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Abstract

This paper presents our work on textual inference and
situates it within the context of the larger goals of ma-
chine reading. The textual inference task is to deter-
mine if the meaning of one text can be inferred from the
meaning of another and from background knowledge.
Our system generates semantic graphs as a representa-
tion of the meaning of a text. This paper presents new
results for aligning pairs of semantic graphs, and pro-
poses the application of natural logic to derive infer-
ence decisions from those aligned pairs. We consider
this work as first steps toward a system able to demon-
strate broad-coverage text understanding and learning
abilities.

Introduction
This paper outlines some of our recent work on the task of
robust textual inference, wherein systems aim to determine
whether a hypothesis text follows from another text and gen-
eral background knowledge. In particular, it focuses on im-
proving alignments between the two texts and applying ideas
from natural logic to inference. But beyond that, it outlines
ways in which such work relates to the more general goals
of machine reading.

In order to understand texts, a machine reading system
must provide (1) facilities for extracting meaning from nat-
ural language text, (2) a semantic representation language,
for storing meanings internally, and (3) facilities for work-
ing with stored meanings, to answer questions or to derive
further consequences. We also want such a system to be
robust and open-domain, and to degrade gracefully in the
presence of semantic representations which may be incom-
plete, inaccurate, or incomprehensible. Traditional knowl-
edge representation & reasoning approaches (KR&R) fail in
that respect because they use lambda calculus composition
for meaning extraction, first order logic for meaning repre-
sentation, and theorem provers for inference. At the other
extreme, traditional information extraction (IE) systems go
straight from input to output without any internal representa-
tion of semantics, often severely limiting types of semantic
relations they can understand. An effective system must ac-
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count for additional semantic relations such as equivalence,
inference, and contradiction.

Textual inference work initially addresses the goal of ma-
chine reading by providing tools for producing a semantic
representation from arbitrary text and for doing inference
upon such representations. We present the semantic graphs
we use as a representation for storing meanings of text that
has been read, and examine approximate inference mecha-
nisms based on alignment of semantic graphs and feature-
based classification of proposed graph alignments. This ap-
proach enables weak but broad coverage inference.

Two points of departure of this work from machine
reading are that machine reading emphasizes unsupervised
learning and synthesis of information, neither of which we
currently use very much. One answer is to say that there is
more to machine reading than textual entailment, but we will
also briefly outline how our work addresses the underlying
issues by different means.

Our work focuses on the use of broad-coverage, super-
vised probabilistic components coupled with hand-built lex-
ical knowledge sources such as WordNet (although they are
supplemented by resources built using unsupervised meth-
ods, such as Latent Semantic Analysis). Rather than using
unsupervised learning, this setup instead satisfies the goals
of machine reading by being universal: structures like syn-
tactic phrases and semantic roles can be applied to any text.
They are not task and relation specific like IE frames.

Secondly, our system does no real knowledge synthesis,
but rather does on-the-fly information acquisition and check-
ing. This may seem a defect, but while looking on Google
for the old quote Knowledge is of two kinds. We know a
subject ourselves, or we know where we can find informa-
tion upon it. (Samuel Johnson, 1775, from Boswell’s Life
of Johnson), we came across an interesting discussion on
a blog1 about how what has happened in the world is that
rather than having centralized human or machine knowledge
management repositories, with global ontologies, what has
been successful in the information age is people foraging
for the information that they need when they need it on the
web. The textual inference model is really about informa-
tion foraging: how to supplement information retrieval with
the understanding tools which will enable inferences to be

1http://jeremy.zawodny.com/blog/archives/000765.html
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Figure 1: Typed dependency tree for “Mitsubishi sales rose
46 percent”.

drawn from texts.

Textual inference system description
The textual inference task first appeared latent within the
field of question answering (Pasca & Harabagiu 2001;
Moldovan et al. 2003), and then received focus within the
PASCAL Recognizing Textual Entailment (RTE) Challenge
(Dagan, Glickman, & Magnini 2005; Bar-Haim et al. 2006),
and related work within the U.S. Government AQUAINT
program.

