
Improved Models of Distortion Cost for Statistical Machine Translation

Spence Green, Michel Galley, and Christopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305

{spenceg,mgalley,manning}@stanford.edu

Abstract

The distortion cost function used in Moses-
style machine translation systems has two
flaws. First, it does not estimate the future
cost of known required moves, thus increas-
ing search errors. Second, all distortion is
penalized linearly, even when appropriate re-
orderings are performed. Because the cost
function does not effectively constrain search,
translation quality decreases at higher dis-
tortion limits, which are often needed when
translating between languages of different ty-
pologies such as Arabic and English. To ad-
dress these problems, we introduce a method
for estimating future linear distortion cost, and
a new discriminative distortion model that pre-
dicts word movement during translation. In
combination, these extensions give a statis-
tically significant improvement over a base-
line distortion parameterization. When we
triple the distortion limit, our model achieves
a +2.32 BLEU average gain over Moses.

1 Introduction

It is well-known that translation performance in
Moses-style (Koehn et al., 2007) machine transla-
tion (MT) systems deteriorates when high distortion
is allowed. The linear distortion cost model used in
these systems is partly at fault. It includes no es-
timate of future distortion cost, thereby increasing
the risk of search errors. Linear distortion also pe-
nalizes all re-orderings equally, even when appro-
priate re-orderings are performed. Because linear
distortion, which is a soft constraint, does not effec-
tively constrain search, a distortion limit is imposed
on the translation model. But hard constraints are
ultimately undesirable since they prune the search
space. For languages with very different word or-
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Figure 1: The oracle translation for this Arabic VOS sen-
tence would be pruned during search using typical dis-
tortion parameters. The Arabic phrases read right-to-left,
but we have ordered the sentence from left-to-right in or-
der to clearly illustrate the re-ordering problem.

ders in which significant re-ordering is required, the
distortion limit can eliminate the oracle, or “best,”
translation prior to search, placing an artificial limit
on translation performance (Auli et al., 2009).

To illustrate this problem, consider the Arabic-
English example in Figure 1. Assuming that the En-
glish translation is constructed left-to-right, the verb
�CAJ shaaraka must be translated after the noun
phrase (NP) subject. If P phrases are used to trans-
late the Arabic source s to the English target t, then
the (unsigned) linear distortion is given by

D(s, t) = p1
first +

P∑
i=2

∣∣pi−1
last + 1− pifirst

∣∣ (1)

where pfirst and plast are the first and last source
word indices, respectively, in phrase i. By this for-
mula, the cost of the step to translate the NP sub-
ject before the verb is 9, which is high relative to
the monotone translation path. Moreover, a con-
ventional distortion limit (e.g., 5) would likely force
translation of the verb prior to the full subject un-
less the exact subject phrase existed in the phrase
table.1 Therefore, the correct re-ordering is either
improbable or impossible, depending on the choice
of distortion parameters.

1Our constrained NIST MT09 Arabic-English system,
which placed second, used a limit of 5 (Galley et al., 2009).



The objective of this work is to develop a dis-
tortion cost model that allows the distortion limit
to be raised significantly without a catastrophic de-
crease in performance. We first describe an admis-
sible future cost heuristic for linear distortion that
restores baseline performance at high distortion lim-
its. Then we add a feature-rich discriminative dis-
tortion model that captures e.g. the tendency of Ara-
bic verbs to move right during translation to English.
Model parameters are learned from automatic bitext
alignments. Together these two extensions allow
us to triple the distortion limit in our NIST MT09
Arabic-English system while maintaining a statisti-
cally significant improvement over the low distor-
tion baseline. At the high distortion limit, we also
show a +2.32 BLEU average gain over Moses with
an equivalent distortion parameterization.

