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Abstract

Because of their superior ability to pre-
serve sequence information over time,
Long Short-Term Memory (LSTM) net-
works, a type of recurrent neural net-
work with a more complex computational
unit, have obtained strong results on a va-
riety of sequence modeling tasks. The
only underlying LSTM structure that has
been explored so far is a linear chain.
However, natural language exhibits syn-
tactic properties that would naturally com-
bine words to phrases. We introduce the
Tree-LSTM, a generalization of LSTMs to
tree-structured network topologies. Tree-
LSTMs outperform all existing systems
and strong LSTM baselines on two tasks:
predicting the semantic relatedness of two
sentences (SemEval 2014, Task 1) and
sentiment classification (Stanford Senti-
ment Treebank).

1 Introduction

Most models for distributed representations of
phrases and sentences—that is, models where real-
valued vectors are used to represent meaning—fall
into one of three classes: bag-of-words models,
sequence models, and tree-structured models. In
bag-of-words models, phrase and sentence repre-
sentations are independent of word order; for ex-
ample, they can be generated by averaging con-
stituent word representations (Landauer and Du-
mais, 1997; Foltz et al., 1998). In contrast, se-
quence models construct sentence representations
as an order-sensitive function of the sequence of
tokens (Elman, 1990; Mikolov, 2012). Lastly,
tree-structured models compose each phrase and
sentence representation from its constituent sub-
phrases according to a given syntactic structure
over the sentence (Goller and Kuchler, 1996;
Socher et al., 2011).
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Figure 1: Top: A chain-structured LSTM net-
work. Bottom: A tree-structured LSTM network
with arbitrary branching factor.

Order-insensitive models are insufficient to
fully capture the semantics of natural language
due to their inability to account for differences in
meaning as a result of differences in word order
or syntactic structure (e.g., “cats climb trees” vs.
“trees climb cats”). We therefore turn to order-
sensitive sequential or tree-structured models. In
particular, tree-structured models are a linguisti-
cally attractive option due to their relation to syn-
tactic interpretations of sentence structure. A nat-
ural question, then, is the following: to what ex-
tent (if at all) can we do better with tree-structured
models as opposed to sequential models for sen-
tence representation? In this paper, we work to-
wards addressing this question by directly com-
paring a type of sequential model that has recently
been used to achieve state-of-the-art results in sev-
eral NLP tasks against its tree-structured general-
ization.

Due to their capability for processing arbitrary-
length sequences, recurrent neural networks



(RNNs) are a natural choice for sequence model-
ing tasks. Recently, RNNs with Long Short-Term
Memory (LSTM) units (Hochreiter and Schmid-
huber, 1997) have re-emerged as a popular archi-
tecture due to their representational power and ef-
fectiveness at capturing long-term dependencies.
LSTM networks, which we review in Sec. 2, have
been successfully applied to a variety of sequence
modeling and prediction tasks, notably machine
translation (Bahdanau et al., 2015; Sutskever et al.,
2014), speech recognition (Graves et al., 2013),
image caption generation (Vinyals et al., 2014),
and program execution (Zaremba and Sutskever,
2014).

In this paper, we introduce a generalization of
the standard LSTM architecture to tree-structured
network topologies and show its superiority for
representing sentence meaning over a sequential
LSTM. While the standard LSTM composes its
hidden state from the input at the current time
step and the hidden state of the LSTM unit in the
previous time step, the tree-structured LSTM, or
Tree-LSTM, composes its state from an input vec-
tor and the hidden states of arbitrarily many child
units. The standard LSTM can then be considered
a special case of the Tree-LSTM where each inter-
nal node has exactly one child.

In our evaluations, we demonstrate the empiri-
cal strength of Tree-LSTMs as models for repre-
senting sentences. We evaluate the Tree-LSTM
architecture on two tasks: semantic relatedness
prediction on sentence pairs and sentiment clas-
sification of sentences drawn from movie reviews.
Our experiments show that Tree-LSTMs outper-
form existing systems and sequential LSTM base-
lines on both tasks. Implementations of our mod-
els and experiments are available at https://
github.com/stanfordnlp/treelstm.

