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ABSTRACT
We introduce the problem of risk analysis for Intellectual Property
(IP) lawsuits. More specifically, we focus on estimating the risk for
participating parties using solely prior factors, i.e., historical and
concurrent behavior of the entities involved in the case. This work
represents a first step towards building a comprehensive legal risk
assessment system for parties involved in litigation. This technol-
ogy will allow parties to optimize their case parameters to mini-
mize their own risk, or to settle disputes out of court and thereby
ease the burden on the judicial system. In addition, it will also help
U.S. courts detect and fix any inherent biases in the system.

We model risk estimation as a relational classification problem
using conditional random fields [6] to jointly estimate the risks
of concurrent cases. We evaluate our model on data collected by
the Stanford Intellectual Property Litigation Clearinghouse, which
consists of over 4,200 IP lawsuits filed across 88 U.S. federal dis-
tricts and ranging over 8 years, probably the largest legal data set
reported in data mining research. Despite being agnostic to the
merits of the case, our best model achieves a classification accuracy
of 64%, 22% (relative) higher than the majority-class baseline.

1. INTRODUCTION
Intellectual Property (IP) law handles legal property rights over

creations of the mind, such as industrial, literary and other artistic
works. Enforcing IP rights is crucial for industries where the cost
of replicating a product is significantly smaller than the cost of cre-
ating that good (e.g., pharmaceutical). Consequently, IP lawsuits
may have drastic consequences (e.g., in a patent infringement case
in the pharmaceutical industry, the damages paid by the defendant
run into millions of dollars if infringement is proved). Hence, it is a
matter of critical importance for parties involved in IP litigation to
continually assess their respective risks during the entire progres-
sion of the case, starting from its filing time, or even prior to filing.
Understanding these risks will help the parties decide whether to
continue to fight the case in the hope of a favorable jury verdict,
or to settle out of court, thus avoiding large litigation expenses and
maintaining the possibility of negotiating the outcome. As a desir-
able side-effect, if most parties settle cases out of court using an
accurate risk analysis system, it would also help ease the burden on
the judicial system and make it more efficient.

The main goal of our research is to build a risk analysis model
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for IP litigation. Risk analysis is a complex problem that depends
on a number of factors. Broadly, we classify most factors into one
of two categories: (a) merits of the case – factors in this category
include the strength of the patents asserted, similarity of the de-
fendant’s manufacturing technology to the patent’s technology, etc;
and (b) prior factors – factors that do not model directly the merits
of the case but instead focus on past information that may influence
the outcome of the current case. For example, this latter category
includes the past win rates of parties, attorneys and law firms in-
volved in the case, potential biases of judges estimated from past
cases, etc. While both these classes of factors are important for
risk estimation, in this paper we focus on the latter category. More
specifically, this work raises the following questions:

1. Are prior factors relevant in determining the risks involved
in a case?

2. What are the important prior factors and what is their relative
significance in estimating the overall risk of a case?

Focusing on prior factors is important for several reasons. Firstly,
prior factors model ingredients that may influence the case outcome
independently of the case merits, e.g., a good attorney may increase
the chances of winning. Understanding what these factors are pro-
vides practical feedback for risk minimization: at the time of liti-
gation, parties cannot change the merits of the case but can adjust
prior factors to optimize chances of winning. Secondly, prior fac-
tors indirectly model the merits of the case. For example, the fact
that a plaintiff has a high success rate in previous litigation is a
likely indication that it owns strong patents. Hence, prior factors
may prove useful also for modeling the merits of cases. And lastly,
prior factors are easier to extract than the merits of the case which
may require more sophisticated modeling.

In this work we answer the above questions empirically using
a prior risk analysis model, i.e., a model that uses only prior fac-
tors for estimation, as follows. To answer the first question on the
influence of prior factors for the estimation of litigation risk, we
model prior risk as a binary classification task, i.e., patent-owner
(plaintiff) wins or defendant wins. The risk for any party can be
estimated in terms of the probability that the opposing party wins.
In the prediction model we use only prior factors as features, i.e.,
prior performance of the entities involved in the case, which can be
extracted at the time the corresponding case was filed. We train and
evaluate our model using data provided by the Stanford Intellectual
Property Litigation Clearinghouse (IPLC) project1, which covers
IP litigation from the United States from the past eight years. Our
results indicate that such models have a prediction accuracy of ap-
proximately 64%, which is significantly higher than the majority-
class baseline. To our knowledge, this work is the first to show
that litigation risk can be estimated using solely prior information.

