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Abstract

Neural Machine Translation (NMT), though recently devel-
oped, has shown promising results for various language pairs.
Despite that, NMT has only been applied to mostly formal
texts such as those in the WMT shared tasks. This work fur-
ther explores the effectiveness of NMT in spoken language
domains by participating in the MT track of the IWSLT 2015.
We consider two scenarios: (a) how to adapt existing NMT
systems to a new domain and (b) the generalization of NMT
to low-resource language pairs. Our results demonstrate that
using an existing NMT framework1, we can achieve compet-
itive results in the aforementioned scenarios when translat-
ing from English to German and Vietnamese. Notably, we
have advanced state-of-the-art results in the IWSLT English-
German MT track by up to 5.2 BLEU points.

1. Introduction

Neural Machine Translation (NMT) is a radically new way of
teaching machines to translate using deep neural networks.
Though developed just last year [1, 2], NMT has achieved
state-of-the-art results in the WMT translation tasks for var-
ious language pairs such as English-French [3], English-
German [4, 5], and English-Czech [6]. NMT is appealing
since it is conceptually simple. NMT is essentially a big
recurrent neural network that can be trained end-to-end and
translates as follows. It reads through the given source words
one by one until the end, and then, starts emitting one tar-
get word at a time until a special end-of-sentence symbol is
produced. We illustrate this process in Figure 1.

Such simplicity leads to several advantages. NMT re-
quires minimal domain knowledge: it only assumes access
to sequences of source and target words as training data and
learns to directly map one into another. NMT beam-search
decoders that generate words from left to right can be easily
implemented, unlike the highly intricate decoders in standard
MT [7]. Lastly, the use of recurrent neural networks allow
NMT to generalize well to very long word sequences while
not having to explicitly store any gigantic phrase tables or
language models as in the case of standard MT.

Despite all the success, NMT has been applied to mostly
formal texts as in the case of the WMT translation tasks. As
such, it would be interesting to examine the effectiveness of

1http://nlp.stanford.edu/projects/nmt/

am a student _ Je suis étudiant

Je suis étudiant _

I

Figure 1: Neural machine translation – example of a deep
recurrent architecture proposed in [1] for translating a source
sentence “I am a student” into a target sentence “Je suis étu-

diant”. Here, “_” marks the end of a sentence.

NMT in the spoken language domain through the IWSLT
MT track. This work explores two scenarios, namely NMT
adaptation and NMT for low-resource translation. In the
first scenario, we ask if it is useful to take an existing model
trained on one domain and adapt it to another domain. Our
findings show that for the English-German translation task,
such adaptation is very crucial which gives us an improve-
ment of +3.8 BLEU points over the model without adap-
tation. This helps us advance state-of-the-art results in the
English-German MT track by up to 5.2 BLEU points.

For the latter scenario, we show that even with little
English-Vietnamese training data, NMT models trained with
an off-the-shelf framework can achieve competitive perfor-
mance compared to the IWSLT baseline. It is also worth-
while to point out a related work [8] which achieved best
results for the low-resource language pair Turkish-English in
IWSLT. However, their work makes use of a huge monolin-
gual corpus, the English Gigaword.

2. Approach

We give background information on NMT and the attention
mechanism before discussing our model choices.

2.1. Neural Machine Translation

Neural machine translation aims to directly model the con-
ditional probability p(y|x) of translating a source sentence,



x1, . . . , xn, to a target sentence, y1, . . . , ym. It accomplishes
such goal through the encoder-decoder framework [1, 2].
The encoder computes a representation s for each source
sentence. Based on that source representation, the decoder

generates a translation, one target word at a time, and hence,
decomposes the conditional probability as:

log p(y|x) =
∑m

j=1
log p (yj |y<j , x, s) (1)

A natural choice to model such a decomposition in the
decoder is to use a recurrent neural network (RNN) architec-
ture, which most of the recent NMT work have in common.
They, however, differ in terms of the RNN architectures used
and how the encoder computes the source representation s.

Kalchbrenner and Blunsom [9] used an RNN with the
vanilla RNN unit for the decoder and a convolutional neu-
ral network for encoding the source. On the other hand,
Sutskever et al. [1] and Luong et al. [3, 5] built deep RNNs
with the Long Short-Term Memory (LSTM) unit [10] for
both the encoder and the decoder. Cho et al., [2], Bahdanau et
al., [11], and Jean et al. [4, 8] all adopted an LSTM-inspired
hidden unit, the gated recurrent unit (GRU), and used bidi-
rectional RNNs for the encoder.

