
Model Combination for Event Extraction in BioNLP 2011

Sebastian Riedela, David McCloskyb, Mihai Surdeanub,
Andrew McCalluma, and Christopher D. Manningb

a Department of Computer Science, University of Massachusetts at Amherst
b Department of Computer Science, Stanford University

{riedel,mccallum}@cs.umass.edu
{mcclosky,mihais,manning}@stanford.edu

Abstract

We describe the FAUST entry to the BioNLP
2011 shared task on biomolecular event ex-
traction. The FAUST system explores sev-
eral stacking models for combination using
as base models the UMass dual decomposi-
tion (Riedel and McCallum, 2011) and Stan-
ford event parsing (McClosky et al., 2011b)
approaches. We show that using stacking is
a straightforward way to improving perfor-
mance for event extraction and find that it is
most effective when using a small set of stack-
ing features and the base models use slightly
different representations of the input data. The
FAUST system obtained 1st place in three out
of four tasks: 1st place in Genia Task 1 (56.0%
f-score) and Task 2 (53.9%), 2nd place in the
Epigenetics and Post-translational Modifica-
tions track (35.0%), and 1st place in the In-
fectious Diseases track (55.6%).

1 Introduction

To date, most approaches to the BioNLP event ex-
traction task (Kim et al., 2011a) use a single model
to produce their output. However, model combina-
tion techniques such as voting, stacking, and rerank-
ing have been shown to consistently produce higher
performing systems by taking advantage of multi-
ple views of the same data. The Netflix Prize (Ben-
nett et al., 2007) is a prime example of this. System
combination essentially allows systems to regular-
ize each other, smoothing over the artifacts of each
(c.f. Nivre and McDonald (2008), Surdeanu and
Manning (2010)). To our knowledge, the only previ-
ous example of model combination for the BioNLP

shared task was performed by Kim et al. (2009). Us-
ing a weighted voting scheme to combine the out-
puts from the top six systems, they obtained a 4%
absolute f-score improvement over the best individ-
ual system.

This paper shows that using a straightforward
model combination strategy on two competitive
systems produces a new system with substantially
higher accuracy. This is achieved with the frame-
work of stacking: a stacking model uses the output
of a stacked model as additional features.

While we initially considered voting and rerank-
ing model combination strategies, it seemed that
given the performance gap between the UMass and
Stanford systems that the best option was to in-
clude the predictions from the Stanford system into
the UMass system (e.g., as in Nivre and McDon-
ald (2008)). This has the advantage that one model
(Umass) determines how to integrate the outputs of
the other model (Stanford) into its own structure,
whereas in reranking, for example, the combined
model is required to output a complete structure pro-
duced by only one of the input models.

2 Approach

In the following we briefly present both the stacking
and the stacked model and some possible ways of
integrating the stacked information.

2.1 Stacking Model

As our stacking model, we employ the UMass ex-
tractor (Riedel and McCallum, 2011). It is based on
a discriminatively trained model that jointly predicts
trigger labels, event arguments and protein pairs in



binding. We will briefly describe this model but first
introduce three types of binary variables that will
represent events in a given sentence. Variables ei,t
are active if and only if the token at position i has
the label t. Variables ai,j,r are active if and only if
there is an event with trigger i that has an argument
with role r grounded at token j. In the case of an
entity mention this means that the mention’s head is
j. In the case of an event j is the position of its trig-
ger. Finally, variables bp,q indicate whether or not
two entity mentions at p and q appear as arguments
in the same binding event.

Two parts form our model: a scoring function, and
a set of constraints. The scoring function over the
trigger variables e, argument variables a and binding
pair variables b is

s (e,a,b) def=
∑
ei,t=1

sT (i, t) +
∑

ai,j,r=1

sR (i, j, r)+

∑
bp,q=1

sB (p, q)

with local scoring functions sT (i, t)
def=

〈wT, fT (i, t)〉, sR (i, j, r) def= 〈wR, fR (i, j, r)〉
and sB (p, q) def= 〈wB, fB (p, q)〉.

Our model scores all parts of the structure in iso-
lation. It is a joint model due to the nature of the
constraints we enforce: First, we require that each
active event trigger must have at least one Theme ar-
gument; second, only regulation events (or Catalysis
events for the EPI track) are allowed to have Cause

arguments; third, any trigger that is itself an argu-
ment of another event has to be labelled active, too;
finally, if we decide that two entities p and q are part
of the same binding (as indicated by bp,q = 1), there
needs to be a binding event at some trigger i that
has p and q as arguments. We will denote the set of
structures (e,a,b) that satisfy these constraints as
Y .

