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Abstract

Two important aspects of semantic pars-
ing for question answering are the breadth
of the knowledge source and the depth of
logical compositionality. While existing
work trades off one aspect for another, this
paper simultaneously makes progress on
both fronts through a new task: answering
complex questions on semi-structured ta-
bles using question-answer pairs as super-
vision. The central challenge arises from
two compounding factors: the broader do-
main results in an open-ended set of re-
lations, and the deeper compositionality
results in a combinatorial explosion in
the space of logical forms. We propose
a logical-form driven parsing algorithm
guided by strong typing constraints and
show that it obtains significant improve-
ments over natural baselines. For evalua-
tion, we created a new dataset of 22,033
complex questions on Wikipedia tables,
which is made publicly available.

1 Introduction

In semantic parsing for question answering, nat-
ural language questions are converted into logi-
cal forms, which can be executed on a knowl-
edge source to obtain answer denotations. Early
semantic parsing systems were trained to answer
highly compositional questions, but the knowl-
edge sources were limited to small closed-domain
databases (Zelle and Mooney, 1996; Wong and
Mooney, 2007; Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2011). More recent work
sacrifices compositionality in favor of using more
open-ended knowledge bases such as Freebase
(Cai and Yates, 2013; Berant et al., 2013; Fader
et al., 2014; Reddy et al., 2014). However, even
these broader knowledge sources still define a

Year City Country Nations
1896 Athens Greece 14
1900 Paris France 24
1904 St. Louis USA 12
. . . . . . . . . . . .
2004 Athens Greece 201
2008 Beijing China 204
2012 London UK 204

x1: “Greece held its last Summer Olympics in which year?”
y1: {2004}
x2: “In which city’s the first time with at least 20 nations?”
y2: {Paris}
x3: “Which years have the most participating countries?”
y3: {2008, 2012}
x4: “How many events were in Athens, Greece?”
y4: {2}
x5: “How many more participants were there in 1900 than

in the first year?”
y5: {10}

Figure 1: Our task is to answer a highly composi-
tional question from an HTML table. We learn
a semantic parser from question-table-answer
triples {(xi, ti, yi)}.

rigid schema over entities and relation types, thus
restricting the scope of answerable questions.

To simultaneously increase both the breadth of
the knowledge source and the depth of logical
compositionality, we propose a new task (with an
associated dataset): answering a question using an
HTML table as the knowledge source. Figure 1
shows several question-answer pairs and an ac-
companying table, which are typical of those in
our dataset. Note that the questions are logically
quite complex, involving a variety of operations
such as comparison (x2), superlatives (x3), aggre-
gation (x4), and arithmetic (x5).

The HTML tables are semi-structured and not
normalized. For example, a cell might contain
multiple parts (e.g., “Beijing, China” or “200
km”). Additionally, we mandate that the train-
ing and test tables are disjoint, so at test time,
we will see relations (column headers; e.g., “Na-
tions”) and entities (table cells; e.g., “St. Louis”)



that were not observed during training. This is in
contrast to knowledge bases like Freebase, which
have a global fixed relation schema with normal-
ized entities and relations.

Our task setting produces two main challenges.
Firstly, the increased breadth in the knowledge
source requires us to generate logical forms from
novel tables with previously unseen relations and
entities. We therefore cannot follow the typical
semantic parsing strategy of constructing or learn-
ing a lexicon that maps phrases to relations ahead
of time. Secondly, the increased depth in com-
positionality and additional logical operations ex-
acerbate the exponential growth of the number of
possible logical forms.

We trained a semantic parser for this task from
question-answer pairs based on the framework il-
lustrated in Figure 2. First, relations and entities
from the semi-structured HTML table are encoded
in a graph. Then, the system parses the question
into candidate logical forms with a high-coverage
grammar, reranks the candidates with a log-linear
model, and then executes the highest-scoring logi-
cal form to produce the answer denotation. We use
beam search with pruning strategies based on type
and denotation constraints to control the combina-
torial explosion.

To evaluate the system, we created a new
dataset, WIKITABLEQUESTIONS, consisting of
2,108 HTML tables from Wikipedia and 22,033
question-answer pairs. When tested on unseen ta-
bles, the system achieves an accuracy of 37.1%,
which is significantly higher than the information
retrieval baseline of 12.7% and a simple semantic
parsing baseline of 24.3%.

