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ABSTRACT

Many recent methods for unsupervised representation learning train models to be
invariant to different “views,” or distorted versions of an input. However, design-
ing these views requires considerable trial and error by human experts, hindering
widespread adoption of unsupervised representation learning methods across do-
mains and modalities. To address this, we propose viewmaker networks: gener-
ative models that learn to produce useful views from a given input. Viewmak-
ers are stochastic bounded adversaries: they produce views by generating and
then adding an `p-bounded perturbation to the input, and are trained adversari-
ally with respect to the main encoder network. Remarkably, when pretraining on
CIFAR-10, our learned views enable comparable transfer accuracy to the well-
tuned SimCLR augmentations—despite not including transformations like crop-
ping or color jitter. Furthermore, our learned views significantly outperform base-
line augmentations on speech recordings (+9 points on average) and wearable
sensor data (+17 points on average). Viewmaker views can also be combined with
handcrafted views: they improve robustness to common image corruptions and
can increase transfer performance in cases where handcrafted views are less ex-
plored. These results suggest that viewmakers may provide a path towards more
general representation learning algorithms—reducing the domain expertise and
effort needed to pretrain on a much wider set of domains. Code is available at
https://github.com/alextamkin/viewmaker.

Figure 1: Viewmaker networks generate complex and diverse input-dependent views for unsu-
pervised learning. Examples shown are for CIFAR-10. Original image in center with pink border.

1 INTRODUCTION

Unsupervised representation learning has made significant recent strides, including in computer
vision, where view-based methods have enabled strong performance on benchmark tasks (Wu et al.,
2018; Oord et al., 2018; Bachman et al., 2019; Zhuang et al., 2019; Misra & Maaten, 2020; He et al.,
2020; Chen et al., 2020a). Views here refer to human-defined data transformations, which target
capabilities or invariances thought to be useful for transfer tasks. In particular, in contrastive learning
of visual representations, models are trained to maximize the mutual information between different
views of an image, including crops, blurs, noise, and changes to color and contrast (Bachman et al.,
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2019; Chen et al., 2020a). Much work has investigated the space of possible image views (and their
compositions) and understanding their effects on transfer learning (Chen et al., 2020a; Wu et al.,
2020; Tian et al., 2019; Purushwalkam & Gupta, 2020).

The fact that views must be hand designed is a significant limitation. While views for image clas-
sification have been refined over many years, new views must be developed from scratch for new
modalities. Making matters worse, even within a modality, different domains may have different
optimal views (Purushwalkam & Gupta, 2020). Previous studies have investigated the properties
of good views through the lens of mutual information (Tian et al., 2020; Wu et al., 2020), but a
broadly-applicable approach for learning views remains unstudied.

In this work, we present a general method for learning diverse and useful views for contrastive
learning. Rather than searching through possible compositions of existing view functions (Cubuk
et al., 2018; Lim et al., 2019), which may not be available for many modalities, our approach pro-
duces views with a generative model, called the viewmaker network, trained jointly with the en-
coder network. This flexibility enables learning a broad set of possible view functions, including
input-dependent views, without resorting to hand-crafting or expert domain knowledge. The view-
maker network is trained adversarially to create views which increase the contrastive loss of the
encoder network. Rather than directly outputting views for an image, the viewmaker instead outputs
a stochastic perturbation that is added to the input. This perturbation is projected onto an `p sphere,
controlling the effective strength of the view, similar to methods in adversarial robustness. This con-
strained adversarial training method enables the model to reduce the mutual information between
different views while preserving useful input features for the encoder to learn from.

In summary, we contribute:

1. Viewmaker networks: to our knowledge the first modality-agnostic method to learn views
for unsupervised representation learning

2. On image data, where expert-designed views have been extensively optimized, our
viewmaker-models achieve comparable transfer performance to state of the art contrastive
methods while being more robust to common corruptions.

3. On speech data, our method significantly outperforms existing human-defined views on a
range of speech recognition transfer tasks.

4. On time-series data from wearable sensors, our model significantly outperforms baseline
views on the task of human activity recognition (e.g., cycling, running, jumping rope).

2 RELATED WORK

Unsupervised representation learning Learning useful representations from unlabeled data is a
fundamental problem in machine learning (Pan & Yang, 2009; Bengio et al., 2013). A recently
successful framework for unsupervised representation learning for images involves training a model
to be invariant to various data transformations (Bachman et al., 2019; Misra & Maaten, 2020), al-
though the idea has much earlier roots (Becker & Hinton, 1992; Hadsell et al., 2006; Dosovitskiy
et al., 2014). This idea has been expanded by a number of contrastive learning approaches which
push embeddings of different views, or transformed inputs, closer together, while pushing other
pairs apart (Tian et al., 2019; He et al., 2020; Chen et al., 2020a;b;c), as well as non-contrastive ap-
proaches which do not explicitly push apart unmatched views (Grill et al., 2020; Caron et al., 2020).
Related but more limited setups have been explored for speech, where data augmentation strategies
are less explored (Oord et al., 2018; Kharitonov et al., 2020).