Our textual inference system employs a three-stage archi-
tecture in which alignment and entailment determination are
two separate phases, preceded by a linguistic analysis. The
alignment phase aims to assess the congruity between the
hypothesis H and the text T, i.e., how well H can be em-
bedded within T. Although early work on textual inference
based the entailment decision solely on the quality of the
alignment, we have found that the existence of negation, in-
tensional contexts, and other common linguistic phenomena
make alignment quality an unreliable indicator of inferra-
bility. Consider the following hypothesis and text: Arafat
targeted for assassination and Sharon denies Arafat is tar-
geted for assassination. The hypothesis graph is completely
embedded in the text graph, but it would be incorrect to con-
clude that there is entailment. To remedy this, in the third
phase of our textual inference system we examine high-level
semantic features of the proposed graph alignment, includ-
ing indicators of such phenomena, to make the entailment
decision.

Linguistic analysis phase. The goal of this first stage is to
create for both text and hypothesis semantic graphs, which
can be viewed as structured linguistic representations that
contain as much information as possible about semantic con-
tent. As basis for the semantic graph, we use typed depen-
dency graphs, in which each node is a word and labeled
edges represent grammatical relations between words. Fig-
ure 1 gives the typed dependency graph for the sentence
Mitsubishi sales rose 46 percent. The semantic graph for
a sentence contains thus a node for each word of the sen-
tence, each node being embellished with metadata generated
by a toolkit of linguistic processing tools, including word
lemmas, part of speech tags, canonicalization of quantita-
tive expressions, and named entity recognition. The graph

rose → fell
sales → sales
Mitsubishi → Mitsubishi Motors Corp.
percent → percent
46 → 46

Alignment score: -0.8962

Figure 2: Alignment for the Mitsubishi example.

also contains labeled edges of multiple types. Chief among
these are the directed edges representing the grammatical re-
lations. These are derived using a set of deterministic hand-
coded rules defining patterns over the parser tree (de Marn-
effe, MacCartney, & Manning 2006), output by the Stanford
parser (Klein & Manning 2003). To ensure correct parsing,
we preprocess the sentences to collapse named entities and
collocations into new tokens. Additional edges in the se-
mantic graph represent imputed dependencies which result
from “collapsing” pairs of surface-level dependencies; se-
mantic relations derived from a semantic role labeling sub-
system; and coreference links generated by a coreference
module. Our code architecture ensures that each linguis-
tic processing tool outputs a consistent analysis between the
text and the hypothesis.

Alignment phase. In this second stage, our objective is
to find an alignment from the hypothesis graph to the text
graph which best represents the support of the hypothesis
in the text, if any. The existence of a “good” alignment
does not imply that the hypothesis is entailed; instead, the
alignment is used as a piece of evidence upon which the
entailment decision can be based. Formally, a (word-level)
alignment is a map from the words in the hypothesis to
the words in the text, or to no word, if the word has no
support in the text. In our current system, we use one-to-one
alignments.2 Figure 2 gives the alignment for the following
text-hypothesis pair:
T: Mitsubishi Motors Corp.’s new vehicle sales in the US
fell 46 percent in June.
H: Mitsubishi sales rose 46 percent. (FALSE)

We define a measure of alignment quality, and a proce-
dure for identifying high-scoring alignments. The different
procedures we have explored are detailed below. The scor-
ing measure is designed to favor alignments which align se-
mantically similar subgraphs, irrespective of polarity. For
this reason, nodes receive high alignment scores when the
words they represent are semantically similar. Synonyms
and antonyms receive the highest score, and unrelated words
receive the lowest. Our hand-crafted scoring metric takes
into account the word, the lemma, and the part of speech,
and searches for word relatedness using a range of external
resources, including WordNet, precomputed latent semantic

2The limitations of using one-to-one alignments are mitigated
by the fact that many multiword expressions (e.g. named entities,
noun compounds, multiword prepositions) have been collapsed
into single nodes during linguistic analysis.



analysis matrices, and special-purpose gazettes. Alignment
scores also incorporate local edge scores, which are based
on the shape of the paths between nodes in the text graph
which correspond to adjacent nodes in the hypothesis graph.
Preserved edges receive the highest score, and longer paths
receive lower scores.