2 Task

Our task is as follows: given a table t and a ques-
tion x about the table, output a list of values y
that answers the question according to the table.
Example inputs and outputs are shown in Fig-
ure 1. The system has access to a training set
D = {(xi, ti, yi)}Ni=1 of questions, tables, and an-
swers, but the tables in test data do not appear dur-
ing training.

The only restriction on the question x is that a
person must be able to answer it using just the ta-
ble t. Other than that, the question can be of any
type, ranging from a simple table lookup question
to a more complicated one that involves various
logical operations.

t
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Greece held the last

Summer Olympics in

which year?

λ[Year . . . ].argmax(. . . Greece, Index) {2004}

Figure 2: The prediction framework: (1) the table
t is deterministically converted into a knowledge
graph w as shown in Figure 3; (2) with informa-
tion from w, the question x is parsed into candi-
date logical forms in Zx; (3) the highest-scoring
candidate z ∈ Zx is chosen; and (4) z is executed
on w, yielding the answer y.

Dataset. We created a new dataset, WIK-
ITABLEQUESTIONS, of question-answer pairs on
HTML tables as follows. We randomly selected
data tables from Wikipedia with at least 8 rows and
5 columns. We then created two Amazon Mechan-
ical Turk tasks. The first task asks workers to write
trivia questions about the table. For each question,
we put one of the 36 generic prompts such as “The
question should require calculation” or “contains
the word ‘first’ or its synonym” to encourage more
complex utterances. Next, we submit the result-
ing questions to the second task where the work-
ers answer each question based on the given table.
We only keep the answers that are agreed upon by
at least two workers. After this filtering, approxi-
mately 69% of the questions remains.

The final dataset contains 22,033 examples on
2,108 tables. We set aside 20% of the tables and
their associated questions as the test set and de-
velop on the remaining examples. Simple pre-
processing was done on the tables: We omit all
non-textual contents of the tables, and if there is a
merged cell spanning many rows or columns, we
unmerge it and duplicate its content into each un-
merged cell. Section 7.2 analyzes various aspects
of the dataset and compares it to other datasets.

3 Approach

We now describe our semantic parsing framework
for answering a given question and for training the
model with question-answer pairs.



Prediction. Given a table t and a question x,
we predict an answer y using the framework il-
lustrated in Figure 2. We first convert the table
t into a knowledge graph w (“world”) which en-
codes different relations in the table (Section 4).
Next, we generate a set of candidate logical forms
Zx by parsing the question x using the informa-
tion from w (Section 6.1). Each generated logical
form z ∈ Zx is a graph query that can be exe-
cuted on the knowledge graph w to get a denota-
tion JzKw. We extract a feature vector φ(x,w, z)
for each z ∈ Zx (Section 6.2) and define a log-
linear distribution over the candidates:

pθ(z | x,w) ∝ exp{θ>φ(x,w, z)}, (1)

where θ is the parameter vector. Finally, we
choose the logical form z with the highest model
probability and execute it on w to get the answer
denotation y = JzKw.

Training. Given training examples D =
{(xi, ti, yi)}Ni=1, we seek a parameter vector θ
that maximizes the regularized log-likelihood of
the correct denotation yi marginalized over logi-
cal forms z. Formally, we maximize the objective
function

J(θ) =
1

N

N∑
i=1

log pθ(yi | xi, wi)− λ ‖θ‖1 , (2)

where wi is deterministically generated from ti,
and

pθ(y | x,w) =
∑

z∈Zx;y=JzKw

pθ(z | x,w). (3)

We optimize θ using AdaGrad (Duchi et al.,
2010), running 3 passes over the data. We use L1

regularization with λ = 3 × 10−5 obtained from
cross-validation.

The following sections explain individual sys-
tem components in more detail.

4 Knowledge graph

Inspired by the graph representation of knowledge
bases, we preprocess the table t by deterministi-
cally converting it into a knowledge graph w as
illustrated in Figure 3. In the most basic form, ta-
ble rows become row nodes, strings in table cells
become entity nodes,1 and table columns become
directed edges from the row nodes to the entity

1Two occurrences of the same string constitute one node.

