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The last decade has yielded dramatic and quite surprising breakthroughs in natural 
language processing through the use of simple artificial neural network computa-
tions, replicated on a very large scale and trained over exceedingly large amounts 
of data. The resulting pretrained language models, such as BERT and GPT-3, have 
provided a powerful universal language understanding and generation base, which 
can easily be adapted to many understanding, writing, and reasoning tasks. These 
models show the first inklings of a more general form of artificial intelligence, which 
may lead to powerful foundation models in domains of sensory experience beyond 
just language.

When scientists consider artificial intelligence, they mostly think of 
modeling or recreating the capabilities of an individual human brain. 
But modern human intelligence is much more than the intelligence of 

an individual brain. Human language is powerful and has been transformative to 
our species because it gives groups of people a way to network human brains to-
gether. An individual human may not be much more intelligent than our close rel-
atives of chimpanzees or bonobos. These apes have been shown to possess many 
of the hallmark skills of human intelligence, such as using tools and planning; 
moreover, they have better short-term memory than we do.1 When humans in-
vented language is still, and perhaps will forever be, quite uncertain, but within 
the long evolutionary history of life on Earth, human beings developed language 
incredibly recently. The common ancestor of prosimians, monkeys, and apes 
dates to perhaps sixty-five million years ago; humans separated from chimps per-
haps six million years ago, while human language is generally assumed to be only 
a few hundred thousand years old.2 Once humans developed language, the pow-
er of communication quickly led to the ascendancy of Homo sapiens over other 
creatures, even though we are not as strong as an elephant nor as fast as a cheetah. 
It was much more recently that humans developed writing (only a bit more than 
five thousand years ago), allowing knowledge to be communicated across distanc-
es of time and space. In just a few thousand years, this information-sharing mech-
anism took us from the bronze age to the smartphones of today. A high-fidelity 
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code allowing both rational discussion among humans and the distribution of in-
formation has allowed the cultural evolution of complex societies and the knowl-
edge underlying modern technologies. The power of language is fundamental to 
human societal intelligence, and language will retain an important role in a future 
world in which human abilities are augmented by artificial intelligence tools.

For these reasons, the field of natural language processing (NLP) emerged in 
tandem with the earliest developments in artificial intelligence. Indeed, initial 
work on the NLP problem of machine translation, including the famous George-
town-IBM demonstration in 1954, slightly preceded the coining of the term 
 “artificial intelligence” in 1956.3 In this essay, I give a brief outline of the history 
of natural language processing. I then describe the dramatic recent developments 
in NLP coming from the use of large artificial neural network models trained on 
very large amounts of data. I trace the dramatic progress that has been made in 
building effective NLP systems using these techniques, and conclude with some 
thoughts on what these models achieve and where things will head next.

T he history of natural language processing until now can be roughly divid-
ed into four eras. The first era runs from 1950 to 1969. NLP research began 
as research in machine translation. It was imagined that translation could 

quickly build on the great successes of computers in code breaking during World 
War II. On both sides of the Cold War, researchers sought to develop systems ca-
pable of translating the scientific output of other nations. Yet, at the beginning 
of this era, almost nothing was known about the structure of human language, 
artificial intelligence, or machine learning. The amount of computation and data 
available was, in retrospect, comically small. Although initial systems were pro-
moted with great fanfare, the systems provided little more than word-level trans-
lation lookups and some simple, not very principled rule-based mechanisms to 
deal with the inflectional forms of words (morphology) and word order.