2 Background

2.1 Search in Phrase-based MT

Given a J token source input string f =
{
fJi
}

,
we seek the most probable I token translation e ={
eIi
}

. The Moses phrase-based decoder models the
posterior probability pλ

(
eI1|fJ1

)
directly according

to a log-linear model (Och and Ney, 2004), which
gives the decision rule

ê = arg max
I,eI

1

{
M∑
m=1

λmhm
(
eI1, f

J
1

)}
where hm

(
eI1, f

J
1

)
areM arbitrary feature functions

over sentence pairs, and λm are feature weights set
using a discriminative training method like MERT
(Och, 2003). This search is made tractable by the
use of beams (Koehn et al., 2003). Hypotheses are
pruned from the beams according the sum of the cur-
rent model score and a future cost estimate for the
uncovered source words. Since the number of re-
ordering possibilities for those words is very large—
in theory it is exponential—an inadmissible heuris-
tic is typically used to estimate future cost. The
baseline distortion cost model is a weighted feature
in this framework and affects beam pruning only
through the current model score.

When we say linear distortion, we refer to the
“simple distortion model” of Koehn et al. (2003) that
is shown in Equation (1) and is converted to a cost
by multiplying by −1. When extended to phrases,

the key property of this model is that monotone de-
coding gives the least costly translation path. Re-
orderings internal to extracted phrases are not pe-
nalized. In practice, we commonly see n-best lists
of hypotheses with linear distortion costs equal to
zero. More sophisticated local phrase re-ordering
models have been proposed (Tillmann, 2004; Zens
and Ney, 2006; Koehn et al., 2007; Galley and Man-
ning, 2008), but these are typically used in addition
to linear distortion.

2.2 Arabic Linguistic Essentials

In this paper we use Arabic-English as a case study
since we possess a strong experimental baseline.
But we expect that the technique presented could
be even more effective for high distortion language
pairs such as Chinese-English and Hindi-English.
Since the analysis that follows is framed in terms of
Arabic, we point out several linguistic features that
motivate our approach. From the perspective of the
three criteria used to specify basic word order typol-
ogy (Greenberg, 1966), Arabic is somewhat unusual
in its combination of features: it has prepositions
(not postpositions), adjectives post-modify nouns,
and the basic word order is VSO, but SVO and VOS
configurations also appear.

The implications for translation to English are:
(1) prepositions remain in place, (2) NPs are in-
verted, and most importantly, (3) basic syntac-
tic constituents must often be identified and pre-
cisely re-ordered. The VOS configuration is espe-
cially challenging for Arabic-English MT. It usu-
ally appears when the direct object is short—e.g.,
pronominal—and the subject is long. For example,
translation of the VOS sentence in Figure 1 requires
both a high distortion limit to accommodate the sub-
ject movement and tight restrictions on the move-
ment of the PP. The particularity of these require-
ments in Arabic and other languages, and the dif-
ficulty of modeling them in phrase-based systems,
has inspired significant work in source language pre-
processing (Collins et al., 2005; Habash and Sadat,
2006; Habash, 2007).

Finally, we observe that target language models
cannot always select appropriate translations when
basic word order transformation is required. By
not modeling source side features like agreement—
which, in Arabic, appears between both verb and
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0 3 3 1 4
1 5 2 0 2
2 7 2 0 2
3 0 −7 4 −3
4 0 0 3 3

8 8

Figure 2: Translation sequence in which the distortion limit is reached and the decoder is forced to cover the first
skipped word. Future cost estimation penalizes the two monotone steps, yet total distortion cost remains unchanged.

subject, and adjective and noun—baseline phrase-
based systems rely on the language model to spec-
ify an appropriate target word order (Avramidis and
Koehn, 2008). Returning to Figure 1, we could have
an alternate hypothesis They waited for the followers
of the Christian and Islamic sects, which is accept-
able English and has low distortion, but is semanti-
cally inconsistent with the Arabic.

3 The Cost Model

In this section we describe the new distortion cost
model, which has four independent components.

