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Abstract
We present a model of pragmatic referring
expression interpretation in a grounded com-
munication task (identifying colors from de-
scriptions) that draws upon predictions from
two recurrent neural network classifiers, a
speaker and a listener, unified by a recur-
sive pragmatic reasoning framework. Exper-
iments show that this combined pragmatic
model interprets color descriptions more ac-
curately than the classifiers from which it is
built, and that much of this improvement re-
sults from combining the speaker and listener
perspectives. We observe that pragmatic rea-
soning helps primarily in the hardest cases:
when the model must distinguish very simi-
lar colors, or when few utterances adequately
express the target color. Our findings make
use of a newly-collected corpus of human ut-
terances in color reference games, which ex-
hibit a variety of pragmatic behaviors. We also
show that the embedded speaker model repro-
duces many of these pragmatic behaviors.

1 Introduction

Human communication is situated. In using lan-
guage, we are sensitive to context and our interlocu-
tors’ expectations, both when choosing our utter-
ances (as speakers) and when interpreting the utter-
ances we hear (as listeners). Visual referring tasks
exercise this complex process of grounding, in the
environment and in our mental models of each other,
and thus provide a valuable test-bed for computa-
tional models of production and comprehension.

Table 1 illustrates the situated nature of reference
understanding with descriptions of colors from a

Context Utterance

1. xxxx xxxx xxxx darker blue

2. xxxx xxxx xxxx Purple

3. xxxx xxxx xxxx blue

4. xxxx xxxx xxxx blue

Table 1: Examples of color reference in context, taken
from our corpus. The target color is boxed. The speaker’s
description is shaped not only by this target, but also by
the other context colors and their relationships.

task-oriented dialogue corpus we introduce in this
paper. In these dialogues, the speaker is trying to
identify their (privately assigned) target color for the
listener. In context 1, the comparative darker implic-
itly refers to both the target (boxed) and one of the
other colors. In contexts 2 and 3, the target color
is the same, but the distractors led the speaker to
choose different basic color terms. In context 4,
blue is a pragmatic choice even though two colors
are shades of blue, because the interlocutors assume
about each other that they find the target color a
more prototypical representative of blue and would
prefer other descriptions (teal, cyan) for the middle
color. The fact that blue appears in three of these
four cases highlights the flexibility and context de-
pendence of color descriptions.

In this paper, we present a scalable, learned model
of pragmatic language understanding. The model is
built around a version of the Rational Speech Acts
(RSA) model (Frank and Goodman, 2012; Good-
man and Frank, 2016), in which agents reason recur-



sively about each other’s expectations and intentions
to communicate more effectively than literal seman-
tic agents could. In most work on RSA, the literal
semantic agents use fixed message sets and stipu-
lated grammars, which is a barrier to experiments in
linguistically complex domains. In our formulation,
the literal semantic agents are recurrent neural net-
works (RNNs) that produce and interpret color de-
scriptions in context. These models are learned from
data and scale easily to large datasets containing di-
verse utterances. The RSA recursion is then defined
in terms of these base agents: the pragmatic speaker
produces utterances based on a literal RNN listener
(Andreas and Klein, 2016), and the pragmatic lis-
tener interprets utterances based on the pragmatic
speaker’s behavior.

We focus on accuracy in a listener task (i.e., at
language understanding). However, our most suc-
cessful model integrates speaker and listener per-
spectives, combining predictions made by a sys-
tem trained to understand color descriptions and one
trained to produce them.

We evaluate this model with a new, psycholin-
guistically motivated corpus of real-time, dyadic ref-
erence games in which the referents are patches of
color. Our task is fundamentally the same as that
of Baumgaertner et al. (2012), but the corpus we re-
lease is larger by several orders of magnitude, con-
sisting of 948 complete games with 53,365 utter-
ances produced by human participants paired into
dyads on the web. The linguistic behavior of the
players exhibits many of the intricacies of language
in general, including not just the context dependence
and cognitive complexity discussed above, but also
compositionality, vagueness, and ambiguity. While
many previous data sets feature descriptions of in-
dividual colors (Cook et al., 2005; Munroe, 2010;
Kawakami et al., 2016), situating colors in a com-
municative context elicits greater variety in language
use, including negations, comparatives, superlatives,
metaphor, and shared associations.

Experiments on the data in our corpus show that
this combined pragmatic model improves accuracy
in interpreting human-produced descriptions over
the basic RNN listener alone. We find that the
largest improvement over the single RNN comes
from blending it with an RNN trained to perform
the speaker task, despite the fact that a model based

Figure 1: Example trial in corpus collection task, from
speaker’s perspective. The target color (boxed) was pre-
sented among two distractors on a neutral background.

only on this speaker RNN performs poorly on its
own. Pragmatic reasoning on top of the listener
RNN alone also yields improvements, which more-
over come primarily in the hardest cases: 1) contexts
with colors that are very similar, thus requiring the
interpretation of descriptions that convey fine dis-
tinctions; and 2) target colors that most referring ex-
pressions fail to identify, whether due to a lack of ad-
equate descriptive terms or a consistent bias against
the color in the RNN listener.