Stacking with this model is simple: we only
need to augment the local feature functions fT (i, t),
fR (i, j, r) and fB (p, q) to include predictions from
the systems to be stacked. For example, for every
system S to be stacked and every pair of event types
(t′, tS) we add the features

fS,t′ ,tS (i, t) =

{
1 hS (i) = tS ∧ t′ = t

0 otherwise

to fT (i, t). Here hS (i) is the event label given to to-
ken i according to S. These features allow different
weights to be given to each possible combination of
type t′ that we want to assign, and type tS that S
predicts.

Inference in this model amounts to maximizing
s (e,a,b) over Y . Our approach to solving this
problem is dual decomposition (Komodakis et al.,
2007; Rush et al., 2010). We divide the problem into
three subproblems: (1) finding the best trigger label
and set of outgoing edges for each candidate trigger;
(2) finding the best trigger label and set of incoming
edges for each candidate trigger; (3) finding the best
pairs of entities to appear in the same binding. Due
to space limitations we refer the reader to Riedel and
McCallum (2011) for further details.

2.2 Stacked Model
For the stacked model, we use a system based on an
event parsing framework (McClosky et al., 2011a)
referred to as the Stanford model in this paper. This
model converts event structures to dependency trees
which are parsed using MSTParser (McDonald et
al., 2005).1 Once parsed, the resulting dependency
tree is converted back to event structures. Using the
Stanford model as the stacked model is helpful since
it captures tree structure which is not the focus in
the UMass model. Of course, this is also a limita-
tion since actual BioNLP event graphs are DAGs,
but the model does well considering these restric-
tions. Additionally, this constraint encourages the
Stanford model to provide different (and thus more
useful for stacking) results.

Of particular interest to this paper are the four
possible decoders in MSTParser. These four de-
coders come from combinations of feature order
(first or second) and whether the resulting depen-
dency tree is required to be projective.2 Each de-
coder presents a slightly different view of the data
and thus has different model combination proper-
ties. Projectivity constraints are not captured in the
UMass model so these decoders incorporate novel
information.

To produce stacking output from the Stanford sys-
tem, we need its predictions on the training, devel-

1http://sourceforge.net/projects/mstparser/
2For brevity, the second-order non-projective decoder is ab-

breviated as 2N, first-order projective as 1P, etc.



UMass FAUST+All
R P F1 R P F1

GE T1 48.5 64.1 55.2 49.4 64.8 56.0
GE T2 43.9 60.9 51.0 46.7 63.8 53.9
EPI (F) 28.1 41.6 33.5 28.9 44.5 35.0
EPI (C) 57.0 73.3 64.2 59.9 80.3 68.6
ID (F) 46.9 62.0 53.4 48.0 66.0 55.6
ID (C) 49.5 62.1 55.1 50.6 66.1 57.3

Table 1: Results on test sets of all tasks we submitted to.
T1 and T2 stand for task 1 and 2, respectively. C stands
for CORE metric, F for FULL metric.

opment and test sets. For predictions on test and de-
velopment sets we used models learned from the the
complete training set. Predictions over training data
were produced using crossvalidation. This helps to
avoid a scenario where the stacking model learns to
rely on high accuracy at training time that cannot be
matched at test time.

Note that, unlike Stanford’s individual submission
in this shared task, the stacked models in this paper
do not include the Stanford reranker. This is because
it would have required making a reranker model for
each crossvalidation fold.

We made 19 crossvalidation training folds for Ge-
nia (GE) (Kim et al., 2011b), 12 for Epigenetics
(EPI), and 17 for Infectious Diseases (ID) (Kim et
al., 2011b; Ohta et al., 2011; Pyysalo et al., 2011,
respectively). Note that while ID is the smallest and
would seem like it would have the fewest folds, we
combined the training data of ID with the training
and development data from GE. To produce predic-
tions over the test data, we combined the training
folds with 6 development folds for GE, 4 for EPI,
and 1 for ID.

3 Experiments

Table 1 gives an overview of our results on the test
sets for all four tasks we submitted to. Note that
for the EPI and ID tasks we show the CORE metric
next to the official FULL metric. The former is suit-
able for our purposes because it does not measure
performance for negations, speculations and cellular
locations—all of these we did not attempt to predict.