2 Long Short-Term Memory Networks

2.1 Overview

Recurrent neural networks (RNNs) are able to pro-
cess input sequences of arbitrary length via the re-
cursive application of a transition function on a
hidden state vector ht. At each time step t, the
hidden state ht is a function of the input vector xt
that the network receives at time t and its previous
hidden state ht−1. For example, the input vector xt
could be a vector representation of the t-th word in
body of text (Elman, 1990; Mikolov, 2012). The
hidden state ht ∈ Rd can be interpreted as a d-

dimensional distributed representation of the se-
quence of tokens observed up to time t.

Commonly, the RNN transition function is an
affine transformation followed by a pointwise non-
linearity such as the hyperbolic tangent function:

ht = tanh (Wxt + Uht−1 + b) .

Unfortunately, a problem with RNNs with transi-
tion functions of this form is that during training,
components of the gradient vector can grow or de-
cay exponentially over long sequences (Hochre-
iter, 1998; Bengio et al., 1994). This problem with
exploding or vanishing gradients makes it difficult
for the RNN model to learn long-distance correla-
tions in a sequence.

The LSTM architecture (Hochreiter and
Schmidhuber, 1997) addresses this problem of
learning long-term dependencies by introducing a
memory cell that is able to preserve state over long
periods of time. While numerous LSTM variants
have been described, here we describe the version
used by Zaremba and Sutskever (2014).

We define the LSTM unit at each time step t to
be a collection of vectors in Rd: an input gate it, a
forget gate ft, an output gate ot, a memory cell ct
and a hidden state ht. The entries of the gating
vectors it, ft and ot are in [0, 1]. We refer to d as
the memory dimension of the LSTM.

The LSTM transition equations are the follow-
ing:

it = σ
(
W (i)xt + U (i)ht−1 + b(i)

)
, (1)

ft = σ
(
W (f)xt + U (f)ht−1 + b(f)

)
,

ot = σ
(
W (o)xt + U (o)ht−1 + b(o)

)
,

ut = tanh
(
W (u)xt + U (u)ht−1 + b(u)

)
,

ct = it � ut + ft � ct−1,
ht = ot � tanh(ct),

where xt is the input at the current time step, σ de-
notes the logistic sigmoid function and � denotes
elementwise multiplication. Intuitively, the for-
get gate controls the extent to which the previous
memory cell is forgotten, the input gate controls
how much each unit is updated, and the output gate
controls the exposure of the internal memory state.
The hidden state vector in an LSTM unit is there-
fore a gated, partial view of the state of the unit’s
internal memory cell. Since the value of the gating
variables vary for each vector element, the model



can learn to represent information over multiple
time scales.

2.2 Variants

Two commonly-used variants of the basic LSTM
architecture are the Bidirectional LSTM and the
Multilayer LSTM (also known as the stacked or
deep LSTM).

Bidirectional LSTM. A Bidirectional LSTM
(Graves et al., 2013) consists of two LSTMs that
are run in parallel: one on the input sequence and
the other on the reverse of the input sequence. At
each time step, the hidden state of the Bidirec-
tional LSTM is the concatenation of the forward
and backward hidden states. This setup allows the
hidden state to capture both past and future infor-
mation.

Multilayer LSTM. In Multilayer LSTM archi-
tectures, the hidden state of an LSTM unit in layer
` is used as input to the LSTM unit in layer `+1 in
the same time step (Graves et al., 2013; Sutskever
et al., 2014; Zaremba and Sutskever, 2014). Here,
the idea is to let the higher layers capture longer-
term dependencies of the input sequence.

These two variants can be combined as a Multi-
layer Bidirectional LSTM (Graves et al., 2013).

3 Tree-Structured LSTMs

A limitation of the LSTM architectures described
in the previous section is that they only allow for
strictly sequential information propagation. Here,
we propose two natural extensions to the basic
LSTM architecture: the Child-Sum Tree-LSTM
and the N-ary Tree-LSTM. Both variants allow for
richer network topologies where each LSTM unit
is able to incorporate information from multiple
child units.