1http://www.law.stanford.edu/program/
centers/iplc/



Party Attorney Law firms
Frequency 36.1% 65.4% 90.5%
Same outcome 80.9% 69.5% 61.4%

Table 1: Analysis of concurrent lawsuits. The first row in-
dicates the percentage of lawsuits in the training corpus that
share at least one attribute of the given type (i.e., party, attor-
ney, or law firm) in the same role (plaintiff or defendant) with
at least another concurrent lawsuit. The second row indicates
the percentage of connected cases that have the same outcome,
from the corresponding subsets listed in the first row.

To answer the second question on the relative importance of each
feature, we performed an extensive feature analysis of our model.
This analysis indicates that the prior performance of the attorneys
and law firms involved in the case is a crucial feature for prediction.
Furthermore, we show that there is significant correlation between
concurrent cases that share parties. We exploit this correlation us-
ing statistical relational learning to further improve the predictive
power of our model.

2. APPROACH
We model the prior risk analysis problem as a supervised dis-

criminative binary classification task whose goal is to predict the
outcome of new litigation given relevant prior factors. In this paper
we focus on patent-infringement cases that had a publicly known
polarized outcome, i.e., cases that were not settled. We model each
lawsuit as a separate datum that is assigned one of two possible la-
bels: patent owner wins or accused defendant wins. For simplicity,
in the remainder of the paper we will refer to the patent owner as
the plaintiff.2 We introduce next the models we built for this task.
We conclude this section with the description of the features that
implement the prior factors in our models.

2.1 Models
Each individual lawsuit is modeled as a distinct example xi in

our dataset containing n examples. An example x is represented
as a vector of features f(x) = (f1(x), · · · , fm(x)) where m is the
number of distinct features. In the simplest representation, features
are extracted using solely historical information, i.e., information
extracted from cases that terminated before the case to be modeled
was filed. Each component fj(x) could be a binary value, an inte-
ger, or a real valued fraction.

We use the L2 regularized logistic regression with the following
objective function as the classifier:

P (y|x,w, σ2) = (

nY
i=1

exp(yiw
T f(xi))

1 + exp(wT f(xi))
)
exp(−wT w

2σ2 )
√

2πσ2
(1)

where y ∈ {1, 0} represents the outcome label of the case,3 w
is a vector of feature specific weights, and σ2 is a regularization
parameter that can be tuned.

A limitation of the above model is that it cannot represent de-
pendencies between concurrent4 and correlated cases. Intuitively,
2This is not always the case: in declaratory judgment cases the ac-
cused party initiates a non-infringement lawsuit, hence the patent
owner is legally the defendant. This happens when a party is threat-
ened with an infringement lawsuit by the patent owner but that law-
suit is not yet filed. In this paper, we normalize these notations to
their semantic interpretation, i.e., the patent owner is always the al-
leged prejudiced party or the plaintiff, regardless of who filed the
first complaint.
3‘1’ represents plaintiff wins and ‘0’ defendant wins.
4Two cases are concurrent if neither terminates before the other

concurrent cases that share information should have a correlated
outcome. For example, two concurrent cases with the same com-
pany as plaintiff are likely to be on the same topic, i.e., infringement
of related patents, use the same evidence and, hence, have the same
outcome. This assumption is verified empirically in Table 1, which
analyzes the correlation between concurrent cases in our training
corpus (the corpus is detailed in the next section). The first row in
the table shows the percentage of cases in the training corpus that
share one or more entities in the given role with at least another
concurrent case. Note that these values are generally high because
there is significant chronological overlap between cases: because
the average time to termination of an IP case is larger than one
year, virtually every case in our corpus overlaps with other cases.
The data indicates that sharing is most prevalent for law firms and
least common for parties, e.g., 90% of cases have one or more con-
current case with the same law firm in the same role but only 36%
of cases share a party in the same role with another concurrent law-
suit. This is to be expected because law firms participate in signif-
icantly more cases than individual attorneys or parties. However,
the second row in the table shows that the correlation between out-
comes is strongest for cases that share parties: in the set of cases
that share at least one party with one or more concurrent cases, over
80% have the same outcome as the corresponding concurrent cases.

