minimize distractions. We focus on the interface
design, which minimizes gaze shift and maximizes legibility
by interleaving source and target text. In contrast, nearly all
translator workbenches use a two-column format, much like
a spreadsheet. Qualitative feedback from users supports our
design choices.

If a principal problem in the design of interactive knowledge-
based systems is the transfer of expertise from human to ma-
chine [46], then the system should also enable adaptive MT
updating, or human-assisted machine translation [44]. Be-
cause PTM observes user behavior, the machine is able to
refine its suggestions in real-time. Contrast this model with
post-editing where the MT system has just one opportunity to
produce a suggestion. Our analysis shows that PTM leads to
final translations that are significantly different from the initial
MT suggestion, but have higher quality according to automatic
quality metrics. Crucially, the last machine suggestion is both
of high quality and relatively close to the final user translation.
This by-product should be useful for future work on automatic
MT model updating.



To test the system we conducted the largest published interac-
tive MT user study to date. We hired 32 professional French-
English and English-German translators, all of whom were reg-
ular users of existing computer-aided translation (CAT) tools.
We compared our system to post-editing, which is a strong
baseline [29, 21], and is also the most common commercial
use of MT. We investigated three questions: (1) Is PTM faster
than post-edit?, (2) Does PTM enable higher quality transla-
tion relative to standard translation quality metrics?, (3) Which
interactive aids are most effective? We find that while users
are slightly slower in the interactive mode—they must read
suggestions in addition to translating—they produce higher
quality translations. Translators also use the suggestions to a
far greater degree than was observed in the largest previous
study of interactive MT [37]. Qualitative feedback shows that
most users believe that they would be more productive in the
interactive mode with practice.

RELATED WORK
The idea of a “human-machine” partnership for language
translation—a mixed-initiative design—was proposed as early
as 1960 [4]. Interactive machine translation was first investi-
gated in the 1970s [8] as research funding for fully automatic
MT, which was deemed infeasible, was discontinued [44]. Here
we review both theorized and implemented systems in both
the NLP and HCI literature. We also describe how collabora-
tive translation—recently investigated in HCI—can be seen as
interactive translation.

Theorized Interactive MT Systems
Bisbey and Kay [8] proposed a system in which pre-editors
would annotate the input with linguistic and semantic infor-
mation, and then target-language post-editors would select
from among ranked machine translations. Although it was
never implemented,1 this system became a template for most
subsequent work on interactive MT.

In a survey of qualitative studies, Church and Hovy [14] con-
cluded that users regarded post-editing as “an extremely boring,
tedious, and unrewarding chore.” They proposed a “superfast
typewriter” with an autocomplete key that could fill in the re-
mainder of a word or phrase. Our system draws heavily on
their idea of interactive MT as target-text completion.

Evaluated Interactive MT Systems
Early interactive MT systems focused on source pre-editing
rather than target generation. Loh and Kong [35] presented
a Chinese-to-English system in which human translators an-
notate the input extensively (phrase boundaries, word senses,
etc.). Unpublished results showed greatly reduced post-editing
effort to achieve human quality [44]. Whitelock et al. [46]
evaluated an English-to-Japanese system in which the machine
would query human users about linguistic properties of the
English input.

To our knowledge, TransType was the first interactive sys-
tem [17] that incorporated a modern, statistical MT backend.
TransType eschewed source pre-editing in favor of target-text
generation aids. The basic unit of translation was the character,
1Personal communication with M. Kay.

whereas our system translates at the word level (however, it
provides character-level completions via string-matching in
the interface). The TransType UI [18] included an autocom-
plete dropdown with variable length suggestions selected by
an empirical user preference model [19]. Our system instead
uses source syntactic constraints to set the prediction length.
Their user study [32] found that translation time increased 17%
relative to translation from scratch, and that users often typed
translations even when the right suggestion was displayed.

TransType2 [16] added a playback mechanism for reviewing
user sessions [38] and the ability to accept a full MT suggestion.
Additional user studies [36] showed that translators would often
accept a full translation and then edit it rather than progressively
working through a translation. Our interface explicitly permits
this usage via a hot-key, although we most users preferred the
interactive aids.

Caitra [30] also included an autocomplete function, and al-
lowed the user to query translations for individual words and
phrases. The system could refine its suggestions, but not in
real-time: search graphs were pre-computed offline. A user
study [29] showed that interactive assistance offered no im-
provement in terms of time or quality over simple post-editing.
In contrast, our system generates new translations each time
the user input changes, fully utilizing the search space.

Casmacat [2] is the successor of Caitra. It shares the same back-
end MT engine, but has a new UI [1] that supports post-editing,
text completion, and term lookup. However, the interface is
the standard two-column layout and the full MT suggestion
is not always available for gisting, a feature that users have
found useful in previous studies [21]. Casmacat still uses pre-
computed search graphs. A pilot user study [3] showed a slight
improvement in automatic quality relative to post-editing.