2 Task and data collection

We evaluate our agents on a task of language un-
derstanding in a dyadic reference game (Rosen-
berg and Cohen, 1964; Krauss and Weinheimer,
1964; Paetzel et al., 2014). Unlike traditional natu-
ral language processing tasks, in which participants
provide impartial judgements of language in iso-
lation, reference games embed language use in a
goal-oriented communicative context (Clark, 1996;
Tanenhaus and Brown-Schmidt, 2008). Since they
offer the simplest experimental setup where many
pragmatic and discourse-level phenomena emerge,
these games have been used widely in cognitive sci-
ence to study topics like common ground and con-
ventionalization (Clark and Wilkes-Gibbs, 1986),
referential domains (Brown-Schmidt and Tanen-
haus, 2008), perspective-taking (Hanna et al., 2003),
and overinformativeness (Koolen et al., 2011).

To obtain a corpus of natural color reference data
across varying contexts, we recruited 967 unique
participants from Amazon Mechanical Turk to play
1,059 games of 50 rounds each, using the open-



source framework of Hawkins (2015). Participants
were sorted into dyads, randomly assigned the role
of speaker or listener, and placed in a game envi-
ronment containing a chat box and an array of three
color patches (Figure 1). On each round, one of the
three colors was chosen to be the target and high-
lighted for the speaker. They were instructed to com-
municate this information to the listener, who could
then click on one of the colors to advance to the next
trial. Both participants were free to use the chat box
at any point.

To ensure a range of difficulty, we randomly in-
terspersed an equal number of trials from three dif-
ferent conditions: 1) close, where colors were all
within a distance of θ from one another but still per-
ceptible,1 2) split, where one distractor was within
a distance of θ of the target, but the other distractor
was farther than θ, and 3) far, where all colors were
farther than θ from one another. Colors were rejec-
tion sampled uniformly from RGB (red, green, blue)
space to meet these constraints.

After excluding extremely long messages,2 in-
complete games, and games whose participants self-
reported confusion about the instructions or non-
native English proficiency, we were left with a
corpus of 53,365 speaker utterances across 46,994
rounds in 948 games. The three conditions are
equally represented, with 15,519 close trials, 15,693
split trials, and 15,782 far trials. Participants were
allowed to play more than once, but the modal num-
ber of games played per participant was one (75%).
The modal number of messages sent per round was
also one (90%). We release the filtered corpus
we used throughout our analyses alongside the raw,
pre-filter data collected from these experiments (see
Footnote 11).

3 Behavioral results

Our corpus was developed not only to facilitate the
development of models for grounded language un-

1We used the most recent CIEDE standard to measure color
differences, which is calibrated to human vision (Sharma et al.,
2005). All distances were constrained to be larger than a lower
bound of ε = 5 to ensure perceptible differences, and we used
a threshold value of θ = 20 to create conditions.

2Specifically, we set a length criterion at 4σ of the mean
number of words per message (about 14 words, in our case), ex-
cluding 627 utterances. These often included meta-commentary
about the game rather than color terms.

derstanding, but also to provide a richer picture
of human pragmatic communication. The collec-
tion effort was thus structured like a large-scale be-
havioral experiment, closely following experimen-
tal designs like those of Clark and Wilkes-Gibbs
(1986). This paves the way to assessing our model
not solely based on the listener’s classification accu-
racy, but also in terms of how qualitative features of
the speaker’s production compare to that of our hu-
man participants. Thus, the current section briefly
reviews some novel findings from the human corpus
that we use to inform our model assessment.

3.1 Listener behavior

Since color reference is a difficult task even for hu-
mans, we compared listener accuracy across condi-
tions to calibrate our expectations about model per-
formance. While participants’ accuracy was close to
ceiling (97%) on the far condition, they made sig-
nificantly more errors on the split (90%) and close
(83%) conditions (see Figure 4).

3.2 Speaker behavior

For ease of comparison to computational results, we
focus on five metrics capturing different aspects of
pragmatic behavior displayed by both human and ar-
tificial speakers in our task (Table 2). In all cases,
we report test statistics from a mixed-effects regres-
sion including condition as a fixed effect and game
ID as a random effect; except where noted, all test
statistics reported correspond to p-values < 10−4

and have been omitted for readability.

