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We present a new, two-stage, self-supervised algorithm
for author disambiguation in large bibliographic data-
bases. In the first “bootstrap” stage, a collection of high-
precision features is used to bootstrap a training set
with positive and negative examples of coreferring
authors. A supervised feature-based classifier is then
trained on the bootstrap clusters and used to cluster
the authors in a larger unlabeled dataset. Our self-
supervised approach shares the advantages of unsuper-
vised approaches (no need for expensive hand labels)
as well as supervised approaches (a rich set of features
that can be discriminatively trained). The algorithm dis-
ambiguates 54,000,000 author instances in Thomson
Reuters’ Web of Knowledge with B3 F1 of .807. We
analyze parameters and features, particularly those from
citation networks, which have not been deeply investi-
gated in author disambiguation. The most important
citation feature is self-citation, which can be approxi-
mated without expensive extraction of the full network.
For the supervised stage, the minor improvement due
to other citation features (increasing F1 from .748 to
.767) suggests they may not be worth the trouble of
extracting from databases that don’t already have
them. A lean feature set without expensive abstract
and title features performs 130 times faster with about
equal F1.

Introduction

Large bibliographic databases often fail to distinguish
authors with similar names. Consider “J. Lee,” attributed
with over 56,000 articles in Thomson Reuters’ Web of
Knowledge1, or “Kim, J.H.,” with over 11,000. Clearly
there is not just a single J. Lee or J.H. Kim who publi-
shed all of these articles. But although distinguishing the
different authors with similar names is important for any
research that makes use of networks of scientific publica-
tions, the task is quite difficult. Publication databases are
huge, requiring methods that can scale up to millions of
articles, and methods must be capable of handling partial
and conflicting metadata. Consider the example in Table 1,
where “Zhao, Kun” has changed his e-mail address twice in
3 years, his first name is missing from the metadata of two
of the three records, and the terminology in his articles
diverges quite a bit. An author disambiguation system must
nonetheless infer that these are the same person, presum-
ably by relying on other features such as coauthorship or
citation patterns.

There have been three classes of algorithms for author
disambiguation.2 Methods relying on supervised machine
learning train classifiers (support vector machines, random
forests, etc.) on a hand-labeled training set containing pairs
of articles where similarly named authors are identified as
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being the same or different persons (Han, Giles, Zha, Li, &
Tsioutsiouliklis, 2004; Huang, Ertekin, & Giles, 2006;
Kanani, McCallum, & Pal, 2007; Chen, Kalashnikov, &
Mehrotra, 2007; Culotta, Kanani, Hall, Wick, & McCallum,
2007; Yang, Peng, Jiang, Lee, & Ho, 2008; Treeratpituk &
Giles, 2009). Supervised algorithms require large hand-
labeled training sets, especially for huge databases like
MEDLINE or Web of Knowledge that contain tens of mil-
lions of articles. Such large quantities of manually annotated
training data are not easily available, would be hard to make
representative, and would be expensive to collect. For this
reason, supervised algorithms may not be the best solution
for such databases.

Unsupervised algorithms, by contrast, require no hand-
labeled training data, instead defining a metric of similarity
between pairs of articles and applying an unsupervised
clustering algorithm such as k-means or spectral clustering
(Malin, 2005; Han, Xu, Zha, & Giles, 2005; Han, Zha, &
Giles, 2005; Bhattacharya & Getoor, 2006; Song, Huang,
Councill, Li, & Giles, 2007; Kang et al., 2009; Fan et al.,
2011; Tang, Fong, Wang, & Zhang, 2011). The similarity
functions used by these clustering algorithms typically
compare vectors of roughly homogeneous features, e.g., the
words in the title, journal or author fields. Each resulting
cluster of similar articles is assumed to correspond to a
single real-world author. Unsupervised algorithms have the
advantage of not needing training data, but typically explore
simpler feature spaces, and often do not perform as well as
supervised approaches.

In natural language processing, the common solution
to these problems is a third-class: semisupervised, weakly
supervised, or self-trained algorithm (Blum & Mitchell,
1998; Banko & Brill, 2001; Ng & Cardie, 2003; McClosky,
Charniak, & Johnson, 2006). In these models, we are given
a large unlabeled dataset and either a small hand-labeled
training set (semisupervised) or a small set of high-precision
patterns or features that can be used to find training exam-
ples in the unlabeled data (weakly supervised). From this
labeled training set we then train a supervised classifier.
Once an initial model has been trained, it can be used to tag
unlabeled data. These methods have been quite successful in
relation extraction (Hearst, 1998; Riloff & Jones, 1999;
Chklovski & Pantel, 2004; Etzioni et al., 2005) and have
advantages over unsupervised approaches: Their supervised
component can learn discriminative weights for complex
feature sets, and they often have better performance than
fully unsupervised methods.

Some semisupervised and weakly supervised approaches
have been investigated for author disambiguation, with
high-precision features or additional training data being used
to bootstrap initial author clusters. For example, both Bhat-
tacharya and Getoor (2007) and Ferreira, Veloso, Goncalves,
and Laender (2010) use coauthorship features for bootstrap-
ping. For each author name, they cluster together articles that
have that author name and one or more additional coauthor
names in common. Torvik and Smalheiser (2009) use e-mail
addresses and some manually curated training examples to
bootstrap their clusters. All articles sharing a common e-mail
address are put into the same cluster, using e-mail addresses
from the article metadata and from a heuristic crawl of
publisher websites. These e-mail-based clusters are then aug-
mented with manually curated clusters from the Thomson
Reuters’ Highly Cited researchers database.3

Although these previous studies have shown that high-
precision features may be useful for bootstrapping, a number
of open issues remain. It is not clear how effective feature-
based bootstrapping is on large-scale collections—only
Torvik and Smalheiser’s (2009) study was large scale, and
they combined feature-based bootstrapping with additional
hand-labeled training data, so it is not possible to see the
effect of feature-based bootstrapping alone. It is also
unknown whether existing findings about feature-based boot-
strapping will hold with very large datasets—for example,
contrasting with the work of Bhattacharya and Getoor (2007)
and Ferreira et al. (2010) on smaller datasets, our results will
show that coauthorship is not effective for bootstrapping
author disambiguation on Thomson Reuters’ Web of Knowl-
edge. Moreover, we do not know much at all about the
effectiveness of features other than e-mail or coauthorship for
bootstrapping. Finally, because none of the previous studies
used standard supervised classifiers, instead introducing
alternative models at the same time as feature-based boot-
strapping, we cannot tell whether performance improved
because of the models or because of the bootstrapping.

3http://www.highlycited.com/

TABLE 1. Three papers by “Zhao, Kun.”

Title Laser-induced thermoelectric voltage in normal state MgB2

thin films
Author Zhao, Kun
E-mail ainiphoto@163.com
Coauthors Lu, HB; Cheng, BL; Zhao, SQ; Yang, GZ; Wang, SF; Chen,

ZH; Jin, KJ; Zhou, YL
Abstract Laser-induced voltage has been observed in c-axis oriented

MgB2 thin film at room. . .
Year 2006

Title Characteristics of heterojunctions of amorphous LaAlO2.73 on
Si

Author Zhao, K
E-mail kzhao@aphy.iphy.ac.cn
Coauthors Lu, HB; He, M; Yang, GZ; Chen, ZH; Huang, Y; Jin, KJ;

Zhou, YL
Abstract High-quality heterojunctions consisting of n-type amorphous

LaAlO3-d and p-type Si. . .
Year 2005

Title Ultraviolet photoresponse properties of SrTiO3 single crystals
Author Zhao, K
E-mail zhk@cup.edu.cn
Coauthors Lu, HB; He, M; Huang, Y; Yang, GZ; Chen, ZH; Jin, KJ;

Zhou, YL
Abstract We have observed ultraviolet photosensitive properties of

SrTiO3 single crystals. . .
Year 2007

Note. Our algorithm correctly clusters all of these together.
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Thus, we propose to investigate author disambiguation
using the standard bootstrapping approach from natural
language processing, where initial clusters are formed using
high-precision features, and standard supervised classifiers
are trained using these bootstrapped clusters. This approach
has a couple of advantages. Because there is a clean sepa-
ration between the unsupervised stage and the supervised
stage, we can better explore which features help or hurt in
each of these stages. And because the algorithm is indepen-
dent of the exact features used, we can explore a wide
variety of features that may be important to the task.