Understanding and designing views Several works have studied the role of views in contrastive
learning, including from a mutual-information perspective (Wu et al., 2020), in relation to specific
transfer tasks (Tian et al., 2019), with respect to different kinds of invariances (Purushwalkam &
Gupta, 2020), or via careful empirical studies (Chen et al., 2020a). Outside of a contrastive learning
framework, Gontijo-Lopes et al. (2020) study how data augmentation aids generalization in vision
models. Much work has explored different handcrafted data augmentation methods for supervised
learning of images (Hendrycks et al., 2020; Lopes et al., 2019; Perez & Wang, 2017; Yun et al., 2019;
Zhang et al., 2017), speech (Park et al., 2019; Kovács et al., 2017; Tóth et al., 2018; Kharitonov et al.,
2020), or in feature space (DeVries & Taylor, 2017).
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Figure 2: Diagram of our method. The viewmaker network is trained to produce stochastic adver-
sarial views restricted to an `1 sphere around the input.

Adversarial methods Our work is related to and inspired by work on adversarial methods, includ-
ing the `p balls studied in adversarial robustness (Szegedy et al., 2013; Madry et al., 2017; Raghu-
nathan et al., 2018) and training networks with adversarial objectives (Goodfellow et al., 2014; Xiao
et al., 2018). Our work is also connected to the vicinal risk minimization principle (Chapelle et al.,
2001) and can be interpreted as producing amortized virtual adversarial examples (Miyato et al.,
2018). Previous adversarial view-based pretraining methods add adversarial noise on top of existing
handcrafted views (Kim et al., 2020) or require access to specific transfer tasks during pretraining
(Tian et al., 2020). In contrast, our method is more general: it is neither specialized to a particular
downstream task, nor requires neither human-defined view families. Outside of multi-view learning
paradigms, adversarial methods have also seen use for representation learning in GANs (Donahue
et al., 2016; Donahue & Simonyan, 2019) or in choosing harder negative samples (Bose et al., 2018),
as well as for data augmentation (Antoniou et al., 2017; Volpi et al., 2018; Bowles et al., 2018). Ad-
versarial networks that perturb inputs have also been investigated to improve GAN training (Sajjadi
et al., 2018) and to remove “shortcut” features (e.g., watermarks) for self-supervised pretext tasks
(Minderer et al., 2020).

Learning views Outside of adversarial approaches, our work is related to other studies that seek
to learn data augmentation strategies by composing existing human-designed augmentations (Ratner
et al., 2017; Cubuk et al., 2018; Zhang et al., 2019; Ho et al., 2019; Lim et al., 2019; Cubuk et al.,
2020) or by modeling variations specific to the data distribution (Tran et al., 2017; Wong & Kolter,
2020). By contrast, our method requires no human-defined view functions, does not require first
pretraining a generative model, and can generate perturbations beyond naturally-occurring variation
observed in the training data (e.g. brightness or contrast), potentially conferring robustness benefits,
as we explore in Section 4.3.

3 METHOD

In contrastive learning, the objective is to push embeddings of positive views (derived from the same
input) close together, while pushing away embeddings of negative views (derived from different in-
puts). We focus mainly on the simple, yet performant, SimCLR contrastive learning algorithm (Chen
et al., 2020a), but we also consider a memory bank-based algorithm (Wu et al., 2018) in Section 4.
As our method is agnostic to the specific pretraining loss used, it is naturally compatible with other
view-based algorithms such as MoCo (He et al., 2020), BYOL (Grill et al., 2020), and SwAV (Caron
et al., 2020) by similarly substituting the data transformation pipeline with a viewmaker network.

Formally, given a batch of N pairs of positive views (i, j) the SimCLR loss is

L =
1

2N

N∑
k=1

[`(2k − 1, 2k) + `(2k, 2k − 1)] where `(i, j) = − log
exp(si,j/τ)∑2N

k=1 1[k 6=i] exp(si,k/τ)

and sa,b is the cosine similarity of the embeddings of views a and b.

We generate views by perturbing examples with a viewmaker network V , trained jointly with the
main encoder network M . There are three attributes desirable for useful perturbations, each of
which motivates an aspect of our method:
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1. Challenging: The perturbations should be complex and strong enough that an encoder
must develop useful representations to perform the self-supervised task. We accomplish
this by generating perturbations with a neural network that is trained adversarially to in-
crease the loss of the encoder network. Specifically, we use a neural network that ingests
the input X and outputs a view X + V (X).

2. Faithful: The perturbations must not make the encoder task impossible, being so strong
that they destroy all features of the input. For example, perturbations should not be able
to zero out the input, making learning impossible. We accomplish this by constraining the
perturbations to an `p sphere around the original input. `p constraints are common in the
adversarial robustness literature where perturbations are expected to be indistinguishable.
In our experiments, we find the best results are achieved with an `1 sphere, which grants
the viewmaker a distortion budget that it can spend on a small perturbation for a large part
of the input or a more extreme perturbation for a smaller portion.

3. Stochastic: The method should be able to generate a variety of perturbations for a single
input, as the encoder objective requires contrasting two different views of an input against
each other. To do this, we inject random noise into the viewmaker, such that the model can
learn a stochastic function that produces a different perturbed input each forward pass.