The system of Barrachina et al. [6] is exceptional in that it
provided interactive post-editing. The MT system proposed a
partial suggestion that the user would correct and accept. Then
the system would recompute its suggestion and the process
would repeat. An analysis of keystroke ratio found a reduction
relative to translation from scratch. In contrast, our system
recomputes suggestions in real-time and passively tracks what
the user is doing; the user can ignore the suggestions.

Collaborative Translation
Collaborative translation can be seen as an alternate mode of
interactive assistance, albeit a slow one. Morita and Ishida [40,
41] partitioned a translation job between source pre-editors
and target post-editors who iteratively refine a translation. The
process is seeded by MT. This design hearkens back to the
earliest conceptions of interactive translation [28]. A quality
evaluation showed that collaborative translation could improve
the raw MT output.

Hu et al. [25, 26] proposed a similar process, but added a richer
interface and language-independent annotations for collabora-
tion. Collaborative translations were consistently rated higher
than the original MT output. However, this method was very
slow, requiring days to post-edit fewer than 100 sentences.



Mixed-Initiative Interaction Principles
We believe that the failure of previous interactive MT sys-
tems (in user studies) may result from known pitfalls of mixed-
initiative design. For example, consider Horvitz’s [24] prin-
ciple #2: considering uncertainty about a user’s goals. Most
previous systems violate this principle by assuming that users
need either source or target aids, but not both, or neither. Early
interactive systems assumed that pre-editing (source) was most
useful [35, 46], whereas later systems like TransType and that
of Barrachina et al. [6] focused on the target, sometimes forc-
ing the user to accept portions of the target before proceeding.
PTM conceals most aids until the user initiates them, and even
allows the user to drop into basic text-editing mode if desired.

Also relevant is Horvitz’s principle #8: minimizing the cost of
poor guesses about action and timing. Later systems like Caitra
expose portions of the MT system such as translation rules
and associated scores directly on the interface. Confidence
is usually coded with color. However, MT systems almost
certainly contain a very different internal representation of
the translation process than humans. Human translators may
not understand why, for example, MT systems can propose
non-grammatical and incorrect translations like avec⇒them
with with high confidence. The translation model is full of
these noisy rules that can be very useful to the machine, but
uninterpretable to the human. Our interface applies rules to
aggregated k-best predictions to select human-interpretable,
high-confidence suggestions.

The design of PTM draws on additional principles of mixed-
initiative design. As a baseline, generating automatic machine
translations follows Horvitz’s principle #1: developing sig-
nificant value-added automation. PTM users can also select
alternate translations from a drop-down menu or simply type
the desired target text, both in keeping with principle #5: em-
ploying dialog to resolve key uncertainties. Following princi-
ple #6: allowing efficient direct invocation and termination,
interactive translation aids are easily toggled on and off with
the Escape key, and source word lookups are invoked only
upon mouse hover of source text. Real-time updates of ma-
chine translations in response to user input enact principle #9:
providing mechanisms for efficient agent-user collaboration to
refine results. Finally, visualizing source coverage of translated
words supports principle #11: maintaining working memory
of recent interactions.

PREDICTIVE TRANSLATION MEMORY
The Predictive Translation Memory system is designed for
expert, bilingual translators. Previous studies have shown that
professional translators work quickly—they are paid by source
words translated—and are usually touch typists [12]. There-
fore, the interface is designed to be very responsive, and to
be primarily operated by the keyboard. Most aids can be ac-
cessed via typing or one of the two hot keys. The current
design focuses on the point of text entry and does not include
conventional translator workbench features such as workflow
management, spell checking, and text formatting.

The system has three components. The client UI is written in
JavaScript and runs entirely in a web browser. The UI com-
municates via a RESTful API with the web service, which is

written in Python and backed by a SQL database. The web ser-
vice manages translation sessions, serving source documents
and recording user actions. The web service also forwards
translation requests to the MT service, which is a Java servlet
running in a J2EE web server. The MT service runs the open
source Phrasal MT system, which we heavily modified to sup-
port PTM [20]. All UI events are logged to enable analysis
and playback. Any translation session can be loaded from the
database and replayed in its entirety on the client UI.

In this section, we focus on the UI design decisions. We ap-
plied an iterative design process using paper prototyping, rapid
prototyping of the client UI connected to the live MT service,
a small-scale pilot study, and finally the large-scale user study
described in this paper.

Many UI design decisions required significant backend engi-
neering which, in turn, enabled novel interactions. For exam-
ple, real-time suggestion updating requires the MT service to
generate translations at nearly human typing speed.

UI Overview and Walkthrough
We categorized interactions into three groups: source compre-
hension, target gisting, and target generation. The following
outline summarizes the interactions, which are detailed in the
following sections. Although the specific design of each feature
is novel, those in bold have, to our knowledge, never appeared
in a translation workbench:

1. Source comprehension

(a) Word lookups
(b) Source coverage: highlight translated words

2. Target gisting

(a) Full best translation
(b) Real-time updating: full translation generation

3. Target generation

(a) Real-time autocomplete dropdown
(b) Target reordering
(c) Insert complete translation

Human and machine translations appear together in the tar-
get text box. During prototyping we found that users were
very sensitive to updates in the text box. They wanted to edit
the machine suggestions using conventional text manipulation
(cut/paste, etc.) rather than the autocomplete interactions. To
clarify ownership of regions of the textbox, we adopted the
following target text convention:

Black text belongs to the human translator and is never modi-
fied by the machine. Gray text belongs to the machine and is
never modified by the human translator.