As in standard LSTM units, each Tree-LSTM
unit (indexed by j) contains input and output
gates ij and oj , a memory cell cj and hidden
state hj . The difference between the standard
LSTM unit and Tree-LSTM units is that gating
vectors and memory cell updates are dependent
on the states of possibly many child units. Ad-
ditionally, instead of a single forget gate, the Tree-
LSTM unit contains one forget gate fjk for each
child k. This allows the Tree-LSTM unit to se-
lectively incorporate information from each child.
For example, a Tree-LSTM model can learn to em-
phasize semantic heads in a semantic relatedness
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Figure 2: Composing the memory cell c1 and hid-
den state h1 of a Tree-LSTM unit with two chil-
dren (subscripts 2 and 3). Labeled edges cor-
respond to gating by the indicated gating vector,
with dependencies omitted for compactness.

task, or it can learn to preserve the representation
of sentiment-rich children for sentiment classifica-
tion.

As with the standard LSTM, each Tree-LSTM
unit takes an input vector xj . In our applications,
each xj is a vector representation of a word in a
sentence. The input word at each node depends
on the tree structure used for the network. For in-
stance, in a Tree-LSTM over a dependency tree,
each node in the tree takes the vector correspond-
ing to the head word as input, whereas in a Tree-
LSTM over a constituency tree, the leaf nodes take
the corresponding word vectors as input.

3.1 Child-Sum Tree-LSTMs
Given a tree, let C(j) denote the set of children
of node j. The Child-Sum Tree-LSTM transition
equations are the following:

h̃j =
∑

k∈C(j)

hk, (2)

ij = σ
(
W (i)xj + U (i)h̃j + b(i)

)
, (3)

fjk = σ
(
W (f)xj + U (f)hk + b(f)

)
, (4)

oj = σ
(
W (o)xj + U (o)h̃j + b(o)

)
, (5)

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
, (6)

cj = ij � uj +
∑

k∈C(j)

fjk � ck, (7)

hj = oj � tanh(cj), (8)

where in Eq. 4, k ∈ C(j).
Intuitively, we can interpret each parameter ma-

trix in these equations as encoding correlations be-
tween the component vectors of the Tree-LSTM



unit, the input xj , and the hidden states hk of the
unit’s children. For example, in a dependency tree
application, the model can learn parameters W (i)

such that the components of the input gate ij have
values close to 1 (i.e., “open”) when a semanti-
cally important content word (such as a verb) is
given as input, and values close to 0 (i.e., “closed”)
when the input is a relatively unimportant word
(such as a determiner).

Dependency Tree-LSTMs. Since the Child-
Sum Tree-LSTM unit conditions its components
on the sum of child hidden states hk, it is well-
suited for trees with high branching factor or
whose children are unordered. For example, it is a
good choice for dependency trees, where the num-
ber of dependents of a head can be highly variable.
We refer to a Child-Sum Tree-LSTM applied to a
dependency tree as a Dependency Tree-LSTM.

3.2 N -ary Tree-LSTMs
The N -ary Tree-LSTM can be used on tree struc-
tures where the branching factor is at most N and
where children are ordered, i.e., they can be in-
dexed from 1 to N . For any node j, write the hid-
den state and memory cell of its kth child as hjk
and cjk respectively. The N -ary Tree-LSTM tran-
sition equations are the following:

ij = σ

(
W (i)xj +

N∑
`=1

U
(i)
` hj` + b(i)

)
, (9)

fjk = σ

(
W (f)xj +

N∑
`=1

U
(f)
k` hj` + b(f)

)
,

(10)

oj = σ

(
W (o)xj +

N∑
`=1

U
(o)
` hj` + b(o)

)
, (11)

uj = tanh

(
W (u)xj +

N∑
`=1

U
(u)
` hj` + b(u)

)
,

(12)

cj = ij � uj +
N∑
`=1

fj` � cj`, (13)

hj = oj � tanh(cj), (14)

where in Eq. 10, k = 1, 2, . . . , N . Note that
when the tree is simply a chain, both Eqs. 2–8
and Eqs. 9–14 reduce to the standard LSTM tran-
sitions, Eqs. 1.

The introduction of separate parameter matri-
ces for each child k allows the N -ary Tree-LSTM

model to learn more fine-grained conditioning on
the states of a unit’s children than the Child-
Sum Tree-LSTM. Consider, for example, a con-
stituency tree application where the left child of a
node corresponds to a noun phrase, and the right
child to a verb phrase. Suppose that in this case
it is advantageous to emphasize the verb phrase
in the representation. Then the U (f)

k` parameters
can be trained such that the components of fj1 are
close to 0 (i.e., “forget”), while the components of
fj2 are close to 1 (i.e., “preserve”).