Figure 2 summarizes our method. The encoder and viewmaker are optimized in alternating steps
to minimize and maximize L, respectively. We use an image-to-image neural network as our view-
maker network, with an architecture adapted from work on style transfer (Johnson et al., 2016). See
the Appendix for more details. This network ingests the input image and outputs a perturbation
that is constrained to an `1 sphere. The sphere’s radius is determined by the volume of the input
tensor times a hyperparameter ε, the distortion budget, which determines the strength of the applied
perturbation. This perturbation is added to the input image and optionally clamped in the case of
images to ensure all pixels are in [0, 1]. Algorithm 1 describes this process precisely.

Algorithm 1: Generating viewmaker views
Input: Viewmaker network V , C ×W ×H image X, `1 distortion budget ε, noise δ
Output: Perturbed C ×W ×H image X
P ← V (X, δ) // generate perturbation

P ← εCWH
|P |1 P // project to `1 sphere

X ← X + P // apply perturbation
X ← clamp(X, 0, 1) // clamp (images only)

4 IMAGES

We begin by applying the viewmaker to contrastive learning for images. In addition to SimCLR
(Chen et al., 2020a), we also consider a memory bank-based instance discrimination framework
(Wu et al., 2018, henceforth InstDisc).

We pretrain ResNet-18 (He et al., 2015) models on CIFAR-10 (Krizhevsky, 2009) for 200 epochs
with a batch size of 256. We train a viewmaker-encoder system with a distortion budget of ε = 0.05.
We tried distortion budgets ε ∈ {0.1, 0.05, 0.02} and found 0.05 to work best; however, we antici-
pate that further tuning would yield additional gains. As we can see in Figure 1, the learned views
are diverse, consisting of qualitatively different kinds of perturbations and affecting different parts
of the input. We compare the resulting encoder representations with a model trained with the expert
views used for SimCLR, comprised of many human-defined transformations targeting different kinds
of invariances useful for image classification: cropping-and-resizing, blurring, horizontal flipping,
color dropping, and shifts in brightness, contrast, saturation, and hue (Chen et al., 2020a).

4.1 TRANSFER RESULTS ON IMAGE CLASSIFICATION TASKS

We evaluate our models on CIFAR-10, as well as eleven transfer tasks including MetaDataset (Tri-
antafillou et al., 2019), MSCOCO (Lin et al., 2014), MNIST (LeCun et al., 1998), and FashionM-
NIST (Xiao et al., 2017). We use the standard linear evaluation protocol, which trains a logistic
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SimCLR InstDisc

Dataset Expt Ours Expt Ours

CIFAR-10 86.2 84.5 82.4 80.1
MSCOCO 49.9 50.4 48.6 50.2
CelebA (F1) 51.0 51.8 57.0 53.7
LSUN 56.2 55.0 56.0 55.6
Aircraft 32.5 31.7 37.7 33.5
DTD 30.4 28.8 29.8 29.8

SimCLR InstDisc

Dataset Expt Ours Expt Ours

MNIST 97.1 98.7 98.7 98.9
FaMNIST 88.3 91.5 89.2 91.4
CUBirds 11.2 8.7 13.7 9.4
VGGFlower 53.3 53.6 61.5 54.8
TrafficSign 96.6 94.9 98.9 94.3
Fungi 2.2 2.0 2.6 2.1

Table 1: Our learned views (Ours) enable comparable transfer performance to expert views
(Expt) on CIFAR-10. Suite of transfer tasks using pretrained representations from CIFAR-10 for
both the SimCLR and InstDisc pretraining setups. Numbers are percent accuracy with the exception
of CelebA which is F1. FaMNIST stands for FashionMNIST.

regression on top of representations from a frozen model. We apply the same views as in pretrain-
ing, freezing the final viewmaker when using learned views; we apply no views during validation.
Table 1 shows our results, indicating comparable overall performance with SimCLR and InstDisc,
all without the use of human-crafted view functions. This performance is noteworthy as our `1 views
cannot implement cropping-and-rescaling, which was shown to be the most important view function
in Chen et al. (2020a). We speculate that the ability of the viewmaker to implement partial masking
of an image may enable a similar kind of spatial information ablation as cropping.

4.1.1 COMPARISON TO RANDOM `1 NOISE

Is random noise sufficient to produce domain-agnostic views? To assess how important adversarial
training is to the quality of the learned representations, we perform an ablation where we generate
views by adding Gaussian noise normalized to the same ε = 0.05 budget as used in the previous
section. Transfer accuracy on CIFAR-10 is significantly hurt by this ablation, reaching 52.01% for
a SimCLR model trained with random noise views compared to 84.50% for our method, demon-
strating the importance of adversarial training to our method.

4.1.2 THE IMPORTANCE OF INTER-PATCH MUTUAL INFORMATION AND CROPPING VIEWS

Cropping-and-resizing has been identified as a crucial view function when pretraining on ImageNet
(Chen et al., 2020a). However, what properties of a pretraining dataset make cropping useful? We
hypothesize that such a dataset must have images whose patches have high mutual information. In
other words, there must be some way for the model to identify that different patches of the same
image come from the same image. While this may be true for many object or scene recognition
datasets, it may be false for other important pretraining datasets, including medical or satellite im-
agery, where features of interest are isolated to particular parts of the image.