Words and characters We expect human speak-
ers to be more verbose in split and close contexts
than far contexts; the shortest, simplest color terms
for the target may also apply to one or both dis-
tractors, thus incentivizing the speaker to use more
lengthy descriptions to fully distinguish it. Indeed,
even if they know enough simple color terms to dis-
tinguish all the colors lexically, they might be unsure
their listeners will and so resort to modifiers any-
way. To assess this hypothesis, we counted the av-
erage number of words and characters per message.
Compared to the baseline far context, participants
used significantly more words both in the split con-
text (t = 45.85) and the close context (t = 73.06).
Similar results hold for the character metric.



human S0 S1
far split close far split close far split close

# Chars 7.8 12.3 14.9 9.0 12.8 16.6 9.0 12.8 16.4
# Words 1.7 2.7 3.3 2.0 2.8 3.7 2.0 2.8 3.7
% Comparatives 1.7 14.2 12.8 3.6 8.8 13.1 4.2 9.0 13.7
% High Specificity 7.0 7.6 7.4 6.4 8.4 7.6 6.8 7.9 7.5
% Negatives 2.8 10.0 12.9 4.8 8.9 13.3 4.4 8.5 14.1
% Superlatives 2.2 6.1 16.7 4.7 9.7 17.2 4.8 10.3 16.6

Table 2: Corpus statistics and statistics of samples from artificial speakers (rates per utterance). S0: RNN speaker; S1:
pragmatic speaker derived from RNN listener (see Section 4.3). The human and artificial speakers show many of the
same correlations between language use and context type.

Comparatives and superlatives As noted in Sec-
tion 1, comparative morphology implicitly encodes
a dependence on the context; a speaker who refers
to the target color as the darker blue is presuppos-
ing that there is another (lighter) blue in the con-
text. Similarly, superlatives like the bluest one or
the lightest one presuppose that all the colors can be
compared along a specific semantic dimension. We
thus expect to see this morphology more often where
two or more of the colors are comparable in this way.
To test this, we used the Stanford CoreNLP part-of-
speech tagger (Toutanova et al., 2003) to mark the
presence or absence of comparatives (JJR or RBR)
and superlatives (JJS or RBS) for each message.

We found two related patterns across conditions.
First, participants were significantly more likely to
use both comparatives (z = 37.39) and superla-
tives (z = 31.32) when one or more distractors
were close to the target. Second, we found evidence
of an asymmetry in the use of these constructions
across the split and close contexts. Comparatives
were used significantly more often in the split con-
text (z = 4.4), where only one distractor was close
to the target, while superlatives were much more
likely to be used in the close condition (z = 32.72).3

Negatives In our referential contexts, negation is
likely to play a role similar to that of comparatives:
a phrase like not the red or blue one singles out the
third color, and blue but not bright blue achieves a
more nuanced kind of comparison. Thus, as with

3We used Helmert coding to test these specific patterns: the
first regression coefficient compares the ‘far’ condition to the
mean of the other two conditions, and the second regression co-
efficient compares the ‘split’ condition to the ‘close’ condition.

comparatives, we expect negation to be more likely
where one or more distractors are close to the tar-
get. To test this, we counted occurrences of the
string ‘not’ (by far the most frequent negation in the
corpus). Compared to the baseline far context, we
found that participants were more likely to use neg-
ative constructions when one (z = 27.36) or both
(z = 34.32) distractors were close to the target.

WordNet specificity We expect speakers to prefer
basic color terms wherever they suffice to achieve
the communicative goal, since such terms are most
likely to succeed with the widest range of listeners.
Thus, a speaker might choose blue even for a clear
periwinkle color. However, as the colors get closer
together, the basic terms become too ambiguous,
and thus the risk of specific terms becomes worth-
while (though lengthy descriptions might be a safer
strategy, as discussed above). To evaluate this idea,
we use WordNet (Fellbaum, 1998) to derive a speci-
ficity hierarchy for color terms, and we hypothesized
that split or close conditions will tend to lead speak-
ers to go lower in this hierarchy.

For each message, we transformed adjectives into
their closest noun forms (e.g. ‘reddish’ → ‘red’),
filtered to include only nouns with ‘color’ in their
hypernym paths, calculated the depth of the hyper-
nym path of each color word, and took the maxi-
mum depth occurring in a message. For instance, the
message “deep magenta, purple with some pink” re-
ceived a score of 9. It has three color terms: “purple”
and “pink,” which have the basic-level depth of 7,
and “magenta,” which is a highly specific color term
with a depth of 9. Finally, because there weren’t
meaningful differences between words at depths of



xx xx xx

blue 1 1 0
teal 0 1 0
dull 1 0 1

(a) The lexicon L defines
utterances’ truth values.
Our neural listener skips L
and models l0’s probability
distributions directly.

xx xx xx

blue 50 50 0
teal 0 100 0
dull 50 0 50

(b) The literal listener l0
chooses colors compatible
with the literal semantics
of the utterance; other than
that, it guesses randomly.

xx xx xx

blue 50 33 0
teal 0 67 0
dull 50 0 100

(c) The pragmatic speaker
s1 soft-maximizes the in-
formativity of its utter-
ances. (For simplicity, α =
1 and κ(u) = 0.)

xx xx xx

blue 60 40 0
teal 0 100 0
dull 33 0 67

(d) The pragmatic listener
l2 uses Bayes’ rule to in-
fer the target using the
speaker’s utterance as evi-
dence.

Figure 2: The basic RSA model applied to a reference task (literal semantics and alternative utterances simplified for
demonstration). (b)-(d) show conditional probabilities (%).