The above analysis suggests that there is merit in modeling the
correlation between concurrent cases, especially for cases that share
a party in an identical role. However, this correlation does not al-
ways hold: 20% of the concurrent cases that share parties have
different outcomes. So, imposing a hard constraint at runtime that
any concurrent cases must have the same outcome would be a bad
idea. Instead, we prefer to learn soft constraints that estimate the
strength of correlation between concurrent cases using statistical
relational learning. In this paper, we use conditional random fields
(CRF), implemented over the network of concurrent lawsuits. To
the best of our knowledge, this work is the first to show that sta-
tistical relational learning is applicable to the problem of litigation
risk analysis.

Formally, we first define a graph G = (V,E) as follows. Each
vertex vi ∈ V corresponds to a case xi in the data. We also de-
fine an edge eij ∈ E between vertices vi and vj if and only if
xi and xj are concurrent cases that share at least one party in the
same role (i.e., the shared entity occurs either as plaintiff or as de-
fendant in both cases). We now define a CRF over the graph G
that jointly models the outcomes y = (y1, · · · , yn) of all cases
x = (x1, · · · , xn) as follows:

P (y|x) =
1

Z
exp(

nX
i=1

yiw
T f(xi) +

X
(i,j)∈E

vT g(yi, yj)) (2)

where g = (g0, g1) are our new network features, defined as g0(yi, yj) =
1 if yi = yj and 0 otherwise, and g1(yi, yj) = 1 − g0(yi, yj).
In other words, g0 is active if the two cases xi and xj have the
same outcome and g1 is active if they have opposite outcomes. The
weight vector v corresponding to these features captures the net-
work correlation strength.

Learning:
Although this model is attractive for the problem of joint modeling
of concurrent cases, exact learning is intractable for an arbitrary
graph such as the one we defined in our problem. Hence, in this pa-
per we use a variant of pseudo-likelihood for training [3]. Pseudo-
likelihood is known to be a consistent estimator of true likelihood
and is known to work well in cases where local features are strong.
In this method, the joint likelihood of all the variables in a model
is approximated by the product of the probability of each variable,
conditioned on all other variables as shown below:

starts.



P (y|x) ≈
Y
i

P (yi|y−i, xi) =
Y
i

P (yi|yN(i), xi) (3)

where the subscript −i refers to all variables not including yi, and
N(i) refers to the neighbors of yi. The second step above follows
from the fact that a variable is conditionally independent of all other
variables given its neighbors, in an undirected graphical model. In
the case of an exponential model such as the CRF, each term in the
product above would be equal to the following logistic regression
function:

P (yi|xi,yN(i)) =
1

Z′
exp(yiw

T f(xi) +
X

j∈N(i)

vT g(yi, yj)) (4)

This is much easier to learn than the joint model because it requires
no global information propagation.

Inference:
Since exact inference is computationally expensive as well, we
use Gibbs sampling [1] to perform approximate inference. Simi-
lar to pseudo-likelihood, Gibbs sampling deals with the same lo-
cal probability P (yi|xi,yN(i)) shown in the last equation. In this
approach, we sample each variable yi in turn from the local prob-
ability, where yN(i) correspond to the latest outcome assignments
of its neighbors. This iterative process, when run long enough, is
guaranteed to converge to the true posterior.

Also, since we need best variable assignments rather than true
posterior, we use simulated annealing with Gibbs sampling, using a
linear cooling schedule, as used in [5]. According to this approach,
we exponentiate the sampling distribution in the last equation by
a value 1/C. We initialize C = 1 at the start of Gibbs iterations,
and we decrease it linearly with each iteration until C → 0. At
small values of C, the sampling distribution becomes peaked at the
maximizing value, thus returning the maximal assignments.

2.2 Features
We model the past behavior of all litigation entities involved in

a given case. These entities are: (a) the parties involved in the
case, i.e., plaintiffs and defendants; (b) the attorneys on each side
of the lawsuit, i.e., plaintiffs’ and defendants’ attorneys; (c) the
plaintiffs’ and defendants’ law firms; (d) the judges assigned to a
case (usually, there is a single judge per case, but a lawsuit may
eventually have multiple judges if it is transferred to a different
district); and (e) the districts where the case is filed.

