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Abstract

Many named entities contain other named
entities inside them. Despite this fact, the
field of named entity recognition has al-
most entirely ignored nested named en-
tity recognition, but due to technological,
rather than ideological reasons. In this pa-
per, we present a new technique for rec-
ognizing nested named entities, by using
a discriminative constituency parser. To
train the model, we transform each sen-
tence into a tree, with constituents for each
named entity (and no other syntactic struc-
ture). We present results on both news-
paper and biomedical corpora which con-
tain nested named entities. In three out
of four sets of experiments, our model
outperforms a standard semi-CRF on the
more traditional top-level entities. At the
same time, we improve the overall F-score
by up to 30% over the flat model, which is
unable to recover any nested entities.

1 Introduction

Named entity recognition is the task of finding en-
tities, such as people and organizations, in text.
Frequently, entities are nested within each other,
such asBank of China and University of Wash-
ington, both organizations with nestedlocations.
Nested entities are also common in biomedical
data, where different biological entities of inter-
est are often composed of one another. In the
GENIA corpus (Ohta et al., 2002), which is la-
beled with entity types such asprotein andDNA,
roughly 17% of entities are embedded within an-
other entity. In the AnCora corpus of Spanish and
Catalan newspaper text (Martı́ et al., 2007), nearly
half of the entities are embedded. However, work
on named entity recognition (NER) has almost en-
tirely ignored nested entities and instead chosen to
focus on the outermost entities.

We believe this has largely been for practical,
not ideological, reasons. Most corpus designers
have chosen to skirt the issue entirely, and have
annotated only the topmost entities. The widely
used CoNLL (Sang and Meulder, 2003), MUC-6,
and MUC-7 NER corpora, composed of American
and British newswire, are all flatly annotated. The
GENIA corpus contains nested entities, but the
JNLPBA 2004 shared task (Collier et al., 2004),
which utilized the corpus, removed all embedded
entities for the evaluation. To our knowledge, the
only shared task which has included nested enti-
ties is the SemEval 2007 Task 9 (Márquez et al.,
2007b), which used a subset of the AnCora corpus.
However, in that task all entities corresponded to
particular parts of speech or noun phrases in the
provided syntactic structure, and no participant di-
rectly addressed the nested nature of the data.

Another reason for the lack of focus on nested
NER is technological. The NER task arose in the
context of the MUC workshops, as small chunks
which could be identified by finite state models
or gazetteers. This then led to the widespread
use of sequence models, first hidden Markov mod-
els, then conditional Markov models (Borthwick,
1999), and, more recently, linear chain conditional
random fields (CRFs) (Lafferty et al., 2001). All
of these models suffer from an inability to model
nested entities.

In this paper we present a novel solution to the
problem of nested named entity recognition. Our
model explicitly represents the nested structure,
allowing entities to be influenced not just by the
labels of the words surrounding them, as in a CRF,
but also by the entities contained in them, and in
which they are contained. We represent each sen-
tence as a parse tree, with the words as leaves, and
with phrases corresponding to each entity (and a
node which joins the entire sentence). Our trees
look just like syntactic constituency trees, such as
those in the Penn TreeBank (Marcus et al., 1993),
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Figure 1: An example of our tree representation over nested named entities. The sentence is from the
GENIA corpus.PROT is short forPROTEIN.

but they tend to be much flatter. This model allows
us to include parts of speech in the tree, and there-
fore to jointly model the named entities and the
part of speech tags. Once we have converted our
sentences into parse trees, we train a discrimina-
tive constituency parser similar to that of (Finkel
et al., 2008). We found that on top-level enti-
ties, our model does just as well as more conven-
tional methods. When evaluating onall entities
our model does well, with F-scores ranging from
slightly worse than performance on top-level only,
to substantially better than top-level only.