We explore three classes of features. These include the
author and subject features widely explored in authorship
identification, such as title words, journal names, author
names, initials, addresses, and affiliations, subject catego-
ries, languages, and year of publication (Han et al., 2004;
Han, Xu, et al., 2005; Han, Zha, et al., 2005; Huang et al.,
2006; Bhattacharya & Getoor 2006; Chen, Kalashnikov, &
Mehrotra, 2007; Culotta et al., 2007; Song et al., 2007;
Torvik & Smalheiser, 2009; Treeratpituk & Giles, 2009;
Ferreira et al., 2010). The second class is a new source of
information not used by most previous systems: features
based on citations between articles. Important pilot studies
on small name-sets have suggested that citation information
might be useful. In a study on eight names, McRae-Spencer
and Shadbolt (2006) show that self-citation features can
provide useful information for name disambiguation. In a
study on 32 names, Tang et al. (2011) show that a citation
feature improves the performance of an unsupervised dis-
ambiguation algorithm. Citations have also proven quite
useful for related tasks like scholarly author identification
(the task of figuring out who wrote an anonymous scholarly
paper); Hill and Provost (2003) found that assuming the
author most often cited by a paper is the author of that
paper gets the correct answer 37% of the time. Finally, we
explore combinations of features to see if feature interac-
tions prove important.

In summary, we propose to apply the self-training model
standardly used in natural language processing tasks like
relation extraction to author disambiguation, and to investi-
gate the citation network as a source of features for both the
bootstrapping and supervised stages. We will also focus on
optimizations required to scale up to the over 54,000,000
name instances in Thomson Reuters’ Web of Knowledge.
Our algorithm is introduced in the next section; in the fol-
lowing sections, we introduce the corpus, the experiments,
and the results.

The Architecture of Our Self-trained
Disambiguation Algorithm

As is standard in all previous work, our algorithm begins
by breaking the author names into “blocks” (Fellegi &
Sunter, 1969), groups of names with the same last name and
first initial (e.g., “Wang, W”), as well as middle initial when
applicable. Pairwise comparisons thus need only to be
carried out between all pairs of articles in a block, instead of

all pairs of articles in the collection, which would be intrac-
table for even moderate sized collections.4

For each block, we apply our two-stage process. In stage
one, the bootstrapping stage, we apply high-precision rules
to find positive examples—pairs of articles that are highly
likely to be written by the same author—in the unsupervised
dataset. For the negative examples, we select pairs of articles
that were not linked by the high-precision rules.

In stage two, the supervised training stage, we use the
positive and negative examples as training data for a
supervised classifier that predicts whether or not two articles
have been written by the same author. The classifier predic-
tions are then used as the similarity metric in a statistical
clusterer that groups together articles written by the same
author. The following sections describe each of these stages.

Stage 1: Bootstrapping Via Rule-based Clustering

The bootstrapping approach is to apply a small set of
high-precision rules to a large unlabeled collection to iden-
tify pairs of articles likely written by the same author. In this
section, we investigate the two features that have been pro-
posed before for bootstrapping (coauthorship and e-mail
addresses), along with some new features such as self-
citation and subject area, and evaluate how well different
combinations of these rules perform at bootstrapping. We
also explore a new dimension of feature based rules, the
use of negative rules that can disallow the application of
positive rules in certain circumstances. The set of bootstrap-
ping rules is described in Table 2.

All these rules are based on observations in the literature
about how scientific articles are written. For example, we
expect the self-citation rule to work because people are
likely to cite their own work, and because even though it is
common for several people to share the same name, it is
unlikely that many people with the same name work in the
same narrow research areas and end up citing each other.
Likewise, we expect the exact coauthors rule to work
because it’s much more likely that three coauthors continue
to work with the same fourth author than that they switch to
a new fourth author with the same name. The utility of each
of these rules in evaluated in the Choosing Rules for Stage 1
(Rule-Based Clustering) section.

Stage 2: Supervised Classification and Clustering

The output of the rule-based bootstrapping is a set of
high-precision clusters where articles are grouped together if
they are very likely to have been written by the same author.
However, there may still be many such clusters for each
real-world author because the rules above can only link
papers together based on a small number of features. To
merge the high-precision rule-based clusters into larger

4Blocking by last name and first initial is not perfect—authors may
change names or names may be misspelled—but previous literature esti-
mated that recall loss is less than 2% (Torvik & Smalheiser, 2009).

1032 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—May 2012
DOI: 10.1002/asi



clusters that better represent real-world authors, we first
train a classifier with a large number of features on the
rule-based clusters, and then use this classifier as a similarity
metric in an agglomerative clustering algorithm.

In the next subsection, we describe features used in train-
ing the classifier; the following sections describe the classi-
fication algorithm and how the classifier was used during the
second phase clustering.

Features from previous research. Features drawn from the
previous literature are shown in the first part of Table 3.
Each feature is a comparison between two authors on one
field value. Fields are drawn either from the article metadata
or from the author metadata. Fields include author full
names, first names, middle initials, and suffixes (e.g., jr.)
(Huang et al., 2006; Bhattacharya & Getoor, 2006; Chen,
Kalashnikov, & Mehrotra, 2007; Culotta et al., 2007; Torvik
& Smalheiser, 2009; Treeratpituk & Giles, 2009; Ferreira
et al., 2010) and coauthorship information (Han et al., 2004;
Han, Xu, et al., 2005; Han, Zha, et al., 2005; Bhattacharya &
Getoor, 2006; Culotta et al., 2007; Kang et al., 2009; Torvik
& Smalheiser, 2009; Treeratpituk & Giles, 2009; Ferreira
et al., 2010; Fan et al., 2011). We also compare authors by
their addresses, affiliations, and e-mail addresses (Huang
et al., 2006; Chen, Kalashnikov, & Mehrotra, 2007; Culotta
et al., 2007; Torvik & Smalheiser, 2009; Treeratpituk &
Giles, 2009), the article title and the title of the journal it
appeared in (Han et al., 2004; Han, Xu, et al., 2005; Han,
Zha, et al., 2005; Chen, Kalashnikov, & Mehrotra, 2007;
Culotta et al., 2007; Torvik & Smalheiser, 2009; Treeratpi-

tuk & Giles, 2009; Ferreira et al., 2010), and article
abstracts, keywords, subject categories, language, and year
(Torvik & Smalheiser, 2009; Treeratpituk & Giles, 2009).

Comparisons are performed using the standard term
frequency–inverse document frequency (tf–idf) bag-of-
words scheme (Bilenko, Mooney, Cohen, Ravikumar, &
Fienberg, 2005; Han, Zha, et al., 2005; Culotta et al., 2007;
Treeratpituk & Giles, 2009); Figure 1 gives an example. For
each metadata field, we break it into terms and form a vector
of term scores. The vector has one dimension for each term
in the vocabulary (the set of unique terms observed for that
field across all the articles in the collection). The score for
each term is calculated as the standard tf–idf score, that is,
the frequency of the term in the metadata field times the
term’s inverse document frequency (where each instance of
a field is considered to be a document).

As discussed later, we use Lucene5 for indexing, so we
use the term vectors and document frequencies exactly as
they were calculated by Lucene. To get the final feature
score, we use a cosine (as in Bilenko et al,. 2005 and Culotta
et al., 2007) to compare the term vector for the field in one
article with the term vector for the field in the other article.6

For most fields, we use the standard whitespace-based
definition of tokens, but for three fields with special content,
we define tokens differently. For middle initials, we treat
each single character initial as a token. For e-mails, we treat

5http://lucene.apache.org
6We also explored other vector similarity measures; see the Other

Parameters section.

TABLE 2. Positive and negative rules used in the bootstrapping stage.

Positive rules

E-mail E-mails match exactly.
Self-Citation One article directly cites another within the same name block.
Exact Coauthors Both articles have at least three authors and their last names and first/middle initials match exactly.
Coauthorp At least one coauthor appears on both articles.
Middle Initial (MI) Author shares same middle initial and subject.

w/Subject
Exact citation Authors cite the same paper, i.e. bibliographic coupling, but for authors instead of articles.
Exact venue Authors share the same publication venue.

Negative rules

Name Articles x and y may not be merged unless x’s (first, middle initial, last) is equal to y’s (first, middle, last) or x’s is a subset of
y’s or y’s is a subset of x’s. For example, (William, J., Flinstone), would match (W., J., Flinstone), (William, ,Flinstone) and
(W., , Flinstone).

Language Articles in two different non-English languages may not be merged.
Coauthorn Articles (with multiple authors) may not be merged unless they have at least one coauthor in common.