It is obvious that parties, attorneys, or law firms are important
parameters of a lawsuit. Judges are also important because they
decide what information is presented to the jury. Hence, their own
bias may indirectly influence jury decisions. The district is impor-
tant because the jury is selected from the local population, which
may have certain cultural biases (either pro or against IP). We model
the past behavior of the entities listed above using four different
types of features:

(a) Unique identifier (id) – for each participating entity in a given
case we generate a Boolean feature for its unique identifier con-
catenated with its role in the case. For example, the feature
id:plaintiff-attorney:101 indicates that the entity with
id 101 served as a plaintiff’s attorney in the current case. This
allows the discriminative model to learn the correlation between
outcome labels and entities in a given role. For example, if the
previous feature appears mostly in lawsuits where the plaintiff side
wins, this indicates that the corresponding attorney is usually suc-
cessful when defending the plaintiff side.

(b) Past win rates in any role (wr) – we model the win rates of law-
suit entities, regardless of their role in past lawsuits. We compute
this feature explicitly for each entity as the percentage of past cases,
i.e., cases that terminated before the current case and included the

given entity in any role, that were won by the side of the corre-
sponding entity. For example, if an entity won a past case as plain-
tiff, another as defendant, and lost one as plaintiff, its win rate is
66%. Since there are multiple entities that have the same role in a
given case, we average all win rates for the entities in a given role
and use this average as the actual feature for that role. These two
feature sets (id and wr) are intended to capture both the depen-
dency between previous successes and the current outcome (e.g.,
a better law firm should increase changes of winning) but also to
model, albeit indirectly, the merits of the case (e.g., a party with
a high success rate in previous litigation is likely to own strong
IP, which should be reflected in the outcome of the current case as
well). These features are not computed for judges and districts.

(c) Judge and district bias (bias) - for judges and districts we
compute a variant of the wr feature that estimates the bias of that
judge or district towards one side of the litigation. This feature is
computed as the ratio of cases won by the plaintiff from the set of
past cases assigned to the corresponding judge or district. Same as
above, we use as the actual feature value the average over all judges
or districts assigned to the case.

(d) Counts of participation in past cases in any role (count) –
this feature counts the presence of the corresponding entity in past
lawsuits, regardless of its role and the outcome of that case. For
example, the value of this feature for the entity in the above wr
example is 3, because this entity participated in three past cases.
This feature serves as an estimate of experience. In other words,
the amount of litigation experience that an entity has is likely to
be correlated with the number of cases in which it has participated.
Same as the wr feature, this feature is averaged over all entities of
same type and is not computed for judges and districts.

We computed the values of all non-boolean feature types, e.g.,
wr, bias, and count, using only historical information, i.e., in-
formation gathered from lawsuits that terminated before the current
case was filed.5 Barring the exceptions noted above, we generate
all combinations of feature types and entity types. This yields a
total of 22 distinct feature groups.

3. DATA
The data used in this paper was provided by the Stanford IPLC

project. The corpus consists of all IP lawsuits between beginning
of 2001 and end of 2008. The cases in the corpus were previously
annotated with their outcomes. The annotation process followed
a pipeline model: first, two IP experts generated the initial anno-
tations; second, an IP attorney reviewed all outcomes and decided
the final annotation.

The meta data available for each lawsuit stores filing and termi-
nation times, and the names of all the entities involved (parties,
attorneys, law firms, districts and judges). However, all names
in the corpus are just textual mentions that maintain the spelling
used by the person who filed or registered the transfer of the cor-
responding case. To transform this data into usable information
we implemented an entity resolution (ER) component that consol-
idates all entity mentions into a set of clusters, where each cluster
contains all mentions that point to the same real-world legal entity,
e.g., “Quinn Emanuel, LLP” and “Quinn Emanuel Urquhart” are
different versions of the same law firm name.

The entire corpus contains 20,980 annotated cases. From this
set we discarded 16,666 cases that settled, i.e., the outcome is not

5This means that, for some test cases, these feature values include
information from other lawsuits in the testing partition. This is
closer to our envisioned application, where we estimate the risk of
a new case using all the cases already terminated.



Cases Parties Attorneys Law firms Judges Districts
4,263 12,270 15,706 5,261 1276 88

Table 2: Summary statistics for the litigation corpus. Only ter-
minated cases with a polarized outcome are considered.

Plaintiff Defendant
Parties 4,199 8,852
Attorneys 9,008 10,629
Law firms 2,946 3,625

Table 3: Number of unique entities per type× role for the 4,263
polarized cases in the corpus.

(publicly) in favor of one of the sides, and 51 cases that had out-
comes in favor of both sides. The latter situation happens because
outcomes are assigned to lawsuit claims, rather than the entire case.
Because this work treats cases as indivisible units, we ignore these
situations. The remaining 4,263 cases form the corpus used here.