2 Related Work

There is a large body of work on named en-
tity recognition, but very little of it addresses
nested entities. Early work on the GENIA cor-
pus (Kazama et al., 2002; Tsuruoka and Tsujii,
2003) only worked on the innermost entities. This
was soon followed by several attempts at nested
NER in GENIA (Shen et al., 2003; Zhang et
al., 2004; Zhou et al., 2004) which built hidden
Markov models over the innermost named enti-
ties, and then used a rule-based post-processing
step to identify the named entities containing the
innermost entities. Zhou (2006) used a more elab-
orate model for the innermost entities, but then
used the same rule-based post-processing method
on the output to identify non-innermost entities.
Gu (2006) focused only on proteins and DNA, by
building separate binary SVM classifiers for inner-
most and outermost entities for those two classes.

Several techniques for nested NER in GENIA
where presented in (Alex et al., 2007). Their first
approach was to layer CRFs, using the output of
one as the input to the next. For inside-out lay-
ering, the first CRF would identify the innermost
entities, the next layer would be over the words
and the innermost entities to identify second-level

entities, etc. For outside-in layering the first CRF
would identify outermost entities, and then succes-
sive CRFs would identify increasingly nested en-
tities. They also tried a cascaded approach, with
separate CRFs for each entity type. The CRFs
would be applied in a specified order, and then
each CRF could utilize features derived from the
output of previously applied CRFs. This technique
has the problem that it cannot identify nested en-
tities of the same type; this happens frequently in
the data, such as the nestedproteins at the begin-
ning of the sentence in Figure 1. They also tried a
joint labeling approach, where they trained a sin-
gle CRF, but the label set was significantly ex-
panded so that a single label would include all of
the entities for a particular word. Their best results
where from the cascaded approach.

Byrne (2007) took a different approach, on his-
torical archive text. She modified the data by con-
catenating adjacent tokens (up to length six) into
potential entities, and then labeled each concate-
nated string using the C&C tagger (Curran and
Clark, 1999). When labeling a string, the “previ-
ous” string was the one-token-shorter string con-
taining all but the last token of the current string.
For single tokens the “previous” token was the
longest concatenation starting one token earlier.

SemEval 2007 Task 9 (Márquez et al., 2007b)
included a nested NER component, as well as
noun sense disambiguation and semantic role la-
beling. However, the parts of speech and syn-
tactic tree were given as part of the input, and
named entities were specified as corresponding to
noun phrases in the tree, or particular parts of
speech. This restriction substantially changes the
task. Two groups participated in the shared task,
but only one (Márquez et al., 2007a) worked on
the named entity component. They used a multi-
label AdaBoost.MH algorithm, over phrases in the



DNAparent=ROOT

NNparent=DNA,grandparent=ROOT

mouse

@DNAparent=ROOT,prev=NN,first=PROT

PROTparent=DNA,grandparent=ROOT

NNparent=PROT,grandparent=DNA

GM-CSF

NNparent=DNA,grandparent=ROOT

promoter

Figure 2: An example of a subtree after it has been annotated and binarized. Features are computed over
this representation. An @ indicates a chart parser active state (incomplete constituent).

parse tree which, based on their labels, could po-
tentially be entities.

Finally, McDonald et al. (2005) presented a
technique for labeling potentially overlapping seg-
ments of text, based on a large margin, multilabel
classification algorithm. Their method could be
used for nested named entity recognition, but the
experiments they performed were on joint (flat)
NER and noun phrase chunking.

3 Nested Named Entity Recognition as
Parsing

Our model is quite simple – we represent each sen-
tence as a constituency tree, with each named en-
tity corresponding to a phrase in the tree, along
with a root node which connects the entire sen-
tence. No additional syntactic structure is rep-
resented. We also model the parts of speech as
preterminals, and the words themselves as the
leaves. See Figure 1 for an example of a named
entity tree. Each node is then annotated with both
its parent and grandparent labels, which allows
the model to learn how entities nest. We bina-
rize our trees in a right-branching manner, and
then build features over the labels, unary rules,
and binary rules. We also use first-order horizon-
tal Markovization, which allows us to retain some
information about the previous node in the bina-
rized rule. See Figure 2 for an example of an an-
notated and binarized subtree. Once each sentence
has been converted into a tree, we train a discrimi-
native constituency parser, based on (Finkel et al.,
2008).