In more details, considering the top recurrent layer in a
deep RNN architecture, one can compute the probability of
decoding each target word yj as:

p (yj|y<j , x, s) = softmax (hj) (2)

with hj being the current target hidden state computed as:

hj = f(hj−1, yj−1, s) (3)

Here, f derives the current state given the previous state
hj−1, the current input (often the previous word yt−1), and
optionally, the source representation s. f can be a vanilla
RNN unit, a GRU, or an LSTM. The early NMT approach
[9, 1, 2, 3] uses the last source hidden state s = h̄n once to
initialize the decoder hidden state and sets s = [ ] in Eq. (3).

The training objective is formulated as follows:

J =
∑

(x,y)∈D
− log p(y|x) (4)

with D being our parallel training corpus.

2.2. Attention Mechanism

Here, we present a simplified version of the attention mech-
anism proposed in [11] on top of a deep RNN architecture,
which is close to our actual models.

Regarding the aforementioned NMT approach, Bahdanau
et al. [11] observed that the translation quality degrades as
sentences become longer. This is mostly due to the fact that
the model has to encode the entire source information into a
single fixed-dimensional vector h̄n, which is problemmatic
for long variable-length sentences. While Sutskever et al.
[1] addressed that problem by proposing the source reversing
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Figure 2: Attention mechanism – a simplified view of the
attention mechanism proposed in [11]. The attention mecha-
nism involves two steps: first, compute a context vector based
on the previous hidden state and all the source hidden states;
second, use the context vector as an additional information to
derive the next hidden state.

trick to improve learning, a more elegant approach would be
to keep track of a memory of source hidden states and only
refer to relevant ones when needed, which is basically the
essence of the attention mechanism proposed in [11].

Concretely, the attention mechanism will set s =
[h̄1, . . . , h̄n] in Eq. (3). The f function now consists of two
stages: (a) attention context – the previous hidden state hj−1

is used to compare with individual source hidden states in
s to learn an alignment vector aj ; then a context vector cj
is derived as a weighted average of the source hidden states
according to aj ; and (b) extended RNN – the RNN unit is ex-
tended to take into account not just the previous hidden state
hj−1, the current input yj−1, but also the context vector cj
when computing the next hidden state hj . These stages are
illustrated in Figure 2.

2.3. Our Models

We follow the attention-based NMT models proposed by Lu-
ong et al. [5], which includes two types of attention, global

and local. The global model is similar to the one proposed
in [11] with some simplifications. The local model is, on the
other hand, a new model that has a more “focused” attention,
i.e., it only puts attention on a subset of source hidden states
each time, which results in better performance compared to
the global attention approach. We train both types of mod-
els so that the ensembling approach as proposed in [1] can
benefit from having a variety of models to make decisions.

3. NMT Adaptation

In this section, we explore the possibility of adapting existing
models previously trained on one domain to a new domain.



3.1. Training Details

First, we take the existing state-of-the-art English-German
system [5], which consists of 8 individual models trained on
WMT data with mostly formal texts (4.5M sentence pairs).
We then further train on the English-German spoken lan-
guage data provided by IWSLT 2015 (200K sentence pairs).
We use the default Moses tokenizer. The vocabularies are
limited to the top 50K frequent words in the WMT data for
each language. All other words not in the vocabularies are
represented by the special token <unk>. We use the TED
tst2012 as a validation dataset for early stopping and report
results in BLEU [12] for TED tst2013 (during development)
and tst2014, tst2015 (during evaluation).

Our models are deep LSTM networks of 4 layers with
1000-dimensional embeddings and LSTM cells. We further
train existing models for 12 epochs in which after the first
epoch, learning rates (initially set to 1.0) are halved every
two epochs. Effective techniques are applied such as dropout
[13], source reversing [1], attention mechanism [11, 5], and
rare word handling [3, 4]. More details of these techniques
and other hyperparameters can be found in [5]. It takes about
3-5 hours to train a model on a Tesla K40.

3.2. Results

As highlighted in Table 1, adaptation turns out to be very
useful for NMT which gives an absolute gain of +3.8 BLEU
points compared to using an original model without further
training. Additionally, by ensembling multiple models as
done in [1], we can achieve another significant gain of +2.0
BLEU points on top of the single adapted model. Compared
to the best entry in IWSLT’14 [14], we have advanced the
state-of-the-art result by +5.2 BLEU points.

System BLEU

IWSLT’14 best entry [14] 26.2
Our systems

Single NMT (non-adapted) 25.6
Single NMT (adapted) 29.4 (+3.8)
Ensemble NMT (adapted) 31.4 (+2.0)

Table 1: English-German results on TED tst2013 – BLEU
scores of various systems. Progressive gains between our
systems are given in parentheses.

Furthermore, according to the evaluation results provided
by the organizer (Table 2), we are up to +10.0 BLEU points
better than the IWSLT’15 baseline system and +4.3 BLEU
point better than the best IWSLT’14 entry [14].