Entailment determination phase. The last stage consists
in the determination of entailment, depending on the seman-
tic graphs, as well as on the alignment between them. While
a good alignment between semantic graphs is an important
clue to the semantic relation between two sentences, it is not
the whole story. Two sentences can exhibit a high degree
of lexical and structural similarity, yet fail to be equivalent,
entailing, or even consistent, due to the occurrence of nega-
tion, conditionals, modality, and many other semantic phe-
nomena. Consider, for example:

(1) Hamas captured several hostages.

(2) Hamas took multiple prisoners.

(3) Hamas took no prisoners.

(4) Hamas took many prisoners, witnesses said.

(5) If Hamas took prisoners, Israel will retaliate.

Equipped with appropriate lexical resources, the align-
ment module will be able to find good alignments between
the semantic graph for (1) and those for each of (2) through
(5). But while (1) entails (2), it contradicts (3), and is com-
patible with either the truth or falsity of (4) and (5).

This last stage therefore aims to identify global features
of such semantic phenomena. The entailment problem is re-
duced to a representation as a vector of 72 features. These
features are meant to capture salient patterns of entailment
and non-entailment, with a particular attention to contexts
which reverse or block monotonicity, such as negations and
quantifiers. We describe here some of the features. For
further details, we refer the reader to (MacCartney et al.
2006). We have polarity features which indicate the pres-
ence (or absence) of linguistic markers of negative polar-
ity contexts in both semantic graphs, such as negation (not),
downward-monotonequantifiers (no, few), restricting prepo-
sitions (without, except) and superlatives (tallest). Other
features deal with factive, implicative and non-factive verbs
which carry semantic presuppositions giving rise to (non-
)entailments such as The gangster tried to escape 6|= The
gangster escaped. In that context, negation influences some
patterns of entailment and needs to be taken into account:
The gangster managed to escape |= The gangster escaped
while The gangster didn’t manage to escape 6|= The gangster
escaped. Structure features aim to determine that the syntac-
tic structure of the text and the hypothesis do not match, as in
the following example: Jacques Santer succeeded Jacques
Delors as president of the European Commission in 1995
6|= Jacques Delors succeeded Jacques Santer in the presi-
dency of the European Commission. Some features recog-
nize (mis-)matches between numbers, dates, times and per-
sons. Our normalization of number and date expressions,
and the inference rules on these, allow us to recognize that

“more than 2,000” entails “100 or more”: More than 2,000
people lost their lives in the devastating Johnstown Flood |=
100 or more people lost their lives in a ferry sinking.

We can use techniques from supervised machine learn-
ing to learn a statistical classifier as we have a data set of
examples that are labeled for entailment. We use a logis-
tic regression classifier with a Gaussian prior for regulariza-
tion. The relatively small size of existing training sets can
lead to overfitting problems. We address this by keeping the
feature dimensionality small, and using high regularization
penalties in training. As well as learning weights based on
development data, we also have hand-set weights guided by
linguistic intuition.

Improving alignment
Because the inference determination phase heavily relies on
the alignment one, it is important to get the best alignments
possible. In this section we report progress on three tasks
we have undertaken to improve the alignment phase: (1) the
construction of manually aligned data which enables auto-
matic learning of alignment models, and effectively decou-
ples the alignment and inference development efforts, (2)
the development of new search procedures for finding high-
quality alignments, and (3) the use of machine learning tech-
niques to automatically learn the parameters of alignment
scoring models.