· · ·

0 1896 Athens Greece

· · ·

1 1900 Paris France

...

1900.0 1900-XX-XX

Next

Next

Index

Index

Year City Country

Year City Country

Number Date

Figure 3: Part of the knowledge graph correspond-
ing to the table in Figure 1. Circular nodes are row
nodes. We augment the graph with different en-
tity normalization nodes such as Number and Date
(red) and additional row node relations Next and
Index (blue).

nodes of that column. The column headers are
used as edge labels for these row-entity relations.

The knowledge graph representation is conve-
nient for three reasons. First, we can encode dif-
ferent forms of entity normalization in the graph.
Some entity strings (e.g., “1900”) can be inter-
preted as a number, a date, or a proper name de-
pending on the context, while some other strings
(e.g., “200 km”) have multiple parts. Instead of
committing to one normalization scheme, we in-
troduce edges corresponding to different normal-
ization methods from the entity nodes. For exam-
ple, the node 1900 will have an edge called Date

to another node 1900-XX-XX of type date. Apart
from type checking, these normalization nodes
also aid learning by providing signals on the ap-
propriate answer type. For instance, we can define
a feature that associates the phrase “how many”
with a logical form that says “traverse a row-entity
edge, then a Number edge” instead of just “traverse
a row-entity edge.”

The second benefit of the graph representation
is its ability to handle various logical phenomena
via graph augmentation. For example, to answer
questions of the form “What is the next . . . ?” or
“Who came before . . . ?”, we augment each row
node with an edge labeled Next pointing to the
next row node, after which the questions can be
answered by traversing the Next edge. In this
work, we choose to add two special edges on each
row node: the Next edge mentioned above and
an Index edge pointing to the row index number
(0, 1, 2, . . . ).

Finally, with a graph representation, we can
query it directly using a logical formalism for
knowledge graphs, which we turn to next.



Name Example
Join City.Athens

(row nodes with a City edge to Athens)
Union City.(Athens t Beijing)
Intersection City.Athens u Year.Number.<.1990
Reverse R[Year].City.Athens
(entities where a row in City.Athens has a Year edge to)

Aggregation count(City.Athens)
(the number of rows with city Athens)

Superlative argmax(City.Athens, Index)
(the last row with city Athens)

Arithmetic sub(204, 201) (= 204− 201)
Lambda λx[Year.Date.x]

(a binary: composition of two relations)

Table 1: The lambda DCS operations we use.

5 Logical forms

As our language for logical forms, we use
lambda dependency-based compositional seman-
tics (Liang, 2013), or lambda DCS, which we
briefly describe here. Each lambda DCS logical
form is either a unary (denoting a list of values) or
a binary (denoting a list of pairs). The most basic
unaries are singletons (e.g., China represents an
entity node, and 30 represents a single number),
while the most basic binaries are relations (e.g.,
City maps rows to city entities, Next maps rows
to rows, and >= maps numbers to numbers). Log-
ical forms can be combined into larger ones via
various operations listed in Table 1. Each opera-
tion produces a unary except lambda abstraction:
λx[f(x)] is a binary mapping x to f(x).

6 Parsing and ranking

Given the knowledge graph w, we now describe
how to parse the utterance x into a set of candidate
logical forms Zx

6.1 Parsing algorithm

We propose a new floating parser which is more
flexible than a standard chart parser. Both parsers
recursively build up derivations and corresponding
logical forms by repeatedly applying deduction
rules, but the floating parser allows logical form
predicates to be generated independently from the
utterance.

Chart parser. We briefly review the CKY al-
gorithm for chart parsing to introduce notation.
Given an utterance with tokens x1, . . . , xn, the
CKY algorithm applies deduction rules of the fol-

Rule Semantics Example
Anchored to the utterance

TokenSpan→ Entity match(z1) Greece
(match(s) = entity with name s) anchored to “Greece”

TokenSpan→ Atomic val(z1) 2012-07-XX
(val(s) = interpreted value) anchored to “July 2012”

Unanchored (floating)
∅ → Relation r Country

(r = row-entity relation)
∅ → Relation λx[r.p.x] λx[Year.Date.x]

(p = normalization relation)
∅ → Records Type.Row (list of all rows)
∅ → RecordFn Index (row← row index)

Table 2: Base deduction rules. Entities and atomic
values (e.g., numbers, dates) are anchored to to-
ken spans, while other predicates are kept floating.
(a← b represents a binary mapping b to a.)

lowing two kinds:

(TokenSpan, i, j)[s]→ (c, i, j)[f(s)], (4)

(c1, i, k)[z1] + (c2, k + 1, j)[z2] (5)

→ (c, i, j)[f(z1, z2)].