Forget gate parameterization. In Eq. 10, we
define a parameterization of the kth child’s for-
get gate fjk that contains “off-diagonal” param-
eter matrices U (f)

k` , k 6= `. This parameteriza-
tion allows for more flexible control of informa-
tion propagation from child to parent. For exam-
ple, this allows the left hidden state in a binary tree
to have either an excitatory or inhibitory effect on
the forget gate of the right child. However, for
large values of N , these additional parameters are
impractical and may be tied or fixed to zero.

Constituency Tree-LSTMs. We can naturally
apply Binary Tree-LSTM units to binarized con-
stituency trees since left and right child nodes are
distinguished. We refer to this application of Bi-
nary Tree-LSTMs as a Constituency Tree-LSTM.
Note that in Constituency Tree-LSTMs, a node j
receives an input vector xj only if it is a leaf node.

In the remainder of this paper, we focus on
the special cases of Dependency Tree-LSTMs and
Constituency Tree-LSTMs. These architectures
are in fact closely related; since we consider only
binarized constituency trees, the parameterizations
of the two models are very similar. The key dif-
ference is in the application of the compositional
parameters: dependent vs. head for Dependency
Tree-LSTMs, and left child vs. right child for Con-
stituency Tree-LSTMs.

4 Models

We now describe two specific models that apply
the Tree-LSTM architectures described in the pre-
vious section.

4.1 Tree-LSTM Classification

In this setting, we wish to predict labels ŷ from a
discrete set of classes Y for some subset of nodes
in a tree. For example, the label for a node in a



parse tree could correspond to some property of
the phrase spanned by that node.

At each node j, we use a softmax classifier to
predict the label ŷj given the inputs {x}j observed
at nodes in the subtree rooted at j. The classifier
takes the hidden state hj at the node as input:

p̂θ(y | {x}j) = softmax
(
W (s)hj + b(s)

)
,

ŷj = argmax
y
p̂θ (y | {x}j) .

The cost function is the negative log-likelihood
of the true class labels y(k) at each labeled node:

J(θ) = − 1

m

m∑
k=1

log p̂θ

(
y(k)

∣∣∣ {x}(k))+ λ

2
‖θ‖22,

where m is the number of labeled nodes in the
training set, the superscript k indicates the kth la-
beled node, and λ is an L2 regularization hyperpa-
rameter.

4.2 Semantic Relatedness of Sentence Pairs
Given a sentence pair, we wish to predict a
real-valued similarity score in some range [1,K],
where K > 1 is an integer. The sequence
{1, 2, . . . ,K} is some ordinal scale of similarity,
where higher scores indicate greater degrees of
similarity, and we allow real-valued scores to ac-
count for ground-truth ratings that are an average
over the evaluations of several human annotators.

We first produce sentence representations hL
and hR for each sentence in the pair using a
Tree-LSTM model over each sentence’s parse tree.
Given these sentence representations, we predict
the similarity score ŷ using a neural network that
considers both the distance and angle between the
pair (hL, hR):

h× = hL � hR, (15)

h+ = |hL − hR|,

hs = σ
(
W (×)h× +W (+)h+ + b(h)

)
,

p̂θ = softmax
(
W (p)hs + b(p)

)
,

ŷ = rT p̂θ,

where rT = [1 2 . . . K] and the absolute value
function is applied elementwise. The use of both
distance measures h× and h+ is empirically mo-
tivated: we find that the combination outperforms
the use of either measure alone. The multiplicative
measure h× can be interpreted as an elementwise

comparison of the signs of the input representa-
tions.

We want the expected rating under the predicted
distribution p̂θ given model parameters θ to be
close to the gold rating y ∈ [1,K]: ŷ = rT p̂θ ≈ y.
We therefore define a sparse target distribution1 p
that satisfies y = rT p:

pi =


y − byc, i = byc+ 1

byc − y + 1, i = byc
0 otherwise

for 1 ≤ i ≤ K. The cost function is the regular-
ized KL-divergence between p and p̂θ:

J(θ) =
1

m

m∑
k=1

KL
(
p(k)

∥∥∥ p̂(k)θ )+ λ

2
‖θ‖22,

where m is the number of training pairs and the
superscript k indicates the kth sentence pair.