Manual alignment annotation

Gold-standard alignments help us to evaluate and improve
both parts of the system independently: we can use them in
order to train and evaluate alignment models, and they can
be used to evaluate how well the inference system performs
when run using the manually assigned alignments rather
than the automatically generated ones. We built a web-based
tool3 to facilitate hand annotation of alignments. In the tool,
each hypothesis/text pair is displayed in a tabular format
with each row corresponding to a hypothesis token and each
column corresponding to a text token. The tokenization used
is identical to that of the Penn Treebank except for the fact
that spans of text that were identified as named entities are
collapsed into a single phrasal chunk. Annotators are then
able to express various relationships between a pair of hy-
pothesis/text tokens by clicking on the corresponding table
cell.

Supported relationships include the alignment of tokens
with both directional and bi-directional semantics, as well
as the alignment of antonyms. Pairs with directional se-
mantics are used to capture the case where the seman-
tics of one of the aligned tokens is intuitively a superset
of the semantics of the other token in the pair. Exam-
ples4 include pairs such as ‘consumption’/‘drinking’, ‘coro-
navirus’/‘virus’, and ‘Royal Navy’/‘British’. Pairs with

3A demonstration of the labeling tool is available at:
http://josie:stanford.edu:8080/tableannotatorDemo/. As we believe
that this tool should be generally useful for annotating paired texts,
we plan on creating a publicly available distribution of it.

4Drawn from the RTE 2005 data set.



bi-directional semantics are tokens with synonymous se-
mantics. This includes both cases were identical words
and phrases in the text and the hypothesis can be aligned,
and cases such as ‘allow’/‘grant’, ‘Dow’/‘Dow Jones’, and
‘blood glucose’/‘blood sugar’ where the pairs have nearly
synonymous meanings in context. However, while, by dis-
tinguishing between these different types of alignments, we
are able to capture some limited semantics in the alignment
process, the exploitation of this information is left to future
work.

In the annotation process, we need to take into account
both the lexical and structural levels of the sentences. Words
which are semantically similar should be aligned, but there
must be a trade-off between high lexical relatedness and
syntactic structure. Determiners, adjectives, and numbers
preceding a noun have to be aligned with the eventual de-
terminer, adjective or number adjoined to the aligned noun.
Aligning subgraphs is thus preferred to aligning words here
and there in the graph. In the following example, even
though measures is more lexically related to measuring, we
will align it to stretches which is structurally related to Milky
Way. We also align 2,000 light-years with 100,000 light-
years which is where the contradiction lies: from the text,
we will infer that the Milky Way measures 100,000 light-
years and not 2,000.
T: The galaxy, measuring just 2,000 light-years across, is a
fraction of the size of our own Milky Way, which stretches
100,000 light-years in diameter.
H: The Milky Way measures 2,000 light-years across.

Improving alignment search
If we want to automatically find “good” alignments, we will
need both a formal scoring model which measures alignment
alignment quality as well as a search procedure for finding
high scoring models. Formally, we define the score of the
dataset D to be the sum of the scores of the individual align-
ments:

s(D) =
∑

(t,h,a)∈D

s(t, h, a)

where h is the hypothesis and t is the text of a particular
alignment problem, and a is the alignment between them.
We then assume that the score s(t, h, a) of an individual
alignment decomposes into a sum of local scores, given by
the scoring functions sw for word pairs and se for edge-path
pairs, as follows:

s(t, h, a) =
∑

i∈h

sw(hi, a(i)) +
∑

(i,j)∈e(h)

se((hi, hj), (a(hi), a(hj)))

where we use the notation a(x) to refer to the word in the
text which is aligned to the word x in the hypothesis under
the alignment a, and e(x) to refer to a function returning the
set of edges in a hypothesis x. The first term is the sum of
the scores of the alignments of the individual words, and the
second term is the sum of the scores of the alignments of
the pairs of words which are connected by an edge in the
hypothesis graph.