Interactions allow the user to accept portions of the gray text,
which becomes black. Subsequent tests showed that users
learned to trust that black text is inviolate, and that gray text is
only accessible through certain interactions.

Suppose Joe Translator wants to translate a document from
French to English. He opens the document in PTM and sees the
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Figure 2: Main translation interface. The interface shows the full document context, with English source inputs (A) interleaved with suggested target
translations (B). The sentence in focus is indicated by the blue rectangle, with translated source words shaded (C). The user can navigate between
sentences via hot keys. The user can also hide/unhide the autocomplete dropdown (D) and full translation suggestions (E) by toggling the Escape key.

screen in Figure 2. The French sentences (A) are interleaved
with English suggested translations (B). Joe must then final-
ize the translations. When an English translation is finalized,
the text becomes black. The following sections describe the
interactive aids available to Joe.

Source Comprehension
Word Lookup
Users often trace the source with the mouse cursor while read-
ing [21]. When Joe hovers over source words in the main UI
(Figure 2), a menu of up to four ranked translation suggestions
appears (Figure 3). We previously proposed [21] showing sug-
gestions proactively for certain parts of speech, but prototyping
revealed that this design distracted users. Consequently, we
chose a direct-invocation design following Horvitz’s princi-
ple #6: allowing efficient direct invocation and termination.
The menu is populated with individual translation rules from
the MT translation model. This query does not depend on
source context, so it does not require full MT and is very fast,
usually returning in under 50ms. The width of the horizontal
bars indicates confidence, with the most confident suggestion
placed at the bottom, nearest to the cursor. The user can insert
a translation suggestion by clicking.

Source Coverage
The interface predicts which source words have already been
translated and shades them in blue (Figure 2, C). Joe can
quickly find untranslated words in the source. The source
coverage is a record of translation interactions consistent with
Horvitz’s principle #11: maintaining working memory of re-
cent interactions. The interaction is based on the word align-
ments between source and target generated by the MT system.

In pilot experiments we found that the raw alignments were
too noisy to show to users. We thus developed MT rule-level
heuristics that filter the alignments returned to the interface.

Target Gisting
The most common use of MT output is gisting [31, p.21]. A
rough translation is often sufficient to convey meaning. Trans-
lators find MT useful as an initial draft [21].

Full Best Translation
The gray text below each black source input shows the best
MT system output (Figure 2, B). As Joe works on the focus
translation, the gray text adjusts in the target textbox to show
the best suggested completion (Figure 2, E).

Real-time Updating
When Joe starts working on a source sentence, the gray text
will update to the most probable completion (Figure 2, E) for
his partial translation (black text). The update always appears
as a gray completion following the black translation prefix.
The human and machine refine the translation collaboratively
(Horvitz’s principle #9: providing mechanisms for efficient
agent-user collaboration to refine results) with the machine in
a strictly responsive role.

Target Generation
The target textbox shows both the user and machine state si-
multaneously. This allows Joe to accept parts of the machine
suggestion without touching the mouse. The black portion is a
text editor: Joe can cut, copy, paste, or otherwise manipulate
the black text. However, the gray text is immutable. It cannot
be highlighted with the cursor or changed. Joe accesses it
through three interactions.



Figure 3: Source word lookup menu (top), which only appears with the
autocomplete dropdown (bottom) when the user hovers over a source to-
ken. The word lookup suggestions do not depend on the partial transla-
tion Teachers, so the list of suggestions is different from those shown in
the autocomplete dropdown for the same term.

Autocomplete Dropdown
The autocomplete dropdown at the point of text entry is the
main translation aid (Figure 2, D). Each time Joe enters a target
word or otherwise edits the black prefix, the MT service returns
a list of completions conditioned on the accepted prefix. Up to
four unique suggestions appear in the target dropdown. The top
suggestion can be selected via either the Tab or Enter keys. The
dropdown can be navigated with the arrow keys, the mouse,
or by beginning to type the desired suggestion. Suggestions
that do not match the partial word are filtered until the desired
suggestion is at the top of the list. Then the Tab or Enter keys
can be used to select it.

The suggestion length is based on the syntax of the source lan-
guage. As an offline, pre-processing step, we create syntactic
parses of the source input with Stanford CoreNLP [39]. The
UI combines those parses with word alignments from the full
translation suggestions to project syntactic constituents to the
target. Syntactic projection is a very old idea that underlies
many MT systems (see: [27]). Here we make novel use of it
for suggestion prediction filtering. Presently, we project noun
phrases, verb phrases (minus the verbal arguments), and prepo-
sitional phrases. If no constituents can be projected, then the
UI backs off to single-word suggestions.