To investigate this hypothesis, we modify the CIFAR-10 dataset to reduce the inter-patch mutual
information by replacing each 16x16 corner of the image with the corner from another image in
the training dataset (see Figure 3 for an example). Thus, random crops on this dataset, which we
call CIFAR-10-Corners, will often contain completely unrelated information. When pretrained on
CIFAR-10-Corners, expert views achieve 63.3% linear evaluation accuracy on the original CIFAR-
10 dataset, while viewmaker views achieve 68.8%. This gap suggests that viewmaker views are less
reliant on inter-patch mutual information than the expert views.

4.2 COMBINING VIEWMAKER AND HANDCRAFTED VIEWS

Can viewmakers improve performance in cases where some useful handcrafted views have already
been identified? Chen et al. (2020a) show that views produced through cropping are significantly
improved by a suite of color-based augmentations, which they argue prevents the network from
relying solely on color statistics to perform the contrastive task. Here, we show that viewmaker
networks also enable strong gains when added on top of cropping and horizontal flipping views
when pretraining on CIFAR-10—without any domain-specific knowledge. Alone, this subset of
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(a) CIFAR-10 (b) CIFAR-10-Corners

Figure 3: Our learned views are still able to yield useful information even when the inter-patch
mutual information in a dataset is low, as in Figure 3b.

Views Clean Corrupted Diff

Ours 84.5 71.4 -13.1
SimCLR∗ 86.2 77.1 -9.1
Combined∗ 86.3 79.8 -6.5

(a) Accuracy on CIFAR-10 and CIFAR-10-C.
∗Overlap with CIFAR-10-C corruptions.

(b) Accuracy gain on CIFAR-10-C by from
adding our learned views atop expert views.

Figure 4: Performance of different views on CIFAR-10-C corruptions. Our learned views enable
solid performance in the face of unseen corruptions despite not explicitly including any blurring,
contrast, or brightness transformations during training, unlike the expert views. Adding our learned
views on top of SimCLR yields additional gains in robust accuracy, especially on different kinds of
noise corruptions and glass blurring.

handcrafted augmentations achieves 73.2% linear evaluation accuracy on CIFAR-10. Combining
these views with learned viewmaker perturbations (ε = 0.05) achieves 83.1%.1 This suggests that
viewmakers can significantly improve representation learning even in cases where some domain-
specific views have already been developed.

4.3 ROBUSTNESS TO COMMON CORRUPTIONS

Image classification systems should behave robustly even when the data distribution is slightly dif-
ferent from that seen during training. Does using a viewmaker improve robustness against common
types of corruptions not experienced at train time? To answer this, we evaluate both learned views,
expert views, and their composition on the CIFAR-10-C dataset (Hendrycks & Dietterich, 2019),
which assesses robustness to corruptions like snow, pixelation, and blurring. In this setting, corrup-
tions are applied only at test time, evaluating whether the classification system is robust to some
types of corruptions to which humans are robust.

When considering methods in isolation, SimCLR augmentations result in less of an accuracy drop
from clean to corrupted data compared to our learned views, as shown in Table 4a. This gap is
expected, as the expert views overlap significantly with the CIFAR-10-C corruptions: both include
blurring, brightness, and contrast transformations. Interestingly, however, when we train a view-
maker network while also applying expert augmentations (“Combined,” Table 4a), we can further
improve the robust accuracy, with notable gains on noise and glass blur corruptions (Figure 4b).
This is noteworthy, as our learned views have no explicit overlap with the CIFAR-10-C corruptions,
unlike the expert augmentations.2 In the Combined setting, we use a distortion budget of ε = 0.01,

1We did not see additional gains from using viewmakers on top of the full, well-optimized set of SimCLR
augmentations.

2We do notice a smaller decline in contrast corruption accuracy, possibly due to interactions between chang-
ing pixel magnitudes and the `p constraint.
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Expert Ours (ε)

ResNet-18, 100hr Time Spec. 0.05 0.1

LibriSpeech Sp. ID 97.1 91.6 88.3 84.0
VoxCeleb1 Sp. ID 5.7 7.8 12.1 9.1
AudioMNIST 31.7 63.9 93.3 87.9
Google Commands 27.1 31.9 47.4 41.6
Fluent Actions 29.4 32.0 41.6 37.9
Fluent Objects 37.1 40.3 47.6 47.6
Fluent Locations 59.7 63.3 66.5 68.3

ResNet-50, 960hr Spec. 0.05

LibriSpeech Sp. ID 95.9 90.0
VoxCeleb1 Sp. ID 8.6 10.7
AudioMNIST 80.2 88.0
Google Commands 28.3 32.6
Fluent Actions 30.5 42.5
Fluent Objects 36.2 50.8
Fluent Locations 62.0 68.9

Table 2: Our learned views significantly outperform existing views for speech transfer tasks.
Linear evaluation accuracy for SimCLR models trained on LibriSpeech. Left: ResNet-18 + Lib-
rispeech 100 hour, Right: ResNet-50 + Librispeech 960hr. “Time” refers to view functions applied
in the time domain (Kharitonov et al., 2020), while “Spec.” refers to view functions applied directly
to the spectrogram (Park et al., 2019). 0.05 and 0.1 denote viewmaker distortion bounds ε.

which we find works better than ε = 0.05, likely because combining the two augmentations at their
full strength would make the learning task too difficult.