The first rule is a lexical rule that matches an utter-
ance token span xi · · ·xj (e.g., s = “New York”)
and produces a logical form (e.g., f(s) =
NewYorkCity) with category c (e.g., Entity).
The second rule takes two adjacent spans giv-
ing rise to logical forms z1 and z2 and builds a
new logical form f(z1, z2). Algorithmically, CKY
stores derivations of category c covering the span
xi · · ·xj in a cell (c, i, j). CKY fills in the cells of
increasing span lengths, and the logical forms in
the top cell (ROOT, 1, n) are returned.

Floating parser. Chart parsing uses lexical
rules (4) to generate relevant logical predicates,
but in our setting of semantic parsing on tables,
we do not have the luxury of starting with or
inducing a full-fledged lexicon. Moreover, there
is a mismatch between words in the utterance
and predicates in the logical form. For in-
stance, consider the question “Greece held its
last Summer Olympics in which year?” on the
table in Figure 1 and the correct logical form
R[λx[Year.Date.x]].argmax(Country.Greece, Index).
While the entity Greece can be anchored to the
token “Greece”, some logical predicates (e.g.,
Country) cannot be clearly anchored to a token
span. We could potentially learn to anchor the
logical form Country.Greece to “Greece”, but if
the relation Country is not seen during training,
such a mapping is impossible to learn from the
training data. Similarly, some prominent tokens



Rule Semantics Example
Join + Aggregate

Entity or Atomic→ Values z1 China
Atomic→ Values c.z1 >=.30 (at least 30)

(c ∈ {<, >, <=, >=})
Relation + Values→ Records z1.z2 Country.China (events (rows) where the country is China)

Relation + Records→ Values R[z1].z2 R[Year].Country.China (years of events in China)
Records→ Records Next.z1 Next.Country.China (. . . before China)
Records→ Records R[Next].z1 R[Next].Country.China (. . . after China)

Values→ Atomic a(z1) count(Country.China) (How often did China . . . )
(a ∈ {count, max, min, sum, avg})

Values→ ROOT z1
Superlative

Relation→ RecordFn z1 λx[Nations.Number.x] (row← value in Nations column)
Records + RecordFn→ Records s(z1, z2) argmax(Type.Row, λx[Nations.Number.x])

(s ∈ {argmax, argmin}) (events with the most participating nations)
argmin(City.Athens, Index) (first event in Athens)

Relation→ ValueFn R[λx[a(z1.x)]] R[λx[count(City.x)]] (city← num. of rows with that city)
Relation + Relation→ ValueFn λx[R[z1].z2.x] λx[R[City].Nations.Number.x]

(city← value in Nations column)
Values + ValueFn→ Values s(z1, z2) argmax(. . . ,R[λx[count(City.x)]]) (most frequent city)

Other operations
ValueFn + Values + Values→ Values o(R[z1].z2,R[z1].z3) sub(R[Number].R[Nations].City.London, . . . )

(o ∈ {add, sub, mul, div}) (How many more participants were in London than . . . )
Entity + Entity→ Values z1 t z2 China t France (China or France)

Records + Records→ Records z1 u z2 City.Beijing u Country.China (. . . in Beijing, China)

Table 3: Compositional deduction rules. Each rule c1, . . . , ck → c takes logical forms z1, . . . , zk con-
structed over categories c1, . . . , ck, respectively, and produces a logical form based on the semantics.

(e.g., “Olympics”) are irrelevant and have no
predicates anchored to them.

Therefore, instead of anchoring each predicate
in the logical form to tokens in the utterance via
lexical rules, we propose parsing more freely. We
replace the anchored cells (c, i, j) with floating
cells (c, s) of category c and logical form size s.
Then we apply rules of the following three kinds:

(TokenSpan, i, j)[s]→ (c, 1)[f(s)], (6)

∅ → (c, 1)[f()], (7)

(c1, s1)[z1] + (c2, s2)[z2] (8)

→ (c, s1 + s2 + 1)[f(z1, z2)].