FIG. 1. Example of calculating the title feature: titles are broken into words, tf–idf is calculated for each word, and a cosine is taken over the tf–idf word
vectors.
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both the chunk before and after the “@” as tokens. For the
publication year, we generate one token for the given year
and then additional tokens for the surrounding years. Each
publication year token is assigned a score using a Gaussian
distribution,7 allowing a year like 2006 to match the years
2005 and 2007 with high probability, but to match a year
like 1982 with very low probability.

Citation features. Citation features were drawn from the
Web of Knowledge database, which provides for each
article the list of articles that it cites in the form of unique
article identifiers. Because only articles within the Web of
Knowledge database are assigned identifiers, cited articles
not part of Web of Knowledge will not be included in the
citation network. In the full Web of Knowledge citation
network, each article cites on average 22.1 articles, and
28.2% of the articles are never cited.

The first three citation features in Table 3 are extracted
from the Web of Knowledge metadata. The Cited Article IDs
feature takes the list of unique article identifiers, which
indicate the articles that were cited by an article, and treats
this as a text that is tokenized and used in a term-vector
cosine as usual. This feature asks whether the two articles
being compared cite the same articles (i.e., there is biblio-
graphic coupling), which should be useful if authors tend to
cite the same articles repeatedly. The Citing Article IDs
feature works in the opposite direction, asking whether the
two articles being compared were cited by the same articles
(i.e., there was co-citation; Small, 1973), which should be
useful if authors tend to be cited by the same other author, as
suggested by models like author cocitation analysis (ACA;
White & Griffith, 1981). The citing article IDs necessary for
this feature are not stored directly as metadata, but we add
them as we build the index. The last feature, Cited Journal
Titles, could have been derived by following the links in the
network, but was in fact an additional piece of metadata
provided directly by the Web of Knowledge: a short name
for the journal in which each cited article was found.

The next citation features were generated by traversing
the citation network. We include two extensions of each of
the features derived from the article metadata, shown in the
third section of Table 3. In the first extension, which we call
the Cited version of the feature, instead of collecting the
feature’s text from the article itself, we collect the feature’s
text from the articles it cites. So, for example, in Figure 2,
the Cited Article Title feature for article 4 would concatenate
the Article Title features from articles 5, 6, and 7, resulting in

7The � = 3.408 was empirically determined by computing the
mean and variance of the year distribution of papers for an author in the
training set.

TABLE 3. The 1,080 Features (18 previous, 3 citation metadata, 24 citing
and cited, and 1,035 conjunctive).

The 18 previous features

Article metadata features Author metadata features

Article Title Author First Name
Article Abstract Author Middle Initials
Article Keywords Author Name Suffixes
Article Language Author E-mail Address
Article Last Names with Initials Author Organization
Article Addresses Author Address
Article Corporate Affiliations Coauthor Last Names with Initials
Article Reprint Organization
Publication Title
Publication Subjects
Publication Year

The 3 citation metadata features

Cited Article IDs Citing Article IDs
Cited Journal Titles

The 24 citing and cited features

Cited Article Title Citing Article Title
Cited Article Abstract Citing Article Abstract
Cited Article Keywords Citing Article Keywords
Cited Article Language Citing Article Language
Cited Article Last Names with

Initials
Citing Article Last Names with

Initials
Cited Article Addresses Citing Article Addresses
Cited Article Corporate Affiliations Citing Article Corporate Affiliations
Cited Article Reprint Organization Citing Article Reprint Organization
Cited Publication Title Citing Publication Title
Cited Publication Subjects Citing Publication Subjects
Cited Cited Article IDs Citing Cited Article IDs
Cited Cited Journal Titles Citing Cited Journal Titles

The 1,035 conjunctive features

Article Title ¥ Author Title Article Title ¥ Article Abstract
Article Title ¥ Article Keywords Article Title ¥ Article Language
. . . ¥ . . . . . . ¥ . . .
Author E-mail Address ¥ Cited

Article Keywords
Author E-mail Address ¥ Citing

Article Keywords
Author E-mail Address ¥ Cited

Author Language
Author E-mail Address ¥ Citing

Author Language
. . . ¥ . . . . . . ¥ . . .
Cited Journal Titles ¥ Citing

Publication Subjects
Cited Journal Titles ¥ Cited Article

IDs
Cited Journal Titles ¥ Citing

Article IDs
Cited Journal Titles ¥ Cited Journal

Titles

FIG. 2. An example article citation graph.
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the text MNO PQR STU. This text would then be tokenized
and used in a term-vector cosine as usual. In the second
extension, which we call the Citing version of the feature,
the text is now collected from all of the articles which cite
the article. So, in Figure 2, the text used by the Citing Article
Title feature for article 4 would be ABC DEF GHI. We
generate a Cited and Citing version of each of the features
derived from the article metadata.8

Conjunctive features. In order to introduce higher-
precision versions of existing features, we added product
conjunctions (feature interactions) to our feature set. Given
two features, say “first name” and “subject code,” their
product conjunction requires that both first names and
subject codes must at least partially match. This produces a
higher precision feature by lowering feature response in
cases where only one of the two features is a strong match.

Conjunctive features were computed by taking the
product of two features. More formally fab = fafb, where
feature fa is the cosine value of feature a, and fb is the cosine
value of feature b. This implicitly gives a squared feature
term if a = b. We produce 1,035 conjunctive features
through products of all the previous work and citation fea-
tures. At the bottom of Table 3 is a schematic description of
this large set of conjunctive features.

Classifier-based similarity. All of the features (prior work,
citation, and conjunctive) serve as clues to a supervised
classifier that takes as input two articles and produces the
probability that those two articles share a real-world author.
To train the classifier, we need positive examples (both
articles are known to be written by the same real-world
author) as well as negative examples (both articles are
known to be written by different real-world authors).

For the positive examples, we take all rule-based clusters
that had at least two articles and sample random pairs of
articles that were in the same rule-based cluster. For the
negative examples, we take all the rule-based clusters that
had at least two articles and sample random pairs of articles
that were in different rule-based clusters.9

Because the rule-based clusters are high-precision—see
the Choosing Rules for Stage 1 (Rule-Based Clustering)
section—we can be reasonably confident that the articles in
the positive examples were written by the same authors.
However, because the rule-based clusters have lower recall,
it is possible that negative examples may be drawing pairs of
articles that are from different rule-based clusters but were

actually written by the same author. Nonetheless, we found
this sampling across two-or-more element clusters to be a
more effective sampling strategy for collecting negative
examples than sampling either random pairs of articles or
random across one-or-more element clusters. Intuitively,
when a cluster created by the rule clustering phase has two
or more articles, this is because the rules actually fired for
these articles, and the articles in this cluster share some trait
that is distinct from the other clusters (e.g., in the “Smith, J.”
block, one cluster for “john.smith@domain1.com” and one
for “jay.smith@domain2.com”). When a cluster created by
the rule clustering phase has only one article, this is often
because there was missing metadata, and not necessarily
because this author is distinct from all of the others.

Because of hardware constraints, we were forced to limit
the number of pairs sampled based on the amount of features
used, sampling down to 200,000 pairs when using all fea-
tures, or 10,000,000 when using fewer than 100 features. To
maintain the same positive-negative ratio, we randomly
discard positive and negative examples in proportion to their
initial ratio.

To train a model using these positive and negative
examples, we use a binary L1-regularized logistic classifier,
trained using the Orthant-Wise Limited-memory Quasi-
Newton (OWL-QN) algorithm (Andrew & Gao, 2007). We
adopt L1-regularization because it does implicit feature
selection, finding a solution where many features have
zero weights (Tibshirani, 1996). The following equation
shows this optimization problem, where F is a function
that takes a training example (xi,yi) and produces a feature
vector, and where w is the weight vector with each weight
corresponding to one feature:

f w
e

e
C w

w x y

w x y

y

i

M

j
j

Ni i

i
( ) = − +

( )

′( )

′
= =∑∑ ∑log

,

,

TΦ

ΦΤ
1 1

The left term is the negative conditional log-likelihood
of the training data, while the right term is the L1-norm of
the weight vector. Thus, we optimize the likelihood of the
training data, at the same time trying to minimize the abso-
lute value of all the individual weights.

The resulting classifier, given a pair of articles, produces
a probability that the articles were written by the same
author.