It is worth noting that if you use our model on
data which does not have any nested entities, then
it is precisely equivalent to a semi-CRF (Sarawagi

and Cohen, 2004; Andrew, 2006), but with no
length restriction on entities. Like a semi-CRF, we
are able to define features over entire entities of
arbitrary length, instead of just over a small, fixed
window of words like a regular linear chain CRF.

We model part of speech tags jointly with the
named entities, though the model also works with-
out them. We determine the possible part of
speech tags based on distributional similarity clus-
ters. We used Alexander Clarke’s software,1 based
on (Clark, 2003), to cluster the words, and then
allow each word to be labeled with any part of
speech tag seen in the data with any other word
in the same cluster. Because the parts of speech
are annotated with the parent (and grandparent)
labels, they determine what, if any, entity types
a word can be labeled with. Many words, such as
verbs, cannot be labeled with any entities. We also
limit our grammar based on the rules observed in
the data. The rules whose children include part of
speech tags restrict the possible pairs of adjacent
tags. Interestingly, the restrictions imposed by this
joint modeling (both observed word/tag pairs and
observed rules) actually result in much faster infer-
ence (and therefore faster train and test times) than
a model over named entities alone. This is differ-
ent from most work on joint modeling of multiple
levels of annotation, which usually results in sig-
nificantly slower inference.

3.1 Discriminative Constituency Parsing

We train our nested NER model using the same
technique as the discriminatively trained, condi-
tional random field-based, CRF-CFG parser of
(Finkel et al., 2008). The parser is similar to a

1http://www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html



Local Features Pairwise Features

labeli distsimi + distsimi−1 + labeli labeli−1 + labeli
wordi + labeli shapei + shapei+1 + labeli wordi + labeli−1 + labeli
wordi−1 + labeli shapei−1 + shapei + labeli wordi−1 + labeli−1 + labeli
wordi+1 + labeli wordi−1 + shapei + labeli wordi+1 + labeli−1 + labeli
distsimi + labeli shapei + wordi+1 + labeli distsimi + labeli−1 + labeli
distsimi−1 + labeli words in a 5 word window distsimi−1 + labeli−1 + labeli
distsimi+1 + labeli prefixes up to length 6 distsimi+1 + labeli−1 + labeli
shapei + labeli suffixes up to length 6 distsimi−1 + distsimi + labeli−1 + labeli
shapei−1 + labeli shapei + labeli−1 + labeli
shapei+1 + labeli shapei−1 + labeli−1 + labeli

shapei+1 + labeli−1 + labeli
shapei−1 + shapei + labeli−1 + labeli
shapei−1 + shapei+1 + labeli−1 + labeli

Table 1: The local and pairwise NER features used in all of ourexperiments. Consult the text for a full
description of all features, which includes feature classes not in this table.

chart-based PCFG parser, except that instead of
putting probabilities over rules, it putsclique po-
tentials over local subtrees. These unnormalized
potentials know what span (and split) the rule is
over, and arbitrary features can be defined over the
local subtree, the span/split and the words of the
sentence. The inside-outside algorithm is run over
the clique potentials to produce the partial deriva-
tives and normalizing constant which are neces-
sary for optimizing the log likelihood. Optimiza-
tion is done by stochastic gradient descent.

The only real drawback to our model is run-
time. The algorithm isO(n3) in sentence length.
Training on all of GENIA took approximately 23
hours for the nested model and 16 hours for the
semi-CRF. A semi-CRFwith an entity length re-
striction, or a regular CRF, would both have been
faster. At runtime, the nested model for GENIA
tagged about 38 words per second, while the semi-
CRF tagged 45 words per second. For compar-
ison, a first-order linear chain CRF trained with
similar features on the same data can tag about
4,000 words per second.