5 Experiments

We evaluate our Tree-LSTM architectures on two
tasks: (1) sentiment classification of sentences
sampled from movie reviews and (2) predicting
the semantic relatedness of sentence pairs.

In comparing our Tree-LSTMs against sequen-
tial LSTMs, we control for the number of LSTM
parameters by varying the dimensionality of the
hidden states2. Details for each model variant are
summarized in Table 1.

5.1 Sentiment Classification

In this task, we predict the sentiment of sen-
tences sampled from movie reviews. We use
the Stanford Sentiment Treebank (Socher et al.,
2013). There are two subtasks: binary classifica-
tion of sentences, and fine-grained classification
over five classes: very negative, negative, neu-
tral, positive, and very positive. We use the stan-
dard train/dev/test splits of 6920/872/1821 for the
binary classification subtask and 8544/1101/2210
for the fine-grained classification subtask (there
are fewer examples for the binary subtask since

1In the subsequent experiments, we found that optimizing
this objective yielded better performance than a mean squared
error objective.

2For our Bidirectional LSTMs, the parameters of the for-
ward and backward transition functions are shared. In our
experiments, this achieved superior performance to Bidirec-
tional LSTMs with untied weights and the same number of
parameters (and therefore smaller hidden vector dimension-
ality).



Relatedness Sentiment

LSTM Variant d |θ| d |θ|

Standard 150 203,400 168 315,840
Bidirectional 150 203,400 168 315,840

2-layer 108 203,472 120 318,720
Bidirectional 2-layer 108 203,472 120 318,720

Constituency Tree 142 205,190 150 316,800
Dependency Tree 150 203,400 168 315,840

Table 1: Memory dimensions d and composition
function parameter counts |θ| for each LSTM vari-
ant that we evaluate.

neutral sentences are excluded). Standard bina-
rized constituency parse trees are provided for
each sentence in the dataset, and each node in
these trees is annotated with a sentiment label.

For the sequential LSTM baselines, we predict
the sentiment of a phrase using the representation
given by the final LSTM hidden state. The sequen-
tial LSTM models are trained on the spans corre-
sponding to labeled nodes in the training set.

We use the classification model described in
Sec. 4.1 with both Dependency Tree-LSTMs
(Sec. 3.1) and Constituency Tree-LSTMs
(Sec. 3.2). The Constituency Tree-LSTMs are
structured according to the provided parse trees.
For the Dependency Tree-LSTMs, we produce
dependency parses3 of each sentence; each node
in a tree is given a sentiment label if its span
matches a labeled span in the training set.

5.2 Semantic Relatedness
For a given pair of sentences, the semantic relat-
edness task is to predict a human-generated rating
of the similarity of the two sentences in meaning.

We use the Sentences Involving Composi-
tional Knowledge (SICK) dataset (Marelli et al.,
2014), consisting of 9927 sentence pairs in a
4500/500/4927 train/dev/test split. The sentences
are derived from existing image and video descrip-
tion datasets. Each sentence pair is annotated with
a relatedness score y ∈ [1, 5], with 1 indicating
that the two sentences are completely unrelated,
and 5 indicating that the two sentences are very
related. Each label is the average of 10 ratings as-
signed by different human annotators.

Here, we use the similarity model described in
Sec. 4.2. For the similarity prediction network
(Eqs. 15) we use a hidden layer of size 50. We

3Dependency parses produced by the Stanford Neural
Network Dependency Parser (Chen and Manning, 2014).