Agglomerative clustering. The goal of our second pass of
clustering is to take the initial clusters produced by the
rule-based clusterer, and for each author merge together the
clusters containing their papers. We utilize the standard
agglomerative clustering algorithm (King, 1967), used in
many unsupervised approaches to author disambiguation
(Malin, 2005; Han, Xu, et al., 2005; Han, Zha, et al., 2005;
Bhattacharya & Getoor, 2006; Song et al., 2007; Kang et al.,
2009; Fan et al., 2011; Tang et al., 2011), which builds
bigger clusters by iteratively merging the two most similar
smaller clusters together.

8We excluded publication year from the cited/citing features because of
the special handling of its term vector described above.

9The number of negative pairs is in general always much larger than the
number of positive pairs. Because supervised classifiers with strong train-
ing skew sometimes classify everything into one class, we examined down-
sampling the training data. We found, however, that all ratios of positive to
negatives (e.g., 1 : 9, 1 : 90, etc.) degraded performance markedly. The best
result was when we used all of the possible training data. This meant that on
the large blocks, we had a positive to negative ratio of 1:1000 and greater at
times.
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The similarity between a pair of article clusters is com-
puted with the logistic classifier trained above. To convert
the pair of clusters into a pair of articles that the classifier
can accept as input, we compute the centroid of each cluster
by averaging the term vectors for each feature across all
articles in the cluster. The classifier’s cosine-based features
are then calculated over the averaged term vectors and the
classifier predicts the similarity between the clusters based
on the cosine features. The two clusters identified as being
most similar by the classifier (and that do not violate the
negative name rule) are then merged.

The clustering process is stopped when the most similar
cluster pair score drops below a threshold. Adjusting this
threshold will trade precision and recall, depending on the
type of errors one would prefer to avoid. We tuned our
thresholds to optimize F1 score on the development set,
though we did observe that higher precision could often be
achieved without much loss in F1 with a raised threshold.
(See Other Parameters section for details.)

Special Processing for Small Blocks

Each block was processed separately; thus a separate
block-specific classifier was learned for each block. For
small blocks however, there were often insufficient negative
training examples. We therefore trained a separate small-
block-classifier that was used for all blocks of less than 100
articles. The classifier was trained on the bootstrapped data
from a collection of 100 blocks of 100 articles each.

All blocks with at least two articles were then divided into
small (less than 100 articles) and large sets. The small set was
clustered using rules and then the small-block-classifier. The
large set was clustered with block-specific classifiers pro-
duced using the bootstrapped method described above.

Evaluation Corpus

In this section we give details of the corpus we use for our
experiments, Thomson Reuters Web of Knowledge, as well
as the test sets we constructed.

Thomson Reuters’ Web of Knowledge

Thomson Reuters’ Web of Knowledge10 is a large collec-
tion of scientific publications, spanning fields from the

social sciences, arts and humanities, to the hard and soft
sciences, to medicine. It includes parts of MEDLINE11

which is the most common large dataset used in related work
(Torvik, Weeber, Swanson, & Smalheiser, 2005; Torvik &
Smalheiser, 2009; Treeratpituk & Giles, 2009) making it
one of the largest bibliographic dataset available for aca-
demic study. In addition to its size, the metadata available
in Web of Knowledge contains a rich set of attributes, most
notably citation links between articles in the dataset.

This work focuses on a subset of Web of Knowledge for
which we purchased an academic license from Thomson
Reuters. It includes all bibliographic and citation information
as well as abstracts from the SCIE, SSCI, and AHCI data-
bases from 1990 to 2008. We first discarded nonarticle docu-
ments (reviews, meetings, patents), leaving 14 million
articles. These articles cover 253 subjects (primarily focusing
on the hard sciences) and 54 million author instances, with
the bulk of the data coming from the years 1990 to 2008.

Disambiguating authors in this dataset is challenging
because of its size and its lack of metadata for the earlier
years. Figure 3 shows the counts of different metadata from
1990 to 2008. First names only really become available in
2005, and addresses in 2007. Although e-mail addresses
start showing up around 2000, even by 2008 only about one
in four authors have e-mail address metadata.

From 54 million author instances blocking produces
roughly 3.2 million blocks, whose size follows a power law
distribution as seen in Figure 4. The largest block in the
dataset was “Lee, J.” with 56,462 articles. Figure 4 shows
what the cumulative distribution frequency of the Web of
Knowledge dataset when divided into blocks (note that just
over 95% of the blocks are less than 100 articles in size). So
the vast majority are small blocks; however, there are still
5,634 blocks with 1,000 articles or more, with 130 blocks
larger than 10,000 articles in size.

The entire Web of Knowledge data set was indexed into
two Lucene12 indices with term stemming and stop word
removal, one for article and one for author data. This was to
enable rapid retrieval, and to leverage tf–idf information
efficiently provided by Lucene.

The dataset contains a small percentage (0.16%) of
articles in which two authors have the same last name and
first initial. Without distinguishing metadata for each author,

10http://www.webofknowledge.com/

11http://www.nlm.nih.gov/pubs/factsheets/medline.html
12http://lucene.apache.org/

FIG. 3. The counts of select author fields from 1990 to 2008. Many of the higher precision features are based on fields only recently available. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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it is impossible to differentiate these authors; they were
therefore removed from our data.

Creating a Test Set by Soliciting Publications

One of the main difficulties in evaluating author disam-
biguation methods is the lack of a large and accurately
labeled corpus. We chose not to use Thomson Reuters’
Highly Cited authors set, because this dataset is strongly
biased toward authors with very large numbers of publica-
tions and because the publication lists were often incom-
plete. Instead, we collected our own evaluation dataset by
using the e-mail addresses in the dataset to produce a strati-
fied sample of e-mail addresses and solicited each author in
the sample to submit a list of publications. Although our
dataset has its own biases as well, we felt the advantages of
stratified sampling and the completeness of using author-
supplied publication lists made this effort worthwhile. The
following describes the sampling process, the collection
process, and parsing of the submitted data into a gold stan-
dard dataset.

Sampling process. After grouping authors into last name
and first initial blocks, we created a list of e-mail addresses
ordered by frequency. E-mails were selected only for blocks
that contained more than one e-mail address, as these were
potentially ambiguous names. The created list was divided
into a set of 100 bins by frequency, and a stratified sample of
2,000 e-mails was selected. The top bin contained names
such as “Zhang, W.,” “Wang, W.,” and “Li, J.” The bottom
bins contained much less ambiguous names such as “Fuxe,
K.,” “Lebwohl, M.,” and “Watanabe, O.”

Collection process. The selected e-mails were sent out
over a period of 1 week to conform with spam protection
restrictions. Each e-mail politely requested the recipient’s
list of publications and linked to a web form that allowed
them to submit a link to their list of publications online,
upload a curriculum vitae (CV), or cut and paste a list of
publications. Despite approximately 25% of the e-mails
bouncing back, we received 237 responses with a 15%
response rate on e-mails that actually got through. The

majority of respondents pasted their publication list into
the text box, leaving only 25% of the data to be manually
processed.

Matching publications to web of knowledge. For auto-
mated evaluation, the submitted publications needed to be
matched to internal Web of Knowledge document IDs.
The formatting of each of the submitted responses varied
making this a nontrivial task. Rather than rely on manual
matching, we used the following fully automated process:

1. Split the publication text into chunks potentially con-
taining article titles by scanning for each of three patterns
in turn:
(a) Publication numbering: “1.”, “1)”, . . .
(b) Year with delimiter: “2008.”, “(2008)”, . . .
(c) Year alone: any four-digit number from 1970–2010

2. Each individual split will still contain a large number of
nontitle words, so we match chunks with the following
noise-tolerant process:
(a) Use the Porter stemmer algorithm to stem all words

and remove stopwords from the text chunks.
(b) For each text chunk, construct bigram shingles over

its contents and insert each shingle as a phrase in a
boolean OR query.

(c) Query the Lucene article index for all articles that list
the desired author and match some of the query
shingles in the title to get a fixed-size list of potential
matches. We found we needed to fetch no more than
10 to get accurate results.

(d) Normalize the returned titles in the same fashion as
the text chunks.

(e) Spell-correct any word that is one edit-distance away
to account for typos and data-entry errors.

(f) Compare each result R (composed of bigram shingles
r) with the query Q (and its shingles q), and rescore
with

score R
q

r

q Q
r R Q

( ) =

∈
∈ ∩∑ ∑1

.

(g) Finally, select the highest scoring match or none
if there are no results with a score greater than a
threshold of 0.67.