The second era, from 1970 to 1992, saw the development of a whole series of 
NLP demonstration systems that showed sophistication and depth in handling 
phenomena like syntax and reference in human languages. These systems includ-
ed SHRDLU by Terry Winograd, LUNAR by Bill Woods, Roger Schank’s systems 
such as SAM, Gary Hendrix’s LIFER, and GUS by Danny Bobrow.4 These were all 
hand-built, rule-based systems, but they started to model and use some of the 
complexity of human language understanding. Some systems were even deployed 
operationally for tasks like database querying.5 Linguistics and knowledge-based 
artificial intelligence were rapidly developing, and in the second decade of this 
era, a new generation of hand-built systems emerged, which had a clear separa-
tion between declarative linguistic knowledge and its procedural processing, 
and which benefited from the development of a range of more modern linguistic  
theories. 
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However, the direction of work changed markedly in the third era, from rough-
ly 1993 to 2012. In this period, digital text became abundantly available, and the 
compelling direction was to develop algorithms that could achieve some level of 
language understanding over large amounts of natural text and that used the ex-
istence of this text to help provide this ability. This led to a fundamental reorien-
tation of the field around empirical machine learning models of NLP, an orienta-
tion that still dominates the field today. At the beginning of this period, the dom-
inant modus operandi was to get hold of a reasonable quantity of online text–in 
those days, text collections were generally in the low tens of millions of words–
and to extract some kind of model out of these data, largely by counting particu-
lar facts. For example, you might learn that the kinds of things people capture are 
fairly evenly balanced between locations with people (like a city, town, or fort) and 
metaphorical notions (like imagination, attention, or essence). But counts on words 
only go so far in providing language understanding devices, and early empirical 
attempts to learn language structure from text collections were fairly unsuccess-
ful.6 This led most of the field to concentrate on constructing annotated linguistic 
resources, such as labeling the sense of words, instances of person or company 
names in texts, or the grammatical structure of sentences in treebanks, followed 
by the use of supervised machine learning techniques to build models that could 
produce similar labels on new pieces of text at runtime.

The period from 2013 to present extended the empirical orientation of the third 
era, but the work has been enormously changed by the introduction of deep learn-
ing or artificial neural network methods. In this approach, words and sentences 
are represented by a position in a (several hundred- or thousand-dimensional) 
real- valued vector space, and similarities of meaning or syntax are represented by 
proximity in this space. From 2013 to 2018, deep learning provided a more power-
ful method for building performant models: it was easier to model longer distance 
contexts, and models generalized better to words or phrases with similar mean-
ings because they could exploit proximity in a vector space, rather than depending 
on the identity of symbols (such as word form or part of speech). Nevertheless, 
the approach was unchanged in building supervised machine learning models to 
perform particular analysis tasks. Everything changed in 2018, when NLP was the 
first major success of very large scale self-supervised neural network learning. In this 
approach, systems can learn an enormous amount of knowledge of a language and 
the world simply from being exposed to an extremely large quantity of text (now 
normally in the billions of words). The method of self-supervision by which this 
is done is for the system to create from the text its own prediction challenges, such 
as successively identifying each next word in the text given the previous words or 
filling in a masked word or phrase in a text. By repeating such prediction tasks bil-
lions of times and learning from its mistakes, so the model does better next time 
given a similar textual context, general knowledge of a language and the world is 
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accumulated, and this knowledge can then be deployed for tasks of interest, such 
as question answering or text classification. 

In hindsight, the development of large-scale self-supervised learning ap-
proaches may well be viewed as the fundamental change, and the third era might 
be extended until 2017. The impact of pretrained self-supervised approaches has 
been revolutionary: it is now possible to train models on huge amounts of unla-
beled human language material in such a way as to produce one large pretrained 
model that can be very easily adapted, via fine-tuning or prompting, to give strong 
results on all sorts of natural language understanding and generation tasks. As a 
result, progress and interest in NLP have exploded. There is a sense of optimism 
that we are starting to see the emergence of knowledge-imbued systems that have 
a degree of general intelligence.

I cannot give here a full description of the now-dominant neural network mod-
els of human language, but I can offer an inkling. These models represent ev-
erything via vectors of real numbers and are able to learn good representa-

tions after exposure to many pieces of data by back-propagation of errors (which 
comes down to doing differential calculus) from some prediction task back to the 
representations of the words in a text. Since 2018, the dominant neural network 
model for NLP applications has been the transformer neural network.7 With sev-
eral ideas and parts, a transformer is a much more complex model than the simple 
neural networks for sequences of words that were explored in earlier decades. The 
dominant idea is one of attention, by which a representation at a position is com-
puted as a weighted combination of representations from other positions. A com-
mon self-supervision objective in a transformer model is to mask out occasional 
words in a text. The model works out what word used to be there. It does this by 
calculating from each word position (including mask positions) vectors that rep-
resent a query, key, and value at that position. The query at a position is compared 
with the value at every position to calculate how much attention to pay to each po-
sition; based on this, a weighted average of the values at all positions is calculated. 
This operation is repeated many times at each level of the transformer neural net, 
and the resulting value is further manipulated through a fully connected neural 
net layer and through use of normalization layers and residual connections to pro-
duce a new vector for each word. This whole process is repeated many times, giv-
ing extra layers of depth to the transformer neural net. At the end, the representa-
tion above a mask position should capture the word that was there in the original 
text: for instance, committee as illustrated in Figure 1.

