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Abstract

Extrapolation to unseen sequence lengths is a
challenge for neural generative models of lan-
guage. In this work, we characterize the ef-
fect on length extrapolation of a modeling de-
cision often overlooked: predicting the end
of the generative process through the use of
a special end-of-sequence (EOS) vocabulary
item. We study an oracle setting—forcing
models to generate to the correct sequence
length at test time—to compare the length-
extrapolative behavior of networks trained to
predict EOS (+EOS) with networks not trained
to (-EOS). We find that -EOS substantially
outperforms +EOS, for example extrapolating
well to lengths 10 times longer than those seen
at training time in a bracket closing task, as
well as achieving a 40% improvement over
+EOS in the difficult SCAN dataset length gen-
eralization task. By comparing the hidden
states and dynamics of -EOS and +EOS mod-
els, we observe that +EOS models fail to gen-
eralize because they (1) unnecessarily stratify
their hidden states by their linear position is a
sequence (structures we call length manifolds)
or (2) get stuck in clusters (which we refer to
as length attractors) once the EOS token is the
highest-probability prediction.

1 Introduction

A core feature of the human language capacity
is the ability to comprehend utterances of poten-
tially unbounded length by understanding their
constituents and how they combine (Frege, 1953;
Chomsky, 1957; Montague, 1970). In NLP, while
better modeling techniques have improved mod-
els’ abilities to perform some kinds of systematic
generalization (Gordon et al., 2019; Lake, 2019),
these models still struggle to extrapolate; they have
trouble producing and processing sequences longer
than those seen during training even if they are
composed of familiar atomic units.

Figure 1: The hidden state dynamics differ between a
model that has to predict EOS (left) and one that does
not (right). Color varies with the hidden states’ posi-
tion in the sequence.

In this work, we investigate how an understudied
modeling decision affects the ability of neural gen-
erative models of language to extrapolate to longer
sequences. Models need to place a distribution
over all sequence lengths, and to accomplish this
when they generate from left to right, they make a
decision about whether to generate a content token
or a special end-of-sequence (EOS) token at each
position in the sequence. In practice, however, the
decision to have models predict where sequences
end in this way, which we refer to as the EOS deci-
sion, yields models that predict sequences should
end too early in length-extrapolation settings (Hup-
kes et al., 2020; Dubois et al., 2020).

We conceptually decompose length extrapola-
tion into two components: (i) the ability to pro-
duce the right content, and (ii) the ability to know
when to end the sequence. Standard evaluations
like exact match or BLEU (Papineni et al., 2002)
on length-generalization datasets like SCAN and
gSCAN (Lake and Baroni, 2018; Ruis et al., 2020)
evaluate the ability to perform both components,
but models are known to fail because of (ii) alone,
so these metrics don’t test (i) in isolation. To help
evaluate (i) independent of (ii), another evaluation



tool has been to exclude the effect of the EOS deci-
sion at test time by forcing models to generate to
the correct output length (Lake and Baroni, 2018)
or evaluating whether the strings they generate
match prefixes of the correct outputs (Dubois et al.,
2020; Hupkes et al., 2020).

In contrast, our work is the first to explore what
happens if we don’t have to perform (ii) (predicting
where to end the sequence) even at training time.
In this case, can we perform better at (i) (gener-
ating the right content)? We endeavor to answer
this question by comparing the extrapolative abil-
ity of models trained without EOS tokens (-EOS)
to models trained with them in their training data
(+EOS).

First, we look at a simple formal language
called Dyck-(k,m) that contains strings of bal-
anced parentheses of k types with a bounded nest-
ing depth of m (Hewitt et al., 2020); see Table 1.
Looking at a simple bracket closing task we find
that -EOS models close brackets with high accu-
racy on sequences 10 times longer than those seen
at training time, whereas +EOS models perform
substantially worse, suggesting fundamental differ-
ences in these models’ ability to extrapolate. Inves-
tigating models’ hidden states under principal com-
ponent analysis (PCA) reveals that +EOS models
unnecessarily stratify their hidden states by linear
position while -EOS models do so less, likely con-
tributing to -EOS models’ improved performance
(Figure 1). We call these stratified hidden states
length manifolds.

Second, we use SCAN—a synthetic sequence-to-
sequence dataset meant to assess systematic gener-
alization. We focus on the split of the dataset made
to test length extrapolation, showing that models in
the +EOS condition perform up to 40% worse than
those in the -EOS condition in an oracle evalua-
tion setting where models are provided the correct
output length. Visualizing the hidden states of both
models using PCA reveals that +EOS models fail
once they put high probability on the EOS token
because their hidden states remain in place, ex-
hibiting what we term a length attractor. -EOS
models do not predict the EOS token, and their hid-
den states are able to move throughout hidden state
space during the entire generation process, likely
contributing to their improved performance.

Finally, we investigate extrapolation in a human
language task—translation from German into En-
glish. We use an oracle evaluation where sequence

lengths are chosen to maximize the BLEU score
of generated translations. In contrast to our other
experiments, for this more complex NLP task, we
see that the -EOS condition less consistently con-
tributes to extrapolation ability.

2 Related Work

The Difficulty of Extrapolation. Evidence from
a number of settings shows that processing se-
quences longer than those seen at training time is a
challenge for neural models (Dubois et al., 2020;
Ruis et al., 2020; Hupkes et al., 2020; Klinger et al.,
2020). This difficulty has been observed in datasets
designed to test the ability of models to composi-
tionally generalize, such as SCAN (Lake and Ba-
roni, 2018), where the best performing neural mod-
els do not even exceed 20% accuracy on generating
sequences of out-of-domain lengths, whereas in-
domain performance is 100%. Extrapolation has
also been a challenge for neural machine transla-
tion; Murray and Chiang (2018) identifies models
producing translations that are too short as one of
the main challenges for neural MT.