Target Reordering
So far we have assumed a left-to-right generation scheme, but
that design fails for long-distance reordering. For example,
in English-to-German translation, some verbs will need to
be moved to the very end of a sentence. To that end, the UI
supports keyboard-based reordering.

Suppose that Joe sees the (partially correct) suggestion
Wirtschaftliche Offences ‘economic offences’ in the gray text
(Figure 4) and wants to move that suggestion to the insertion
position. Joe can begin typing that string, and the UI will up-
date the autocomplete dropdown with matching strings from
the gray text. Consequently, sometimes the autocomplete drop-
down will contain suggestions from several positions in the
full suggested translation. The user can insert the suggestion
from the dropdown in the usual ways.

Figure 4: Target reordering feature. The user can move a suggestion to
the current editing position by typing the prefix. The system predicts the
suggestion length.

Insert Complete Translation
At any time, Joe can accept the full completion by pressing
the Control+Enter hot key. Notice that if the user presses
this hot key immediately, the full suggestion is inserted, and
the interface is effectively a post-editor. This feature greatly
accelerates translation when the MT is mostly correct, and the
user only wants to make a few changes.

Layout and Typographical Design
Carl [12, p.11] showed that translators spend up to 20% of
any translation session reading source text and revising tar-
get text, and that harder translations can significantly increase
this fraction. However, we noticed that most translator work-
benches are optimized for typing, and conform to a tabular,
two-column spreadsheet layout—source and target are aligned
by row. A spreadsheet design may not be optimal for reading
text passages.

Our UI is based on a single-column layout so that the text
appears as it would in a document. Sentences are offset from
one another primarily because current MT systems process
input at the sentence-level. We interleave target-text typing
boxes with the source input to minimize gaze shift between
source and target. Contrast this with a two-column layout in
which the source and target focus positions are nearly always
separated by the width of a column.

The compact, single-column layout can obscure the boundaries
between source and target, especially for languages with similar
writing systems. We found that rendering source and target
in different typefaces restored legibility. In our UI, source is
rendered in a serifed font, which is commonly used for body
text [45]. The target text appears in a monospaced, sans-serif
font. Monospaced fonts are conventional for text entry forms.
We chose the Paratype2 font family, which features a large
x-height for more readable type [45].

Summary of MT Service
Statistical MT systems come in two general flavors: phrase-
based and hierarchical/syntactic. Phrase-based systems decode
input (i.e., search for translations) left-to-right and can run in
O(n) time. Hierarchical/syntactic systems are not restricted
to left-to-right processing, but decode with the slower O(n3)
CKY parsing algorithm. Although the left-to-right constraint
may not necessarily correspond to the human translation pro-
cess, we found in pilot studies that users tended to value speed
and responsiveness, hence we chose a phrase-based system.
2http://www.paratype.com/public/



Both types of MT systems are trained in a sequential pipeline:
word alignment, translation rule extraction, model parameter
learning, and finally decoding of source input. A deployed
system like ours must also perform pre- and post-processing of
inputs and outputs since the MT system typically expects and
generates lowercased, tokenized (e.g., punctuation is separated
from words) text that should not be shown to the user. Our
system is trained offline prior to usage, but performs pre- and
post-processing online inside the MT service.

The UI design required considerable backend engineering to
support real-time suggestion updating [20]. Here we summa-
rize a few of the more interesting details.

First, to support suggestions that match a user prefix, we imple-
mented a novel variant of forced decoding. Forced decoding
constrains an MT system to produce a specific translation and
is sometimes used for parameter learning or diagnostics. Our
variant is called prefix decoding: we force the system to match
the user prefix, and then allow it to translate freely the remain-
der of the source input. The challenge is that the user prefix
may contain words that the system has never seen before, and
forced decoding ordinarily fails in this scenario. To solve this
problem, we generate synthetic translations from each source
word to each unseen target word on-the-fly, and allow the MT
system to guess which rules to use.

Second, in pilot experiments we found that unless the MT ser-
vice could return translations in less than about 300ms, users
deemed the UI as “sluggish.” The phrase-based decoding algo-
rithm is an instance of beam search, an approximate procedure
that maintains a ranked list of candidates. Reducing the list
(beam) size at decoding time increases search speed but usually
reduces translation quality, a classic tradeoff. However, we
found that if we reduced the beam size during parameter learn-
ing, and ran the learning procedure longer, we could mostly
recover these losses.

Finally, although we made the MT system considerably faster,
it is nonetheless slow relative to conventional AJAX requests
(e.g., database queries). Since requests arrive at approximately
typing speed while the translator works, the MT service can
exhaust its request handling threads waiting on the MT system,
and new requests cannot be processed. To solve this problem,
we implemented asynchronous request handling via the Java
Servlet 3.0 suspend API. Requests can be suspended while
waiting for the MT system so that new requests can be queued.
This architecture is critical to making the UI responsive.