These results suggest that learned views are a promising avenue for improving robustness in self-
supervised learning models.

5 SPEECH

Representation learning on speech data is an emerging and important research area, given the large
amount of available unlabeled data and the increasing prevalence of speech-based human-computer
interaction (Latif et al., 2020). However, compared to images, there is considerably less work on
self-supervised learning and data augmentations for speech data. Thus, it is a compelling setting to
investigate whether viewmaker augmentations are broadly applicable across modalities.

5.1 SELF-SUPERVISED LEARNING SETUP

We adapt the contrastive learning setup from SimCLR (Chen et al., 2020a). Training proceeds
largely the same as for images, but the inputs are 2D log mel spectrograms. We consider both view
functions applied in the time-domain before the STFT, including noise, reverb, pitch shifts, and
changes in loudness (Kharitonov et al., 2020), as well as spectral views, which involve masking or
noising different parts of the spectrogram (Park et al., 2019). To generate learned views, we pass the
spectrogram as input to the viewmaker. We normalize the spectrogram to mean zero and variance
one before passing it through the viewmaker, and do not clamp the resulting perturbed spectrogram.
See the Appendix for more details. We train on the Librispeech dataset (Panayotov et al., 2015) for
200 epochs, and display some examples of learned views in the Appendix.

5.2 SPEECH CLASSIFICATION RESULTS

We evaluate on three speech classification datasets: Fluent Speech Commands (Lugosch et al.,
2019), Google Speech Commands (Warden, 2018), and spoken digit classification (Becker et al.,
2018), as well as speaker classification on VoxCeleb (Nagrani et al., 2017) and Librispeech (Panay-
otov et al., 2015), all using the linear evaluation protocol for 100 epochs. In Table 2, we report results
with both the same distortion budget ε = 0.05 as in the image domain, as well as a larger ε = 0.1,
for comparison. Both versions significantly outperform the preexisting waveform and spectral aug-
mentations, with a +9 percentage point improvement on average for the ResNet-18 (ε = 0.05)
viewmaker model over the best expert views. The gains for real-world tasks such as command iden-
tification are compelling. One notable exception is the task of LibriSpeech speaker identification.
Since LibriSpeech is the same dataset the model was pretrained on, and this effect is not replicated
on VoxCeleb1, the other speaker classification dataset, we suspect the model may be picking up on
dataset-specific artifacts (e.g. background noise, microphone type) which may make the speaker
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Spectral Ours (ε)

Dataset With Noise Without Noise 0.02 0.05 0.2 0.5 2.0

Pamap2 71.0 74.6 83.0 87.4 88.6 91.3 9.1

Table 3: Our learned views significantly outperform existing views for activity recognition on
wearable sensor data. Our method learns superior representations across a large range of distortion
budgets ε, although budgets that are too strong prevent learning. Linear evaluation accuracy for
ResNet18 models trained on Pamap2 with SimCLR. “Spectral” refers to view functions applied
directly to the spectrogram (Park et al., 2019).

ID task artificially easier. An interesting possibility is that the worse performance of viewmaker
views may result from the model being able to identify and ablate such spurious correlations in the
spectrograms.

6 WEARABLE SENSOR DATA

To further validate that our method for learning views is useful across different modalities, we con-
sider time-series data from wearable sensors. Wearable sensor data has a broad range of applica-
tions, including health care, entertainment, and education (Lara & Labrador, 2012). We specifically
consider whether viewmaker views improve representation learning for the task of human activity
recognition (HAR), for example identifying whether a user is jumping rope, running, or cycling.

6.1 SELF-SUPERVISED LEARNING SETUP

We consider the Pamap2 dataset (Reiss & Stricker, 2012), a dataset of 12 different activities per-
formed by 9 participants. Each activity contains 52 different time series, including heart rate, ac-
celerometer, gyroscope, and magnetometer data collected from sensors on the ankle, hand, and
chest (all sampled at 100Hz, except heart rate, which is sampled at approximately 9Hz). We linearly
interpolate missing data, then take random 10s windows from subject recordings, using the same
train/validation/test splits as prior work (Moya Rueda et al., 2018). To create inputs for our model,
we generate a multi-channel image composed of one 32x32 log spectrogram for each sensor time-
series window. Unlike speech data, we do not use the mel scale when generating the spectrogram.
We then normalize the training and validation datasets by subtracting the mean and then dividing by
the standard deviation of the training dataset.

We train with both our learned views and the spectral views (Park et al., 2019) that were most
successful in the speech domain (for multi-channel spectral masking, we apply the same randomly
chosen mask to all channels). We also compare against a variant of these views with spectrogram
noise removed, which we find improves this baseline’s performance.