3.1 Future Cost Estimation

Despite its lack of sophistication, linear distortion
is a surprisingly effective baseline cost model for
phrase-based MT systems. It can be computed in
constant time, gives non-decreasing values that are
good for search, and does not require an ancillary
feature to adjust for the number of components in
the calculation (e.g., language model scores are ad-
justed by the word penalty). Moreover, when a large
training bitext is used, many local re-orderings are
captured in the phrase table, so the decoder can often
realize competitive performance by finding a best set
of phrases with low distortion. But linear distortion
is not the only unlexicalized alternative: we can use
any function of the jump width. Table 1 shows de-
velopment set (MT04) performance for polynomials
of degree 1.5 and degree 2. The linear model is more
effective than the higher order functions, especially
at a higher distortion limit.

Nevertheless, Table 1 shows an unacceptable de-
crease in translation performance at the high distor-
tion limit for all three polynomial models. In Moses,
the reason is due in part to a dramatic underestima-
tion of future re-ordering cost. Consider Figure 2
in which a distortion limit of 4 is used. The first

dlimit = 5 dlimit = 15
LINEAR 51.65 49.35
DEGREE 1.5 51.69 (+0.04) 48.73 (−0.62)
DEGREE 2 51.55 (−0.10) 48.40 (−0.95)

Table 1: BLEU-4 [%] dev set (MT04) scores (uncased)
for several polynomial distortion models. Higher degree
polynomial distortion models underperform at a high dis-
tortion limit (15).

word is skipped, and translation proceeds monoton-
ically until the distortion limit forces the decoder to
cover the first word. At low distortion limits, sin-
gle phrases often saturate the distortion window, so
underestimation is not problematic. But at high dis-
tortion limits, the decoder can skip many source po-
sitions at low cost before the search is constrained
by the distortion limit. Words and phrases sprinkled
carelessly throughout the hypotheses are evidence of
errant search directions that have not been appropri-
ately penalized by the distortion cost model.

To constrain search, we add an admissible future
cost estimate to the linear model.2 By definition, the
model has a least cost translation path: monotone.
Therefore, we can add to the baseline calculation
D(s, t) the cost of skipping back to the first uncov-
ered source word and then translating the remaining
positions monotonically. It can be verified by induc-
tion on |C| that this is an admissible heuristic.

Formally, let j represent the first uncovered index
in the source coverage set C. Let Cj represent the
subset of C starting from position j. Finally, let j′

represent the leftmost position in phrase p applied at
translation step k. Then the future cost estimate Fk

2Moore and Quirk (2007) propose an alternate future cost
formulation. However, their model seems prone to the same
deterioration in performance shown in Table 1. They observed
decreased translation quality above a distortion limit of 5.



is

Fk =
{ |Cj |+ (j′ + |p|+ 1− j) if j′ > j

0 otherwise

For k > 0, we add the difference between the
current future cost estimate and the previous cost
estimate ∆cost = Fk − Fk−1 to the linear penalty
D(s, t).3 Table 2 shows that, as expected, the dif-
ference between the baseline and augmented models
is statistically insignificant at a low distortion limit.
However, at a very high distortion limit, the future
cost estimate approximately restores baseline per-
formance. While we still need a distortion limit for
computational efficiency, it is no longer required to
improve translation quality.

3.2 A Discriminative Distortion Model
So far, we have developed a search heuristic func-
tion that gives us a greater ability to control search
at high distortion limits. Now we need a cost model
that is sensitive to the behavior of certain words dur-
ing translation. The model must accommodate a
potentially large number of overlapping source-side
features defined over the (possibly whole) transla-
tion sequence. Since we intend to train on auto-
matic word alignments, data sparsity and noise are
also risks. These requirements motivate two choices.
First, we use a discriminative log-linear framework
that predicts one of the nine discretized distortion
classes in Figure 3. Let dj,j′ indicate the class cor-
responding to a jump from source word j to j′ com-
puted as (j + 1 − j′). The discriminative distortion
classifier is then

pλ
(
dj,j′ |fJ1 , j, j′

)
=

exp
[∑M

m=1 λmhm
(
fJ1 , j, j

′, dj,j′
)]

∑
di

j,j′
exp

[∑M
m=1 λmhm

(
fJ1 , j, j

′, dij,j′
)]

where λm are feature weights for the
hm(fJ1 , j, j

′, dij,j′) arbitrary feature functions.
This log conditional objective function is convex
and can be optimized with e.g. a gradient-based
procedure.