There are a number of reasons why extrapolation
is challenging. At the highest level, some believe
extrapolation requires understanding the global
structure of a task, which standard neural archi-
tectures may have trouble emulating from a mod-
est number of in-domain samples (Mitchell et al.,
2018; Marcus, 2018; Gordon et al., 2019). Oth-
ers focus more on implementation-level modeling
problems, such as the EOS problem, where models
tend to predict sequences should end too early, and
try to address it with architectural changes (Dubois
et al., 2020). Our work focuses on the latter issue;
we show how the EOS decision affects not just a
model’s tendency for producing EOS tokens too
early, but also the representations and dynamics
underlying these decisions.

Addressing Extrapolation Issues Previous ap-
proaches to address the poor extrapolation ability
of standard sequence models often focus on ar-
chitectural changes. They include incorporating
explicit memory (Graves et al., 2014) or special-
ized attention mechanisms (Dubois et al., 2020).
Others have proposed search-based approaches—
modifying beam search to prevent EOS from be-
ing assigned too much probability mass (Murray
and Chiang, 2018), or searching through programs
to produce sequences rather than having neural
models produce sequences themselves (Nye et al.,



2020). Extrapolative performance has recently
come up in the design of positional embeddings
for Transformers (Vaswani et al., 2017). While
recent Transformer models like BERT use learned
positional embeddings (Devlin et al., 2019), when
they were first introduced, position was represented
through a combination of sinusoids of different pe-
riods. These sinusoids were introduced with the
hope that their periodicity would allow for better
length extrapolation (Vaswani et al., 2017). In this
study we provide insight into popular architectures
and the EOS decision instead of pursuing new ar-
chitectures.

Length in Sequence Models Historically, for
discrete symbol probabilistic sequence models, no
EOS token was included in the standard presenta-
tions of HMMs (Rabiner, 1989) or in most follow-
ing work in speech. However, the importance of
having an EOS token in the event space of proba-
bilistic sequence models was emphasized by NLP
researchers in the late 1990s (e.g. Collins (1999)
Section 2.4.1) and have been used ever since, in-
cluding in neural sequence models. Requiring neu-
ral models to predict these EOS tokens means that
these models’ representations must track sequence
length. There is empirical evidence that the hid-
den states of LSTM sequence-to-sequence mod-
els trained to perform machine translation models
track sequence length by implementing something
akin to a counter that increments during encoding
and decrements during decoding (Shi et al., 2016).
These results are consistent with theoretical and
empirical findings that show that LSTMs can ef-
ficiently implement counting mechanisms (Weiss
et al., 2018; Suzgun et al., 2019a; Merrill, 2020).
Our experiments will show that tracking absolute
token position by implementing something akin to
these counters makes extrapolation difficult.

3 Experimental Setup

In all of our experiments, we compare models
trained under two conditions: +EOS, where EOS
tokens are appended to each training example, as
is standard; and -EOS, where no EOS tokens are
appended to training examples.

For our Dyck-(k,m) experiments (Section 4), we
train on sequences with lengths from a set Ltrain
and test on sequences with lengths from a set Ltest,
where maxLtrain < minLtest.

For our SCAN and German-English MT exper-
iments (Sections 5 and 6), we train on sequences

ƅƢŘ�ƚƺĸĆĕ�

581�581�581�581�˴˴˴

581�581�581�581�˴˴˴

581�581

gĕŘĭƚĳ�~ƅêĆōĕ

 ŢŖƂêƅĕ�ƚŢ�ĭƅŢƢŘč�
ƚƅƢƚĳ

IĕŘĕƅêƚĕ�ƍĕƄƢĕŘĆĕƍ�
ƺĸƚĳŢƢƚ�(26

Figure 2: Above is an example of how length oracle
evaluation works with the SCAN task. Models (both
+EOS and -EOS) generate sequences without produc-
ing EOS tokens. The length oracle decides the optimal
place to end the sequences, and compares the result to
the ground truth.

of tokens shorter than some length `, and test on
sequences longer than `. We refer to ` as a length
cut-off, and a train-test split created in this manner
is referred to as a length-split. We evaluate these
models differently in each experiment.

Because we are interested in assessing the ex-
trapolative ability of models apart from predict-
ing where sequences end, we use what we refer
to as a length oracle evaluation. It is performed
by first allowing -EOS and +EOS models to out-
put sequences longer than any gold targets, and
then choosing the best position to end the sequence.
For the +EOS models, this requires preventing the
models from emitting EOS tokens during genera-
tion by setting the probability mass on the EOS
token to 0. We call these models -EOS+Oracle
and +EOS+Oracle respectively. Using these ora-
cle metrics ensures that models are only assessed
on knowing what content to generate rather than
where to end sequences.

4 Experiment 1: Dyck-(k,m)

We conduct our first experiments with a simple
language that gives us the opportunity to train an
accurate, interpretable language model. This al-
lows us to develop an intuition for how the EOS
token affects the representations that models learn.

The language we study is Dyck-(k,m) (Hewitt
et al., 2020). It is a formal language that consists of
strings of well-nested, balanced brackets. There are
k types of brackets, and a maximum nesting depth
of m. For our experiments, we set k = 2, and vary
m. Accepting this language involves implementing
a bounded stack of up to size m, and allowing for
pushing and popping any of k distinct elements (the
bracket types) to and from the stack. We use the



sequence: ( [ ( ) [ [ ( ) ] ] ] )
stack state: ( ([ ([( ([ ([[ ([[[ ([[[( ([[[ ([[ ([ (

Table 1: A sample sequence and its stack states from
Dyck-(2,6) and Dyck-(2,8), but not Dyck-(2,4) be-
cause the maximum nesting depth is 5.

term stack state to refer to what this stack looks
like at a given point in processing a sequence. An
example sequence and its stack states are given in
Table 1.