4 Features

When designing features, we first made ones sim-
ilar to the features typically designed for a first-
order CRF, and then added features which are not
possible in a CRF, but are possible in our enhanced
representation. This includes features over entire
entities, features which directly model nested en-
tities, and joint features over entities and parts of
speech. When features are computed over each
label, unary rule, and binary rule, the feature func-
tion is aware of the rule span and split.

Each word is labeled with its distributional sim-

ilarity cluster (distsim), and a string indicating
orthographic information (shape) (Finkel et al.,
2005). Subscripts represent word position in the
sentence. In addition to those below, we include
features for each fully annotated label and rule.

Local named entity features. Local named en-
tity features are over the label for a single word.
They are equivalent to the local features in a linear
chain CRF. However, unlike in a linear chain CRF,
if a word belongs to multiple entities then the local
features are computed for each entity. Local fea-
tures are also computed for words not contained in
any entity. Local features are in Table 1.

Pairwise named entity features. Pairwise fea-
tures are over the labels for adjacent words, and
are equivalent to the edge features in a linear chain
CRF. They can occur when pairs of words have
the same label, or over entity boundaries where
the words have different labels. Like with the lo-
cal features, if a pair of words are contained in, or
straddle the border of, multiple entities, then the
features are repeated for each. The pairwise fea-
tures we use are shown in Table 1.

Embedded named entity features. Embedded
named entity features occur in binary rules where
one entity is the child of another entity. For our
embedded features, we replicated the pairwise fea-
tures, except that the embedded named entity was
treated as one of the words, where the “word”
(and other annotations) were indicative of the type
of entity, and not the actual string that is the en-
tity. For instance, in the subtree in Figure 2, we
would computewordi+labeli−1+labeli as PROT-
DNA-DNA for i = 18 (the index of the wordGM-
CSF). The normal pairwise feature at the same po-



GENIA – Testing on All Entities

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Protein 3034 79.04 69.22 73.80 78.63 64.04 70.59
DNA 1222 69.61 61.29 65.19 71.62 57.61 63.85
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 444 73.82 56.53 64.03 76.59 59.68 67.09
Cell Type 599 68.77 65.44 67.07 72.12 59.60 65.27
Overall 5402 75.39 65.90 70.33 76.17 61.72 68.19

Table 2: Named entity results on GENIA, evaluating on all entities.

GENIA – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Protein 2592 78.24 72.42 75.22 76.16 72.61 74.34
DNA 1129 70.40 64.66 67.41 71.21 62.00 66.29
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 420 75.54 58.81 66.13 76.59 63.10 69.19
Cell Type 537 69.36 70.39 69.87 71.11 65.55 68.22
Overall 4781 75.22 69.02 71.99 74.57 68.27 71.28

Table 3: Named entity results on GENIA, evaluating on only top-level entities.

sition would beGM-CSF-DNA-DNA.

Whole entity features. We had four whole en-
tity features: the entire phrase; the preceding and
following word; the preceding and following dis-
tributional similarity tags; and the preceding dis-
tributional similarity tag with the following word.

Local part of speech features. We used the
same POS features as (Finkel et al., 2008).

Joint named entity and part of speech features.
For the joint features we replicated the POS fea-
tures, but included the parent of the POS, which
either is the innermost entity type, or would indi-
cate that the word is not in any entities.

5 Experiments

We performed two sets of experiments, the first set
over biomedical data, and the second over Spanish
and Catalan newspaper text. We designed our ex-
periments to show that our model works just as
well on outermost entities, the typical NER task,
and also works well on nested entities.