Method Fine-grained Binary

RAE (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al., 2013) 44.4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6

LSTM 46.4 (1.1) 84.9 (0.6)
Bidirectional LSTM 49.1 (1.0) 87.5 (0.5)
2-layer LSTM 46.0 (1.3) 86.3 (0.6)
2-layer Bidirectional LSTM 48.5 (1.0) 87.2 (1.0)

Dependency Tree-LSTM 48.4 (0.4) 85.7 (0.4)
Constituency Tree-LSTM

– randomly initialized vectors 43.9 (0.6) 82.0 (0.5)
– Glove vectors, fixed 49.7 (0.4) 87.5 (0.8)
– Glove vectors, tuned 51.0 (0.5) 88.0 (0.3)

Table 2: Test set accuracies on the Stanford Sen-
timent Treebank. For our experiments, we report
mean accuracies over 5 runs (standard deviations
in parentheses). Fine-grained: 5-class sentiment
classification. Binary: positive/negative senti-
ment classification.

produce binarized constituency parses4 and depen-
dency parses of the sentences in the dataset for our
Constituency Tree-LSTM and Dependency Tree-
LSTM models.

5.3 Hyperparameters and Training Details

The hyperparameters for our models were tuned
on the development set for each task.

We initialized our word representations using
publicly available 300-dimensional Glove vec-
tors5 (Pennington et al., 2014). For the sentiment
classification task, word representations were up-
dated during training with a learning rate of 0.1.
For the semantic relatedness task, word represen-
tations were held fixed as we did not observe any
significant improvement when the representations
were tuned.

Our models were trained using AdaGrad (Duchi
et al., 2011) with a learning rate of 0.05 and a
minibatch size of 25. The model parameters were
regularized with a per-minibatch L2 regularization
strength of 10−4. The sentiment classifier was
additionally regularized using dropout (Srivastava
et al., 2014) with a dropout rate of 0.5. We did not
observe performance gains using dropout on the
semantic relatedness task.

4Constituency parses produced by the Stanford PCFG
Parser (Klein and Manning, 2003).

5Trained on 840 billion tokens of Common Crawl data,
http://nlp.stanford.edu/projects/glove/.



Method Pearson’s r Spearman’s ρ MSE

Illinois-LH (Lai and Hockenmaier, 2014) 0.7993 0.7538 0.3692
UNAL-NLP (Jimenez et al., 2014) 0.8070 0.7489 0.3550
Meaning Factory (Bjerva et al., 2014) 0.8268 0.7721 0.3224
ECNU (Zhao et al., 2014) 0.8414 – –

Mean vectors 0.7577 (0.0013) 0.6738 (0.0027) 0.4557 (0.0090)
DT-RNN (Socher et al., 2014) 0.7923 (0.0070) 0.7319 (0.0071) 0.3822 (0.0137)
SDT-RNN (Socher et al., 2014) 0.7900 (0.0042) 0.7304 (0.0076) 0.3848 (0.0074)

LSTM 0.8528 (0.0031) 0.7911 (0.0059) 0.2831 (0.0092)
Bidirectional LSTM 0.8567 (0.0028) 0.7966 (0.0053) 0.2736 (0.0063)
2-layer LSTM 0.8515 (0.0066) 0.7896 (0.0088) 0.2838 (0.0150)
2-layer Bidirectional LSTM 0.8558 (0.0014) 0.7965 (0.0018) 0.2762 (0.0020)

Constituency Tree-LSTM 0.8582 (0.0038) 0.7966 (0.0053) 0.2734 (0.0108)
Dependency Tree-LSTM 0.8676 (0.0030) 0.8083 (0.0042) 0.2532 (0.0052)

Table 3: Test set results on the SICK semantic relatedness subtask. For our experiments, we report mean
scores over 5 runs (standard deviations in parentheses). Results are grouped as follows: (1) SemEval
2014 submissions; (2) Our own baselines; (3) Sequential LSTMs; (4) Tree-structured LSTMs.

6 Results

6.1 Sentiment Classification

Our results are summarized in Table 2. The Con-
stituency Tree-LSTM outperforms existing sys-
tems on the fine-grained classification subtask and
achieves accuracy comparable to the state-of-the-
art on the binary subtask. In particular, we find that
it outperforms the Dependency Tree-LSTM. This
performance gap is at least partially attributable to
the fact that the Dependency Tree-LSTM is trained
on less data: about 150K labeled nodes vs. 319K
for the Constituency Tree-LSTM. This difference
is due to (1) the dependency representations con-
taining fewer nodes than the corresponding con-
stituency representations, and (2) the inability to
match about 9% of the dependency nodes to a cor-
responding span in the training data.