4. NMT for Low-resource Translation

Until now, state-of-the-art NMT systems rely on large
amounts of parallel corpora to sucessfully train translation
models such as English-French with 12M-36M sentence
pairs [3, 4] and English-German with 4.5M sentence pairs

System
BLEU

tst2014 tst2015

IWSLT’14 best entry [14] 23.3 -
IWSLT’15 baseline 18.5 20.1
Our system 27.6 (+9.1) 30.1 (+10.0)

Table 2: English-German evaluation results – BLEU scores
of various systems on the two evaluation sets. We show the
differences between our submission and the IWSLT’15 base-
line in parentheses.

[6, 5]. There is few work examining low-resource transla-
tion direction. In [8], the authors examined translation from
Turkish to English with 160K sentence pairs, but utilized
large monolingual data, the English Gigaword corpus. In this
work, we consider applying NMT to the low-resource trans-
lation task from English to Vietnamese in IWSLT 2015.

4.1. Training Details

We use the provided English-Vietnamese parallel data (133K
sentence pairs). Apart from tokenizing the corpus with the
default Moses tokenizer, no other preprocessing step, e.g.,
lowercasing or running word segmenter for Vietnamese, was
done. We preserve casing for words and replace those whose
frequencies are less than 5 by <unk>. As a result, our vo-
cabulary sizes are 17K and 7.7K for English and Vietnamese
respectively. We use the TED tst2012 as a valid set for early
stopping and report BLEU scores on TED tst2013 (during
development) and TED tst2015 (during evaluation).

At such a small scale of data, we could not train deep
LSTMs with 4 layers as in the English-German case. Instead,
we opt for 2-layer LSTM models with 500-dimensional em-
beddings and LSTM cells. Our other hyperparameters are:
(a) we train for 12 epochs using plain SGD; (b) our learn-
ing rate is set to 1.0 initially and after 8 epochs, we start to
halve the learning rate every epoch; (c) parameters are uni-
formly initialized in range [0.1, 0.1]; (d) gradients are scaled
whenever their norms exceed 5; (e) source sentences are re-
versed which is known to help learning [1], and (f) we use
dropout with probability 0.2. We train models with various
attention mechanisms, global and local, as detailed in [5]. It
takes about 4-7 hours to train a model on a Tesla K40.

4.2. Results

Our results during development are presented in Table 3.
Similar to the trend observed in the English-German case,
ensembling 9 models significantly boosts the performance by
+3.6 BLEU points. Since this is the first time Vietnamese is
included in IWSLT, there has not been any published number
for us to compare with.

For the final evaluation, our system is, unfortunately, be-
hind the IWSLT baseline as detailed in Table 4. Still, the gap
is small and it remains interesting to see how other teams per-
form. Examining the translation outputs, the first author, as a



System BLEU

Single NMT 23.3
Ensemble NMT 26.9

Table 3: English-Vietnamese results on TED tst2013.

native Vietnamese speaker, was quite amazed at how well the
translations can be from an off-the-shelf NMT framework.

System BLEU

IWSLT’15 baseline 27.0

Our system 26.4

Table 4: English-Vietnamese results on TED tst2015 pro-
vided by the organizer.

We also notice that the rare word handling technique as
often done in NMT [3, 4] yields little gain for our case. We
expect that this can be improved by utilizing a Vietnamese
word segmenter or simple heuristics to combine collocated
words such as the formula used in [15]. The rationale is
that many words in English correspond to multiple-character
words in Vietnamese such as “success” – “thành công” and
“city” – “thành phố”. The rare word handling technique re-
quires a word dictionary built from the unsupervised align-
ments, and in our case, without a segmenter, we are using a
word-to-char English-Vietnamese dictionary. As a result, the
model will fail when trying to translate English words whose
Vietname counterparts are multi-character words.

5. Conclusion

In this work, we have explored the use of Neural Machine
Translation (NMT) in the spoken language domain under two
interesting scenarios, namely NMT adaptation and NMT for
low-resource translation. We show that NMT adaptation is
very effective: models trained on a large amount of data in
one domain can be finetuned on a small amount of data in
another domain. This boosts the performance of an English-
German NMT system by 3.8 BLEU points. This helps ad-
vance state-of-the-art results in the IWSLT English-German
MT track by up to +5.2 BLEU points. For the latter sce-
nario, we demonstrate that an off-the-shelf NMT framework
can achieve competitive performance with very little data as
in the case of the English to Vietnamese translation direc-
tion. For future work, we hope to incorporate phrase-based
units in NMT to compensate for the fact that languages like
Vietnamese and Chinese often need a word segmenter.
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