FIG. 4. The size of blocks follows a power distribution—there are many more small blocks than there are large ones. The vast majority of blocks in Web
of Knowledge are below 100 in size. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Using this process we were able to match 15,335 articles
out of 36,132 extracted text chunks (42.44%). During error
analysis on our training data, we found a number of false
positives. More recent articles sometimes appeared in the
Web of Knowledge database but were not listed on the
authors submitted publication lists. We therefore expanded
our gold sets with all articles matching an e-mail address
with an author already in the set. This increased the size of
our dataset to 15,750 articles. On average 8.8% of authors’
articles in the Web of Knowledge database did not appear in
the submitted publications list. The mean number of
matched publications per author was 67 with a median of 21.

The author blocks of these matched publications were
then ordered by the average rank of the e-mails contained,
ordering the authors by numbers of publications. These
blocks were then sampled and split into stratified sets for
training (3,951 articles), development (4,718 articles), and
testing (7,081 articles), keeping all the articles for each
author block together in the same set.

The training set was not used in training any classifiers. It
was used only for feature engineering. The development set
was used for evaluating feature sets and rule-based cluster-
ing evaluation. We tuned our approach on this set. The test
set was used only for evaluating our final system. We chose
to have a larger test set because our algorithm does not
require the training data. This larger set provides a very good
proxy for unseen data, as we only ever used it for final
evaluation, with no other analysis performed on it.

Experiments: Rules, Features, and Parameters

In this section, we describe our experiments for deter-
mining which rules to use in the first bootstrapping stage,
i.e., which features to use in the second supervised classifi-
cation stage, and our studies on other algorithm details, such
as the type of classifier or the clustering parameters. All
experiments in this section are evaluated on the development
set using the F1 and B3 metrics described in the following
subsection.

Evaluation Metrics

We employ two standard clustering metrics for evalua-
tion, both of which are defined in terms of a precision, P, a
recall R and their harmonic mean, F: pairwise F1 (Vilain,
Burger, Aberdeen, Connolly, & Hirschman, 1995), and B3

(Bagga & Baldwin, 1998). The pairwise F1 metric looks at
all the pairs of articles in the reference clustering and asks
for each pair if the two articles show up in the same or
different clusters in the system clustering. Because it is
based on pairs, it over-penalizes merging or separating gold
clusters quadratically in the size of the cluster. Given Cgold,
the reference clusters, and Csystem, the clusters predicted by
the system, pairwise F1 is defined as:
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B3 looks at each article author and asks what the inter-
section is between the cluster for that article author in the
reference clustering and the cluster for that article author in
the system clustering. Given the set of articles, A, and the
reference and system clusters, Cgold and Csystem, the B3 F is
defined as:

cluster C a c c C a c, :( ) = ∈ ∧ ∈

P A C C

A

C a C a

, ,

, ,

gold system

gold systemcluster cluster

cl

( )

=
( ) ∩ ( )1

uuster systemC aa A ,( )∈
∑

R A C C

A

C a C a

, ,

, ,

gold system

gold systemcluster cluster

cl

( )

=
( ) ∩ ( )1

uuster goldC aa A ,( )∈
∑

F A C C

P A C C R A C C

, ,

, , , ,

gold system

gold system gold system

( )

=
⋅ ( ) ⋅ ( )2

PP A C C R A C C, , , ,gold system gold system( ) + ( )

We rely primarily on pairwise F1 for our analysis because
it is more standard, though we do report B3 on the final test
set.

Choosing Rules for Stage 1 (Rule-Based Clustering)

Over 100 rule combinations were evaluated on the devel-
opment set. When combining rules, using multiple positive
rules (e.g., E-mail and Self-citation) will result in more
merges since both rules are applied, while adding nega-
tive rules (e.g., Name or Language) will result in fewer
merges because some merges will be refused. We deter-
mined performance of each rule combination by averaging
the pairwise F1 cluster evaluation metric on each block.
Table 4 summarizes the performance of select rule combi-
nations.13 The first seven entries in Table 4 show us the
performance of each of the positive rules by themselves.

Because we augmented our gold datasets with e-mail
matches manually, the e-mail feature yields an artificial
100% precision. For this reason, we exclude it from the

13We omit results for the negative Coauthorn rule because it proved to be
too restrictive resulting in low recall.
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discussion of single features below. However the pre-
cision of this feature will always be very high because
e-mail addresses are rarely reused. Its low recall is indi-
cative of the fact that e-mail metadata is missing from much
of the data.

The Self-Citation feature was the most precise of all the
single features, achieving a mean precision of 0.880, with
half of the clusters having a precision of 0.926 (the median)
or higher. The variability across clusters was also the lowest
of all the single features, with a 95% confidence interval of
� 0.034. Self-Citation also achieved a reasonable recall,
0.462, indicating that authors quite frequently cite their pre-
vious work.

Most other features were substantially poorer in terms of
precision (and therefore F1). The next highest precision
came from Middle Initial with Subject, at 0.564, followed by
looking for common venues (Exact Venue) at 0.475. Both of
these features had recalls lower than 0.060. Even the addi-
tion of negative rules like Language and Name did not raise
the precision much (only to 0.616 for Middle Initial with
Subject), and hurt the recall even more. Thus, matching by
common subject areas or common venues is often inaccurate
and fails to find most of the necessary matches.

The coauthorship features had some of the lowest preci-
sions for single features, with matching a single coauthor
(Coauthorp) achieving only 0.226, and matching three coau-
thors (Exact Coauthors) achieving only 0.367, though Coau-
thorp had the highest median recall (0.799). Both of these
features also had extremely low median precisions (less than
0.03) with large 95% confidence intervals (more than
� 0.080), suggesting that they were merging correctly in
only a few clusters, while in most clusters they were pro-
ducing many bad merges. These results are unlike those of
Ferreira et al. (2010), which found good performance on
DBLP and BDBComp datasets when matching on only a
single coauthor. This may be a result of the way these
datasets were collected. The original DBLP dataset was not
manually checked; instead the top 11 largest blocks by first
initial and last name were taken, and gold-standard author
clusters were assumed wherever a full name was available,
matched across articles, and the full name had more than
five citations. However, another explanation for these differ-
ences might be the average number of authors per paper.
Ferreira et al. (2010) do not report the average number of
authors, but Bhattacharya and Getoor (2007) found that
that their own coauthorship-based disambiguation system’s

TABLE 4. Select rule-based clustering results on the development data with 95% confidence intervals.

Rule

Pairwise evaluation

Precision Recall F1

E-mail Mean 1.000 � 0.000 0.081 � 0.026 0.145 � 0.038
Median 1.000 0.044 0.092

Self-Citation Mean 0.880 � 0.034 0.462 � 0.077 0.569 � 0.070
Media 0.926 0.500 0.605

MI with Subject Mean 0.564 � 0.102 0.064 � 0.054 0.192 � 0.073
Median 0.597 � 0.000 � 0.027 �

Exact Citation Mean 0.297 � 0.093 0.736 � 0.083 0.285 � 0.088
Median 0.051 0.334 0.093

Exact Venue Mean 0.475 � 0.087 0.081 � 0.024 0.122 � 0.031
Median 0.485 0.052 0.090

Coauthorp Mean 0.226 � 0.086 0.684 � 0.080 0.206 � 0.073
Median 0.026 0.799 0.051

Exact Coauthors Mean 0.367 � 0.116 0.002 � 0.002 0.004 � 0.003
Median 0.000 0.000 0.000

E-mail Mean 1.000 � 0.000 0.087 � 0.038 0.159 � 0.048
With Language and Name Median 1.000 0.038 0.087

Self-Citation Mean 0.882 � 0.037 0.376 � 0.076 0.492 � 0.072
With Language and Name Median 0.949 0.313 0.492

MI with Subject Mean 0.616 � 0.100 0.053 � 0.044 0.058 � 0.045
With Language and Name Median 0.760 0.000 0.000

Coauthorp Mean 0.441 � 0.085 0.452 � 0.071 0.384 � 0.071
With Language and Name Median 0.425 0.469 0.344

E-mail & Self-Citation Mean 0.867 � 0.050 0.499 � 0.075 0.578 � 0.067
Median 0.943 0.500 0.625

E-mail & Self-Citation Mean 0.890 � 0.037 0.493 � 0.074 0.594 � 0.066
With Language and Name Median 0.954 0.500 0.638

E-mail & Self-Citation Mean 0.718 � 0.091 0.523 � 0.079 0.483 � 0.078
& MI Subject Median 0.904 0.532 0.480

E-mail & Self-Citation Mean 0.823 � 0.056 0.505 � 0.075 0.571 � 0.065
& MI Subject with Language and Name Median 0.907 0.527 0.624
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performance peaked when there were two coauthors per
paper, achieving F1 of 0.994 and 0.985 on Citeseer and
arXiv datasets where articles averaged 1.9 authors per paper,
but only F1 of 0.819 on a BioBase dataset where articles
averaged 5.3 authors per paper. In the Web of Knowledge,
there are on average 3.78 authors per paper, suggesting
that Web of Knowledge is more like their difficult BioBase
dataset where coauthorship was not as helpful.