3One implementation choice is to estimate future cost to
an artificial end-of-sentence token. Here the decoder incurs a
penalty for covering the last word prior to completing a hypoth-
esis. Although this implementation is inconsistent with Moses
linear distortion, we find that it gives a small improvement.

dlimit = 5 dlimit = 15
BASELINE 51.65 49.35
FUTURECOST 51.73 51.65

Table 2: BLEU-4 [%] dev set scores (uncased) for the
linear distortion with future cost estimation.
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Figure 3: Distortion in Arabic-English translation is
largely monotonic, but with noticeable right movement
as verbs move around arguments and nouns around mod-
ifiers. The ability to predict movement decreases with the
jump size, hence the increasing bin boundaries.

Second, we expect that many words will not be
useful for predicting translation order.4 In a large
training bitext, it can be extremely tedious to iden-
tify informative words and word classes analytically.
Our final decision is then to optimize the parame-
ter weights λm using L1 regularization (Andrew and
Gao, 2007), a technique that can learn good models
in the presence of many irrelevant features.5 The
L1 regularizer saves us from filtering the training
data (e.g., by discarding all words that appear less
than an empirically-specified threshold), and pro-
vides sparse feature vectors that can be analyzed
separately during feature engineering.

We train two independent distortion models. For
a transition from source word j to j′, we learn an
outbound model in which features are defined with
respect to word j. We have a corresponding inbound

4To train the models, we inverted and sorted the intersection
alignments in the bitext. In our baseline system, we observed
no decrease in performance between intersection and e.g. grow-
diag. However we do expect that our method could be extended
to multi-word alignments.

5We also add a Gaussian prior p (λ) v N (0, 1) to the ob-
jective (Chen and Rosenfeld, 1999). Using both L1 and L2 reg-
ularization is mathematically odd, but often helps in practice.
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(a) �CAJ / VBD shaaraka (“he engaged”)
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(b) ¨k§r�¯� / JJ al-aamriikii (“American”)

Figure 4: Selected discriminative cost curves (log scale) over three quintiles of the relative position feature. We
condition on the word, POS, and length features. The classes correspond to those shown in Figure 3. (4a) The VSO
basic word order is evident: early in the sentence, there is a strong tendency towards right movement around arguments
after covering the verb. However, right movement is increasingly penalized at the end of the sentence. (4b) Adjectives
post-modify nouns, so the model learns high inbound probabilities for jumps from positions earlier in the sentence.
However, the curve is bi-modal reflecting right inbound moves from other adjectives in NPs with multiple modifiers.

model trained on features with respect to j′. At
training time, we also add sentence beginning and
ending delimiters such that inbound probabilities are
learned for words that begin sentences (e.g., nouns)
and outbound probabilities are available for tokens
that end sentences (e.g., punctuation).

As a baseline, we use the following binary
features: words, part-of-speech (POS) tags, rela-
tive source sentence position, and source sentence
length. Relative source sentence position is dis-
cretized into five bins, one for each quintile of the
sentence. Source sentence length is divided into four
bins with bounds set empirically such that training
examples are distributed evenly. To simplify the de-
coder integration for this evaluation, we have cho-
sen context-free features, but the framework permits
many other promising possibilities such as agree-
ment morphology and POS tag chains.

Our models reveal principled cost curves for spe-
cific words (Figure 4). However, monotonic decod-
ing no longer gives the least costly translation path,
thus complicating future cost estimation. We would
need to evaluate all possible re-orderings within the
k-word distortion window. For an input sentence of

length n, Zens (2008) shows that the number of re-
ordering possibilities rn is

rn =
{
kn−k · k! n > k

n! n ≤ k
which has an asymptotic complexity Θ(kn). In-
stead of using an inadmissible heuristic as is done
in beam pruning, we take a shortcut: we include
the linear future cost model as a separate feature.
Then we add the two discriminative distortion fea-
tures, which calculate the inbound and outbound log
probabilities of the word alignments in a hypothe-
sis. Since hypotheses may have different numbers
of alignments, we also include an alignment penalty
that adjusts the discriminative distortion scores for
unaligned source words. The implementation and
behavior of the alignment penalty is analogous to
that of the word penalty. In total, the new distortion
cost model has four independent MT features.