4.1 Methodology
We train our +EOS and -EOS models on a
language modeling task using samples from
Dyck-(2,4); Dyck-(2,6); and Dyck-(2,8). Mini-
mum training sample lengths are chosen such that
sequences of that length contain stack states of all
possible depths at least three times in expectation.
We include enough training samples to reliably
achieve perfect bracket-closing accuracy on an in-
domain evaluation.1 Including only long sequences
of brackets means that models only see evidence
that they can end sequences (in the form of an EOS
token) after a long stretch of symbols, not whenever
their stack states are empty (and the -EOS model
sees no evidence of ending at all). We endeavor to
address this shortcoming in Section 4.3.

The out-of-domain samples (with lengths in
Ltest) are 10 times longer than in-domain ones (with
lengths in Ltrain). (Table 2 gives the lengths for
each condition.) The models we use are single layer
LSTMs with 5m hidden states, and we train each
model such that it has perfect in-domain length ac-
curacy on a held-out validation set to ensure that we
learn the in-domain data distribution well, rather
than sacrifice in-domain performance for potential
gains in extrapolative performance. Additionally,
such in-domain accuracy is only possible because
we are bounding the stack depth of our Dyck-(k,m)
samples. If we were using the unbounded Dyck-
k languages (with k > 1), we would not be able
to see good in-domain performance, and thus we
would not expect to see acceptable out-of domain
performance either (Suzgun et al., 2019b,a).

For evaluation, we use the same metric as He-
witt et al. (2020) as it evaluates the crux of the
task: maintaining a long-term stack-like memory
of brackets. In principle, we want to ensure that
whenever a model can close a bracket, it puts more

1The code to generate these samples is available at https:
//github.com/bnewm0609/eos-decision.

m Ltrain Ltest +EOS -EOS

4 [88, 116] [950, 1050] 0.60 0.86
6 [184, 228] [1840, 2280] 0.68 0.98
8 [328, 396] [3280, 3960] 0.68 0.96

Table 2: Dyck-(k,m) bracket closing metric results, me-
dian of 5 independent training runs.

probability mass on the correct one. Our metric is
as follows: whenever it is acceptable for the model
to close a bracket, we compute how often our mod-
els assign an large majority (more than 80%) of
the probability mass assigned to any of the closing
brackets to the correct closing bracket. For exam-
ple, if 20% of the probability mass is put on either
closing bracket, the model gets credit if it puts more
than 16% of the mass on the correct bracket. Be-
cause in each sample there are more bracket pairs
that are (sequentially) close together than far, we
compute this accuracy separately for each distance
between the open and close bracket. Our final score
is then the mean of all these accuracies.

We also report a standard metric: perplexity for
sequences of in-domain and out-of-domain lengths.
We choose perplexity because it incorporates the
probabilistic nature of the task—we cannot evalu-
ate using exact match because at almost all decod-
ing steps (other than when the stack has m brackets
on it) there are two equally valid predictions that
the model can make.

4.2 Results

Recall that we train all models to obtain perfect
in-domain bracket closing accuracy on a held-out
validation set. However, the +EOS models’ per-
formance is severely degraded on out-of-domain
sequences 10 times longer than in-domain ones,
while the -EOS models still perform well across
all conditions (Table 2). The perplexity results mir-
ror the results of the bracket closing task (Appendix
B).

Because the Dyck-(k,m) is relatively simple, the
model’s hidden states are interpretable. We run
the model on the training data, stack the models’
hidden states, extract their top two principal com-
ponents, and note that they form clusters (Figure 3)
that encode stack states (Appendix; Figure 5). We
observe that as both models process sequences,
they hop between the clusters. However, in the
+EOS model, the hidden states move from one
side of each cluster to the other during process-
ing, while this does not happen in the -EOS model.

https://github.com/bnewm0609/eos-decision
https://github.com/bnewm0609/eos-decision


Figure 3: The top two principal components explain 67.52% of the variance for the +EOS model and 62.27%of
the variance for the -EOS hidden states. The color scale corresponds to index in the sequence. The bottom-most
cluster (centered around (0,−2.0) in the +EOS plot and (0,−1.5) in the -EOS plot) contains all of the hidden
states where the stack is empty and the sequence can end.

Because of this, we refer to these elongated clusters
as length manifolds.

As the +EOS model processes inputs past the
maximum length it has seen during training, the
representations lie past the boundary of the clus-
ters, which we observe leads to a degradation of
the model’s ability to transition between states. We
hypothesize this is because the recurrent dynamics
break near the edges of the training-time length
manifolds. We can see this degradation of the
model dynamics in the out-of-domain +EOS plot
(Figure 3). The hidden states at positions further in
the sequences congregate at the tips of the length
manifolds, or completely deviate from the train-
ing data. Contrast this plot to the in-domain -EOS
plot, where there are no length manifolds visible
and the out-of-domain -EOS plot, where we can
see some length manifolds, but less evidence of the
degradation of predictions (Table 2).

We hypothesize that these length manifolds form
because +EOS models need to predict where each
sequence ends in order to confidently put probabil-
ity mass on the EOS token.2 Our main takeaway is
then that this length tracking has negative effects
when the model is used to predict longer sequences.