EXPERIMENTAL DESIGN
We conducted a language translation experiment with a 2 (trans-
lation conditions) x n (source sentences) mixed design, where
n depended on the language pair (Table 1). Translation con-
ditions (post-edit and PTM/interactive) and source sentences
were the independent variables (factors). Experimental sub-
jects saw all factor levels, but not all combinations, since one
exposure to a sentence would certainly influence another.

We randomized the assignment of sentences to translation
conditions and the order in which the translation conditions
appeared to subjects. At most five sentences appeared per
screen, and those sentences appeared in the source document

order. Subjects received untimed breaks both between trans-
lation conditions and after about every five screens within a
translation condition.

Subjects completed the experiment remotely on their own hard-
ware. They received personalized login credentials for the web
service, which administered the experiment. Upon login, sub-
jects were assured that no identifying personal information
would be recorded, and were asked to consent to having trans-
lation session information recorded for playback and analysis.
Subjects then completed a demographic questionnaire that in-
cluded information such as prior experience with CAT and
self-reported language proficiency. Next, subjects completed
a training module that included a 4-minute tutorial video and
a practice “sandbox” for developing proficiency with the two
translation UIs. Then subjects completed the translation exper-
iment. Subjects could move among sentences within a screen,
but could not go back to previous screens to make correc-
tions. Finally, they completed an exit questionnaire. Most of
the questions asked users to rate parts of the experiment and
the interfaces according to a 5-point Likert scale. Free-form
responses to several questions were also solicited.

To minimize the number of learned interactions, we replaced
the document navigation hot keys with mouse navigation. To
force a contrast with post-edit, we also disabled the Escape
key so that subjects could always see at least the full target
translation (gray text) and the autocomplete drop-down.

Subjects completed the experiment under time pressure. We
used an idle timer identical to that of Green et al. [21], and
asked subjects to complete the experiment in a single day.

Linguistic Materials
We chose two language pairs: French-English (Fr-En) and
English-German (En-De). French and English are typologi-
cally similar, whereas English and German can have different
canonical word orders. Anecdotally, French-English is a very
easy language pair for MT, whereas English-German is very
hard due to long-distance reordering and complex German
morphology (e.g., case, gender agreement, etc.).

We chose three text genres: software, medical, and informal
news. These genres differ significantly from the majority of the
data used to train the MT system, thus replicating the domain
mismatch commonly occurring in the translation/localization
industry. The software data came from the graphical interfaces
of Autodesk AutoCAD and Adobe Photoshop. The medical
data was a drug review from the European Medicines Agency.
These data came from the TAUS data repository3 and contained
professional human reference translations. The informal news
data came from the Workshop on Machine Translation (WMT)
2013 shared task test set [9].

We expected that the software would be hardest, the medical
data would be moderately difficult, and the newswire would be
easiest. The exit survey confirmed that the software data was
indeed hardest, but that the newswire was more challenging
than the medical data. Despite the presence of jargon in the

3http://www.tausdata.org/



Fr-En En-De
#subjects 16 16
male/female 7/9 4/12
#source tokens 3,003 3,002
#source sentences 150 173
$ / subject $265.26 $265.18
Total $4,244.16 $4,242.88
Grand Total $8,487.04

Table 1: Full user study summary. We also conducted a pilot study with
four professional Fr-En translators that cost $981.52.

drug review, the sentences were formulaic, and the translators
apparently did not need medical expertise to translate them.

The Fr-En dataset contained 3,003 source tokens; the En-De
dataset contained 3,002. Average human translators process
about 2,700 source tokens per day [43, p.36], so the experiment
was designed to replicate a slightly demanding work day.

Selection of Subjects
We recruited professional, freelance translators on Proz, which
is the largest online translation community.4 We posted ads
for both language pairs at $0.085 per source word, an average
rate in the industry. In addition, we paid $10 to each translator
for completing the training module. Table 1 summarizes the
experimental subjects and data.

All subjects had significant prior post-editing experience with
commercial CAT workbenches. We tried to balance the subject
pool by gender, but could not find enough male participants.

MT System
We trained large-scale Fr-En and En-De translation systems on
all of the constrained data from the WMT 2013 shared task.5
For coverage, we also added 61k parallel segments of TAUS
data to the En-De bitext, and 26k TAUS segments to the Fr-En
bitext. We aligned the parallel data with the Berkeley aligner
[33] and built 5-gram language models with lmplz [23]. The
MT model contained 18 baseline features [22]. We set the
beam size to 800 for both parameter learning and decoding.
The held-out parameter tuning set contained a third medical
data, a third software, and a third newswire.

Evaluation Metrics
We analyze PTM and post-edit in terms of the two sentence-
level response variables: time and quality. We also measure
interactive aid usage by UI event gross statistics.