It is not at all obvious what can be achieved or learned by the many simple cal-
culations of a transformer neural net. At first, this may sound like some kind of 
complex statistical association learner. However, given a very powerful, flexible, 
and high-parameter model like a transformer neural net and an enormous amount 
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of data to practice predictions on, these models discover and represent much of 
the structure of human languages. Indeed, work has shown that these models 
learn and represent the syntactic structure of a sentence and will learn to memo-
rize many facts of the world, since each of these things helps the model to predict 
masked words successfully.8 Moreover, while predicting a masked word initial-
ly seems a rather simple and low-level task–a kind of humorless Mad Libs–and 
not something sophisticated, like diagramming a sentence to show its grammati-
cal structure, this task turns out to be very powerful because it is universal: every 
form of linguistic and world knowledge, from sentence structure, word connota-
tions, and facts about the world, help one to do this task better. As a result, these 
models assemble a broad general knowledge of the language and world to which 
they are exposed. A single such large pretrained language model (LPLM) can be 
deployed for many particular NLP tasks with only a small amount of further in-
struction. The standard way of doing this from 2018 to 2020 was fine-tuning the 
model via a small amount of additional supervised learning, training it on the ex-
act task of interest. But very recently, researchers have surprisingly found that the 
largest of these models, such as GPT-3 (Generative Pre-trained Transformer-3), 

Figure 1
Details of the Attention Calculations in One Part of a  
Transformer Neural Net Model

From this calculation, the transformer neural net is able to predict the word committee in the 
masked position. 
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can perform novel tasks very well with just a prompt. Give them a human language 
description or several examples of what one wants them to do, and they can per-
form many tasks for which they were never otherwise trained.9

T raditional natural language processing models were elaborately composed 
from several usually independently developed components, frequently 
built into a pipeline, which first tried to capture the sentence structure 

and low-level entities of a text and then something of the higher-level meaning, 
which would be fed into some domain-specific execution component. In the last 
few years, companies have started to replace such traditional NLP solutions with 
LPLMs, usually fine-tuned to perform particular tasks. What can we expect these 
systems to do in the 2020s? 

Early machine translation systems covered limited linguistic constructions 
in a limited domain.10 Building large statistical models from parallel corpora of 
translated text made broad-coverage machine translation possible, something 
that most people first experienced using Google Translate after it launched in 
2006. A decade later, in late 2016, Google’s machine translation improved mark-
edly when they switched to the use of neural machine translation.11 But that sys-
tem had a shorter lifespan: transformer-based neural translation was rolled out 
in 2020.12 This new system improved not only via a different neural architecture 
but via use of a fundamentally different approach. Rather than building numer-
ous pairwise systems from parallel text that translate between two languages, the 
new system gains from one huge neural net that was simultaneously trained on all 
languages that Google Translate covers, with input simply marked by a distinct 
token that indicates the language. While this system still makes mistakes and ma-
chine translation research continues, the quality of automatic translation today 
is remarkable. When I enter a couple of sentences from today’s Le Monde culture  
section:

Il avait été surnommé, au milieu des années 1930, le « Fou chantant », alors qu’il faisait ses débuts 
d’artiste soliste après avoir créé, en 1933, un duo à succès avec le pianiste Johnny Hess. Pour son 
dynamisme sur scène, silhouette agile, ses yeux écarquillés et rieurs, ses cheveux en bataille, surtout 
pour le rythme qu’il donnait aux mots dans ses interprétations et l’écriture de ses textes.13

the translation is excellent:

He was nicknamed the Singing Madman in the mid-1930s when he was making his debut as a 
solo artist after creating a successful duet with pianist Johnny Hess in 1933. For his dynamism on 
stage, his agile figure, his wide, laughing eyes, his messy hair, especially for the rhythm he gave to 
the words in his interpretations and the writing of his texts.