4.3 Predicting the End of Sequences

Knowing where a Dyck-(k,m) sequence can end
is an important part of being able to accept strings
from the language. While we focus more on the
ability of models to extrapolate in this work, and
our evaluations do not depend on the ability of mod-
els to end sequences, we do observe in our plots of
hidden states that the cluster of hidden states corre-

2Close brackets are more likely than open brackets at train-
ing time near the maximum training length, since all sequences
must end in the empty stack state; this may explain why -EOS
models still show some length-tracking behavior.

m +EOS -EOS

ID OOD ID OOD
4 1.0 0.90 1.0 0.92
6 1.0 0.95 1.0 1.0
8 1.0 0.97 1.0 1.0

Table 3: Accuracies for predicting when Dyck-(2,m)
sequences can end. Each entry is the median of five
runs. Note that even though +EOS model is trained
with an EOS token, it does not receive signal that it
can end at other empty stack states, so such a probe is
needed for models to learn when to end sequences.

sponding to the empty stack state (where sequences
can end) is linearly separable from the other clus-
ters (Figure 3). This linear-separability suggests we
can train a linear classifier on top of model hidden
states, a probe, to predict where sequences can end
(Conneau et al., 2018; Ettinger et al., 2018).

We train a binary classifier to predict if a se-
quence can end at every token position. The input
to this classifier at time-step t is the sequence mod-
els’ hidden state at t, and it is trained to predict 1
if the sequence can end and 0 otherwise. We find
that this simple method is able to predict where
sequences end with high accuracy for in-domain
sequences, and higher accuracy for the -EOS mod-
els compared to the +EOS models for the longer
out-of-domain sequences (Table 3). This distinc-
tion mirrors the disorganization of the hidden states
in the +EOS models hidden states when they ex-
trapolate (Figure 3).

5 Experiment 2: SCAN

While the Dyck-(k,m) experiments give us good
intuitions for how and why EOS tokens affect ex-
trapolation, we study SCAN to extend to sequence-
to-sequence modeling, and since it is a well-studied



dataset in the context of length extrapolation.
SCAN is a synthetic sequence-to-sequence

dataset meant to simulate data used to train
an instruction-following robot (Lake and Baroni,
2018). The inputs are templated instructions while
the outputs correspond to the sequences of actions
the robot should take. For example, the input in-
struction “walk left twice” maps to the output ac-
tion sequence TURN LEFT WALK TURN LEFT
WALK. There are 13 types in the input vocabulary—
five actions (turn, run, walk, jump, look); six mod-
ifiers (left, right, opposite, around, twice, thrice);
and two conjunctions (and, after), and different
combinations of these tokens map to different num-
bers of actions. For example, “turn left twice”
maps to TURN LEFT TURN LEFT while “turn
left thrice” maps to TURN LEFT TURN LEFT
TURN LEFT. This is important for our exploration
of models’ abilities to extrapolate because it means
that while the lengths of the input instructions
range from one to nine tokens, the output action
sequences lengths vary from one to 48 tokens.

5.1 Length splits in SCAN

Lake and Baroni (2018) define a 22-token length
split of the dataset, in which models are trained
on instructions with sequences whose outputs have
1–22 tokens (16990 samples) and are evaluated on
sequences whose outputs have 22–48 tokens (3920
samples). Previous work has noted the difficulty
of this length split—the best approach where se-
quences are generated by a neural model achieves
20.8% accuracy (Lake and Baroni, 2018).3 Specif-
ically, this extra difficulty stems from the fact
that neural models only perform the SCAN task
well when they are trained with sufficient exam-
ples of certain input sequence templates (Loula
et al., 2018). In particular, the Lake and Baroni
(2018) length split lacks a template from the train-
ing data: one of the form “walk/jump/look/run
around left/right thrice.” Alone, this template re-
sults in an output sequence of 24 actions, and thus
is not included in the training set. Approximately
80% of the test set is comprised of sequences with
this template, but models have not seen any exam-
ples of it at training time, so they perform poorly.
Thus, we create additional length splits that have
more examples of this template, and evaluate using

3Note that Nye et al. (2020) are able to achieve 100%
accuracy on the SCAN length split, though their set-up is
different—their neural model searchers for the SCAN gram-
mar rather than generating sequences by token.

them in addition to the standard 22-token length
split of SCAN.

5.2 Methodology
We generate the 10 possible length splits of the
data with length cutoffs ranging from 24 tokens to
40 (See the header of Table 4). Not every integer
is represented because SCAN action sequences do
not have all possible lengths in this range. For each
split, we train the LSTM sequence-to-sequence
model that Lake and Baroni (2018) found to have
the best in-domain performance. Like in the pre-
vious experiment, we train two models—a +EOS
model with an EOS token appended to each training
sample output, and a -EOS model without them.
We use the standard evaluation of Lake and Baroni
(2018): greedy decoding and evaluating based on
exact match. Because we are interested in how
well our models can extrapolate separately from
their ability to know when an output should end,
we use force our models to generate to the correct
sequence length before comparing their predictions
to the gold outputs. For the +EOS model, this en-
tails preventing the model from predicting EOS
tokens by setting that token’s probability to 0 dur-
ing decoding. This gives us the -EOS+Oracle
and +EOS+Oracle evaluations. We additionally
report the exact match accuracy when the +EOS
model is allowed to emit an EOS token (+EOS),
which is the standard evaluation for this task (Lake
and Baroni, 2018).

5.3 Results
We find that the -EOS+Oracle models consis-
tently outperform +EOS+Oracle models across
all length splits (Table 4). We also observe that
after including sequences up to length 26, the mod-
els have seen enough of the new template to per-
form with accuracy ≥ 80% on the rest of the long
sequences. However, the question of what the
-EOS model is doing that allows it to succeed re-
mains. The +EOS model fails in the non-oracle
setting by predicting that sequences should end be-
fore they do, and the +EOS+Oracle model fails
because once it decodes past its maximum train-
ing sequence length, it tends to either repeat the
last token produced or emit unrelated tokens. The
-EOS+Oracle model succeeds, however, by re-
peating the last few tokens when necessary, so as
to complete the last portion of a thrice command
for example. (See Table 5 for two such examples).