The space of possible alignments is large: for a hypothesis
with m words and a text with n words, there are (n + 1)m

possible alignments, making exhaustive search intractable.
Informed search methods such as A* are also inefficient,
since it is difficult to find heuristics which prune a signifi-
cant part of the search space. Although exact search is infea-
sible, the search problem doesn’t seem that hard. The bulk
of the alignment score depends on local factors: the quality
of the match between aligned words. As a consequence, we
have found it easy in practice to find high-quality solutions
using two approximate search techniques, beam search and
stochastic local search, which we now explain.

The beam search technique is straightforward: at all steps
in the search we keep at most k partial alignment candidates
to explore. We begin by choosing an order in which the
hypothesis words will be aligned. At each iteration of the
search, we select the next hypothesis word to align, and for
every partial alignment in the beam from the previous itera-
tion, we try extending it with the current word in all possible
ways. We score these new partial alignments and put them in
a priority queue. Finally, we select the k partial alignments
from the queue which have the highest scores, and put them
into a new beam. We repeat this process for every hypothe-
sis word, and at the end select the highest scoring alignment
in the final beam.

The stochastic search technique operates instead on a
complete state formulation of the search problem, and is
based on Gibbs sampling, a well-known Markov Chain
Monte Carlo technique. Our Gibbs sampler works as fol-
lows: we initialize the algorithm with the complete align-
ment which maximizes the greedy word pair scores, and we
score it. Then, in each step of the search, we select a hypoth-
esis word, and generate all possible alignments that result
from aligning that word to a word in the passage. We score
each of these alignments, and treating the scores as log prob-
abilities, create a normalized distribution over these possible
successors. We then sample a successor alignment from this
distribution, and repeat. This Gibbs sampler is guaranteed
to give us samples from the posterior distribution over align-
ments defined implicitly by the scoring function. However,
we are interested in finding a maximum of the function, so
we modify the basic Gibbs sampler with the soft-max func-
tion, parameterized by a temperature parameter which we
can decrease according to a cooling schedule.

A comparison of the two search techniques shows that
the stochastic search outperforms the beam search over a
wide range of parameter values on the hand-set alignment
weights. In table 1 we show the results for beam search
of width 100 and stochastic search for 50 iterations on the
RTE2 dev dataset. These runs are representative of beam
widths ranging from 10 to 1500 and of stochastic searches
with iterations ranging from 10 to 200.

Learning alignment models
In the previous section we defined a model for scoring can-
didate alignments, in which the scoring function is factored
into the sum of scores of word alignments sw and scores of
edge alignments se. In previously published versions of the
system we manually specified these scoring functions in a



Correctly aligned
Individual words Text/hypothesis pairs

Beam 4098 184
Stochastic 4260 202

Table 1: Results for beam search (width = 100) and stochas-
tic search (50 iterations). In RTE2 dev, there are 5824 words
and 800 text/hypothesis pairs.

way which we believed reflected alignment quality. How-
ever, the existence of a gold standard alignment corpus de-
scribed above enables the automatic learning of an align-
ment scoring function. More precisely, given a particular
model form, it is possible to automatically select parame-
ters which maximize some measure of performance. For
both the word and edge scoring functions, we choose a lin-
ear model form in which the score is computed as the dot
product of a feature vector and a weight vector:

sw(hi, tj) = θw · f(hi, tj), and

se((hi, hj), (tk, t`)) = θe · f((hi, hj), (tk, t`)).

In selecting a learning algorithm we first must choose
an objective function to minimize. We choose to minimize
training set prediction error. Recent results in machine learn-
ing show the effectiveness of online learning algorithm for
structure prediction tasks. Online algorithms iterate over the
examples in the training set, and for each example they use
the current weight vector to make a prediction. Then they
compare the prediction to the “correct” label, and update the
weight vector in a way that depends on this comparison. The
perceptron update is very simple: when the prediction is in-
correct, the weight vector is modified by adding a multiple of
the difference between the feature vector of the correct label
and the feature vector of the predicted label. When the pre-
diction is correct, the weight vector is not modified. We use
the adaptation of this algorithm to structure prediction, as
first proposed by (Collins 2002). An alternative update rule
is provided by the MIRA update, which attempts to make
the minimal modification to the weight vector such that the
score of the incorrect prediction (or predictions) for the ex-
ample is lower than the score of the correct label (Crammer
& Singer 2001). For this reason it is called an “ultraconser-
vative algorithm”.