5.1 GENIA Experiments

5.1.1 Data

We performed experiments on the GENIA v.3.02
corpus (Ohta et al., 2002). This corpus contains
2000 Medline abstracts (≈500k words), annotated

with 36 different kinds of biological entities, and
with parts of speech. Previous NER work using
this corpus has employed 10-fold cross-validation
for evaluation. We wanted to explore different
model variations (e.g., level of Markovization, and
different sets of distributional similarity cluster-
ings) and feature sets, so we needed to set aside
a development set. We split the data by putting
the first 90% of sentences into the training set, and
the remaining 10% into the test set. This is the
exact same split used to evaluate part of speech
tagging in (Tsuruoka et al., 2005). For develop-
ment we used the first half of the data to train, and
the next quarter of the data to test.2 We made the
same modifications to the label set as the organiz-
ers of the JNLPBA 2004 shared task (Collier et
al., 2004). They collapsed allDNA subtypes into
DNA; all RNA subtypes intoRNA; all protein sub-
types intoprotein; keptcell line andcell type; and
removed all other entities. However, they also re-
moved all embedded entities, while we kept them.

As discussed in Section 3, we annotated each
word with a distributional similarity cluster. We
used 200 clusters, trained using 200 million words
from PubMed abstracts. During development, we
found that fewer clusters resulted in slower infer-

2This split may seem strange: we had originally intended
a 50/25/25 train/dev/test split, until we found the previously
used 90/10 split.



JNLPBA 2004 – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model Zhou & Su (2004)
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1 Precision Recall F1
Protein 4944 66.98 74.58 70.57 68.15 62.68 65.30 69.01 79.2473.77
DNA 1030 62.96 66.50 64.68 65.45 52.23 58.10 66.84 73.11 69.83
RNA 115 63.06 60.87 61.95 64.55 61.74 63.11 64.66 63.56 64.10
Cell line 487 49.92 60.78 54.81 49.61 52.16 50.85 53.85 65.8059.23
Cell type 1858 75.12 65.34 69.89 73.29 55.81 63.37 78.06 72.41 75.13
Overall 8434 66.78 70.57 68.62 67.50 59.27 63.12 69.42 75.99 72.55

Table 4: Named entity results on the JNLPBA 2004 shared task data. Zhou and Su (2004) was the best
system at the shared task, and is still state-of-the-art on the dataset.
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Figure 3: An example sentence from the AnCora corpus, along with its English translation.

ence with no improvement in performance.

5.1.2 Experimental Setup

We ran several sets of experiments, varying be-
tween all entities, or just top-level entities, for
training and testing. As discussed in Section 3, if
we train on just top-level entities then the model is
equivalent to a semi-CRF. Semi-CRFs are state-
of-the-art and provide a good baseline for per-
formance on just the top-level entities. Semi-
CRFs are strictly better than regular, linear chain
CRFs, because they can use all of the features and
strucutre of a linear chain CRF, but also utilize
whole-entity features (Andrew, 2006). We also
evaluated the semi-CRF model on all entities. This
may seem like an unfair evaluation, because the
semi-CRF has no way of recovering the nested en-
tities, but we wanted to illustrate just how much
information is lost when using a flat representa-
tion.

5.1.3 Results

Our named entity results when evaluating on all
entities are shown in Table 2 and when evaluat-
ing on only top-level entities are shown in Table 3.
Our nested model outperforms the flat semi-CRF

on both top-level entities and all entities.
While not our main focus, we also evaluated

our models on parts of speech. The model trained
on just top level entities achieved POS accuracy
of 97.37%, and the one trained on all entities
achieved 97.25% accuracy. The GENIA tagger
(Tsuruoka et al., 2005) achieves 98.49% accuracy
using the same train/test split.

5.1.4 Additional JNLPBA 2004 Experiments

Because we could not compare our results on the
NER portion of the GENIA corpus with any other
work, we also evaluated on the JNLPBA corpus.
This corpus was used in a shared task for the
BioNLP workshop at Coling in 2004 (Collier et
al., 2004). They used the entire GENIA corpus for
training, and modified the label set as discussed in
Section 5.1.1. They also removed all embedded
entities, and kept only the top-level ones. They
then annotated new data for the test set. This
dataset has no nested entities, but because the
training data is GENIA we can still train our model
on the data annotated with nested entities, and then
evaluate on their test data by ignoring all embed-
ded entities found by our named entity recognizer.