4 MT Evaluation

4.1 Experimental Setup
Our MT system is Phrasal (Cer et al., 2010),
which is a Java re-implementation of the Moses



dlimit = 5 MT03 MT05 MT06 MT08 Avg
MOSESLINEAR 52.31 52.67 42.97 41.29
COUNTS 52.05 52.32 42.28 40.56
FUTURE 52.26 (−0.05) 52.53 (−0.14) 43.04 (+0.07) 41.01 (−0.28) −0.09
DISCRIM+FUTURE 52.68* (+0.37) 53.13* (+0.46) 43.75** (+0.78) 41.82** (+0.53) +0.59

Table 3: BLEU-4 [%] scores (uncased) at the distortion limit (5) used in our baseline NIST MT09 Arabic-English
system (Galley et al., 2009). Avg is a weighted average of the performance deltas. The stars for positive results
indicate statistical significance compared to the MOSESLINEAR baseline (*: significance at p ≤ 0.05; **: significance
at p ≤ 0.01)

dlimit = 15 MT03 MT05 MT06 MT08 Avg
MOSESLINEAR 51.04 51.35 41.01 38.83
COUNTS 49.92 49.73 39.44 37.65
LEX 50.96 51.21 41.87 39.38
FUTURE 52.28** (+1.24) 52.45** (+1.10) 42.78** (+1.77) 41.01** (+2.18) +1.66
DISCRIM+FUTURE 52.36** (+1.32) 53.05** (+1.70) 43.65** (+2.64) 41.68** (+2.85) +2.32
num. sentences 663 1056 1797 1360 4876

Table 4: BLEU-4 [%] scores (uncased) at a very high distortion limit (15). DISCRIM+FUTURE also achieves a
statistically significant gain over the MOSESLINEAR dlimit=5 baseline for MT05 (p ≤ 0.06), MT06 (p ≤ 0.01), and
MT08 (p ≤ 0.01).

decoder with the same standard features: four
translation features (phrase-based translation prob-
abilities and lexically-weighted probabilities), word
penalty, phrase penalty, linear distortion, and lan-
guage model score. We disable baseline linear dis-
tortion when evaluating the other distortion cost
models. To tune parameters, we run MERT with the
Downhill Simplex algorithm on the MT04 dataset.
For all models, we use 20 random starting points and
generate 300-best lists.

We use the NIST MT09 constrained track training
data, but remove the UN and comparable data.6 The
reduced training bitext has 181k aligned sentences
with 6.20M English and 5.73M Arabic tokens. We
create word alignments using the Berkeley Aligner
(Liang et al., 2006) and take the intersection of the
alignments in both directions. Phrase pairs with a
maximum target or source length of 7 tokens are ex-
tracted using the method of Och and Ney (2004).

We build a 5-gram language model from the
Xinhua and AFP sections of the Gigaword corpus
(LDC2007T40), in addition to all of the target side
training data permissible in the NIST MT09 con-
strained competition. We manually remove Giga-

6Removal of the UN data does not affect the baseline at
a distortion limit of 5, and lowers the higher distortion base-
line by −1.40 BLEU. The NIST MT09 data is available at
http://www.itl.nist.gov/iad/mig/tests/mt/2009/.

word documents that were released during periods
that overlapped with the development and test sets.
The language model is smoothed with the modified
Kneser-Ney algorithm, retaining only trigrams, 4-
grams, and 5-grams that occurred two, three, and
three times, respectively, in the training data.