8 (“rose”, “teal”) and 9 (“tan,” “taupe”), we con-
ducted our analyses on a binary variable thresholded
to distinguish “high specificity” messages with a
depth greater than 7. We found a small but reli-
able increase in the likelihood of “high specificity”
messages from human speakers in the split (z =
2.84, p = 0.005) and close (z = 2.33, p = 0.02)
contexts, compared to the baseline far context.

4 Models

We first define the basic RSA model as applied to
the color reference games introduced in Section 2;
an example is shown in Figure 2.

Listener-based listener The starting point of
RSA is a model of a literal listener:

l0(t | u,L) ∝ L(u, t)P (t) (1)

where t is a color in the context setC, u is a message
drawn from a set of possible utterances U , P is a
prior over colors, and L(u, t) is a semantic interpre-
tation function that takes the value 1 if u is true of t,
else 0. Figure 2a shows the values of L defined for a
very simple context in which U = {blue, teal, dull},
and C = { xx , xx , xx }; Figure 2b shows the cor-
responding literal listener l0 if the prior P over col-
ors is flat. (In our scalable extension, we will substi-
tute a neural network model for l0, bypassing L and
allowing for non-binary semantic judgments.)

RSA postulates a model of a pragmatic speaker
(Figure 2c) that behaves according to a distribution
that soft-maximizes a utility function rewarding in-
formativity and penalizing cost:

s1(u | t,L) ∝ eα log(l0(t|u,L))−κ(u) (2)

Here, κ is a real-valued cost function on utterances,
and α ∈ [0,∞) is an inverse temperature parameter
governing the “rationality” of the speaker model. A
large α means the pragmatic speaker is expected to
choose the most informative utterance (minus cost)
consistently; a smallαmeans the speaker is modeled
as choosing suboptimal utterances frequently.

Finally, a pragmatic listener (Figure 2d) interprets
utterances by reasoning about the behavior of the
pragmatic speaker:

l2(t | u,L) ∝ s1(u | t,L)P (t) (3)

The α parameter of the speaker indirectly affects
the listener’s interpretations: the more reliably the
speaker chooses the optimal utterance for a referent,
the more the listener will take deviations from the
optimum as a signal to choose a different referent.

The most important feature of this model is that
the pragmatic listener l2 reasons not about the se-
mantic interpretation function L directly, but rather
about a speaker who reasons about a listener who
reasons about L directly. The back-and-forth na-
ture of this interpretive process mirrors that of con-
versational implicature (Grice, 1975) and reflects
more general ideas from Bayesian cognitive mod-
eling (Tenenbaum et al., 2011). The model and its
variants have been shown to capture a wide range of
pragmatic phenomena in a cognitively realistic man-
ner (Goodman and Stuhlmüller, 2013; Smith et al.,
2013; Kao et al., 2014; Bergen et al., 2016), and
the central Bayesian calculation has proven useful
in a variety of communicative domains (Tellex et al.,
2014; Vogel et al., 2013).



u1 u2 u3

(µ,Σ) c1 c2 c3

• • •

c3

Embedding

LSTM

Softmax

(a) The L0 agent processes tokens ui of a color descrip-
tion u sequentially. The final representation is trans-
formed into a Gaussian distribution in color space, which
is used to score the context colors c1 . . . c3.

c1 c2 ct

h h; 〈s〉 h;u1 h;u2

u1 u2 〈/s〉

LSTM

Fully connected

Softmax

(b) The S0 agent processes the target color ct in context
and produces tokens ui of a color description sequen-
tially. Each step in production is conditioned by the con-
text representation h and the previous word produced.

Figure 3: The neural base speaker and listener agents.

Speaker-based listener The definitions of s1 (2)
and l2 (3) give a general method of deriving a
speaker from a listener and vice versa. This sug-
gests an alternative formulation of a pragmatic lis-
tener, starting from a literal speaker:

s0(u | t,L) ∝ L(u, t)e−κ(u) (4)

l1(t | u,L) ∝ s0(u | t,L)P (t) (5)

Here, it is the speaker that reasons about the seman-
tics, while the listener reasons about this speaker.

Both of these versions of RSA pose problems with
scalability, stemming from the set of messages U
and the interpretation function L. In most versions
of RSA, these are specified by hand (but see Mon-
roe and Potts 2015). This presents a serious practi-
cal obstacle to applying RSA to large data sets con-
taining realistic utterances. The set U also raises a
more fundamental issue: if this set is not finite (as
one would expect from a compositional grammar),
then in general there is no exact way to normalize
the s1 scores, since the denominator must sum over
all messages. The same problem applies to s0, un-
less L factorizes in an unrealistically clean way.

Over the next few subsections, we overcome these
obstacles by replacing l0 and s0 with RNN-based lis-
tener agents, denoted with capital letters: L0, S0.
We use the S0 agent both as a base model for a prag-
matic listener analogous to l1 in (5) and to acquire

sample utterances for approximating the normaliza-
tion required in defining the s1 agent in (2).