Looking at combinations of features, the best rule-based
clustering performance was from combining E-mail with
Self-Citation and the negative Name and Language rules,
achieving precision of 0.890, recall of 0.493 and F1 of
0.594. Half of the resulting clusters had precision of 0.954
(the median) or higher. This performance already puts it into
the state-of-the-art category for unsupervised methods.
Thus, Self-Citation is the backbone of the rule-based clus-
terer, and because it yields high-precision clusters that are
large enough to provide quality training data, it enables us to
bootstrap the rest of our author disambiguation system.

Choosing Features for Stage 2 (Supervised Classification)

We next examine which features were most important for
training our classifiers on the rule-based clusters. With
exhaustive feature selection infeasible, we looked at several
simple feature selection strategies and evaluated their

performance on the development set of 3,951 articles. We
considered the following feature sets:

All Features: The full set of features described previously.
Previous work: The subset of features that were used in previous
literature.
By Weight: A selected set of features, based on the weights learned
for features by the classifier. Specifically, we looked at the median
weight for each feature across the classifiers that were learned one
for each block. If the median value was >0.1 or <-0.1, we included
the feature in this feature set. Intuitively, this collected the features
that contributed something substantial to the classification function
at least half the time.
By Weight - Citation: The By Weight features, minus all the
citation features.
By Weight - Citation + 1: The By Weight - Citation features, but
with the single additional citation feature that most improved
performance: Cited Journal Titles.
Speed: A selected set of features designed to speed up classifica-
tion. Computation time of tf–idf features was proportional to the
number of terms, so the abstract, title, and especially their cited/
citing variants were of greatest concern. These features alone
accounted for well over 75% of feature computation time. We
selected the features that most frequently had nonzero weights and
whose computation time fell within our speed criteria, resulting in
57 features. Table 5 shows some of these features and the percent
of blocks in which they appeared. Computing the speed-optimized
feature set is 130 times faster than computing all features.
Speed - Citation: The Speed-Optimized feature set, minus all the
citation features.

The above-mentioned feature sets were evaluated on the
development set using our best rule-based clustering
approach, and had their agglomerative clustering threshold
tuned to give maximum F1 scores. These results are pre-
sented in Table 6.

As compared with previous work, the full feature set
achieved higher precision (0.780 vs. 0.766) at the expense
of lower recall (0.740 vs. 0.773). Selecting features By

TABLE 5. Top 10 speed-optimized features from feature selection
(excluding conjunctions) with % blocks that had the feature weighted
nonzero.

100% Citing Keywords 97% Cited Subject Cat. 95% Initials
100% Cited Keywords 95% E-mail 91% Addresses

98% Citing Subject Cat. 95% Language
98% Addresses 93% Cited Journal Titles

TABLE 6. Feature set evaluation on the development dataset with 95% confidence intervals.

Feature set Cite? #

Pairwise evaluation

Precision Recall F1

All Features, mean Yes 1,080 0.780 � 0.066 0.740 � 0.070 0.716 � 0.063
All Features, median 0.895 0.860 0.820
Previous Work, mean No 18 0.766 � 0.060 0.773 � 0.070 0.733 � 0.059
Previous Work, median 0.850 0.898 0.815
By Weight, mean Yes 73 0.777 � 0.063 0.778 � 0.067 0.746 � 0.059
By Weight, median 0.870 0.892 0.826
By Weight - Citation, mean No 27 0.750 � 0.059 0.813 � 0.065 0.748 � 0.055
By Weight - Citation, median 0.798 0.939 0.821
By Weight - Citation + 1, mean Yes 28 0.775 � 0.058 0.822 � 0.068 0.767 � 0.060
By Weight - Citation + 1, median 0.859 0.955 0.857
Speed, mean Yes 57 0.772 � 0.059 0.764 � 0.069 0.732 � 0.057
Speed, median 0.860 0.891 0.802
Speed - Citation, mean No 22 0.763 � 0.058 0.750 � 0.069 0.724 � 0.058
Speed - Citation, median 0.841 0.882 0.810

Note. The Cite? column indicates whether or not the feature set contains citation features. The # column indicates the number of features in the
feature set.
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Weight resulted in the benefits of both of these approaches
(precision 0.777 and recall 0.778). Removing the citation
features from By Weight resulted in lower precision (0.750
vs. 0.777) but higher recall (0.813 vs. 0.778). But adding
back in just the single Cited Journal Titles feature restored
the original precision (to 0.775) while maintaining the high
recall (0.822). The speed optimized feature set performed
similar to previous work and slightly below our feature
selected versions. Removing the citation features from the
speed-optimized feature set degraded performance, indicat-
ing that citation features help a little.

We used the Speed feature set for disambiguating the
Web of Knowledge.

Other Parameters

Comparing different vector similarity measures. We tested
two alternatives (Jaccard and Jensen-Shannon) to the cosine
method for comparing feature vectors, using the previous
work feature set on a stratified sample from the training
data. Table 7 shows the maximum F1 scores achieved for
each measure after tuning the agglomerative clustering
threshold. The Jensen-Shannon measure had the highest pre-
cision but lowest recall and overall lowest F1. Jaccard had a
slightly higher F1 than Jensen-Shannon but cosine had the
best overall F1, with the highest recall and higher precision
than Jaccard. Because our objective is to create large, high-
precision clusters, cosine is a better choice than either
Jaccard or Jensen-Shannon. This is also consistent with pre-
vious work that found better results with the cosine similar-
ity measure (On, Lee, Kang, & Mitra, 2005).

Cosine also has the additional advantage that it is faster to
compute than Jaccard or Jensen-Shannon, because the term
vectors for each article can be normalized once ahead of
time, and the cosine is then just a simple dot product over
these term vectors. Jaccard and Jensen-Shannon do not have
a simple equivalent to this prenormalization, and thus
require expensive division operations on every pairwise
comparison instead of just once per article.

Clustering parameters. Our best feature set exhibits a
fairly stable set of agglomerative clustering thresholds that
allow switching between recall and precision without much
of a drop in F1. Figure 5 shows this ability to have an F1 not
far off from the max of 0.767, while still having a precision
of just under 0.840.

We also explored alternative similarity calculations.
Previous work relied on max-link clustering—measuring

similarity based only on the closest pair of author
instances—while we used centroid clustering—measuring
similarity by averaging the feature values of all articles in a
cluster, and comparing these centroids for pairwise similar-
ity. Table 8 shows a comparison of max-link and centroid
clustering. Our results show that centroid clustering is more
precise, resulting in a higher overall F1.

Alternative classifier: random forests. We also bench-
marked an alternative classifier, random forests (Breiman,
2001), which had previously been applied to this task (Treer-
atpituk & Giles, 2009). We used an optimized Weka-based
implementation14 in place of the logistic classifier, using the
previous work feature set and holding other parameters con-
stant. The random forests were tuned on a representative
stratified sample of the training set, optimizing for out of bag
error. The best performing settings were reached with 300
trees. The number of features to be randomly selected from
in building a tree followed standard practice of log2(M) + 1
where M is the total number of features (Breiman, 2001;
Treeratpituk & Giles, 2009). In comparison to running
with the logistic classifier, random forests were slower and
memory requirements were larger. To train the random
forest model under the same time and memory constraints
we had for the logistic classifier, we were forced to reduce
the training set to only 500,000 examples. The logistic
classifier scales much better and is able to handle
10,000,000 training examples under the same constraints.

14http://code.google.com/p/fast-random-forest/

TABLE 7. Other vector similarity measure evaluation with max F1 scores
on the training dataset using previous features.

Measure

Pairwise Evaluation

Precision Recall F1

Cosine 0.766 0.773 0.732
Jaccard 0.755 0.714 0.686
Jensen-Shannon 0.826 0.651 0.682

FIG. 5. Precision, recall, and F1 by agglomerative clustering threshold
using the best feature set. Our figures and tables show averages of the
P/R/F1 values across dev-set blocks (hence, F1 is not guaranteed to lie
between P and R). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

TABLE 8. Performance of tuned max-link and centroid based clustering
using speed-optimized features on the development dataset, with the same
rule-based clustering.