Table 2 shows the overall statistics for the 4,263 cases. The table
shows that, even though the number of cases is relatively small, the
corpus contains a significant number of entities, e.g., there are more
than 12,000 distinct parties involved. Table 3 shows the relevant
statistics per role (plaintiff or defendant). Note that the numbers
per entity type (party, attorney, or law firm) do not add to the values
reported in Table 2 because some entities appear in different roles in
different cases, hence they are counted twice in this table. Table 3
indicates that there are significantly more entities on the defendant
side than on the plaintiff side.

Because the core of our prediction model is based on historical
information we train and test our approach on cases where at least
one out of the six polarized entities (i.e., party, attorney, or law firm
on the plaintiff or defendant side) has participated in three or more
previous lawsuits. We choose a minimal history of three previous
cases because this allows the model to learn unambiguous infor-
mation about past success rates. This reduces our corpus to 3,243
cases, or 76% of the original corpus. To construct the training and
testing partitions we sort all cases in chronological order of their
termination date and reserve the first 70% (2,270 cases) for train-
ing and the remaining 30% (973 cases) for testing.

4. EXPERIMENTS
4.1 Overall Results

Table 4 shows overall results for three models: a baseline that
predicts the majority class (plaintiff wins in our corpus), the logistic
regression (LR) model that uses only historical features, i.e., Equa-
tion 1, and the CRF model that models concurrent cases jointly,
i.e., Equation 2. For both models we report average results over
100 different samples of the test corpus, generated with bootstrap
resampling. We compute statistical significance using two-tailed
paired t-test at 99% confidence interval on these 100 samples. The
table shows that both our models outperform significantly the pro-
posed baseline. Our best model (CRF), improves the baseline with
over 22 relative percentage points. These results provide empirical
proof that prior factors influence the outcome of IP litigation.

Table 4 also shows that capturing the correlation between con-
current cases is beneficial. The CRF model that incorporates these
correlations has statistically-significant improvements over the LR
model that exploits only historical information. We hypothesize
that this is caused by the repetition of similar evidence in corre-
lated litigation. For example, a plaintiff party that participates in
two concurrent cases on the infringement of the same patents, will
provide the same evidence in both lawsuits. Hence, it is very likely
that these lawsuits will have the same outcome. Repeated infor-
mation likely appears in other similar (but not identical) cases as

Baseline LR CRF
Test 52.44 63.36∗ 64.03∗

Table 4: Classification accuracy of the two models and the
majority-class baseline. The scores suffixed with ∗ are signifi-
cantly better (2-tailed paired t-test, p = 0.01) than the previous
value in the same row.
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Figure 1: Ablation experiment for the CRF model, with feature
groups defined around participating entity types. The feature
groups suffixed with * have a statistically-significant impact (2-
tailed paired t-test, p = 0.01).
well, e.g., different patents owned by the same party. Such corre-
lations are modeled implicitly in our approach, through the sharing
of litigating entities between cases.

4.2 Ablation Analysis
To understand the important factors in our prediction model, we

performed several post-hoc ablation experiments using our best
CRF model. Figure 1 shows the results of an ablation experiment
where feature groups are defined around entity types, e.g., we group
all the features about plaintiff’s attorneys into a single set. The ex-
periment measures the accuracy of the CRF model as each one of
these feature groups is removed in turn from the complete feature
space. The figure shows the difference in accuracy scores between
the system without the corresponding feature group and the best
system that uses all features. Hence, negative values in the figure
indicate that the corresponding feature group is useful. We draw
several conclusions from this experiment:
(a) Legal entities, i.e., attorneys and law firms, are crucial. For
example, removing the plaintiff party does not yield a statistically-
significant change in performance, but eliminating the plaintiff’s
law firm causes a drop in accuracy of almost 2 percentage points.
On the defendant side, the combined contribution of the defen-
dant’s law firm and attorney equals that of the defendant party.
Three out of four of the legal entities (law firms on both sides
and the defendant’s attorney) have a significant impact, with drops
in accuracy ranging between 0.5 and almost 2 percentage points.
We hypothesize that the strong signal of the legal entity features
is caused by the fact that some legal entities have a very consis-
tent track record because they tend to specialize in similar types
of cases. On the other hand, the same cannot be said about parties,
e.g., a company (especially firms that specialize on opportunistic IP
enforcement) may sue on many different IP issues. The latter issue
does not apply to defendant parties, which explains why features
extracted from defendant parties have a significant contribution.
(b) The figure shows that features extracted from judge and district
entities have a significant influence on performance. This suggests
that there is a significant correlation between some judges and dis-
tricts and certain lawsuit outcomes (i.e., plaintiff winning or defen-
dant winning).
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Figure 2: Ablation experiment for the CRF model, with feature
groups defined around feature types (identifiers, win rates, and
counts). All feature groups have a statistically-significant im-
pact (2-tailed paired t-test, p = 0.01).