We compare the UMass standalone system to the
FAUST+All system which stacks the Stanford 1N,
1P, 2N and 2P predictions. For all four tasks we

System SVT BIND REG TOTAL
UMass 74.7 47.7 42.8 54.8
Stanford 1N 71.4 38.6 32.8 47.8
Stanford 1P 70.8 35.9 31.1 46.5
Stanford 2N 69.1 35.0 27.8 44.3
Stanford 2P 72.0 36.2 32.2 47.4
FAUST+All 76.9 43.5 44.0 55.9
FAUST+1N 76.4 45.1 43.8 55.6
FAUST+1P 75.8 43.1 44.6 55.7
FAUST+2N 74.9 42.8 43.8 54.9
FAUST+2P 75.7 46.0 44.1 55.7
FAUST+All 76.4 41.2 43.1 54.9
(triggers)
FAUST+All 76.1 41.7 43.6 55.1
(arguments)

Table 2: BioNLP f-scores on the development section of
the Genia track (task 1) for several event categories.

observe substantial improvements due to stacking.
The increase is particular striking for the EPI track,
where stacking improves f-score by more than 4.0
points on the CORE metric.

To analyze the impact of stacking further, Ta-
ble 2 shows a breakdown of our results on the Ge-
nia development set. Presented are f-scores for sim-
ple events (SVT), binding events (BIND), regulation
events (REG) and the set of all event types (TOTAL).
We compare the UMass standalone system, various
Stanford-standalone models and stacked versions of
these (FAUST+X).

Remarkably, while there is a 7 point gap between
the best individual Stanford system and the stand-
alone UMass systems, integrating the Stanford pre-
diction still leads to an f-score improvement of 1.
This can be seen when comparing the UMass, Stan-
ford 1N and FAUST+All results, where the latter
stacks 1N, 1P, 2N and 2P. We also note that stack-
ing the projective 1P and 2P systems helps almost
as much as stacking all Stanford systems. Notably,
both 1P and 2P do not do as well in isolation when
compared to the 1N system. When stacked, how-
ever, they do slightly better. This suggests that pro-
jectivity is a missing aspect in the UMass standalone
system.

The FAUST+All (triggers) and FAUST+All (ar-
guments) lines represent experiments to determine
whether it is useful to incorporate only portions of



the stacking information from the Stanford system.
Given the small gains over the original UMass sys-
tem, it is clear that stacking information is only use-
ful when attached to triggers and arguments. Our
theory is that most of our gains come from when the
UMass and Stanford systems disagree on triggers
and the Stanford system provides not only its trig-
gers but also their attached arguments to the UMass
system. This is supported by a pilot experiment
where we trained the Stanford model to use the
UMass triggers and saw no benefit from stacking
(even when both triggers and arguments were used).

Table 3 shows our results on the development set
of the ID task, this time in terms of recall, precision
and f-score. Here the gap between Stanford-only
results, and the UMass results, is much smaller. This
seems to lead to more substantial improvements for
stacking: FAUST+All obtains a f-score 2.2 points
larger than the standalone UMass system. Also note
that, similarly to the previous table, the projective
systems do worse on their own, but are more useful
when stacked.

Another possible approach to stacking conjoins
all the original features of the stacking model with
the predicted features of the stacked model. The
hope is that this allows the learner to give differ-
ent weights to the stacked predictions in different
contexts. However, incorporating Stanford predic-
tions by conjoining them with all features of the
UMass standalone system (FAUST+2P-Conj in Ta-
ble 3) does not help here.

We note that for our results on the ID task we
augment the training data with events from the GE

training set. Merging both training sets is reasonable
since there is a significant overlap between both in
terms of events as well as lexical and syntactic pat-
terns to express these. When building our training
set we add each training document from GE once,
and each ID training document twice—this lead to
substantially better results than including ID data
only once.

4 Discussion

Generally stacking has led to substantial improve-
ments across the board. There are, however, some
exceptions. One is binding events for the GE task.
Here the UMass model still outperforms the best

System Rec Prec F1
UMass 46.2 51.1 48.5
Stanford 1N 43.1 49.1 45.9
Stanford 1P 40.8 46.7 43.5
Stanford 2N 41.6 53.9 46.9
Stanford 2P 42.8 48.1 45.3
FAUST+All 47.6 54.3 50.7
FAUST+1N 45.8 51.6 48.5
FAUST+1P 47.6 52.8 50.0
FAUST+2N 45.4 52.4 48.6
FAUST+2P 49.1 52.6 50.7
FAUST+2P-Conj 48.0 53.2 50.4

Table 3: Results on the development set for the ID track.

stacked system (see Table 2). Likewise, for full pa-
pers in the Genia test set, the UMass model still does
slightly better with 53.1 f-score compared to 52.7
f-score. This suggests that a more informed com-
bination of our systems (e.g., metaclassifiers) could
lead to better performance.