4.1 Base listener
Our base listener agent L0 (Figure 3a) is an LSTM
encoder model that predicts a Gaussian distribution
over colors in a transformed representation space.
The input words are embedded in a 100-dimensional
vector space. Word embeddings are initialized to
random normally-distributed vectors (µ = 0, σ =
0.01) and trained. The sequence of word vectors is
used as input to an LSTM with 100-dimensional hid-
den state, and a linear transformation is applied to
the output representation to produce the parameters
µ and Σ of a quadratic form4

score(f) = −(f − µ)TΣ(f − µ)

where f is a vector representation of a color. Each
color is represented in its simplest form as a three-
dimensional vector in RGB space. These RGB vec-
tors are then Fourier-transformed as in Monroe et al.
(2016) to obtain the representation f .

The values of score(f) for each of the K con-
text colors are normalized in log space to produce a
probability distribution over the context colors. We
denote this distribution by L0(t | u,C; θ), where θ

4The quadratic form is not guaranteed to be negative definite
and thus define a Gaussian; however, it is for > 95% of inputs.
The distribution over context colors is well-defined regardless.



represents the vector of parameters that define the
trained model.

4.2 Base speaker
We also employ an LSTM-based speaker model
S0(u | t, C;φ). This speaker serves two purposes:
1) it is used to define a pragmatic listener akin to l1
in (5), and 2) it provides samples of alternative ut-
terances for each context, to avoid enumerating the
intractably large space of possible utterances.

The speaker model consists of an LSTM con-
text encoder and an LSTM description decoder (Fig-
ure 3b). In this model, the colors of the context
ci ∈ C are transformed into Fourier representation
space, and the sequence of color representations is
passed through an LSTM with 100-dimensional hid-
den state. The context is reordered to place the tar-
get color last, minimizing the length of dependence
between the most important input color and the out-
put (Sutskever et al., 2014) and eliminating the need
to represent the index of the target separately. The
final cell state of this recurrent neural network is
concatenated with a 100-dimensional embedding for
the previous token output at each step of decoding.
The resulting vector is input along with the previous
cell state to the LSTM cell, and an affine transfor-
mation and softmax function are applied to the out-
put to produce a probability distribution predicting
the following token of the description. The model is
substantively similar to well-known models for im-
age caption generation (Karpathy and Fei-Fei, 2015;
Vinyals et al., 2015), which use the output of a con-
volutional neural network as the representation of an
input image and provide this representation to the
RNN as an initial state or first word (we represent
the context using a second RNN and concatenate the
context representation onto each input word vector).

4.3 Pragmatic agents
Using the above base agents, we define a pragmatic
speaker S1 and a pragmatic listener L2:

S1(u | t, C; θ) =
L0(t | u,C; θ)α∑
u′ L0(t | u′, C; θ)α

(6)

L2(t | u,C; θ) =
S1(u | t, C; θ)∑
t′ S1(u | t′, C; θ)

(7)

These definitions mirror those in (2) and (3) above,
with L replaced by the learned weights θ.

Just as in (2), the denominator in (6) should con-
sist of a sum over the entire set of potential utter-
ances, which is exponentially large in the maximum
utterance length and might not even be finite. As
mentioned in Section 4.2, we limit this search by
taking m samples from S0(u | i, C;φ) for each tar-
get index i, adding the actual utterance from the test-
ing example, and taking the resulting multiset as the
universe of possible utterances, weighted towards
frequently-sampled utterances.5 Taking a number
of samples from S0 for each referent in the context
gives the pragmatic listener a variety of informative
alternative utterances to consider when interpreting
the true input description. We have found thatm can
be small; in our experiments, it is set to 8.

To reduce the noise resulting from the stochasti-
cally chosen alternative utterance sets, we also per-
form this alternative-set sampling n times and aver-
age the resulting probabilities in the final L2 output.
We again choose n = 8 as a satisfactory compro-
mise between effectiveness and computation time.

Blending with a speaker-based agent A second
pragmatic listener L1 can be formed in a similar
way, analogous to l1 in (5):

L1(t | u,C;φ) =
S0(u | t, C;φ)∑
t′ S0(u | t′, C;φ)

(8)

We expect L1 to be less accurate than L0 or L2,
because it is performing a listener task using only the
outputs of a model trained for a speaker task. How-
ever, this difference in training objective can also
give the model strengths that complement those of
the two listener-based agents. One might also ex-
pect a realistic model of human language interpreta-
tion to lie somewhere between the “reflex” interpre-
tations of the neural base listener and the “reasoned”
interpretations of one of the pragmatic models. This
has an intuitive justification in people’s uncertainty
about whether their interlocutors are speaking prag-
matically: “should I read more into that statement,
or take it at face value?” We therefore also eval-
uate models defined as a weighted average of L0

5An alternative would be to enforce uniqueness within the
alternative set, keeping it a true set as in the basic RSA formula-
tion; this could be done with rejection sampling or beam search
for the highest-scoring speaker utterances. We found that doing
so with rejection sampling hurt model performance somewhat,
so we did not pursue the more complex beam search approach.



and each of L1 and L2, as well as an “ensemble”
model that combines all of these agents. Specif-
ically, we consider the following blends of neural
base models and pragmatic models, with Li abbre-
viating Li(t | u,C; θ, φ) for convenience:

La ∝ L0
βa · L1−βa

1 (9)

Lb ∝ L0
βb · L1−βb

2 (10)

Le ∝ La
γ · L1−γ

b (11)

The hyperparameters in the exponents allow tuning
the blend of each pair of models—e.g., overriding
the neural model with the pragmatic reasoning in
Lb. The value of the weights βa, βb, and γ can be
any real number; however, we find that good val-
ues of these weights lie in the range [−1, 1]. As an
example, setting βb = 0 makes the blended model
Lb equivalent to the pragmatic model L2; βb = 1
ignores the pragmatic reasoning and uses the base
model L0’s outputs; and βb = −1 “subtracts” the
base model from the pragmatic model (in log prob-
ability space) to yield a “hyperpragmatic” model.

4.4 Training
We split our corpus into approximately equal
train/dev/test sets (15,665 train trials, 15,670 dev,
15,659 test), ensuring that trials from the same dyad
are present in only one split. We preprocess the
data by 1) lowercasing; 2) tokenizing by splitting
off punctuation as well as the endings -er, -est, and
-ish;6 and 3) replacing tokens that appear once or
not at all in the training split7 with <unk>. We also
remove listener utterances and concatenate speaker
utterances on the same context. We leave handling
of interactive dialogue to future work (Section 8).

We use ADADELTA (Zeiler, 2012) and Adam
(Kingma and Ba, 2014), adaptive variants of
stochastic gradient descent (SGD), to train listener
and speaker models. The choice of optimization al-
gorithm and learning rate for each model were tuned
with grid search on a held-out tuning set consist-
ing of 3,500 contexts.8 We also use a fine-grained

6We only apply this heuristic ending segmentation for the
listener; the speaker is trained to produce words with these end-
ings unsegmented, to avoid segmentation inconsistencies when
passing speaker samples as alternative utterances to the listener.

71.13% of training tokens, 1.99% of dev/test.
8ForL0: ADADELTA, learning rate η = 0.2; for S0: Adam,

learning rate α = 0.004.

grid search on this tuning set to determine the values
of the pragmatic reasoning parameters α, β, and γ.
In our final ensemble Le, we use α = 0.544, base
weights βa = 0.492 and βb = −0.15, and a final
blending weight γ = 0.491. It is noteworthy that the
optimal value of βb from grid search is negative. The
effect of this is to amplify the difference between
L0 and L2: the listener-based pragmatic model, evi-
dently, is not quite pragmatic enough.

5 Model results

5.1 Speaker behavior

To compare human behavior with the behavior of
our embedded speaker models, we performed the
same behavorial analysis done in Section 3.2. Re-
sults from this analysis are included alongside the
human results in Table 2. Our pragmatic speaker
model S1 did not differ qualitatively from our base
speaker S0 on any of the metrics, so we only sum-
marize results for humans and the pragmatic model.

Words and characters We found human speak-
ers to be more verbose when colors were closer
together, in both number of words and number of
characters. As Table 2 shows, our S1 agent shows
the same increase in utterance length in the split
(t = 18.07) and close (t = 35.77) contexts com-
pared to the far contexts.

Comparatives and superlatives Humans used
more comparatives and superlatives when colors
were closer together; however, comparatives were
preferred in the split contexts, superlatives in the
close contexts. Our pragmatic speaker shows the
first of these two patterns, producing more compar-
atives (z = 14.45) and superlatives (z = 16) in
the split or close conditions than in the baseline far
condition. It does not, however, capture the peak in
comparative use in the split condition. This suggests
that our model is simulating the human strategy at
some level, but that more subtle patterns require fur-
ther attention.

Negations Humans used more negations when the
colors were closer together. Our pragmatic speaker’s
use of negation shows the same relationship to the
context (z = 8.55 and z = 16.61, respectively).



model accuracy (%) perplexity

L0 83.30 1.73
L1 = L(S0) 80.51 1.59
L2 = L(S(L0)) 83.95 1.51
La = L0 · L1 84.72 1.47
Lb = L0 · L2 83.98 1.50
Le = La · Lb 84.84 1.45
human 90.40

L0 85.08 1.62
Le 86.98 1.39
human 91.08

Table 3: Accuracy and perplexity of the base and prag-
matic listeners and various blends (weighted averages,
denoted A ·B). Top: dev set; bottom: test set.

WordNet specificity Humans used more “high
specificity” words (by WordNet hypernymy depth)
when the colors were closer together. Our pragmatic
speaker showed a similar effect (z = 2.65, p =
0.008 and z = 2.1, p = 0.036, respectively).

5.2 Listener accuracy

Table 3 shows the accuracy and perplexity of the
base listener L0, the pragmatic listeners L1 and L2,
and the blended models La, Lb, and Le at resolving
the human-written color references. Accuracy dif-
ferences are significant9 for all pairs except L2/Lb
and La/Le. As we expected, the speaker-based L1

alone performs the worst of all the models. How-
ever, blending it with L0 doesn’t drag down L0’s
performance but rather produces a considerable im-
provement compared to both of the original mod-
els, consistent with our expectation that the listener-
based and speaker-based models have complemen-
tary strengths.