Note that rules (6) are similar to (4) in chart
parsing except that the floating cell (c, 1) only
keeps track of the category and its size 1, not
the span (i, j). Rules (7) allow us to construct
predicates out of thin air. For example, we can
construct a logical form representing a table rela-
tion Country in cell (Relation, 1) using the rule
∅ → Relation [Country] independent of the ut-
terance. Rules (8) perform composition, where
the induction is on the size s of the logical form
rather than the span length. The algorithm stops
when the specified maximum size is reached, after
which the logical forms in cells (ROOT, s) for any
s are included in Zx. Figure 4 shows an example
derivation generated by our floating parser.

(Values, 8)

R[λx[Year.Date.x]].argmax(Country.Greece, Index)

(Relation, 1)

λx[Year.Date.x]

(Records, 6)

argmax(Country.Greece, Index)

(Records, 4)

Country.Greece

(Relation, 1)

Country

(Values, 2)

Greece

(Entity , 1)

Greece

(TokenSpan, 1, 1)

“Greece”

(RecordFn, 1)

Index

Figure 4: A derivation for the utterance “Greece
held its last Summer Olympics in which year?”
Only Greece is anchored to a phrase “Greece”;
Year and other predicates are floating.

The floating parser is very flexible: it can skip
tokens and combine logical forms in any order.
This flexibility might seem too unconstrained, but
we can use strong typing constraints to prevent
nonsensical derivations from being constructed.

Tables 2 and 3 show the full set of deduction
rules we use. We assume that all named entities
will explicitly appear in the question x, so we an-



“Greece held its last Summer Olympics in which year?”
z = R[λx[Year.Number.x]].argmax(Type.Row, Index)

y = {2012} (type: NUM, column: YEAR)

Feature Name Note
(“last”, predicate = argmax) lex
phrase = predicate unlex (∵ “year” = Year)
missing entity unlex (∵ missing Greece)
denotation type = NUM
denotation column = YEAR
(“which year”, type = NUM) lex
phrase = column unlex (∵ “year” = YEAR)
(Q = “which”, type = NUM) lex
(H = “year”, type = NUM) lex
H = column unlex (∵ “year” = YEAR)

Table 4: Example features that fire for the (incor-
rect) logical form z. All features are binary. (lex =
lexicalized)

chor all entity predicates (e.g., Greece) to token
spans (e.g., “Greece”). We also anchor all numer-
ical values (numbers, dates, percentages, etc.) de-
tected by an NER system. In contrast, relations
(e.g., Country) and operations (e.g., argmax) are
kept floating since we want to learn how they
are expressed in language. Connections between
phrases in x and the generated relations and op-
erations in z are established in the ranking model
through features.

6.2 Features

We define features φ(x,w, z) for our log-linear
model to capture the relationship between the
question x and the candidate z. Table 4 shows
some example features from each feature type.
Most features are of the form (f(x), g(z)) or
(f(x), h(y)) where y = JzKw is the denotation,
and f , g, and h extract some information (e.g.,
identity, POS tags) from x, z, or y, respectively.

phrase-predicate: Conjunctions between n-
grams f(x) from x and predicates g(z) from z.
We use both lexicalized features, where all possi-
ble pairs (f(x), g(z)) form distinct features, and
binary unlexicalized features indicating whether
f(x) and g(z) have a string match.

missing-predicate: Indicators on whether there
are entities or relations mentioned in x but not in
z. These features are unlexicalized.

denotation: Size and type of the denotation
y = JxKw. The type can be either a primitive type
(e.g., NUM, DATE, ENTITY) or the name of the
column containing the entity in y (e.g., CITY).

phrase-denotation: Conjunctions between n-
grams from x and the types of y. Similar to the
phrase-predicate features, we use both lexicalized

and unlexicalized features.
headword-denotation: Conjunctions between

the question word Q (e.g., what, who, how many)
or the headword H (the first noun after the ques-
tion word) with the types of y.