We compute the top two principal components



` (length cutoff) 22 24 25 26 27 28 30 32 33 36 40

L
ST

M +EOS 0.16 0.08 0.26 0.61 0.72 0.64 0.60 0.67 0.45 0.47 0.85
+EOS+Oracle 0.18 0.46 0.47 0.71 0.82 0.77 0.80 0.84 0.74 0.81 0.95
-EOS+Oracle 0.61 0.57 0.54 0.83 0.92 0.97 0.90 1.00 0.99 0.98 1.00

Tr
an

sf
or

m
er +EOS 0.00 0.05 0.04 0.00 0.09 0.00 0.09 0.35 0.00 0.00 0.00

+EOS+Oracle 0.53 0.51 0.69 0.76 0.74 0.57 0.78 0.66 0.77 1.00 0.97
-EOS+Oracle 0.58 0.54 0.67 0.82 0.88 0.85 0.89 0.82 1.00 1.00 1.00

Table 4: Exact match accuracies on length splits. Reported results are the median of 5 runs. The +EOS rows
(italicized) are not comparable to the other rows because they are not evaluated in an an oracle setting—they are
provided for reference.

Instruction Model Predicted Actions

walk around left twice and
walk around left thrice

+EOS+Oracle TURN LEFT WALK . . . WALK WALK JUMP WALK WALK
JUMP WALK WALK JUMP

-EOS+Oracle TURN LEFT . . . WALK TURN LEFT WALK TURN LEFT
WALK TURN LEFT WALK TURN LEFT WALK

run around left twice and
run around right thrice

+EOS+Oracle TURN LEFT . . . TURN RIGHT RUN RUN

-EOS+Oracle TURN LEFT . . . TURN RIGHT RUN TURN RIGHT

Table 5: Two examples of errors a +EOS model makes from the 22-token length split: generating irrelevant actions
and repeating the last action. Red tokens are incorrect, blue are correct. See the appendix for more examples.

of the decoder hidden states and plot them as we
did for the Dyck-(k,m) models. While the top two
principal components explain a modest amount of
the variance (27.78% for -EOS and 29.83% for
+EOS), they are still interpretable (Figure 4). In
particular, we can see that the recurrent dynam-
ics break differently in this case compared to the
Dyck-(2,4) case. Here, they break once the +EOS
model puts a plurality of probability mass on the
EOS token (4b). Once this happens, the hidden
states remain in the cluster of EOS states (4a, pink
cluster). The -EOS condition does not have such
an attractor cluster (4d), so these same hidden states
are able to transition between clusters associated
with various token identities (4c). This freedom
likely aids extrapolative performance.

A figure with hidden states colored by length is
available in Appendix C. Both the +EOS and -EOS
show evidence of tracking token position because
knowing how many actions have been taken is an
important component of the SCAN task (for exam-
ple, to follow an instruction like “turn left twice
and walk around right thrice”, a model needs to
recall how many times it has turned left in order to
correctly continue on to walking around thrice).

The results we see here shed some light on the
length generalization work by Lake and Baroni
(2018). They note that when they prevent a model
from predicting EOS (our +EOS+Oracle metric),

they achieved 60.2% exact match accuracy on the
22-token length split with a GRU with a small hid-
den dimension. This number is comparable to the
number we find using -EOS+Oraclemetric. The
success of the low-dimensional GRU may very well
be related to its failure to implement counters as
efficiently as LSTMs (Weiss et al., 2018)—if the
model cannot count well, then it may not learn
length attractors.

5.4 Transformer-based models

All of our experiments so far have used LSTMs, but
transformers are the current state of the art in many
NLP tasks. They also can be trained with the stan-
dard fixed sinusoidal positional embeddings, which
Vaswani et al. (2017) suggest might help with ex-
trapolation due to their periodicity. We train trans-
former +EOS and -EOS models with sinusoidal
positional embeddings on the SCAN length splits
and observe that +EOS models perform about as
poorly as +EOS models in the LSTM case as well
(Table 4). Despite using periodic positional em-
beddings, +EOS models are not able to extrapolate
well in this setting.

6 Experiment 3: Machine Translation

Our final experiment focuses on how well the ex-
trapolation we see in the case of SCAN scales to a
human-language task—translation from German to



(a)

(b)

(c)

(d)

Figure 4: The top two principal components of the
hidden states for the +EOS and -EOS LSTM models
trained on the SCAN 22-token length split. 4a and 4c
color hidden states by the identity of the gold output
tokens for the +EOS and -EOS conditions respectively.
4b and 4d color out-of-domain sequences by whether
the +EOS model puts a plurality of probability mass is
put on the EOS token (<EOS>, red) or on any other to-
ken (Not <EOS>, light blue). It is important to note
that in both plots, the colors are derived from the +EOS
model as we want to investigate how the -EOS model
performs in the places where the +EOS model errs.

English from the WMT2009 challenge. This data
is much more complex than the SCAN task and
has many more subtle markers for length, which
might act as proxies for the EOS token, meaning
that removing EOS tokens from the training data
has a smaller impact on the models’ extrapolative
abilities. We find that there is very little difference
between the +EOS and -EOSmodels’ performance

on out-of-domain lengths compared to SCAN, and
while -EOS perform better in out-of-domain set-
tings more often than +EOS models, removing the
EOS token does not conclusively help with extrap-
olation.

6.1 Methodology
We use a subset of 500,000 German to English
sentences from the WMT2009 challenge Europarl
training set. The median English sentence length
has 24 tokens; we create three length splits: with
` = 10, 15, and 25, giving us approximately 61,
126, and 268 thousand training examples respec-
tively. We train +EOS and -EOS LSTM models
with 2 layers for the encoder and decoder with
500 and 1000-dimensional hidden states as well as
Transformer models, the result of a hyperparameter
search described in Appendix A.3. Additionally,
the training data in both conditions is modified by
removing any final punctuation from the sentences
that could serve as explicit markers for length. Fi-
nally, our evaluations are very similar to the ones
in our SCAN experiments, but our metric is BLEU
rather than exact match accuracy (Papineni et al.,
2002).