AnCora Spanish – Testing on All Entities

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Person 1778 65.29 78.91 71.45 75.10 32.73 45.59
Organization 2137 86.43 56.90 68.62 47.02 26.20 33.65
Location 1050 78.66 46.00 58.05 84.94 13.43 23.19
Date 568 87.13 83.45 85.25 79.43 29.23 42.73
Number 991 81.51 80.52 81.02 66.27 28.15 39.52
Other 512 17.90 64.65 28.04 10.77 16.60 13.07
Overall 7036 62.38 66.87 64.55 51.06 25.77 34.25

Table 5: Named entity results on the Spanish portion of AnCora, evaluating on all entities.

AnCora Spanish – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Person 1050 57.42 66.67 61.70 71.23 52.57 60.49
Organization 1060 77.38 40.66 53.31 44.33 49.81 46.91
Location 279 72.49 36.04 48.15 79.52 24.40 37.34
Date 290 72.29 57.59 64.11 71.77 51.72 60.12
Number 519 57.17 49.90 53.29 54.87 44.51 49.15
Other 541 11.30 38.35 17.46 9.51 26.88 14.04
Overall 3739 50.57 49.72 50.14 46.07 44.61 45.76

Table 6: Named entity results on the Spanish portion of AnCora, evaluating on only top-level entities.

This experiment allows us to show that our named
entity recognizer works well on top-level entities,
by comparing it with prior work. Our model also
produces part of speech tags, but the test data is
not annotated with POS tags, so we cannot show
POS tagging results on this dataset.

One difficulty we had with the JNLPBA exper-
iments was with tokenization. The version of GE-
NIA distributed for the shared task is tokenized
differently from the original GENIA corpus, but
we needed to train on the original corpus as it is
the only version with nested entities. We tried our
best to retokenize the original corpus to match the
distributed data, but did not have complete suc-
cess. It is worth noting that the data is actually to-
kenized in a manner which allows a small amount
of “cheating.” Normally, hyphenated words, such
asLPS-induced, are tokenized as one word. How-
ever, if the portion of the word before the hyphen
is in an entity, and the part after is not, such as
BCR-induced, then the word is split into two to-
kens:BCR and-induced. Therefore, when a word
starts with a hyphen it is a strong indicator that the
prior word and it span the right boundary of an en-
tity. Because the train and test data for the shared
task do not contain nested entities, fewer words
are split in this manner than in the original data.
We did not intentionally exploit this fact in our

feature design, but it is probable that some of our
orthographic features “learned” this fact anyway.
This probably harmed our results overall, because
some hyphenated words, which straddled bound-
aries in nested entities and would have been split
in the original corpus (and were split in our train-
ing data), were not split in the test data, prohibiting
our model from properly identifying them.

For this experiment, we retrained our model on
the entire, retokenized, GENIA corpus. We also
retrained the distributional similarity model on the
retokenized data. Once again, we trained one
model on the nested data, and one on just the top-
level entities, so that we can compare performance
of both models on the top-level entities. Our full
results are shown in Table 4, along with the cur-
rent state-of-the-art (Zhou and Su, 2004). Besides
the tokenization issues harming our performance,
Zhou and Su (2004) also employed clever post-
processing to improve their results.

5.2 AnCora Experiments

5.2.1 Data

We performed experiments on the NER portion
of AnCora (Martı́ et al., 2007). This corpus has
Spanish and Catalan portions, and we evaluated
on both. The data is also annotated with parts
of speech, parse trees, semantic roles and word



AnCora Catalan – Testing on All Entities

Nested NER Model Semi-CRF Model
# Test (train all entities) (train top-level entities only)

Entities Precision Recall F1 Precision Recall F1
Person 1303 89.01 50.35 64.31 70.08 46.20 55.69
Organization 1781 68.95 83.77 75.64 65.32 41.77 50.96
Location 1282 76.78 72.46 74.56 75.49 36.04 48.79
Date 606 84.27 81.35 82.79 70.87 38.94 50.27
Number 1128 86.55 83.87 85.19 75.74 38.74 51.26
Other 596 85.48 8.89 16.11 64.91 6.21 11.33
Overall 6696 78.09 68.23 72.83 70.39 37.60 49.02

Table 7: Named entity results on the Catalan portion of AnCora, evaluating on all entities.