We remove from the test sets source tokens not
present in the phrase tables. For the discriminative
distortion models, we tag the pre-processed input us-
ing the log-linear POS tagger of Toutanova et al.
(2003). After decoding, we strip any punctuation
that appears at the beginning of a translation.

4.2 Results

In Table 3 we report uncased BLEU-4 (Papineni et
al., 2001) scores at the distortion limit (5) of our
most competitive baseline Arabic-English system.
MOSESLINEAR uses the linear distortion model
present in Moses. COUNTS is a separate baseline
with a discrete cost model that uses unlexicalized
maximum likelihood estimates for the same classes
present in the discriminative model. To show the
effect of the components in our combined distor-
tion model, we give separate results for linear dis-
tortion with future cost estimation (FUTURE) and for
the combined discriminative distortion model (DIS-
CRIM+FUTURE) with all four features: linear distor-
tion with future cost, inbound and outbound proba-
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Reference dutch national jaap de hoop scheffer today, monday, took up his responsibilities...

MosesLinear-d5 over dutchman jaap de hoop today , monday , in the post of...

MosesLinear-d15 dutch assumed his duties in the post of nato secretary general jaap de hoop today , monday...

Discrim+Future the dutchman jaap de hoop today , monday , assumed his duties...
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Figure 5: Verb movement around both the subject and temporal NPs is impossible at a distortion limit of 5
(MOSESLINEAR-d5). The baseline system at a high distortion limit mangles the translation (MOSESLINEAR-d15).
DISCRIM+FUTURE (dlimit=15) correctly guides the search. The Arabic source is written right-to-left.

bilities, and the alignment penalty.
The main objective of this paper is to improve

performance at very high distortion limits. Table 4
shows performance at a distortion limit of 15. To
the set of baselines we add LEX, which is the lex-
icalized re-ordering model of Galley and Manning
(2008). This model was shown to outperform other
lexicalized re-ordering models in common use.

Statistical significance was computed with the
approximate randomization test of Riezler and
Maxwell (2005), which is less sensitive to Type I
errors than bootstrap re-sampling (Koehn, 2004).

5 Discussion

The new distortion cost model allows us to triple the
distortion limit while maintaining a statistically sig-
nificant improvement over the MOSESLINEAR base-
line at the lower distortion limit for three of the
four test sets. More importantly, we can raise the
distortion limit in the DISCRIM+FUTURE configu-
ration at minimal cost: a statistically insignificant
−0.2 BLEU performance decrease on average. We
also see a considerable improvement over both the
MOSESLINEAR and LEX baselines at the high dis-
tortion limit (Figure 5). As expected, future cost es-
timation alone does not increase performance at the
lower distortion limit.

We also observe that the effect of conditioning on
evidence is significant: the COUNTS model is cate-
gorically worse than all other models. To understand
why, we randomly sampled 500 sentences from the
excluded UN data and computed the log-likelihoods
of the alignments according to the different models.7

In this test, COUNTS is clearly better with a score of
7We approximated linear distortion using a Laplacian dis-

tribution with estimated parameters µ̂ = 0.51 and b̂ = 1.76
(Goodman, 2004).

−23388 versus, for example, the inbound model at
−38244. The explanation is due in part to optimiza-
tion. The two discriminative models often give very
low probabilities for the outermost classes. Noise
in the alignments along with the few cases of long-
distance movement are penalized heavily. For Ara-
bic, this property works in our favor as we do not
want extreme movement (as we might with Chinese
or German). But COUNTS applies a uniform penalty
for all movement that exceeds the outermost class
boundaries, making it more prone to search errors
than even linear distortion despite its favorable per-
formance when tested in isolation.

Finally, we note that previous attempts to improve
re-ordering during search (particularly long-distance
re-ordering (Chiang, 2007)) have delivered remark-
able gains for languages like Chinese, but improve-
ments for Arabic have been less exceptional. By
relaxing the distortion limit, we have left room for
more sophisticated re-ordering models in conven-
tional phrase-based decoders while maintaining a
significant performance advantage over hierarchical
systems (Marton and Resnik, 2008).