We found that updating the word representa-
tions during training (“fine-tuning” the word em-
bedding) yields a significant boost in performance
on the fine-grained classification subtask and gives
a minor gain on the binary classification subtask
(this finding is consistent with previous work on
this task by Kim (2014)). These gains are to be
expected since the Glove vectors used to initial-
ize our word representations were not originally
trained to capture sentiment.

6.2 Semantic Relatedness

Our results are summarized in Table 3. Following
Marelli et al. (2014), we use Pearson’s r, Spear-
man’s ρ and mean squared error (MSE) as evalua-

tion metrics. The first two metrics are measures of
correlation against human evaluations of semantic
relatedness.

We compare our models against a number of
non-LSTM baselines. The mean vector baseline
computes sentence representations as a mean of
the representations of the constituent words. The
DT-RNN and SDT-RNN models (Socher et al.,
2014) both compose vector representations for the
nodes in a dependency tree as a sum over affine-
transformed child vectors, followed by a nonlin-
earity. The SDT-RNN is an extension of the DT-
RNN that uses a separate transformation for each
dependency relation. For each of our baselines,
including the LSTM models, we use the similarity
model described in Sec. 4.2.

We also compare against four of the top-
performing systems6 submitted to the SemEval
2014 semantic relatedness shared task: ECNU
(Zhao et al., 2014), The Meaning Factory (Bjerva
et al., 2014), UNAL-NLP (Jimenez et al., 2014),
and Illinois-LH (Lai and Hockenmaier, 2014).
These systems are heavily feature engineered,
generally using a combination of surface form
overlap features and lexical distance features de-
rived from WordNet or the Paraphrase Database
(Ganitkevitch et al., 2013).

Our LSTM models outperform all these sys-

6We list the strongest results we were able to find for this
task; in some cases, these results are stronger than the official
performance by the team on the shared task. For example,
the listed result by Zhao et al. (2014) is stronger than their
submitted system’s Pearson correlation score of 0.8280.



0 5 10 15 20 25 30 35 40 45

sentence length

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
ac

cu
ra

cy

DT-LSTM
CT-LSTM
LSTM
Bi-LSTM

Figure 3: Fine-grained sentiment classification ac-
curacy vs. sentence length. For each `, we plot
accuracy for the test set sentences with length in
the window [` − 2, ` + 2]. Examples in the tail
of the length distribution are batched in the final
window (` = 45).

tems without any additional feature engineering,
with the best results achieved by the Dependency
Tree-LSTM. Recall that in this task, both Tree-
LSTM models only receive supervision at the root
of the tree, in contrast to the sentiment classifi-
cation task where supervision was also provided
at the intermediate nodes. We conjecture that in
this setting, the Dependency Tree-LSTM benefits
from its more compact structure relative to the
Constituency Tree-LSTM, in the sense that paths
from input word vectors to the root of the tree
are shorter on aggregate for the Dependency Tree-
LSTM.

7 Discussion and Qualitative Analysis

7.1 Modeling Semantic Relatedness

In Table 4, we list nearest-neighbor sentences re-
trieved from a 1000-sentence sample of the SICK
test set. We compare the neighbors ranked by the
Dependency Tree-LSTM model against a baseline
ranking by cosine similarity of the mean word vec-
tors for each sentence.

The Dependency Tree-LSTM model exhibits
several desirable properties. Note that in the de-
pendency parse of the second query sentence, the
word “ocean” is the second-furthest word from the
root (“waving”), with a depth of 4. Regardless, the
retrieved sentences are all semantically related to
the word “ocean”, which indicates that the Tree-
LSTM is able to both preserve and emphasize in-
formation from relatively distant nodes. Addi-
tionally, the Tree-LSTM model shows greater ro-
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Figure 4: Pearson correlations r between pre-
dicted similarities and gold ratings vs. sentence
length. For each `, we plot r for the pairs with
mean length in the window [`−2, `+2]. Examples
in the tail of the length distribution are batched in
the final window (` = 18.5).

bustness to differences in sentence length. Given
the query “two men are playing guitar”, the Tree-
LSTM associates the phrase “playing guitar” with
the longer, related phrase “dancing and singing in
front of a crowd” (note as well that there is zero
token overlap between the two phrases).