6.2 SENSOR-BASED ACTIVITY RECOGNITION RESULTS

We train a linear classifier on the frozen encoder representations for 50 epochs, reporting accuracy on
the validation set. We sample 10k examples for each training epoch and 50k examples for validation.
Our views significantly outperform spectral masking by 12.8 percentage points when using the same
ε = 0.05 as image and speech, and by 16.7 points when using a larger ε = 0.5 (Table 3). We also find
that a broad range of distortion budgets produces useful representations, although overly-aggressive
budgets prevent learning (Table 3). These results provide further evidence that our method for
learning views has broad applicability across different domains.

6.3 SEMI-SUPERVISED EXPERIMENTS

An especially important setting for self-supervised learning is domains where labeled data is scarce
or costly to acquire. Here, we show that our method can enable strong performance when labels for
only a single participant (Participant 1) out of seven are available. We compare simple supervised
learning on Participant 1’s labels against linear evaluation of our best pretrained model, which was
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trained on unlabeled data from all 7 participants. The model architectures and training procedures
are otherwise identical to the previous section. As Figure 4 shows, pretraining with our method on
unlabeled data enables significant gains over pure supervised learning when data is scarce, and even
slightly outperforms the hand-crafted views trained on all 7 participants (cf. Table 3).

Supervised Learning Pretrain (Ours) & Transfer

Dataset 1 Participant 7 Participants 1 Participant 7 Participants

Pamap2 58.3 97.1 75.1 91.3

Table 4: Our method enables superior results in a semi-supervised setting where labels for
data from only one participant are available. Validation accuracy for activity recognition on
Pamap2. Supervised Learning refers to training a randomly initialized model on the labeled data
until convergence. Pretrain & Transfer refers to training a linear classifier off of the best pretrained
model above. 1 or 7 Participants refers to the number of participants comprising the training set.

7 CONCLUSION

We introduce a method for learning views for unsupervised learning, demonstrating its effective-
ness through strong performance on image, speech, and wearable sensor modalities. Our novel
generative model—viewmaker networks—enables us to efficiently learn views as part of the repre-
sentation learning process, as opposed to relying on domain-specific knowledge or costly trial and
error. There are many interesting avenues for future work. For example, while the `1 constraint
is simple by design, there may be other kinds of constraints that enable richer spaces of views and
better performance. In addition, viewmaker networks may find use in supervised learning, for the
purposes of data augmentation or improving robustness. Finally, it is interesting to consider what
happens as the viewmaker networks increase in size: do we see performance gains or robustness-
accuracy trade-offs (Raghunathan et al., 2019)? Ultimately, our work is a step towards more general
self-supervised algorithms capable of pretraining on arbitrary data and domains.
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László Tóth, György Kovács, and Dirk Van Compernolle. A perceptually inspired data augmenta-
tion method for noise robust cnn acoustic models. In International Conference on Speech and
Computer, pp. 697–706. Springer, 2018.

Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A bayesian data augmenta-
tion approach for learning deep models, 2017.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, and Hugo Larochelle. Meta-
dataset: A dataset of datasets for learning to learn from few examples, 2019.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation, 2018.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018.

Eric Wong and J. Zico Kolter. Learning perturbation sets for robust machine learning, 2020.

Mike Wu, Chengxu Zhuang, Milan Mosse, Daniel Yamins, and Noah Goodman. On mutual in-
formation in contrastive learning for visual representations. arXiv preprint arXiv:2005.13149,
2020.

Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance-level discrimination. arXiv preprint arXiv:1805.01978, 2018.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating adver-
sarial examples with adversarial networks, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial autoaugment. arXiv preprint
arXiv:1912.11188, 2019.

Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised learning
of visual embeddings. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 6002–6012, 2019.

13



Published as a conference paper at ICLR 2021

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 IMAGE EXPERIMENTS

The primary image experiments compare SimCLR and the instance discrimination method from (Wu
et al., 2018) (henceforth InstDisc) with and without the viewmaker on a suite of transfer datasets.

For pretraining, we use a ResNet-18 encoder without the maxpool layer after the first convolutional
layer. We found removing this to be crucial for performance across all models when working with
smaller input images of 32x32 pixels. We use an embedding dimension of size 128 and do not
use an additional projection head as in Chen et al. (2020b). For the SimCLR objective, we use a
temperature of 0.07. For the InstDisc objective, we use 4096 negative samples from the memory
bank and an update rate of 0.5. We optimize using SGD with batch size 256, learning rate 0.03,
momentum 0.9, and weight decay 1e-4 for 200 epochs with no learning rate dropping, which we
found to hurt performance in CIFAR-10.

For the viewmaker, we adapt the style transfer network from Johnson et al. (2016), using a PyTorch
implementation,3 but use three residual blocks instead of five, which we found did not hurt perfor-
mance despite the reduced computation. To add stochasticity, we concatenate a uniform random
noise channel to the input and the activations before each residual block.