For quality, we choose BLEU+1 [34], which is the sentence-
level variant of the corpus-level BLEU metric [42]. Both
variants are computed relative to a reference translation, and
combine measures of string and length similarity. To maximize
BLEU, a system must produce a translation that contains simi-
lar n-grams and is of similar length to the reference. Values
are conventionally reported as pseudo-percentages, with 100
4http://www.proz.com
5We ended up excluding the noisy CommonCrawl Fr-En data.

indicating an exact match with the reference. BLEU has nu-
merous well-known limitations like invariance to permutations
[10]. Nevertheless, it correlates surprisingly well with human
judgment [13] and is thus the standard in MT research.

More importantly, BLEU is an MT-tunable metric. Horvitz’s
principle #12 is continuing to learn by observing: a true mixed-
initiative MT system will improve with use. Human assessment
is the final arbiter when evaluating MT systems, yet it is slow
and expensive, preventing its practical application for tuning
to human feedback. Therefore we focus on automatic quality
assessment, leaving a human evaluation to future work.

We excluded one Fr-En subject and two En-De subjects from
the models. One subject misunderstood the instructions of
the experiment and proceeded without clarification; another
skipped the training module entirely. The third subject encoun-
tered a technical problem that prevented session logging.

TIME RESULTS AND ANALYSIS
Our analysis uses linear mixed effects models (LMEM) built
with the lme4 [7] R package. LMEMs are more robust to
type II errors than ANOVA when factors represent samples
from larger populations. In our case, both subjects and source
sentences are small samples from the human and linguistic
populations, respectively.

The log of time (in seconds) is the response and the inde-
pendent variable of interest is translation condition. We also
found several other significant covariates and added them to
the model. The maximal random effects structure [5] includes
random intercepts and slopes for subject, source sentence, and
text genre.

Table 2 shows the results. PTM is slightly slower for both
language pairs. For Fr-En, the LMEM predicts a mean time (in-
tercept) of 46.0 sec/sentence in post-edit vs. 54.6 sec/sentence
in PTM, or 18.7% slower. For En-De, the mean is 51.8
sec/sentence vs. 63.3 sec/sentence in PTM, or 22.1% slower.

The other significant effects reveal more about translator be-
havior and differences between the two language pairs. Trans-
lators were consistently slower for longer sentences (log source
length) and when suggestions required more editing (normal-
ized edit distance). Females were slower, but only at a sta-
tistically significant level in En-De. The unbalanced En-De
subject pool (Table 1) may be the cause.

The significance and coefficient of ui order shows that sub-
jects improved in both conditions with practice. Subjects were
significantly slower in En-De, but there is also a significant
interaction between interface condition and ui order, meaning
that subjects were significantly faster in PTM as the experiment
progressed. Figure 5 shows visual evidence.

The high significance level of no edit shows that accurate initial
MT provided significant acceleration.

Qualitative Time Analysis
The time models show that users were initially slower with
PTM, but that they improved over the course of the session.
Many users believed that with more practice they could trans-
late faster with PTM. However, this optimism came with the
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Figure 5: Log time vs. ui order for the top four En-De subjects (according to quality) with loess trend lines. In the post-edit condition (red), three of the
four subjects maintain a relatively steady level of performance, whereas in the PTM condition (blue) all four subjects improve with practice. Recall that
the order of translation conditions and documents were randomized.

Fr-En En-De
sign p sign p

ui (PTM) + ◦ + ••
ui order − • − ••
normalized edit distance + ••• + •••
no edit (True) − ••• − •••
gender (Female) + + •
log source length + ••• + •••
ui (PTM) : ui order + − •

Table 2: LMEM time results for each fixed effect with contrast conditions
for binary predictors in (). normalized edit distance is computed with re-
spect to the initial MT suggestion, and is normalized by the source length.
ui order is the order of the source sentence in each ui condition for each
subject. The sign of the coefficients can be interpreted as in ordinary lin-
ear regression. Statistical significance was computed with a likelihood
ratio test: ••• p < 0.001; •• p < 0.01; • p < 0.05; ◦ p < 0.1.

caveat that the interactive mode was necessarily more labor
intensive. There are more aids to operate and more information
to read and analyze:

Because you spend more time on each word, you have
opportunity to see alternative translations.

Subjects noticed that MT quality greatly affected the usefulness
of the interactive aids:

If drop-down suggestions are not of a good quality, read-
ing (without selecting them) may consume extra time.

When asked, “In which interface did you feel most produc-
tive?”, subjects were almost evenly divided, with 15 selecting
post-edit and 14 choosing PTM. When asked, “In general,

which interface did you prefer?”, the proportions were the
same; all but two subjects chose the same interface for both
questions. The slight preference for post-edit may result from
prior familiarity with that mode. When asked to respond to
the statement, “I would use interactive translation features if
they were integrated into a CAT product”, 11 subjects chose
“Strongly Agree” and nine responded “Agree”; only four dis-
agreed with the statement. More encouragingly, when pre-
sented with the statement, “I got better at using the interac-
tive interface with practice/experience,” 25 subjects agreed or
strongly agreed, and none of the subjects disagreed. Free-form
responses elaborated on this theme:

The post-edit mode was easier at first, but in the end the
interactive mode was better once I got used to it.