In question answering, a system looks for relevant information across a collec-
tion of texts and then provides answers to specific questions (rather than just re-
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turning pages that are suggested to hold relevant information, as in the early gen-
erations of Web search). Question answering has many straightforward commer-
cial applications, including both presale and postsale customer support. Modern 
neural network question-answering systems have high accuracy in extracting an 
answer present in a text and are even fairly good at working out that no answer is 
present. For example, from this passage:

Samsung saved its best features for the Galaxy Note 20 Ultra, including a more refined 
design than the Galaxy S20 Ultra–a phone I don’t recommend. You’ll find an excep-
tional 6.9-inch screen, sharp 5x optical zoom camera and a swifter stylus for annotat-
ing screenshots and taking notes. The Note 20 Ultra also makes small but significant 
enhancements over the Note 10 Plus, especially in the camera realm. Do these features 
justify the Note 20 Ultra’s price? It begins at $1,300 for the 128GB version. The retail 
price is a steep ask, especially when you combine a climate of deep global recession 
and mounting unemployment.

One can get answers to questions like the following (using the UnifiedQA model):14

How expensive is the Samsung Galaxy Note 20 Ultra? 
$1,300 for the 128GB version

Does the Galaxy Note 20 Ultra have 20x optical zoom? 
no

What is the optical zoom of the Galaxy Note 20 Ultra?
5x

How big is the screen of the Galaxy Note 20 Ultra? 
6.9-inch

For common traditional NLP tasks like marking person or organization names 
in a piece of text or classifying the sentiment of a text about a product (as posi-
tive or negative), the best current systems are again based on LPLMs, usually fine-
tuned by providing a set of examples labeled in the desired way. While these tasks 
could be done quite well even before recent large language models, the greater 
breadth of knowledge of language and the world in these models has further im-
proved performance on these tasks.

Finally, LPLMs have led to a revolution in the ability to generate fluent and 
connected text. In addition to many creative uses, such systems have prosaic uses 
ranging from writing formulaic news articles like earnings or sports reports and 
automating summarization. For example, such a system can help a radiologist by 
suggesting the impression (or summary) based on the radiologist’s findings. For 
the findings below, we can see that the system-generated impression is quite sim-
ilar to a radiologist-generated impression:15
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Findings: lines/tubes: right ij sheath with central venous catheter tip overlying the 
svc. on initial radiograph, endotracheal tube between the clavicular heads, and enteric  
tube with side port at the ge junction and tip below the diaphragm off the field-of-
view; these are removed on subsequent film. mediastinal drains and left thoracosto-
my tube are unchanged. lungs: low lung volumes. retrocardiac airspace disease, slight-
ly increased on most recent film. pleura: small left pleural effusion. no pneumothorax. 
heart and mediastinum: postsurgical widening of the cardiomediastinal silhouette. 
aortic arch calcification. bones: intact median sternotomy wires.

Radiologist-generated impression: left basilar airspace disease and small left pleural 
effusion. lines and tubes positioned as above. 

System-generated impression: lines and tubes as described above. retrocardiac air-
space disease, slightly increased on most recent film. small left pleural effusion.

These recent NLP systems perform very well on many tasks. Indeed, given a 
fixed task, they can often be trained to perform it as well as human beings, on av-
erage. Nevertheless, there are still reasons to be skeptical as to whether these sys-
tems really understand what they are doing, or whether they are just very elabo-
rate rewriting systems, bereft of meaning. 

T he dominant approach to describing meaning, in not only linguistics and 
philosophy of language but also for programming languages, is a denota-
tional semantics approach or a theory of reference: the meaning of a word, 