We observe that L2 significantly outperforms its
own base model L0, showing that pragmatic rea-
soning on its own contributes positively. Blending
the pragmatic models with the base listener also im-
proves over both individually, although not signifi-
cantly in the case of Lb over L2. Finally, the most
effective listener combines both pragmatic models
with the base listener. Plotting the number of ex-

9p < 0.012, approximate permutation test (Padó, 2006) with
Bonferroni correction, 10,000 samples.
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Figure 4: Human and model reference game performance
(top) and fraction of examples improved and declined
from L0 to Le (bottom) on the dev set, by condition.

amples changed by condition on the dev set (Fig-
ure 4) reveals that the primary gain from including
the pragmatic models is in the close and split condi-
tions, when the model has to distinguish highly sim-
ilar colors and often cannot rely only on basic color
terms. On the test set, the final ensemble improves
significantly10 over the base model on both metrics.

6 Model analysis

Examining the full probability tables for various dev
set examples offers insight into the value of each
model in isolation and how they complement each
other when blended together. In particular, we see
that the listener-based (L2) and speaker-based (L1)
pragmatic listeners each overcome a different kind
of “blind spot” in the neural base listener’s under-
standing ability.

First, we inspect examples in which L2 is supe-
rior to L0. In most of these examples, the alternative
utterances sampled from S0 for one of the referents
i fail to identify their intended referent to L0. The
pragmatic listener interprets this to mean that refer-
ent i is inherently difficult to refer to, and it compen-
sates by increasing referent i’s probability.

This is beneficial when i is the true target. The

10p < 0.001, approximate permutation test, 10,000 samples.



L0 xxxx xxxx xxxx

blue 9 91 <1

true blue 11 89 <1
light blue <1 >99 <1
brightest <1 >99 <1
bright blue <1 >99 <1
red <1 1 99
purple <1 2 98

S1 xxxx xxxx xxxx

blue 41 19 <1

true blue 47 19 <1
light blue 5 20 <1
brightest <1 20 <1
bright blue 2 20 <1
red 1 2 50
purple 5 1 50

L2 xxxx xxxx xxxx

blue 68 32 <1

S0 5.71 7.63 0.01
L1 43 57 <1

La 50 50 <1
Lb 68 32 <1
Le 59 41 <1

L0 xxxx xxxx xxxx

drab green not the bluer one <1 <1 >99

gray 96 4 <1
blue dull green 24 76 <1
blue <1 >99 <1
bluish <1 >99 <1
green 4 1 95
yellow <1 <1 >99

S1 xxxx xxxx xxxx

drab green not the bluer one 1 <1 34

gray 58 5 <1
blue dull green 27 28 <1
blue 2 32 <1
bluish 1 32 <1
green 10 3 33
yellow <1 <1 34

L2 xxxx xxxx xxxx

drab green not the bluer one 5 <1 95

S0 (×10−9) 5.85 0.38 <0.01
L1 94 6 <1

La 92 6 2
Lb 8 1 91
Le 63 6 32

Figure 5: Conditional probabilities (%) of all agents for two dev set examples. The target color is boxed, and the
human utterances (blue, drab green not the bluer one) are bolded. Boxed cells for alternative utterances indicate the
intended target; largest probabilities are in bold. S0 probabilities (italics) are normalized across all utterances. Sample
sizes are reduced to save space; here, m = 2 and n = 1 (see Section 4.3).

left column of Figure 5 shows one such example: a
context consisting of a somewhat prototypical blue,
a bright cyan, and a purple-tinged brown, with the
utterance blue. The base listener interprets this as
referring to the cyan with 91% probability, perhaps
due to the extreme saturation of the cyan maximally
activating certain parts of the neural network. How-
ever, when the pragmatic model takes samples from
S0 to probe the space of alternative utterances, it
becomes apparent that indicating the more ordinary
blue to the listener is difficult: for the utterances
chosen by S0 intending this referent (true blue, light
blue), the listener also chooses the cyan with >89%

confidence.
Pragmatic reasoning overcomes this difficulty.

Only two utterances in the alternative set (the ac-
tual utterance blue and the sampled alternative true
blue) result in any appreciable probability mass on
the true target, so the pragmatic listener’s model of
the speaker predicts that the speaker would usually
choose one of these two utterances for the prototyp-
ical blue. However, if the target were the cyan, the
speaker would have many good options. Therefore,
the fact that the speaker chose blue is interpreted as
evidence for the true target. This mirrors the back-
and-forth reasoning behind the definition of conver-
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three colors from the right column of Figure 5.

sational implicature (Grice, 1975).
This reasoning can be harmful when i is one of

the distractors: the pragmatic listener is then in dan-
ger of overweighting the distractor and incorrectly
choosing it. This is a likely reason for the small per-
formance difference between L0 and L2. Still, the
fact that L2 is more accurate overall, in addition to
the negative value of βb discovered in grid search,
suggests that the pragmatic reasoning provides value
on its own.