I felt that if I had time to use the interactive tool and grow
accustomed to its way of functioning, it would be quite
useful...

I am used to this [post-edit], this is how Trados [the pre-
eminent CAT tool] works.

TRANSLATION QUALITY RESULTS AND ANALYSIS
We build LMEMs with the same random effects structure but
with the log of BLEU+1 as the dependent variable. Table
3 shows the results. For Fr-En, the LMEM predicts a mean
(intercept) BLEU+1 score of 33.7 for post-edit and 34.6 for
PTM. For En-De, the mean is 25.4 for post-edit and 26.3 for
PTM. For both language pairs there is a significant main effect
for interface condition.

The inclusion and significance of log time—the dependent
variable in the previous section—merits discussion. We hy-



Fr-En En-De
sign p sign p

ui (PTM) + ◦ + •
no edit (True) + ••• + ◦
gender (Female) − +
log time − ••• − •••

Table 3: LMEM sentence-level quality (BLEU+1) results for each fixed
effect with contrast conditions for binary predictors in ().

pothesize some correlation between time and quality. Consider
a subject who simply submits the initial MT immediately with-
out any editing. Absent perfect MT this strategy optimizes
time at the expense of quality. The time analysis also showed
that translation with PTM tends to be slower than post-edit.
We have two options: a multivariate model for time and quality,
or inclusion of time as a independent variable.

Here we include time as an independent variable since it also
captures an important property of BLEU+1. Time is positively
correlated with source length (ρ = 0.53 for Fr-En and ρ =
0.43 for En-De): longer sentences take longer to translate.6 It
is negatively correlated with BLEU+1 (ρ = −0.21 for Fr-En
and ρ = −0.24 for En-De). This is a common property of
automatic metrics. Since a longer sentence has many more
possibilities for translation, the overlap between any single
translation and any single reference tends to decrease with
length. The models reflect this tendency: for both language
pairs log time has a negative coefficient.

The significant predictor no edit has a positive coefficient for
Fr-En. We found that the baseline Fr-En MT system produced
a higher corpus-level BLEU score than any human subject.7
This result corroborates previous work [15][31, p.229] on the
inability of BLEU to discriminate among accurate translations.

We also computed corpus-level BLEU and HBLEU (Table
4). BLEU is a measure of similarity with the independently
generated references. Overall, users produced slightly higher
BLEU scores with PTM.8 HBLEU is measure of similarity
with the initial MT suggestions. In post-edit subjects tended to
deviate less from the initial MT than in the interactive mode.

We hypothesize two explanations for the results in Table 4.
First, our previous work on unaided vs. post-edit [21] showed
that MT suggestions prime translators. PTM exposes transla-
tors to many more alternatives, encouraging them to deviate
further from the initial MT suggestion (lower HBLEU). Second,
we do not know the conditions under which the independent
references were generated. For example, the En-De references
contain English transliterations or loan words for many med-
ical terms, whereas the subjects in our study tended to seek
faithful target-language translations. The automatic metrics are
6Consequently, we remove log source length and normalized edit
distance from the quality model.
7Conversely, all humans exceeded the baseline En-De MT system.
8It is not possible to compute statistical significance because the
translations in each condition are unbalanced. Recall that we filtered
three subjects completely, and also removed individual translations
for which the idle timer expired.

Fr-En En-De
BLEU HBLEU BLEU HBLEU

post-edit 38.1 63.7 29.4 44.1
PTM 38.4 62.6 29.5 41.0

Table 4: Corpus-level quality for the two translation conditions. BLEU
is the human translations with respect to the independent references;
HBLEU is the initial MT suggestion with respect to the human trans-
lations. For both metrics a higher score indicates greater similarity.

sensitive to lexical differences possibly making independent
references less useful for general CAT evaluation. A human
quality assessment between PTM and post-edit is needed for a
final verdict.

Qualitative Quality Analysis
Subjects perceived our baseline MT systems to be unusually
effective. They often submitted lightly edited translations in
the post-edit condition. The baseline MT systems were trained
on a small amount of in-domain TAUS data, which probably
increased accuracy relative to a generic MT system. This may
have benefitted the post-edit condition more than PTM:

I found the machine translations (texts in gray) were of
a much better quality than texts generated by Google
Translate

The translations generally did not need too much editing,
which is not always the case with machine translations.

Some users articulated aesthetic critiques about MT in general.
MT systems tend to produce more literal translations. When
users wanted to render more stylistic translations, they believed
that PTM was less useful:

...choosing a very different translation approach (choice
of words, idioms with no equivalent in English...) would
be like going against the current—but may have provided
a better quality.

...distracts from own original translation process by
putting words in head that confuse [my] initial translation
vision

...the translator is less susceptible to be creative

Some users noticed and seemed to resist priming by MT sug-
gestions, even if priming can lead to better translations [21].