6.3 Generation and pruning

Due to their recursive nature, the rules allow us
to generate highly compositional logical forms.
However, the compositionality comes at the cost
of generating exponentially many logical forms,
most of which are redundant (e.g., logical forms
with an argmax operation on a set of size 1). We
employ several methods to deal with this combi-
natorial explosion:

Beam search. We compute the model proba-
bility of each partial logical form based on avail-
able features (i.e., features that do not depend on
the final denotation) and keep only the K = 200
highest-scoring logical forms in each cell.

Pruning. We prune partial logical forms that
lead to invalid or redundant final logical forms.
For example, we eliminate any logical form that
does not type check (e.g., Beijing t Greece),
executes to an empty list (e.g., Year.Number.24),
includes an aggregate or superlative on a singleton
set (e.g., argmax(Year.Number.2012, Index)), or
joins two relations that are the reverses of each
other (e.g., R[City].City.Beijing).

7 Experiments

7.1 Main evaluation

We evaluate the system on the development sets
(three random 80:20 splits of the training data) and
the test data. In both settings, the tables we test on
do not appear during training.

Evaluation metrics. Our main metric is accu-
racy, which is the number of examples (x, t, y)
on which the system outputs the correct answer y.
We also report the oracle score, which counts the
number of examples where at least one generated
candidate z ∈ Zx executes to y.

Baselines. We compare the system to two base-
lines. The first baseline (IR), which simulates in-
formation retrieval, selects an answer y among the
entities in the table using a log-linear model over
entities (table cells) rather than logical forms. The
features are conjunctions between phrases in x and
properties of the answers y, which cover all fea-
tures in our main system that do not involve the
logical form. As an upper bound of this baseline,



dev test
acc ora acc ora

IR baseline 13.4 69.1 12.7 70.6
WQ baseline 23.6 34.4 24.3 35.6
Our system 37.0 76.7 37.1 76.6

Table 5: Accuracy (acc) and oracle scores (ora)
on the development sets (3 random splits of the
training data) and the test data.

acc ora
Our system 37.0 76.7

(a) Rule Ablation
join only 10.6 15.7
join + count (= WQ baseline) 23.6 34.4
join + count + superlative 30.7 68.6
all − {u,t} 34.8 75.1

(b) Feature Ablation
all − features involving predicate 11.8 74.5

all − phrase-predicate 16.9 74.5
all − lex phrase-predicate 17.6 75.9
all − unlex phrase-predicate 34.3 76.7

all − missing-predicate 35.9 76.7
all − features involving denotation 33.5 76.8

all − denotation 34.3 76.6
all − phrase-denotation 35.7 76.8
all − headword-denotation 36.0 76.7

(c) Anchor operations to trigger words 37.1 59.4

Table 6: Average accuracy and oracle scores on
development data in various system settings.

69.1% of the development examples have the an-
swer appearing as an entity in the table.

In the second baseline (WQ), we only allow de-
duction rules that produce join and count logical
forms. This rule subset has the same logical cov-
erage as Berant and Liang (2014), which is de-
signed to handle the WEBQUESTIONS (Berant et
al., 2013) and FREE917 (Cai and Yates, 2013)
datasets.

Results. Table 5 shows the results compared
to the baselines. Our system gets an accuracy
of 37.1% on the test data, which is significantly
higher than both baselines, while the oracle is
76.6%. The next subsections analyze the system
components in more detail.

7.2 Dataset statistics

In this section, we analyze the breadth and depth
of the WIKITABLEQUESTIONS dataset, and how
the system handles them.

Number of relations. With 3,929 unique col-
umn headers (relations) among 13,396 columns,
the tables in the WIKITABLEQUESTIONS dataset
contain many more relations than closed-domain
datasets such as Geoquery (Zelle and Mooney,

Operation Amount
join (table lookup) 13.5%
+ join with Next + 5.5%
+ aggregate (count, sum, max, . . . ) + 15.0%
+ superlative (argmax, argmin) + 24.5%
+ arithmetic, u, t + 20.5%
+ other phenomena + 21.0%

Table 7: The logical operations required to answer
the questions in 200 random examples.

1996) and ATIS (Price, 1990). Additionally, the
logical forms that execute to the correct denota-
tions refer to a total of 2,056 unique column head-
ers, which is greater than the number of relations
in the FREE917 dataset (635 Freebase relations).