We compare the performance of the perceptron and MIRA
algorithms on 10-fold cross-validation on the RTE2 dev
dataset. Both algorithms improve with each pass over the
dataset. Most improvement is within the first five passes.
Table 2 shows runs for both algorithms over 10 passes
through the dataset. MIRA consistently outperforms per-
ceptron learning.

Towards natural logic
As we saw, by itself, an alignment model cannot easily ac-
count for the impact of semantic operators such as negation
and conditionals on the entailment relations between sen-
tences, particularly when such operators are composed in
complex structures. Of course, this is where formal logic

Correctly aligned
Individual words Text/hypothesis pairs

Perceptron 4675 271
MIRA 4775 283

Table 2: Results for perceptron and MIRA algorithms on
10-fold cross-validation on RTE2 dev for 10 passes.

shines—but translating natural language into logical repre-
sentations suitable for formal reasoning is a highly brittle
and error-prone process, as years of research have demon-
strated. The advantage of semantic graphs as a represen-
tation of meaning is that they remain close to the original
linguistic form, and make no pretension of formality or ex-
actness. We’d like to be able to identify the logical relation
between two aligned semantic graphs—at least in the most
common cases—without paying the price of embracing full
logical formality.

The aim is that given a complex sentence such as Bud-
get airline Ryanair has pushed ahead with its 1.48bn euro
takeover offer for Aer Lingus, by upping its holding in its
Irish rival, we may not be able to translate it into a for-
mal logic representation, but we should nevertheless be able
to conclude that the sentence supports the hypothesis that
There is a takeover offer for Aer Lingus.

Natural logic
In fact, much of the theoretical foundation for such an ap-
proach has already been worked out, under the heading of
natural logic, defined by (Lakoff 1970) as “a logic for natu-
ral language”. Unlike formal logic, natural logic does not
involve manipulation of formal expressions, but operates
directly on the words and sentences of our ordinary lan-
guage. The study of natural logic was further developed by
(Benthem 1986) and (Sanchez-Valencia 1991), but has been
largely ignored in NLP. This is regrettable, because it is a
natural fit to the problem of textual inference.

Natural logic focuses particularly on those familiar and
widespread inferences involving monotonicity, which reason
about the consequences of widening (weakening, generaliz-
ing) or narrowing (strengthening, specializing) the concepts
or constraints involved in a proposition. In its simplest ap-
plications, the heuristic which underlies natural logic is that
widening a concept or constraint preserves truth, while nar-
rowing does not.

Crucially, however, natural logic also provides an account
of the impact on such inferences of monotonicity inverters,
which serve to reverse the usual heuristic. Inversions of
monotonicity may be generated not only by negation, but
also by universal quantifiers like all; by verbs like lack, fail,
or prohibit, whose semantics contain an inherent element of
negation or restriction; by prepositions such as without and
except; by adverbs such as only; by comparatives and su-
perlatives; and by the antecedent of a conditional. Addi-
tional complexities arise from the nesting of monotonicity
inversions (If no toxins leak) and differences among mono-
tonicity inverters with respect to where they have effect (e.g.
no vs. all).



We are presently engaged in developing a computational
model of natural logic. Our efforts follow those of (Sanchez-
Valencia 1991), which defined a formal monotonicity calcu-
lus, including the outline of an algorithm for determining
the entailments of a sentence in a bottom-up, compositional
fashion. However, this approach assumed the use of highly
formal Lambek calculus representations as inputs; whereas
we aim to build a system operating over the semantic graph
representations described earlier. We are also working to
extend (Sanchez-Valencia 1991) in important respects: for
example, by accounting for antonyms and exclusions, and
factive and non-factive verbs.