INTERACTIVE AID RESULTS AND ANALYSIS
We analyzed the methods subjects used to enter text by
aggregating UI events into five modes of target genera-
tion: autocomplete-best, source suggestion, autocomplete-
alternative, interactive typing, and non-interactive typing.

Autocomplete-best refers to users accepting the best machine
translation, turning a block of gray text to black either incre-
mentally (via tabbing) or completely (via the Insert Complete
Translation interaction). Source suggestion refers to users look-
ing up the translation of a source word, and inserting it into
the text box via a mouse click. Autocomplete-alternative refers



Fr-En En-De Overall
autocomplete-best 17.46 7.85 12.03
interactive typing 45.58 43.06 44.16
non-interactive typing 36.94 49.06 43.79
source suggestion 0.01 0.01 0.01
autocomplete-alternative 0.01 0.01 0.01

Table 5: Percentage (%) of editing events corresponding to the five modes
of target generation using the PTM system.

to users selecting (using the mouse or down arrow) and ac-
cepting a translation from the drop-down menu. Interactive
typing refers to users typing and modifying the last word in the
partial translation, triggering real-time updates to the machine
translation. Non-interactive typing refers to users modifying
any other word in the partial translation.

We recorded over 1.1 million UI events across all translation
sessions. Focusing on only PTM sessions, we identified a
subset of 258,000 editing events corresponding to the five
modes. We exclude non-editing events, such as hovering over
the source text for word lookup without insertion. We thus
measure the direct means by which the translators entered their
translations. A notable shortcoming of previous systems is that
users tended to eschew interactive aids in favor often typing.

Table 5 shows the proportions of editing events. Table 6
shows the total amount of text modified, measured by the num-
ber of characters entered or deleted by the users. We find
that nearly two thirds (65.61%) of the text generated came
from autocomplete-best at an average of 14.01 characters per
keystroke. Over 88% of the editing events came from typ-
ing, but such actions accounted for only 34.22% of the text
generated. While a direct comparison with previous systems
is not possible, we point out the following contrasts. In the
TransType system, the authors commented that their users of-
ten “[accepted] predictions in [their] entirety and then edited to
ensure its correctness” and reported that 52% of target charac-
ters were typed [36]. In the “prediction+options” experiment
conducted by Koehn et al. [29], the authors reported that
36% of the final translations were typed, 36% entered via a
mouse click, and 27% entered via the tab key to accept ma-
chine translations. When working in our PTM system, users
directly utilized machine translations to a greater degree than
previously reported.

As many professional translators are touch typists, one of our
design goals is was retain user focus at the point of text en-
try and optimize text entry via the keyboard. Tables 5 and 6
show success: 99.98% of the editing events (corresponding to
99.83% of the text entered) were performed using the keyboard
via autocomplete-best, interactive, or non-interactive typing.

Qualitative Analysis
We asked the subjects to select the least and most useful interac-
tive aids. Target aids were deemed most useful. The target full
translation (gray text) received the most votes (11) followed
closely by autocomplete (8). Surprisingly, source aids were

Fr-En En-De Overall
autocomplete-best 71.09 60.46 65.61
interactive typing 15.92 18.37 17.18
non-interactive typing 12.90 20.93 17.04
source suggestion 0.04 0.06 0.05
autocomplete-alternative 0.05 0.19 0.12

Table 6: Percentage (%) of text entered (measured by the number of
characters modified) via the five PTM modes of target generation.

deemed least useful, with subjects equally ambivalent about
the source coverage aid (11) and the word lookup feature (11).

We also asked subjects to rate each aid on a 5-point Likert
scale. Aggregating these ratings leads to a global ranking over
aids. Here subjects rated autocomplete highest, the target full
translation second, and word lookup third. We also asked
subjects to rate the usefulness of the suggestion reordering
and length prediction features. The majority of users (20)
either agreed or strongly agreed that the length prediction was
useful, validating our syntactic projection technique. Subjects
were less enthusiastic about reordering, with half disagreeing
that it is useful. However, this feature is admittedly the most
complex interaction in the UI, so it probably takes the longest
to learn and master. Additional development might focus on
simplifying or improving the reordering feature.

CONCLUSION
We presented Predictive Translation Memory, a new interac-
tive, mixed-initiative language translation system. A large-
scale evaluation on two language pairs showed that subjects
approach the speed of simple post-editing but with an improve-
ment in automatically evaluated translation quality. The base-
line post-edit condition was very strong since all subjects were
regular users of post-editing software. Qualitative analysis
showed that users liked the interactive aids, and many believed
that with more practice, PTM could increase their productivity.
Future work should focus on the potential for PTM to improve
quality according to a human assessment.

Log analysis revealed that users engaged interactive aids to a
greater degree than in previous work on interactive MT. We
hope to exploit the rich interaction logs generated by these aids
to create an MT system that learns and adapts to each user. The
automatic quality results augur well for this research direction.
Comparison of French-English and English-German strongly
suggested that MT accuracy does affect user behavior. An
adaptive system could further increase productivity, especially
for language pairs with poor baseline MT.
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