We report standard BLEU for the +EOS con-
dition, and two length oracles, where we prevent
the +EOS models from producing EOS tokens and
force sequences produced by all models to stop
decoding at the length that maximizes their BLEU
score. In practice, computing the BLEU score for
all sequence lengths is expensive, so we consider
only lengths within a window of 7 tokens on ei-
ther side of the gold target length, which gets us
within ∼1% of the true oracle score. We train our
models using OpenNMT (Klein et al., 2017) and
calculate BLEU using the sacreBLEU package for
reproducibility (Post, 2018).

6.2 Results
We observe a slight increase in extrapolative per-
formance for -EOS models over +EOS models for
LSTMs in the 15 and 10-token length splits, and
transformers in the 15 and 25-token length splits,
but have no consistent takeaways (Table 6).

We also report in-domain BLEU scores. There
is some variation between these, but mostly less
than between the out-of-domain scores, which may
suggest that the difference of extrapolative perfor-
mance in those models is meaningful. Additionally,
we do not report plots of the top two principal com-
ponents for these models because they only explain



` 10 15 25

LSTM ID OOD ID OOD ID OOD
+EOS 25.25 1.75 25.27 7.24 28.14 16.19
+EOS+Oracle 26.42 4.64 26.43 11.75 29.01 20.34
-EOS+Oracle 26.59 5.14 25.84 12.53 28.70 20.12
∆ 0.17 0.5 -0.59 0.78 -0.31 -0.22

Transformer
+EOS 24.91 1.27 25.67 5.16 28.75 13.32
+EOS+Oracle 26.15 4.87 26.33 10.37 29.29 17.14
-EOS+Oracle 26.73 4.65 26.81 11.65 29.13 17.39
∆ 0.58 -0.22 0.51 1.32 0.16 0.25

Table 6: German-to-English translation BLEU scores.
ID is on held-out data with the same length as the train-
ing data and OOD is data longer than that seen at train-
ing.

3% of the variance and are not visually interesting.
We speculate that we do not see the -EOS mod-

els consistently outperforming the +EOS ones be-
cause are likely more subtle indicators of length
that models in both conditions pick up on, render-
ing the presence of EOS tokens less relevant. Fur-
ther analysis should look to mitigate these length
cues as well as investigate additional length splits.

7 Discussion

For most purposes of generative modeling, it is nec-
essary to know when to end the generative process
in order to use a model; put another way, a -EOS
model is not usable by itself. The immediate engi-
neering question is whether there exists a way to
learn a distribution over when to end the generative
process that does not have the same negative effects
as the EOS decision.

In our Dyck-(k,m) experiments, we observed
that even in -EOS models, there exists a linear sep-
arator in hidden state space between points where
the generative process is and isn’t allowed to termi-
nate. We explore training probe to find this linear
separator, and are able to predict where sequences
end with high accuracy (Table 3). In our other ex-
periments, we did not see such a simple possible
solution, but can speculate as to what it would re-
quire. In particular, the length manifold and length
attractor behaviors seem to indicate that length ex-
trapolation fails because the conditions for stopping
are tracked in these models more or less in terms
of absolute linear position. As such, it is possible
that a successful parameterization may make use of
an implicit checklist model (Kiddon et al., 2016),
that checks off which parts of the input have been
accounted for in the output.

Can we use the same neural architectures, in the
+EOS setting, while achieving better length extrap-
olation? Our PCA experiments seem to indicate
that -EOS models’ length tracking is (at least) lin-
early decodable. This suggests that training models
with an adversarial loss against predicting the posi-
tion of the token may encourage +EOS models to
track length in a way that allows for extrapolation.

8 Conclusion

In this work, we studied a decision often over-
looked in NLP: modeling the probability of ending
the generative process through a special token in
a neural decoder’s output vocabulary. We trained
neural models to predict this special EOS token
and studied how this objective affected their behav-
ior and representations across three diverse tasks.
Our quantitative evaluations took place in an oracle
setting in which we forced all models to gener-
ate until the optimal sequence length at test time.
Under this setting, we consistently found that net-
works trained to predict the EOS token (+EOS) had
a worse length-extrapolative ability than those not
trained to (-EOS). Examining the hidden states of
+EOS and -EOS networks, we observed that +EOS
hidden states exhibited length manifolds and length
attractor behaviors that inhibit extrapolation, and
which otherwise identical -EOS networks do not
exhibit. Thus, we argue that training to predict
the EOS token causes current models to track gen-
erated sequence length in their hidden states in a
manner that does not extrapolate out-of-domain.
When EOS tokens were first introduced to NLP en-
sure probabilistic discrete sequence models main-
tained well-formed distributions over strings, these
models, with a small sets of hidden states, did not
readily pick up on these length correlations. How-
ever, when this NLP technique was ported to more
expressive neural networks, it hid potentially useful
length-extrapolative inductive biases. We see the
evidence presented here as a call to explore alterna-
tive ways to parameterize the end of the generative
process.
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A Experiment Details

A.1 Dyck-(k,m)
The language Dyck-(k,m), for k,m ∈ Z+, is a set
of strings over the vocabulary consisting of k open
brackets, k close brackets, and the EOS token. To
generate a dataset for Dyck-(k,m), we must thus
define a distribution over the language, and sample
from it. Defining this distribution characterizes the
statistical properties of the language – how deeply
nested is it on average, how long are the strings,
etc.