Clusters Precision Recall F1

Max-Link 0.723 0.803 0.721
Centroid 0.772 0.764 0.732
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Table 9 shows that random forests achieved higher pre-
cision, but much lower recall, and thus a lower F1 score than
the logistic classifier. The random forest results are very
similar to the rule-based clustering results, suggesting that
the random forest model is overfitting and just memorizing
the training data. This may be an effect of the smaller
number of training examples it had access to as a result of its
memory and speed concerns.

Test Set Evaluation

The previous section showed that our system performs
well on the development data and explored a number of
properties of the algorithm. For the rule-based stage 1, we
showed Self-Citation was the single best rule, and combin-
ing E-mail with Self-Citation and the negative Name and
Language rules gave best overall performance. For the
supervised stage 2, a number of feature sets offered im-
proved F1 over prior work features, including the 27-feature
By Weight - Citation feature set, and a 28-feature set that
included only one citation feature, Cited Journal. Finally, we
showed that our clustering was relatively robust to the
agglomerative clustering threshold, and showed higher F1
on the development data for centroid clustering as opposed
to max-link clustering, for logistic regression as opposed to
random forests.

In this section, we compare the development-set perfor-
mance of our algorithm against an unsupervised baseline,
and then report our performance on the held-out test set.

An Unsupervised Baseline: Agglomerative Clustering

Do weakly supervised algorithms like ours perform
better than fully unsupervised algorithms? Our intuition was
that they would, because the second, supervised stage of our
algorithm can learn to discriminatively weigh features in a
way that is not possible for fully unsupervised algorithms.
To test this prediction, and provide this important baseline
for our algorithm, we implemented an unsupervised
agglomerative clusterer.

The starting point was the output of the rule-based stage.
Where the supervised approach takes vectors of feature
cosine scores and uses the learned weights in a weighted
sum of the feature cosines, in our unsupervised approach,
we simply take the average of the feature cosines. This is
essentially the same as weighting all features equally.

We then evaluated the clusterings at each agglomerative
clustering similarity threshold in increments of 0.01 until
there was only one cluster. The precision, recall, and F1 for
each agglomerative clustering threshold were then averaged
and the best overall F1 result was chosen. This approach
produces a very conservative baseline; as with a real system,
one would not know the best agglomerative clustering
threshold to use. Table 9 shows that our unsupervised
agglomerative clusterer with perfect hindsight produced a
better F1 score than random forests, but was worse than both
the rule-based and the logistic classifier.

Test Set Results

Previous sections have summarized our results on the
development test set. In this section, we now confirm the
performance of our algorithm on the test dataset. Table 10
shows that our bootstrapped approach accurately disambigu-
ates Web of Knowledge authors, and that our new features
show significant improvement over features used in previous
work. Surprisingly, the speed-optimized features scored a
higher mean F1 on the test set than the feature set that
performed best on the development set, suggesting that in
optimizing our feature set for fast computation, we have not
sacrificed clustering accuracy.

Analysis

We performed a number of analyses on our system.

Statistics of Resulting Dataset

Our rule-based system disambiguated the 52,332,037
author instances from the Web of Knowledge into 25,327,
334 clusters (unique authors). Our full, self-trained disam-
biguation algorithm merged these as appropriate to produce
13,873,529 authors. Given that there were 14,365,790
articles in the Web of Knowledge, this means that our sys-
tem predicts that, on average, each author in the Web of
Knowledge has published slightly more than one paper there.

The author sets inferred by both the rule-based disam-
biguation system and the self-trained disambiguation system
are available by writing to the last author of this article.
These datasets may be distributed only to individuals or
institutions that have first acquired the Web of Knowledge
dataset from Thomson Reuters.

Performance on Large Versus Small Blocks

Does the system perform well on small as well as large
blocks? Table 12 shows that performance with our best
feature set is similar all the way up to blocks of size 10,000,
though it degrades somewhat for the largest blocks. Using
the fastest feature set, performance degrades some even at
blocks larger than 1,000 and more-so for the largest blocks.
Of course, the largest blocks are generally the most ambigu-
ous, so we expect them to be harder.

TABLE 9. Performance of random forests and our unsupervised
algorithm on the development dataset as compared with our rule-based and
logistic classifier approaches, using previous features.

Classifier Precision Recall F1

Rule-based 0.890 0.493 0.594
Logistic classifier 0.766 0.773 0.733
Random forests 0.864 0.491 0.573
Unsupervised agglomerative cluster 0.774 0.549 0.586
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Recall that we trained a separate small-block classifier to
use for clustering small blocks of less than 100 articles,
because the rule-based methods often failed to produce
enough negative training examples for these smaller blocks.
The classifier was trained on the bootstrapped data gene-
rated for 100 blocks of 100 articles each. Table 13 shows
that on smaller blocks, the classifier performs on par with
individually bootstrapped classifiers. Overall, however, clas-
sifier performance on all blocks decreases without per block
training data.

Scalability

Scaling to process over 54 million author instances pro-
vided a number of unique challenges. The major bottlenecks
in processing came from generating feature vector data and
training the classifier, so feature selection proved crucial.

The processing time of our total algorithm was almost
linear with respect to the number of articles within the block,
with a very small quadratic term (see Figure 6). Because

TABLE 10. Final results on the test set.

Method

Pairwise F1 evaluation B3 Evaluation

Precision Recall F1 Precision Recall F1

Rule-based only Mean 0.900 0.536 0.639 0.939 0.559 0.666
Median 0.959 0.527 0.676 0.971 0.538 0.676

Bootstrapped, features from previous work Mean 0.771 0.784 0.728 0.794 0.789 0.751
Median 0.890 0.892 0.816 0.887 0.895 0.822

Bootstrapped, best features Mean 0.783 0.823 0.766 0.808 0.822 0.781
Median 0.883 0.928 0.870 0.889 0.909 0.864

Bootstrapped, speed- optimized features Mean 0.832 0.788 0.784 0.868 0.797 0.807
Median 0.887 0.889 0.859 0.926 0.889 0.864

TABLE 11. The 57 speed-optimized features from the system with the
highest test set performance.

Simple features

Language Cited Keywords
Last Names with Initials Citing Keywords
Addresses Cited Language
Reprint Organization Citing Language
Subjects Cited Last Names with Initials
Year Cited Subjects
Middle Initials Citing Subjects
E-mail Address Cited Cited Journal Titles
Cited Journal Titles Citing Cited Journal Titles

Conjunctive features

Language ¥ Cited Keywords Reprint Organization ¥ Middle
Initials

Language ¥ Cited Language Reprint Organization ¥ Reprint
Organization

Language ¥ Cited Last Names
with Initials

Subjects ¥ Middle Initials

Language ¥ Cited Subjects Middle Initials ¥ Middle Initials
Language ¥ Cited Cited Journal

Titles
Cited Journal Titles ¥ Middle Initials

Language ¥ Cited Keywords Cited Keywords ¥ Cited Language
Language ¥ Citing Language Cited Keywords ¥ Middle Initials
Language ¥ Citing Subjects Cited Language ¥ Cited Cited

Journal Titles
Language ¥ Citing Cited Journal

Titles
Cited Language ¥ Cited Language

Language ¥ Middle Initials Cited Language ¥ Year
Language ¥ Cited Journal Titles Cited Last Names with

Initials ¥ Cited Language
Language ¥ Language Cited Subjects ¥ Cited Language
Language ¥ Reprint Organization Cited Subjects ¥ Middle Initials
Language ¥ Year Cited Cited Journal Titles ¥ Middle

Initials
Last Names with Initials ¥ Middle

Initials
Citing Language ¥ Cited Language

Last Names with Initials ¥
Language

Citing Language ¥ Citing Language

Addresses ¥ Cited Language Citing Subjects ¥ Cited Subjects
Addresses ¥ Middle Initials Citing Subjects ¥ Middle Initials
Addresses ¥ Language Citing Cited Journal Titles ¥ Cited

Cited Journal Titles
Citing Cited Journal Titles ¥ Middle

Initials

TABLE 12. Performance by block size on the development set with 95%
confidence intervals.

Block size Blocks Example F1 F1 speed

0–1,000 13 Rief, W 0.782 � 0.058 0.778 � 0.059
1,000–10,000 36 Lewis, M 0.783 � 0.068 0.738 � 0.069
10,000–100,000 13 Zhang, J 0.710 � 0.060 0.668 � 0.057

Note. For each bin, the number of blocks in that bin and and an example
name from the bin are given.