Knowledge coverage. We sampled 50 exam-
ples from the dataset and tried to answer them
manually using Freebase. Even though Free-
base contains some information extracted from
Wikipedia, we can answer only 20% of the ques-
tions, indicating that WIKITABLEQUESTIONS

contains a broad set of facts beyond Freebase.
Logical operation coverage. The dataset cov-

ers a wide range of question types and logical
operations. Table 6(a) shows the drop in oracle
scores when different subsets of rules are used to
generate candidates logical forms. The join only
subset corresponds to simple table lookup, while
join + count is the WQ baseline for Freebase ques-
tion answering on the WEBQUESTIONS dataset.
Finally, join + count + superlative roughly corre-
sponds to the coverage of the Geoquery dataset.

To better understand the distribution of log-
ical operations in the WIKITABLEQUESTIONS

dataset, we manually classified 200 examples
based on the types of operations required to an-
swer the question. The statistics in Table 7 shows
that while a few questions only require simple
operations such as table lookup, the majority of
the questions demands more advanced operations.
Additionally, 21% of the examples cannot be an-
swered using any logical form generated from the
current deduction rules; these examples are dis-
cussed in Section 7.4.

Compositionality. From each example, we
compute the logical form size (number of rules
applied) of the highest-scoring candidate that exe-
cutes to the correct denotation. The histogram in
Figure 5 shows that a significant number of logical
forms are non-trivial.

Beam size and pruning. Figure 6 shows the
results with and without pruning on various beam
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Figure 5: Sizes of the highest-scoring correct can-
didate logical forms in development examples.
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Figure 6: Accuracy (solid red) and oracle (dashed
blue) scores with different beam sizes.

sizes. Apart from saving time, pruning also pre-
vents bad logical forms from clogging up the beam
which hurts both oracle and accuracy metrics.

7.3 Features

Effect of features. Table 6(b) shows the accu-
racy when some feature types are ablated. The
most influential features are lexicalized phrase-
predicate features, which capture the relationship
between phrases and logical operations (e.g., relat-
ing “last” to argmax) as well as between phrases
and relations (e.g., relating “before” to < or Next,
and relating “who” to the relation Name).

Anchoring with trigger words. In our parsing
algorithm, relations and logical operations are not
anchored to the utterance. We consider an alter-
native approach where logical operations are an-
chored to “trigger” phrases, which are hand-coded
based on co-occurrence statistics (e.g., we trigger
a count logical form with how, many, and total).

Table 6(c) shows that the trigger words do not
significantly impact the accuracy, suggesting that
the original system is already able to learn the re-
lationship between phrases and operations even
without a manual lexicon. As an aside, the huge
drop in oracle is because fewer “semantically in-
correct” logical forms are generated; we discuss
this phenomenon in the next subsection.

7.4 Semantically correct logical forms

In our setting, we face a new challenge that arises
from learning with denotations: with deeper com-
positionality, a larger number of nonsensical log-
ical forms can execute to the correct denotation.

For example, if the target answer is a small num-
ber (say, 2), it is possible to count the number of
rows with some random properties and arrive at
the correct answer. However, as the system en-
counters more examples, it can potentially learn to
disfavor them by recognizing the characteristics of
semantically correct logical forms.

Generating semantically correct logical
forms. The system can learn the features of
semantically correct logical forms only if it can
generate them in the first place. To see how well
the system can generate correct logical forms,
looking at the oracle score is insufficient since
bad logical forms can execute to the correct
denotations. Instead, we randomly chose 200 ex-
amples and manually annotated them with logical
forms to see if a trained system can produce the
annotated logical form as a candidate.

Out of 200 examples, we find that 79% can
be manually annotated. The remaining ones in-
clude artifacts such as unhandled question types
(e.g., yes-no questions, or questions with phrases
“same” or “consecutive”), table cells that require
advanced normalization methods (e.g., cells with
comma-separated lists), and incorrect annotations.

The system generates the annotated logical
form among the candidates in 53.5% of the ex-
amples. The missing examples are mostly caused
by anchoring errors due to lexical mismatch (e.g.,
“Italian”→ Italy, or “no zip code”→ an empty
cell in the zip code column) or the need to generate
complex logical forms from a single phrase (e.g.,
“May 2010”→ >=.2010-05-01u<=.2010-05-31).