5 Conclusion

We have presented the FAUST entry to the BioNLP
2011 shared task on biomolecular event extraction.
It is based on stacking, a simple approach for model
combination. By using the predictions of the Stan-
ford entry as features of the UMass model, we sub-
stantially improved upon both systems in isolation.
This helped us to rank 1st in three of the four tasks
we submitted results to. Remarkably, in some cases
we observed improvements despite a 7.0 f-score
margin between the models we combined.

In the future we would like to investigate alter-
native means for model combination such as rerank-
ing, union, intersection, and other voting techniques.
We also plan to use dual decomposition to encourage
models to agree. In particular, we will seek to incor-
porate an MST component into the dual decomposi-
tion algorithm used by the UMass system.

Acknowledgments
We thank the BioNLP shared task organizers for setting this

up and their quick responses to questions. This work was sup-
ported in part by the Center for Intelligent Information Re-
trieval. We gratefully acknowledge the support of the Defense
Advanced Research Projects Agency (DARPA) Machine Read-
ing Program under Air Force Research Laboratory (AFRL)
prime contract no. FA8750-09-C-0181.



References
James Bennett, Stan Lanning, and Netflix. 2007. The

netflix prize. In KDD Cup and Workshop in conjunc-
tion with KDD.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
BioNLP’09 shared task on event extraction. In Pro-
ceedings of the Workshop on BioNLP: Shared Task,
pages 1–9. Association for Computational Linguistics.

Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert
Bossy, and Jun’ichi Tsujii. 2011a. Overview
of BioNLP Shared Task 2011. In Proceedings of
the BioNLP 2011 Workshop Companion Volume for
Shared Task, Portland, Oregon, June. Association for
Computational Linguistics.

Jin-Dong Kim, Yue Wang, Toshihisa Takagi, and Aki-
nori Yonezawa. 2011b. Overview of the Genia Event
task in BioNLP Shared Task 2011. In Proceedings
of the BioNLP 2011 Workshop Companion Volume for
Shared Task, Portland, Oregon, June. Association for
Computational Linguistics.

Nikos Komodakis, Nikos Paragios, and Georgios Tziri-
tas. 2007. MRF optimization via dual decomposition:
Message-passing revisited. In ICCV.

David McClosky, Mihai Surdeanu, and Chris Manning.
2011a. Event extraction as dependency parsing. In
Proceedings of the Association for Computational Lin-
guistics: Human Language Technologies 2011 Confer-
ence (ACL-HLT’11), Main Conference, Portland, Ore-
gon, June.

David McClosky, Mihai Surdeanu, and Christopher D.
Manning. 2011b. Event extraction as dependency
parsing in BioNLP 2011. In BioNLP 2011 Shared
Task.

Ryan T. McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of HLT/EMNLP. The Association for Computational
Linguistics.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proceedings of ACL-08: HLT, pages 950–958,
Columbus, Ohio, June. Association for Computational
Linguistics.

Tomoko Ohta, Sampo Pyysalo, and Jun’ichi Tsujii. 2011.
Overview of the Epigenetics and Post-translational
Modifications (EPI) task of BioNLP Shared Task
2011. In Proceedings of the BioNLP 2011 Workshop
Companion Volume for Shared Task, Portland, Oregon,
June. Association for Computational Linguistics.

Sampo Pyysalo, Tomoko Ohta, Rafal Rak, Dan Sul-
livan, Chunhong Mao, Chunxia Wang, Bruno So-
bral, Jun’ichi Tsujii, and Sophia Ananiadou. 2011.

Overview of the Infectious Diseases (ID) task of
BioNLP Shared Task 2011. In Proceedings of
the BioNLP 2011 Workshop Companion Volume for
Shared Task, Portland, Oregon, June. Association for
Computational Linguistics.

Sebastian Riedel and Andrew McCallum. 2011. Ro-
bust biomedical event extraction with dual decomposi-
tion and minimal domain adaptation. In BioNLP 2011
Shared Task.

Alexander M. Rush, David Sontag, Michael Collins, and
Tommi Jaakkola. 2010. On dual decomposition and
linear programming relaxations for natural language
processing. In Proc. EMNLP.

Mihai Surdeanu and Christopher D. Manning. 2010. En-
semble models for dependency parsing: Cheap and
good? In Proceedings of the North American Chapter
of the Association for Computational Linguistics Con-
ference (NAACL-2010), Los Angeles, CA, June.