TABLE 13. Pretrained and individually bootstrapped classifier
performance on the development dataset with 95% confidence intervals.

Method Precision Recall F1

Blocks
of size
< 400

Pretrained 0.777 � 0.162 0.923 � 0.088 0.838 � 0.133

Bootstrapped 0.790 � 0.148 0.968 � 0.050 0.858 � 0.108

All
blocks

Pretrained 0.651 � 0.077 0.813 � 0.063 0.668 � 0.068
Bootstrapped 0.810 � 0.044 0.763 � 0.050 0.760 � 0.053
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each name block can be processed independently of the
others, the process is very easily parallelized. The author
disambiguation system with speed-optimized features was
run on two 8-core 2.4 Ghz machines with 72 GB of RAM
each. We were able to disambiguate the entire Web of
Knowledge dataset using our system in 5 days and 20 hours.
Table 14 gives some additional timing details.

Error Analysis

We analyzed output clusters to understand the errors and
whether they were introduced by rule clustering or by the
agglomerative clusterer.

What we got almost right. We examined a random sample
of the clusters that received high precision above 0.85. In
this sample, each article that was marked incorrect by our
automatic metrics (i.e., each precision error) did in fact
correctly belong to that author. We found that these articles
were not included by the authors in their list of publications,
generally because they tended to be a different version of
an article already in the publication list. (See Table 15 for
examples.)

What we got wrong—false positives. False positives were
generally articles that looked very similar textually and
had missing metadata (especially first names) that would
have discriminated them otherwise. Table 16 shows an
example. We find that these similar articles were clustered
together by the agglomerative clusterer, and not the rule
clusterer stage; without more metadata only having the
negative name rule for the agglomerative clusterer was not
sufficient.

For the clusters that had low precision (below 0.75),
we found that the errors were introduced during the rule
clustering stage. This generally capped our precision, as

it tainted the cluster. This problem is the hardest to
solve, as it would mean investigating whether the precision
on the feature rule-matching stage can be made even
higher.

What we got wrong—false negatives. Not merging articles
for one author was generally caused by either lack of meta-
data, offering the classifier too little information when the
titles and subjects differ, or large differences in the dimen-
sionality of the feature vectors between very small and very
large clusters.

FIG. 6. Distribution of bootstrap method runtime with speed-optimized features by block size. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

TABLE 14. Approximate processing time excluding delays due to
unrelated processor/memory load on the system and interruptions.

Set Blocks Articles Processing time

Small 1,979,754 25,519,302 23 hours
Large 83,730 27,479,693 1 day, 4 hours
Total 2,063,484 52,998,995 2 days, 3 hours

TABLE 15. Example of articles written by authors but incorrectly
omitted in the author-supplied gold standard that lead to lowered precision.

Two different versions of the same article

(1) Title Problems, methods and specialization
Author Jackson, M.
Abstract Software engineering is not a discipline; it is an

aspiration, as yet unachieved. Many approaches have
been proposed, including reusable components. . .

Publication Software Engineering Journal
Year 1994
. . .

(2) Title Problems, methods, and specialization
Author Jackson, M.
Abstract The large aspiration to place the whole of software

development alongside the established branches as
one more branch of engineering is misconceived. . . .

Publication IEEE Software
Year 1994
. . .

One article in gold, the other selectively omitted

(3) Title Distributed feature composition: A virtual architecture
for telecommunications services

Author Jackson, M.
Coauthor(s) Zave, P.
Publication IEEE Transactions on Software Engineering
Year 1998
. . .

(4) Title A component-based approach to telecommunication
software

Author Jackson, M.
Coauthor(s) Zave, P.
Publication IEEE Software
Year 1998
. . .
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Conclusions

In this work, we have presented an accurate, scalable
model for author disambiguation that clusters publications
into their real-world authors. We introduced a simple self-
citation clustering rule and demonstrated that, in combina-
tion with other simple rules, we can generate high-precision
initial clusters without any manually annotated training data.
These rule-based clusters then allowed us to bootstrap a
statistical clusterer, first by training a supervised classifier
on the rule-based clusters, and then by applying the learned
classifier as the similarity metric in an agglomerative clus-
tering algorithm. We introduced some new features for the
similarity metric based on the citation network and feature
conjunctions, and this improved the quality of our cluster-
ings over the features from prior work. To evaluate our
models, we collected and aligned the publications of over
200 real-world authors to Thomson Reuters’ Web of Knowl-
edge, and showed that our model could cluster these publi-
cations with a precision of 0.832 and a recall of 0.788.
Finally, we showed that with some simple feature selection
and no loss in model performance, this model scaled up to
cluster more than 54,000,000 author instances in Thomson
Reuters’ Web of Knowledge.

The success of our algorithm, drawing on and extending
earlier work making partial use of semisupervised methods,
points to the importance of bootstrapping as a strategy in
solving tasks like author disambiguation on extremely large
databases. On databases of this size, hand-labeling a training
set for supervised learning is prohibitively expensive. But
unsupervised algorithms that don’t require hand-labeled
training data often have trouble taking advantage of large
sets of rich features, as shown in our unsupervised agglom-
erative clustering experiment. Unsupervised algorithms fail
in this respect because they have no mechanism for learning

to weight features discriminatively. Our self-supervised
approach thus shares the advantages of unsupervised
approaches (no need for expensive hand labels) as well as
supervised approaches (a rich set of features that can be
discriminatively trained).

Our results also shed light on the use of citation features
in author disambiguation, suggesting that citation features
can provide important information, but not in every aspect of
processing. We show that self-citation is the best single
bootstrapping feature, and performs very strongly when
combined with features based on e-mails, author names, and
languages. But for the supervised stage, other citation fea-
tures offer only minor improvements, increasing F1 only
from .748 to .767, suggesting that they might not be worth
the trouble of extracting from databases that don’t already
have them.

The fact that self-citation is the most important feature
immediately suggests applications to disambiguation tasks
in domains with full text but without the full citation
network, because self-citation can be approximated by
features based on the occurrences of the author name in
the text.

Finally, our results have something to say about other
useful features. Table 5 showed the 10 top speed-optimized
features. Some of these are the traditional features (e-mail,
addresses, language, initials) that have been long studied.
Others, however, use the citation network. The most useful
of these network features seem to be the keywords and
subject categories from the citing and cited papers. At least
in this experiment, keywords and subject categories com-
pletely made up for the absence of expensive features based
on full vocabularies, like title and abstract. This suggests an
important cue for situations where a citation network is
available: the use of properties of the cited and citing papers.

TABLE 16. Examples of false positives; all similar articles on nanotubes.

(1) Title Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires
Author Li, H.
Coauthor(s) Lu, H.B., Shuai, M., Li, J.C., Fu, Q., Fhu, M., Tian, Y., Zhu, B.P., Liao, L.
Abstract A low-cost and catalyst-free two-step approach has been developed to produce ZnO nanotubes (ZNTs) by simple thermal oxidation

of Zn nanowires . . .
Year 2008
. . .

(2) Title A carbon-nanotube field-emission display with simple electron-beam trajectory control
Author Li, H. (Hao)
Coauthor(s) Johnson, M.R., Coll, B.F., Howard, E., Dean, K.A., Dworsky, L., Marshbanks, L.
Abstract A unique gated cathode structure for a carbon-nanotube-based field-emission display has been designed and built. This structure

optimizes the electron-. . .
Year 2007
. . .

(3) Title The structures and electrical transport properties of germanium nanowires encapsulated in carbon nanotubes
Author Li, H.
Coauthor(s) Zhang, X.Q., Liew, K.M.
Abstract The structures of Ge nanowires are studied by means of geometry optimization method in this paper. As the radii of carbon

nanotubes. . .
Year 2007
. . .
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This result extends the standard use of co-citation and bib-
liographic coupling in bibliometrics. We can see the impor-
tance of these features in Table 11, which shows the 57
features in the set that performed best on the final test set.
Many of these are feature conjunctions, suggesting the
further importance of considering interactions between fea-
tures in future work.

Of course any experiment on a single corpus can only be
preliminary, even a large corpus like Thomson Reuters’ Web
of Knowledge. It will be important to test our algorithms and
insights on other datasets with other rich constraints. And
the real test of our work will be the application of the
disambiguated authors to better address deep scientific ques-
tions, like the role that individual authors play in the pro-
duction of scientific knowledge.
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