6 Prior Work

There is an expansive literature on re-ordering in
statistical MT. We first review the development of
re-ordering constraints, then describe previous cost
models for those constraints in beam search de-
coders. Because we allow re-ordering during search,
we omit discussion of the many different methods
for preprocessing the source input prior to mono-
tonic translation. Likewise, we do not recite prior
work in re-ranking translations.

Re-ordering constraints were first introduced by
Berger et al. (1996) in the context of the IBM trans-
lation models. The IBM constraints treat the source



word sequence as a coverage set C that is processed
sequentially. A source token is “covered” when it is
aligned with a new target token. For a fixed value
of k, we may leave up to k − 1 positions uncov-
ered and return to them later. We can alter the con-
straint slightly such that for the first uncovered posi-
tion u /∈ C we can cover position j when

j − u < k j /∈ C

which is the definition of the distortion limit used in
Moses. Variations of the IBM constraints also ex-
ist (Kanthak et al., 2005), as do entirely different
regimes like the hierarchical ITG constraints, which
represent the source as a sequence of blocks that
can be iteratively merged and inverted (Wu, 1996).
Zens and Ney (2003) exhaustively compare the IBM
and ITG constraints, concluding that although the
ITG constraints permit more flexible re-orderings,
the IBM constraints result in higher BLEU scores.

Since our work falls under the IBM paradigm, we
consider cost models for those constraints. We have
said that linear distortion is the simplest cost model.
The primary criticism of linear distortion is that
it is unlexicalized, thus penalizing all re-orderings
equally (Khalilov et al., 2009). When extended to
phrases as in Equation (1), linear distortion is also
agnostic to internal phrase alignments.

To remedy these deficiencies, Al-Onaizan and
Papineni (2006) proposed a lexicalized, generative
distortion model. Maximum likelihood estimates
for inbound, outbound, and pairwise transitions are
computed from automatic word alignments. But no
estimate of future cost is included, and their model
cannot easily accommodate features defined over the
entire translation sequence. As for experimental re-
sults, they use a distortion limit that is half of what
we report, and compare against a baseline that lacks
a distortion model entirely. Neither their model nor
ours requires generation of lattices prior to search
(Zhang et al., 2007; Niehues and Kolss, 2009).

Lexicalized re-ordering models are the other sig-
nificant approach to re-ordering. These models
make local predictions about the next phrase to be
translated during decoding, typically assigning costs
to one of three categories: monotone, swap, or dis-
continuous. Both generative (Tillmann, 2004; Och
and Ney, 2004; Koehn et al., 2007) and discrimina-
tive training (Tillmann and Zhang, 2005; Zens and

Ney, 2006; Liang et al., 2006) algorithms have been
proposed. Recently, Galley and Manning (2008) in-
troduced a hierarchical model capable of analyzing
alignments beyond adjacent phrases. Our discrimi-
native distortion framework is not designed as a re-
placement for lexicalized re-ordering models, but as
a substitute for linear distortion.

Finally, we comment on differences between our
Arabic-English results and the well-known high dis-
tortion system of Zollmann et al. (2008), who find
optimal baseline performance at a distortion limit of
9. First, they use approximately two orders of mag-
nitude more training data, which allows them to ex-
tract much longer phrases (12 tokens v. our maxi-
mum of 7). In this setting, many Arabic-English re-
orderings can be captured in the phrase table. Sec-
ond, their “Full” system uses three language models
each trained with significantly more data than our
single model. Finally, although they use a lexical-
ized re-ordering model, no details are given about
the baseline distortion cost model.

7 Conclusion

We have presented a discriminative cost framework
that both estimates future distortion cost and learns
principled cost curves. The model delivers a statis-
tically significant +2.32 BLEU improvement over
Moses at a high distortion limit. Unlike previous
discriminative local orientation models (Zens and
Ney, 2006), our framework permits the definition of
global features. The evaluation in this paper used
context-free features to simplify the decoder integra-
tion, but we expect that context-dependent features
could result in gains for other language pairs with
more complex re-ordering phenomena.
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