phrase, or sentence is the set of objects or situations in the world that it describes 
(or a mathematical abstraction thereof ). This contrasts with the simple distribu-
tional semantics (or use theory of meaning) of modern empirical work in NLP, where-
by the meaning of a word is simply a description of the contexts in which it ap-
pears.16 Some have suggested that the latter is not a theory of semantics at all but 
just a regurgitation of distributional or syntactic facts.17 I would disagree. Mean-
ing is not all or nothing; in many circumstances, we partially appreciate the mean-
ing of a linguistic form. I suggest that meaning arises from understanding the net-
work of connections between a linguistic form and other things, whether they be 
objects in the world or other linguistic forms. If we possess a dense network of 
connections, then we have a good sense of the meaning of the linguistic form. For 
example, if I have held an Indian shehnai, then I have a reasonable idea of the mean-
ing of the word, but I would have a richer meaning if I had also heard one being 
played. Going in the other direction, if I have never seen, felt, or heard a shehnai, 
but someone tells me that it’s like a traditional Indian oboe, then the word has some 
meaning for me: it has connections to India, to wind instruments that use reeds, 
and to playing music. If someone added that it has holes sort of like a recorder, but it 
has multiple reeds and a flared end more like an oboe, then I have more network con-
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nections to objects and attributes. Conversely, I might not have that information 
but just a couple of contexts in which the word has been used, such as: From a week 
before, shehnai players sat in bamboo machans at the entrance to the house, playing their 
pipes. Bikash Babu disliked the shehnai’s wail, but was determined to fulfil every convention-
al expectation the groom’s family might have.18 Then, in some ways, I understand the 
meaning of the word shehnai rather less, but I still know that it is a pipe-like musi-
cal instrument, and my meaning is not a subset of the meaning of the person who 
has simply held a shehnai, for I know some additional cultural connections of the 
word that they lack. 

Using this definition whereby understanding meaning consists of understand-
ing networks of connections of linguistic forms, there can be no doubt that pre-
trained language models learn meanings. As well as word meanings, they learn 
much about the world. If they are trained on encyclopedic texts (as they usually 
are), they will learn that Abraham Lincoln was born in 1809 in Kentucky and that 
the lead singer of Destiny’s Child was Beyoncé Knowles-Carter. Our machines 
can richly benefit from writing as a store of human knowledge, just like people. 
Nevertheless, the models’ word meanings and knowledge of the world are often 
very incomplete and cry out for being augmented with other sensory data and 
knowledge. Large amounts of text data provided a very accessible way first to ex-
plore and build these models, but it will be useful to expand to other kinds of data.

The success of LPLMs on language-understanding tasks and the exciting 
prospects for extending large-scale self-supervised learning to other data mo-
dalities–such as vision, robotics, knowledge graphs, bioinformatics, and multi-
modal data–suggests exploring a more general direction. We have proposed the 
term foundation models for the general class of models with millions of parame-
ters trained on copious data via self-supervision that can then easily be adapted 
to perform a wide range of downstream tasks.19 LPLMs like BERT (Bidirection-
al Encoder Representations from Transformers) and GPT-3 are early examples of 
foundation models, but work is now underway more broadly.20 One direction is 
to connect language models with more structured stores of knowledge represent-
ed as a knowledge graph neural network or as a large supply of text to be consult-
ed at runtime.21 However, the most exciting and promising direction is to build 
foundation models that also take in other sensory data from the world to enable 
integrated, multimodal learning. An example of this is the recent DALL·E model 
that, after self-supervised learning on a corpus of paired images and text, can ex-
press the meaning of a new piece of text by producing a corresponding picture.22

We are still very early in the era of foundation models, but let me sketch a  pos-
sible future. Most information processing and analysis tasks, and perhaps even 
things like robotic control, will be handled by a specialization of one of a rela-
tively small number of foundation models. These models will be expensive and 
time-consuming to train, but adapting them to different tasks will be quite easy; 
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indeed, one might be able to do it simply with natural language instructions. This 
resulting convergence on a small number of models carries several risks: the 
groups capable of building these models may have excessive power and influence, 
many end users might suffer from any biases present in these models, and it will 
be difficult to tell if models are safe to use in particular contexts because the mod-
els and their training data are so large. Nevertheless, the ability of these models to 
deploy knowledge gained from a huge amount of training data to many different 
runtime tasks will make these models powerful, and they will for the first time 
demonstrate the artificial intelligence goal of one machine learning model doing 
many particular tasks based on simply being instructed on the spot as to what it 
should do. While the eventual possibilities for these models are only dimly un-
derstood, they are likely to remain limited, lacking a human-level ability for care-
ful logical or causal reasoning. But the broad effectiveness of foundation mod-
els means that they will be very widely deployed, and they will give people in the 
coming decade their first glimpses of a more general form of artificial intelligence.
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