Additionally, we performed preliminary experiments with a U-Net architecture (Ronneberger et al.,
2015) for the viewmaker but found significantly worse performance. We leave a more in-depth
investigation of the role of architecture and model size in the effectiveness of the viewmaker.

During transfer (linear evaluation), we use the pre-pooling features after the last convolutional layer
of the ResNet-18, totaling 512*7*7 dimensions. We load the parameters from the final iteration of
pretraining. We optimize a logistic regression model with the frozen ResNet-18 model using SGD
with learning rate 0.01, momentum 0.9, weight decay 0, batch size 128 for 100 epochs. We drop
the learning rate by a factor of 10 on epochs 60 and 80. We preprocess the training and validation
datasets by subtracting and dividing by the mean and standard deviation of the training dataset,
respectively. For models trained with a viewmaker network, we load and freeze the final viewmaker
checkpoint to supply augmentations during transfer training. Otherwise, we use the same expert
views used during pretraining.

The CIFAR-10-Corners experiments were conducted in the same way, except that the transfer task
is the original CIFAR-10 dataset.

For the robustness experiments on CIFAR-10-C, the final transfer model trained on CIFAR-10 was
evaluated without further training on the CIFAR-10-C dataset.

A.2 SPEECH EXPERIMENTS

The setup for the speech experiments is almost identical to images. The primary distinction is in pre-
processing the data. In our experiments, pretraining is done on two splits of LibriSpeech: a smaller
set containing 100 hours of audio and a larger set containing 960 hours of audio. Each instance
is a raw waveform. We pick a maximum limit of 150k frames and truncate waveforms containing
more frames. We randomly pick whether to truncate the beginning or end of the waveform during
training, whereas for evaluation, we always truncate from the end. Next, we compute log mel spec-
trograms on the truncated waveforms as the input to our encoder. For 100hr LibriSpeech, we use
a hop length of 2360 and set the FFT window length to be 64, resulting in a 64x64 tensor. For the
960hr LibriSpeech, we wanted to show our method generalizes to larger inputs, so we use a hop
length of 672 with an FFT window length of 112 for a tensor of size 112x112. Finally, we log the
spectrogram by squaring it and converting power to decibels.

For expert views, we consider both a method that applies views directly to the waveforms
(Kharitonov et al., 2020) and a method that does so on the resulting spectrograms (Park et al., 2019).
For the former, we use code from the NLPAUG library4 to take a random contiguous crop of the

3https://github.com/pytorch/examples/tree/master/fast_neural_style
4https://github.com/makcedward/nlpaug
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waveform with scale (0.08,1.0) and add Gaussian noise with scale 1. We randomly mask contiguous
segments on the horizontal (frequency) and vertical (time) axes for the latter.

To do this, we also use the NLPAUG library and employ the FREQUENCYMASKINGAUG and
TIMEMASKINGAUG functions with MASK FACTOR set to 40. Having done this, we are left with
a 1x64x64 tensor for the 100-hour dataset or a 1x112x112 tensor for the 960-hour dataset. For
the former, we use the same ResNet-18 as described above; pretraining and transfer use the same
hyperparameters. In the latter, we use a ResNet-50 encoder with an MLP projection head with a
hidden dimension of 2048. We use TORCHVISION implementations (Paszke et al., 2019). We still
use the pre-pooling features for transfer in this setting as we found better performance than using
post-pooling features. Otherwise, hyperparameters are identical to the 100-hour setting (and the
CIFAR-10 setting).

For each transfer dataset, we convert waveforms to normalized spectrograms in the same manner
as just described. The AudioMNIST dataset was downloaded from https://github.com/
soerenab/AudioMNIST; Google Speech Commands was downloaded from https://ai.
googleblog.com/2017/08/launching-speech-commands-dataset.html; Flu-
ent Speech Commands was downloaded from https://fluent.ai/fluent-speech-
commands-a-dataset-for-spoken-language-understanding-research; Vox-
Celeb1 was downloaded from http://www.robots.ox.ac.uk/˜vgg/data/voxceleb/
vox1.html (we use version 1 of the corpus). Each transfer dataset was again normalized using
the training split’s mean and standard deviation.

A.3 WEARABLE SENSOR EXPERIMENTS

The experimental paradigm for wearable sensor data largely follows that for speech. To generate
an example, we randomly sample a subject (from the correct training split) and activity; we next
randomly sample a contiguous 10s frame, linearly interpolating missing data. We generate spectro-
grams for each of the 52 sensors without Mel scaling, using 63 FFT bins, a hop length of 32, and a
power of 2, then take the logarithm after adding 1e-6 for numerical stability. This process yields 52
32x32 spectrograms, which we treat as different channels, giving a tensor of shape [52, 32, 32]. We
then normalize the spectrograms by subtracting and dividing by the mean and standard deviation of
10k samples from the training set.

A.4 TRAINING COSTS

We train all models on single NVIDIA Titan XP GPUs. On our system, training with a viewmaker
network roughly increased training time by 50% and GPU memory utilization by 100%.

A.5 FRAMEWORKS

We make use of PyTorch (Paszke et al., 2019), PyTorch Lightning (Falcon, 2019), and Weights &
Biases (Biewald, 2020) for our experiments.