7.5 Error analysis

The errors on the development data can be divided
into four groups. The first two groups are unhan-
dled question types (21%) and the failure to an-
chor entities (25%) as described in Section 7.4.
The third group is normalization and type errors
(29%): although we handle some forms of en-
tity normalization, we observe many unhandled
string formats such as times (e.g., 3:45.79) and
city-country pairs (e.g., Beijing, China), as well as
complex calculation such as computing time peri-
ods (e.g., 12pm–1am→ 1 hour). Finally, we have
ranking errors (25%) which mostly occur when the
utterance phrase and the relation are obliquely re-
lated (e.g., “airplane” and Model).



8 Discussion

Our work simultaneously increases the breadth of
knowledge source and the depth of compositional-
ity in semantic parsing. This section explores the
connections in both aspects to related work.

Logical coverage. Different semantic parsing
systems are designed to handle different sets of
logical operations and degrees of compositional-
ity. For example, form-filling systems (Wang et
al., 2011) usually cover a smaller scope of opera-
tions and compositionality, while early statistical
semantic parsers for question answering (Wong
and Mooney, 2007; Zettlemoyer and Collins,
2007) and high-accuracy natural language inter-
faces for databases (Androutsopoulos et al., 1995;
Popescu et al., 2003) target more compositional
utterances with a wide range of logical opera-
tions. This work aims to increase the logical
coverage even further. For example, compared
to the Geoquery dataset, the WIKITABLEQUES-
TIONS dataset includes a move diverse set of log-
ical operations, and while it does not have ex-
tremely compositional questions like in Geoquery
(e.g., “What states border states that border states
that border Florida?”), our dataset contains fairly
compositional questions on average.

To parse a compositional utterance, many works
rely on a lexicon that translates phrases to enti-
ties, relations, and logical operations. A lexicon
can be automatically generated (Unger and Cimi-
ano, 2011; Unger et al., 2012), learned from data
(Zettlemoyer and Collins, 2007; Kwiatkowski et
al., 2011), or extracted from external sources (Cai
and Yates, 2013; Berant et al., 2013), but requires
some techniques to generalize to unseen data. Our
work takes a different approach similar to the log-
ical form growing algorithm in Berant and Liang
(2014) by not anchoring relations and operations
to the utterance.

Knowledge domain. Recent works on seman-
tic parsing for question answering operate on more
open and diverse data domains. In particular,
large-scale knowledge bases have gained popular-
ity in the semantic parsing community (Cai and
Yates, 2013; Berant et al., 2013; Fader et al.,
2014). The increasing number of relations and en-
tities motivates new resources and techniques for
improving the accuracy, including the use of ontol-
ogy matching models (Kwiatkowski et al., 2013),
paraphrase models (Fader et al., 2013; Berant and
Liang, 2014), and unlabeled sentences (Krishna-

murthy and Kollar, 2013; Reddy et al., 2014).
Our work leverages open-ended data from the

Web through semi-structured tables. There have
been several studies on analyzing or inferring the
table schemas (Cafarella et al., 2008; Venetis et al.,
2011; Syed et al., 2010; Limaye et al., 2010) and
answering search queries by joining tables on sim-
ilar columns (Cafarella et al., 2008; Gonzalez et
al., 2010; Pimplikar and Sarawagi, 2012). While
the latter is similar to question answering, the
queries tend to be keyword lists instead of natural
language sentences. In parallel, open information
extraction (Wu and Weld, 2010; Masaum et al.,
2012) and knowledge base population (Ji and Gr-
ishman, 2011) extract information from web pages
and compile them into structured data. The result-
ing knowledge base is systematically organized,
but as a trade-off, some knowledge is inevitably
lost during extraction and the information is forced
to conform to a specific schema. To avoid these is-
sues, we choose to work on HTML tables directly.

In future work, we wish to draw informa-
tion from other semi-structured formats such as
colon-delimited pairs (Wong et al., 2009), bulleted
lists (Gupta and Sarawagi, 2009), and top-k lists
(Zhang et al., 2013). Pasupat and Liang (2014)
used a framework similar to ours to extract entities
from web pages, where the “logical forms” were
XPath expressions. A natural direction is to com-
bine the logical compositionality of this work with
the even broader knowledge source of general web
pages.
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