At a high level, we wanted our samples from
Dyck-(k,m) to be difficult – that is, to require long-
term memory, and to traverse from empty memory
to its maximum nesting depth (m) and back mul-
tiple times in the course of a single sample, to
preclude simple heuristics like remembering the
first few open brackets to close the last few. For
further discussion of evaluation of models on Dyck-
k and similar formal languages, see Suzgun et al.
(2019b).

The distribution we define is as follows. If the
string is balanced, we end the string with probabil-
ity 1/2 and open any of the k brackets with proba-
bility 1/2. If the string has more than 0 unclosed
open parentheses but fewer than m (the bound),
we open a bracket with probability 1/2 and close
the most recently opened bracket with probability
1/2; if we open a bracket, we choose uniformly at
random from the k. If the string has m unclosed
open brackets, then it has reached its nesting bound,
and we close the most recently opened bracket with
probability 1.

Sampling directly from this distribution would
lead to exponentially short sequences, which would
break our desideratum of difficulty. So, we truncate
the distribution by the length of strings, ensuring a
minimum (and a maximum) length at training time.

We define the length truncation as follows. Con-
sider that the number of unclosed open brackets at
timestep t is some number between 0 and m. At
any timestep, we move from si to si+1 with prob-
ability 1/2 (opening a bracket), or from si to si−1

with probability 1/2 (closing a bracket.) Let these
states be s0 to sm. What we’d like to see is that
we eventually move from state s0 to sm and back
to s0 multiple times, making sure that the network
cannot use positional heuristics to remember the
first few brackets in order to close the last few. We
ensure this in expectation by making sure that the
minimum truncation length of samples is defined

so that in expectation, sampled strings traverse the
Markov chain from s0 to sm and back to s0 at least
three times.

In practice, we set the minimum length of train-
ing samples to 6m(m−2)+40, and the maximum
length to 7m(m− 2) + 60. Note the quadratic de-
pendence on m; this is because of the expected hit-
ting time of s0 to sm+1 of the m+ 1-state Markov
chain wherein there is a 1/2 probability of moving
in each direction. We add constant factors to ensure
there are no extremely short sequences for small
m; the exact truncation lengths are not as important
as the general scaling.

Additionally, as m increases, the number of
training examples required for consistently high
in-domain performance also increases. We use
10

m
2
+2 training examples for each of the values of

m. For all values of m, we use 10000 test samples.
Our models are single-layer LSTMs with 5m

hidden states. We a batch size of 2
m
2
+2, and use

the Adam optimizer with a learning rate of 0.01
(Kingma and Ba, 2015).

A.2 SCAN
The SCAN model we train is the model that
achieves the best accuracy in-domain in the ex-
periments of Lake and Baroni (2018). This is an
LSTM sequence-to-sequence model with 2 layers
of 200-dimensional hidden units and no dropout or
attention. Optimization was done with the Adam
optimizer (Kingma and Ba, 2015), learning rate
of 0.001. We used OpenNMT to train the trans-
former models (Klein et al., 2017). These models
have 2 layers, 128-dimensional hidden states, 8
attention-heads, and 1024-dimensional feedfoward
layers. All other hyperparameters were the defaults
suggested by OpenNMT for training transformer
sequence-to-sequence models.

A.3 Machine Translation
The German-English MT models we train were
also trained with Open NMT. We trained LSTM
models with attention and 1000-dimensional and
500-dimensional hidden states and two layers. All
other parameters were specified by the OpenNMT
defaults as of OpenNMT-py version 1.1.1. For
the 25-token length split we report results with
1000-dimensional hidden states, and with 500-
dimensional hidden states for the 10-length split.
For the 15-token length split the +EOS model
used 1000-dimensional hidden states while the
+EOS+Oracle and -EOS+Oracle models used



500-dimensional hidden states. This difference is a
result of running hyperparameter optimization and
finding that +EOS baseline performed better with
a larger hidden state size. Our transformer models
were trained using the hyperparameters suggested
by OpenNMT for training transformer sequence-
to-sequence models. This includes 6 layers for
the decoder and decoder, 512-dimensional hidden
states and 2048-dimensional feed-forward layers.

B Additional Plots and Results for
Dyck-2,m Languages

Figure 5: Above we can see a plot of the top two princi-
pal components of hidden states from the +EOS and
-EOS LSTMs trained on they Dyck-2,4. These hid-
den states come from the training samples. The hidden
states are colored by stack state—at that point in the se-
quence, what brackets must be closed and in what order.
Because this is Dyck-2,4 there are 2 types of brackets
which we can call “a” and “b”. An “a” in stack state in
the legend represents that there is a bracket of type “a”
on the stack, and the same for “b”. The top of the stack
is the right-most character. We can see that the the first
principal component roughly represents whether an “a”
or “b” is at the top of the stack.

m +EOS -EOS
-EOS

+ Random Cutoff

4 0.60 0.86 1.0
6 0.68 0.98 1.0
8 0.68 0.96 1.0

Table 8: Dyck-(2,m) bracket closing metric results, me-
dian of 5 independent training runs.

m +EOS -EOS

ID OOD ID OOD
4 2.39 7.09 2.38 2.93
6 2.52 5.14 2.52 2.60
8 2.60 5.24 2.59 2.68

Table 7: Perplexities of the +EOS and -EOS models
trained on Dyck-2,m languages on in-domain (ID) and
out-of-domain (OOD) strings. The perplexities support
the bracket closing results—the perplexities are very
similar in-domain and out-of-domain for -EOS model
but differ substantially for the +EOS model. Reported
value is the median of five runs, lower is better.

Our -EOS models were not able to achieve per-
fect accuracy on the the bracket-closing task on
longer sequences. We suspect that this failure
is due to the -EOS models picking up on other
signals for sequence length that were present in
our Dyck-(2,m) samples. Namely, all of our sam-
ples ended in an empty bracket state, so the final
non-EOS token was always a closing bracket. To
address this issue, we explored removing a ran-
dom number of additional tokens from the end of
the -EOS models’ training data (-EOS +Random
Cutoff). We found that doing this allowed us to
perfectly extrapolate to sequences 10x longer (Ta-
ble 8).