We performed a second ablation experiment, this time generating
feature groups based on feature types instead of entity types. We
followed the same procedure as in the previous experiment. The
results are summarized in Figure 2. This experiment illustrates two
additional important facts:

(c) Surprisingly, the count feature, i.e., the number of past cases
that had the corresponding entity as participant, is a better predic-
tor of future behavior than the wr or id features, which capture the
success rates of entities. Our conjecture is that count is a better
estimate of experience, i.e., the more cases an entity had partici-
pated in, the more experience that entity has. An additional factor
in favor of the count feature is that the values of the wr feature
do not account for sparsity, i.e., a legal entity with few past cases
may have an inflated wr value.

(d) The id feature, which models the performance of individual
entities in a specific role (plaintiff or defendant), is more important
than the wr feature, which captures entity win rates regardless of
their role. This experiment shows that the historical performance
of an entity in a given role can be different than its overall per-
formance, i.e., a party may be successful when litigating as a de-
fendant but not a successful litigator overall, and it is important to
represent this distinction.

5. RELATED WORK
Our work falls in the larger field of knowledge discovery from

legal databases [7]. Within this field, a few works focused on pre-
dicting litigation outcomes. For example, Arditi et al [2] is the first
work to address the problem of predicting outcomes of lawsuits.
In this work, they focus on litigation in the construction industry.
Their data consists of a training set of 102 construction industry
related cases filed in Illinois appellate courts from 1982 through
1992 and an additional test set of 12 cases filed in the same court
from 1992 through 1994. They represent each case by a set of
45 domain-specific features extracted from the case pleading docu-
ments such as party type, type of contract, contract value, etc., and
train a Neural Network. This model achieved 67% accuracy on the
test set. In another work, Chau applied an approach based on neural
networks [4] to litigation in the same industry. The main difference
is that the data came from Hong Kong courts from 1991 to 2000.
This dataset had a considerably larger number of cases (1,105 over-
all) but the model used only 13 unique features manually extracted
from the case documents. Chau trains a neural network model us-
ing particle swarm optimization, achieving an accuracy of 82%.
These works make an initial step towards risk analysis using the
merits of the case, even though they use either shallow approxima-
tions of case merits or features that were manually coded. On the
other hand, we are the first to investigate an orthogonal direction

that uses only historical or concurrent information on the litigating
entities to evaluate litigation risk. Additionally, all our features are
automatically extracted from the training data.

6. CONCLUSIONS
Litigation, and in particular IP litigation, is an extremely im-

portant element of the United States economy. Billions of dollars
are spent each year in preparing for litigation. IP trials commonly
award damages in the millions of dollars or even billions.6 This
work essentially argues (with empirical support) that IP litigation
is a problem fit for forecasting. We introduced the novel problem of
assessing the risk for parties involved in IP litigation based solely
on prior factors. Prior factors are attractive because they capture
the merits of the case indirectly, identify potential biases in the sys-
tem, and are easier to extract and model than the actual merits of
the case. We modeled risk estimation by estimating the probability
that the corresponding party will lose the case. We built a logistic
regression classifier to capture historical features and a novel rela-
tional model using conditional random fields to jointly predict the
outcomes of concurrent and related cases. Our experimental results
show that the CRF-based relational classifier outperforms the base-
line majority classifier by more than 22 relative percentage points
in accuracy. Our extensive feature analysis unearthed the entity
types that are most influential in determining the risk.

Our work has established that in the IP litigation domain risk
estimation systems can be developed by modeling only the prior
information of the participating entities. To the best of our knowl-
edge, this work is the first to show that this is possible. As part of
future work, we would like to combine both merits of the case as
well as prior factors into a single model to achieve further improve-
ments in performance.

We believe that this work can help parties involved in an IP law-
suit make well-informed decisions in terms of settlement or con-
tinuation of a case. Having an accurate estimate of litigation risk
will also reduce the number of cases that reach trial, which ben-
efits financially all the parties involved and improves the overall
efficiency of the judicial system itself.
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