AnCora Catalan – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
# Test (train all entities) (train top-level entities only)

Entities Precision Recall F1 Precision Recall F1
Person 801 67.44 47.32 55.61 62.63 67.17 64.82
Organization 899 52.21 74.86 61.52 57.68 73.08 64.47
Location 659 54.86 67.68 60.60 62.42 57.97 60.11
Date 296 62.54 66.55 64.48 59.46 66.89 62.96
Number 528 62.35 70.27 66.07 63.08 68.94 65.88
Other 342 49.12 8.19 14.04 45.61 7.60 13.03
Overall 3525 57.67 59.40 58.52 60.53 61.42 60.97

Table 8: Named entity results on the Catalan portion of AnCora, evaluating on only top-level entities.

senses. The corpus annotators made a distinction
betweenstrong and weak entities. They define
strong named entities as “a word, a number, a date,
or a string of words that refer to a single individual
entity in the real world.” If a strong NE contains
multiple words, it is collapsed into a single token.
Weak named entities, “consist of a noun phrase,
being it simple or complex” and must contain a
strong entity. Figure 3 shows an example from the
corpus with both strong and weak entities. The
entity types present areperson, location, organi-
zation, date, number, andother. Weak entities are
very prevalent; 47.1% of entities are embedded.

For Spanish, files starting with 7–9 were the test
set, 5–6 were the development test set, and the re-
mainder were the development train set. For Cata-
lan, files starting with 8–9 were the test set, 6–7
were the development test set, and the remainder
were the development train set. For both, the de-
velopment train and test sets were combined to
form the final train set. We removed sentences
longer than 80 words. Spanish has 15,591 train-
ing sentences, and Catalan has 14,906.

5.2.2 Experimental Setup

The parts of speech provided in the data include
detailed morphological information, using a sim-
ilar annotation scheme to the Prague TreeBank

(Hana and Hanová, 2002). There are around 250
possible tags, and experiments on the development
data with the full tagset where unsuccessful. We
removed all but the first two characters of each
POS tag, resulting in a set of 57 tags which more
closely resembles that of the Penn TreeBank (Mar-
cus et al., 1993). All reported results use our mod-
ified version of the POS tag set.

We took only the words as input, none of the
extra annotations. For both languages we trained a
200 cluster distributional similarity model over the
words in the corpus. We performed the same set
of experiments on AnCora as we did on GENIA.

5.2.3 Results and Discussion

The full results for Spanish when testing on all en-
tities are shown in Table 5, and for only top-level
entities are shown in Table 6. For part of speech
tagging, the nested model achieved 95.93% accu-
racy, compared with 95.60% for the flatly trained
model. The full results for Catalan when testing on
all entities are shown in Table 7, and for only top-
level entities are shown in Table 8. POS tagging
results were even closer on Catalan: 96.62% for
the nested model, and 96.59% for the flat model.

It is not surprising that the models trained on
all entities do significantly better than the flatly
trained models when testing on all entities. The



story is a little less clear when testing on just top-
level entities. In this case, the nested model does
4.38% better than the flat model on the Spanish
data, but 2.45% worse on the Catalan data. The
overall picture is the same as for GENIA: model-
ing the nested entities does not, on average, reduce
performance on the top-level entities, but a nested
entity model does substantially better when evalu-
ated on all entities.

6 Conclusions

We presented a discriminative parsing-based
method for nested named entity recognition,
which does well on both top-level and nested enti-
ties. The only real drawback to our method is that
it is slower than common flat techniques. While
most NER corpus designers have defenestrated
embedded entities, we hope that in the future this
will not continue, as large amounts of information
are lost due to this design decision.
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