While our full natural logic system is still under develop-
ment, many of the features used in the entailment determi-
nation phase of the current system are partial theories which
capture natural logic heuristics. We have recently introduced
several new features which extend this theme.

Lexical entailment features
At the base of a natural logic system, we need a strong lex-
ical entailment model. If relationships between words are
known, then the relationships between more complicated se-
mantic structures, such as phrases, can be more effectively
determined. Previously, alignments between words were
given scores based on broad similarity measures. However,
these methods just calculated naive association and disre-
garded the direction of entailment. In order to start making
the transition to a more natural logic friendly system, where
monotonicity relations between words are crucial, we have
begun the foundations of a true word-word entailment sys-
tem. Previously constructed features deal with synonymy
and antonymy relations; these new feature being extracted
take on the tasks of hypernymy relations, geographic lo-
cation relations, and relations between gradable adjectives.
Currently, all lexical features are being extracted from rela-
tionships in WordNet (Fellbaum 1998).

Hypernymy relations. To add hypernymy features, we
first attempt to determine whether a sentence displays an
upward-monotone (positive) or downward-monotone (neg-
ative) context. Then we extract hypernym/hyponym rela-
tionships from WordNet for aligned words in order to iden-
tify entailments. In upward-monotone contexts (the default),
broadening a concept by replacing it with a hypernym is a
valid entailment, while narrowing a concept is not. While in
downward-monotone contexts, the reverse is true. The fol-
lowing example is not a valid entailment since in this posi-
tive context, “chronic disease” cannot be replaced by its hy-
ponym “osteoporosis”:
T: [...] fruits and vegetables can reduce the risk of chronic
disease.
H: Fruits and vegetables prevent osteoporosis. (FALSE)

Location relations. There are arguments in the textual en-
tailment community on how much world knowledge should
have to be known by the system. However, it seems that
geographic knowledge falls under the category of common
knowledge and should be covered by a lexical entailment

system. For location features, holonymy relations in Word-
Net are extracted for locations and the directionality of en-
tailment is preserved. If a location is part of another lo-
cation, then it entails the outer location. In this instance,
“Paris” is aligned to “France,” and it is determined to be a
good entailment since Paris is a city in France. Since ex-
tracting holonym relations from WordNet returns chains of
holonyms, “Paris” could have been aligned to “Europe” in
the hypothesis and the lexical entailment would still hold.
T: The Louvre Museum in Paris opened a new individual
sponsorship program in July.
H: The Louvre Museum is located in France. (TRUE)

Adjective gradation. Gradable adjectives in WordNet are
associated to other adjectives along their gradient by the
same “Similar-to” relation, without regard for which way
along the gradient the relationship occurs. Adjective grada-
tion features allow for a more finely-tuned and directional
measure of adjective-adjective entailments. Intensity re-
lationships were collected between adjectives in WordNet
by applying a number of surface patterns on the adjective
synset glosses of “Similar-to” adjectives. Intensity relations
were also collected from relations between adjectives and
their comparative and superlative forms. If an adjective is
higher on the gradient than another, such as “scorching” to
“hot,” then the higher adjective can entail the other adjec-
tive. However the opposite is not a valid entailment. In this
instance, “high” in the text would be aligned to “highest”
in the hypothesis since the two words have a high similar-
ity score. However, this would not constitute an entailment
since “highest” is a more intense variant of “high.”
T: For a western European country, the birth rate in Finland
is high.
H: Finland is the European country with the highest birth
rate. (FALSE)

Conclusion
This paper presents progress on our system for textual in-
ference, which decouples alignment and inference stages in
deciding whether one text follows from another. We have
shown improvement in both stages and have outlined future
research directions that might lead to systems capable of bet-
ter text understanding.

We believe our system’s underlying graph-based seman-
tic representation is a reasonable place to start when building
a system able to understand open-domain text. Our system
embraces universality by coupling components that are not
domain-specific. And when combined with inference mech-
anisms, this representation is a step toward the deep text un-
derstanding called for by the vision of machine reading.
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