However, the final performance improves greatly
when we incorporate both listener-based and
speaker-based agents. To explain this improvement,
we examine examples in which both listener-based
agents L0 and L2 give the wrong answer but are
overridden by the speaker-based L1 to produce the
correct referent. The discrepancy between the two
kinds of models in many of these examples can be
explained by the fact that the speaker takes the con-
text as input, while the listener does not. The listener
is thus asked to predict a region of color space from
the utterance a priori, while the speaker can take into
account relationships between the context colors in
scoring utterances.

The right column of Figure 5 shows an example of
this. The context contains a grayish green (the tar-
get), a grayish blue-green (“distractor 1”), and a yel-
lowish green (“distractor 2”). The utterance from the
human speaker is drab green not the bluer one, pre-
sumably intending drab to exclude the brighter yel-
lowish green. However, the L0 listener must choose
a region of color space to predict based on the utter-

ance alone, without seeing the other context colors.
Figure 6 shows a visualization of the listener’s

prediction. The figure is a heatmap of the proba-
bility density output by the listener, as a function of
hue and saturation in HSV (hue, saturation, value)
space. We use HSV here, rather than the RGB
coordinate system used by the model, because the
semantic constraints are more clearly expressed in
terms of hue and saturation components: the color
should be drab (low-saturation) and green (near 120
on the hue spectrum) but not blue (near 240 in hue).
The utterance does not constrain the value (roughly,
brightness–darkness) component, so we sum over
this component to summarize the 3-dimensional dis-
tribution in 2 dimensions.

The L0 model correctly interprets all of these
constraints: it gives higher probability to low-
saturation colors and greens, while avoiding bluer
colors. However, the result is a probability distri-
bution nearly centered at distractor 2, the brighter
green. In fact, if we were not comparing it to the
other colors in the context, distractor 2 would be a
very good example of a drab green that is not bluish.

The speaker S0, however, produces utterances
conditioned on the context; it has successfully
learned that drab would be more likely as a descrip-
tion of the grayish green than as a description of the
yellowish one in this context. The speaker-based
listener L1 therefore predicts the true target, with
greater confidence than L0 or L2. This prediction
results in the blends La and Le preferring the true
target, allowing the speaker’s perspective to override
the listener’s.

7 Related work

Prior work combining machine learning with prob-
abilistic pragmatic reasoning models has largely fo-
cused on the speaker side, i.e., generation. Golland
et al. (2010) develop a pragmatic speaker model,
S(L0), that reasons about log-linear listeners trained
on human utterances containing spatial references
in virtual-world environments. Tellex et al. (2014)
apply a similar technique, under the name inverse
semantics, to create a robot that can informatively
ask humans for assistance in accomplishing tasks.
Meo et al. (2014) evaluate a model of color descrip-
tion generation (McMahan and Stone, 2015) on the



color reference data of Baumgaertner et al. (2012)
by creating an L(S0) listener. Monroe and Potts
(2015) implement an end-to-end trained S(L(S0))
model for referring expression generation in a ref-
erence game task. Many of these models require
enumerating the set of possible utterances for each
context, which is infeasible when utterances are as
varied as those in our dataset.

The closest work to ours that we are aware of is
that of Andreas and Klein (2016), who also combine
neural speaker and listener models in a reference
game setting. They propose a pragmatic speaker,
S(L0), sampling from a neural S0 model to limit
the search space and regularize the model toward
human-like utterances. We show these techniques
help in listener (understanding) tasks as well. Ap-
proaching pragmatics from the listener side requires
either inverting the pragmatic reasoning (i.e., deriv-
ing a listener from a speaker), or adding another
step of recursive reasoning, yielding a two-level de-
rived pragmatic model L(S(L0)). We show both ap-
proaches contribute to an effective listener.

8 Conclusion

In this paper, we present a newly-collected corpus
of color descriptions from reference games, and we
show that a pragmatic reasoning agent incorporating
neural listener and speaker models interprets color
descriptions in context better than the listener alone.

The separation of referent and utterance represen-
tation in our base speaker and listener models in
principle allows easy substitution of referents other
than colors (for example, images), although the per-
formance of the listener agents could be limited by
the representation of utterance semantics as a Gaus-
sian distribution in referent representation space.
Our pragmatic agents also rely on the ability to enu-
merate the set of possible referents. Avoiding this
enumeration, as would be necessary in tasks with in-
tractably large referent spaces, is a challenging the-
oretical problem for RSA-like models.

Another important next step is to pursue multi-
turn dialogue. As noted in Section 2, both par-
ticipants in our reference game task could use the
chat window at any point, and more than half of
dyads had at least one two-way interaction. Dia-
logue agents are more challenging to model than

isolated speakers and listeners, requiring long-term
planning, remembering previous utterances, and (for
the listener) deciding when to ask for clarification or
commit to a referent (Lewis, 1979; Brown and Yule,
1983; Clark, 1996; Roberts, 1996). We release our
dataset11 with the expectation that others may find
interest in these challenges as well.
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