B ADDITIONAL GENERATED VIEWS

B.1 CIFAR-10 VIEWS

We visualize more views for CIFAR in Figure 5. We also visualize the difference between examples
and their views (rescaled to [0,1]) in Figure 6. These figures further demonstrate the complexity,
diversity, and input dependence of the viewmaker views.

B.1.1 APPLYING PERTURBATION IN THE FREQUENCY DOMAIN

Are there other natural ways of generating perturbations with bounded complexity? One other tech-
nique we considered was applying views in the frequency domain. Specifically, we apply a Discrete
Cosine Transform (Ahmed et al., 1974, DCT) before applying the `1-bounded perturbation, then
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Figure 5: Learned views for random CIFAR-10 examples. Original image shown in center, with
pink border. Distortion budget is ε = 0.05.

apply the inverse DCT to obtain an image in the original domain. We use a PyTorch library5 to
compute the DCT, which is a differentiable transform. After a coarse hyperparameter search, we
achieved the best results with ε = 1.0: 74.4% linear evaluation accuracy on CIFAR-10, much lower
than our other models. However, the views are still illustrative, and we show some examples in
Figure 7.

B.2 LIBRISPEECH VIEWS

We visualize some views for random LibriSpeech spectrograms in Figure 8, as well as showing
deltas between spectrograms and views in Figure 9. The figures show how the viewmaker applies a
variety of kinds of perturbations across the entire spectrogram.

5https://github.com/zh217/torch-dct
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Figure 6: Difference between random CIFAR-10 examples and their viewmaker views. Original
image shown in center, diffs shown on perimeter. Diffs linearly rescaled to [0, 1]. Distortion budget
is ε = 0.05.
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Figure 7: Learned views for random CIFAR-10 examples with perturbation applied in frequency
domain. Original image shown in center, with pink border. Distortion budget is ε = 1.0.

18



Published as a conference paper at ICLR 2021

Figure 8: Examples of learned views for random Librispeech spectrograms. Original image shown
in center, with pink border. Variations are subtle—best viewed at high magnification. Color scale
endpoints set to minimum and maximum of original image. Spectrograms are 64x64 log mel spec-
trograms from LibriSpeech 100 hours. Distortion budget is ε = 0.05.
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Figure 9: Difference between random LibriSpeech spectrograms and their viewmaker views. Orig-
inal spectrogram shown in center, diffs shown on perimeter. Color scale endpoints set to -2.5 (red)
to +2.5 (blue), although some values exceed these endpoints. Spectrograms are 64x64 log mel spec-
trograms from LibriSpeech 960 hours. Distortion budget is ε = 0.05.
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Figure 10: Difference between random Pamap2 spectrograms and their viewmaker views. Original
spectrogram shown in center, diffs shown on perimeter. Each 3x3 panel shows data from a different
example and sensor. Color scale endpoints set to -2 (red) to +2 (blue), although some values exceed
these endpoints. Distortion budget is ε = 0.05.

B.3 WEARABLE SENSOR VIEWS

We visualize deltas between Pamap2 spectrograms and their views in Figure 10. Each 3x3 panel
shows data and views from a different sensor and example.
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Dataset Ours Expert

Aircraft 32.0 (0.7) 32.0 (0.6)
Birds 8.7 (0.3) 10.9 (0.3)
DTD 27.8 (0.9) 30.4 (1.1)
FaMNIST 91.0 (0.4) 88.5 (0.2)
MNIST 98.8 (0.1) 97.1 (0.0)
Traffic 94.8 (1.0) 96.7 (0.3)
Flower 50.6 (2.6) 53.2 (0.4)

Table 5: Stability of viewmaker networks across random seeds. Linear evaluation accuracy and
standard deviation for three random seeds, where the seed varies across both pretraining and transfer.
Experimental setup is identical to that of Table 1.

Expert Ours (ε)

ResNet-18, 100hr Time Spec. 0.05 0.1

Top-1 Accuracy 97.1 91.6 88.3 84.0
Top-5 Accuracy 5.7 7.8 12.1 9.1

ResNet-50, 960hr Spec. 0.05

Top-1 Accuracy 97.1 91.6
Top-5 Accuracy 5.7 7.8

Table 6: VoxCeleb speaker identification linear evaluation accuracy. Experimental setup identical to
Table 2.

B.4 STABILITY ACROSS RANDOM SEEDS

While instability has been reported as a common issue when training GANs (Goodfellow, 2016), we
encountered few optimization difficulties training viewmakers. To empirically demonstrate the sta-
bility of our approach across random seeds, we report the average and standard deviation of transfer
accuracy across three pretraining and transfer runs for different datasets. The experimental setup is
identical to the results presented in Table 1, and the random seeds vary across both pretraining and
transfer. Table 5 shows that the observed standard deviations are small, lying within a percentage
point in all but one case.

B.5 TOP-5 ACCURACY FOR VOXCELEB SPEAKER IDENTIFICATION

We also present Top-5 accuracies for VoxCeleb speaker identification in Table 6, along with with
Top-1 accuracies for comparison.
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