7.2 Effect of Sentence Length
One hypothesis to explain the empirical strength
of Tree-LSTMs is that tree structures help miti-
gate the problem of preserving state over long se-
quences of words. If this were true, we would ex-
pect to see the greatest improvement over sequen-
tial LSTMs on longer sentences. In Figs. 3 and 4,
we show the relationship between sentence length
and performance as measured by the relevant task-
specific metric. Each data point is a mean score
over 5 runs, and error bars have been omitted for
clarity.

We observe that while the Dependency Tree-
LSTM does significantly outperform its sequen-
tial counterparts on the relatedness task for
longer sentences of length 13 to 15 (Fig. 4), it
also achieves consistently strong performance on
shorter sentences. This suggests that unlike se-
quential LSTMs, Tree-LSTMs are able to encode
semantically-useful structural information in the
sentence representations that they compose.

8 Related Work

Distributed representations of words (Rumelhart
et al., 1988; Collobert et al., 2011; Turian et al.,
2010; Huang et al., 2012; Mikolov et al., 2013;



Ranking by mean word vector cosine similarity Score

a woman is slicing potatoes
a woman is cutting potatoes 0.96
a woman is slicing herbs 0.92
a woman is slicing tofu 0.92

a boy is waving at some young runners from the ocean
a man and a boy are standing at the bottom of some stairs , 0.92

which are outdoors
a group of children in uniforms is standing at a gate and 0.90

one is kissing the mother
a group of children in uniforms is standing at a gate and 0.90

there is no one kissing the mother

two men are playing guitar
some men are playing rugby 0.88
two men are talking 0.87

two dogs are playing with each other 0.87

Ranking by Dependency Tree-LSTM model Score

a woman is slicing potatoes
a woman is cutting potatoes 4.82
potatoes are being sliced by a woman 4.70
tofu is being sliced by a woman 4.39

a boy is waving at some young runners from the ocean
a group of men is playing with a ball on the beach 3.79

a young boy wearing a red swimsuit is jumping out of a 3.37
blue kiddies pool

the man is tossing a kid into the swimming pool that is 3.19
near the ocean

two men are playing guitar
the man is singing and playing the guitar 4.08
the man is opening the guitar for donations and plays 4.01

with the case
two men are dancing and singing in front of a crowd 4.00

Table 4: Most similar sentences from a 1000-sentence sample drawn from the SICK test set. The Tree-
LSTM model is able to pick up on more subtle relationships, such as that between “beach” and “ocean”
in the second example.

Pennington et al., 2014) have found wide appli-
cability in a variety of NLP tasks. Following
this success, there has been substantial interest in
the area of learning distributed phrase and sen-
tence representations (Mitchell and Lapata, 2010;
Yessenalina and Cardie, 2011; Grefenstette et al.,
2013; Mikolov et al., 2013), as well as distributed
representations of longer bodies of text such as
paragraphs and documents (Srivastava et al., 2013;
Le and Mikolov, 2014).

Our approach builds on recursive neural net-
works (Goller and Kuchler, 1996; Socher et al.,
2011), which we abbreviate as Tree-RNNs in or-
der to avoid confusion with recurrent neural net-
works. Under the Tree-RNN framework, the vec-
tor representation associated with each node of
a tree is composed as a function of the vectors
corresponding to the children of the node. The
choice of composition function gives rise to nu-
merous variants of this basic framework. Tree-
RNNs have been used to parse images of natu-
ral scenes (Socher et al., 2011), compose phrase
representations from word vectors (Socher et al.,
2012), and classify the sentiment polarity of sen-
tences (Socher et al., 2013).

9 Conclusion

In this paper, we introduced a generalization of
LSTMs to tree-structured network topologies. The
Tree-LSTM architecture can be applied to trees
with arbitrary branching factor. We demonstrated
the effectiveness of the Tree-LSTM by applying
the architecture in two tasks: semantic relatedness

and sentiment classification, outperforming exist-
ing systems on both. Controlling for model di-
mensionality, we demonstrated that Tree-LSTM
models are able to outperform their sequential
counterparts. Our results suggest further lines of
work in characterizing the role of structure in pro-
ducing distributed representations of sentences.
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