C Additional Plots and Samples for
SCAN Task



run around left after
jump around left twice look around left thrice run around left thrice after

jump around right thrice

+EOS -EOS +EOS -EOS +EOS -EOS
1 TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT TURN RIGHT
2 JUMP JUMP LOOK LOOK JUMP JUMP
3 TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT TURN RIGHT
4 JUMP JUMP LOOK LOOK JUMP JUMP
5 TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT TURN RIGHT
6 JUMP JUMP LOOK LOOK JUMP JUMP
7 TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT TURN RIGHT
8 JUMP JUMP LOOK LOOK JUMP JUMP
9 TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT TURN RIGHT
10 JUMP JUMP LOOK LOOK JUMP JUMP
11 TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT TURN RIGHT
12 JUMP JUMP LOOK LOOK JUMP JUMP
13 TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT TURN RIGHT
14 JUMP JUMP LOOK LOOK JUMP JUMP
15 TURN LEFT TURN LEFT TURN LEFT TURN LEFT TURN RIGHT TURN RIGHT
16 JUMP JUMP LOOK LOOK JUMP JUMP
17 TURN LEFT TURN LEFT LOOK TURN LEFT TURN RIGHT TURN LEFT
18 JUMP RUN JUMP LOOK JUMP RUN
19 TURN LEFT TURN LEFT LOOK TURN LEFT TURN LEFT TURN LEFT
20 RUN RUN JUMP LOOK RUN RUN
21 TURN LEFT TURN LEFT LOOK TURN LEFT TURN LEFT TURN LEFT
22 RUN RUN JUMP LOOK RUN RUN
23 TURN LEFT TURN LEFT LOOK TURN LEFT TURN LEFT TURN LEFT
24 RUN RUN LOOK LOOK RUN RUN
25 TURN LEFT TURN LEFT
26 RUN RUN
27 TURN LEFT TURN LEFT
28 RUN RUN
29 TURN LEFT TURN LEFT
30 RUN RUN
31 TURN LEFT TURN LEFT
32 RUN RUN
33 RUN TURN LEFT
34 RUN RUN
35 RUN TURN LEFT
36 RUN RUN
37 RUN TURN LEFT
38 RUN RUN
39 RUN TURN LEFT
40 RUN RUN
41 RUN TURN LEFT
42 RUN RUN
43 RUN TURN LEFT
44 RUN RUN
45 RUN TURN LEFT
46 RUN RUN
47 RUN TURN LEFT
48 RUN RUN

Table 9: More illustrative selections of errors the +EOS and -EOS models make when trained on the SCAN 22-
token length split. In the left-most column we see that the +EOS model makes a mistake on the conjunction that
the -EOS model does not make. In the middle column we see the +EOS model fail on the template that is not
seen at training time. In the right-most column we see an example where both models fail: the conjunction of two
templates not seen at training time. The +EOS model begins the third “jump around” but does not finish it, while
the -EOS model switches completely to the first “turn left”.



Figure 6: The top two principal components of hid-
den states from +EOS and -EOS LSTMs trained on
the SCAN 22-token length split. Hidden states are col-
ored by their position in the sequence. We can see that
both models track length somewhat as it is required,
however the +EOSmodel has an attractor cluster where
all points end up while the -EOS model does not have
such a cluster.



Input: run twice after jump right
Output: TURN RIGHT JUMP RUN RUN

Input: run around right twice
Output: TURN RIGHT RUN TURN RIGHT RUN
TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT
RUN TURN RIGHT RUN TURN RIGHT RUN
TURN RIGHT RUN

Input: turn around left twice after run around left twice
Output: TURN LEFT RUN TURN LEFT RUN
TURN LEFT RUN TURN LEFT RUN TURN LEFT
RUN TURN LEFT RUN TURN LEFT RUN
TURN LEFT RUN TURN LEFT TURN LEFT
TURN LEFT TURN LEFT TURN LEFT TURN LEFT
TURN LEFT TURN LEFT

Input: walk opposite left thrice and run around right thrice
Output: TURN LEFT TURN LEFT WALK TURN LEFT
TURN LEFT WALK TURN LEFT TURN LEFT WALK
TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT
RUN TURN RIGHT RUN TURN RIGHT RUN
TURN RIGHT RUN TURN RIGHT RUN TURN RIGHT
RUN TURN RIGHT RUN TURN RIGHT RUN
TURN RIGHT RUN TURN RIGHT RUN

Input: jump around right thrice and walk around right thrice
Output:TURN RIGHT JUMP TURN RIGHT
JUMP TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT JUMP TURN RIGHT JUMP
TURN RIGHT WALK TURN RIGHT WALK
TURN RIGHT WALK TURN RIGHT WALK
TURN RIGHT WALK TURN RIGHT WALK
TURN RIGHT WALK TURN RIGHT WALK
TURN RIGHT WALK TURN RIGHT WALK
TURN RIGHT WALK TURN RIGHT WALK

Figure 7: Cherry-picked, but representative, examples of the paths of gold (i.e. not decoded) in-domain (length 4
and 16) and out-of-domain (length 24, 33, 48) examples through the hidden state space of LSTMs trained on the
SCAN 22-token length split (top two principle components). Note that the EOS token is included in the +EOS plots,
giving them one extra point. Interestingly, the hidden states from the OOD sequences arrive at the EOS attractor
well after the maximum training length (22) (for example, the sequence of length 48 arrives at the attractor at the
hidden state at position 33), suggesting that the +EOS does have some extrapolative abilities, but the EOS attractor
is suppressing them.


