
TOKENSREGEX: Defining cascaded regular expressions over tokens

Angel X. Chang, Christopher D. Manning

Computer Science Department, Stanford University, Stanford, CA, 94305
{angelx, manning}@cs.stanford.edu

We describe TOKENSREGEX, a framework for defin-
ing cascaded regular expressions over token se-
quences. TOKENSREGEX is available as part of the
Stanford CoreNLP software package and can be used
for various tasks which require reasoning over tok-
enized text. It has been used to build SUTIME, a
state-of-the-art temporal tagger, and can be helpful in
a variety of scenarios such as named entity recognition
(NER) and information extraction from tokens.

1. Introduction

TOKENSREGEX is a framework for defining cascaded
patterns over token sequences. It extends the tradi-
tional regular expression language defined over strings
to allow working with tokens. In other words, it gen-
eralizes from matching over sequences of characters
(strings) to matching over sequences of tokens. Fur-
thermore, it uses a multi-stage extraction pipeline that
can match multiple regular expressions—a practically
more useful scenario than single pattern matching.
The multi-stage extraction pipeline also allows for
building up patterns in stages, similar to a cascaded,
finite-state automaton. As demonstrated by systems
such as FASTUS (Hobbs et al., 1997), this approach
can be very effective in extracting information from
text. Finite-state cascades based parsers are also both
fast and robust, and is a feasible alternative to stochas-
tic context-free parsers (Abney, 1996).

We provide an implementation of TOKENSREGEX as
a Java library and demonstrate its use for matching
over tokens. We also provide two annotators in the
Stanford CoreNLP pipeline1.

Why is a system like TOKENSREGEX needed and why
is it useful to be able to define regular expressions
over tokens? In NLP applications, text is usually first
tokenized and annotated with additional information
such as part-of-speech tags. Therefore, it is natural
and convenient to specify regular expressions over the
tokens. Such token-based regular expressions can be
more concise and comprehensible, as well as easier

1nlp.stanford.edu/software/corenlp.shtml

to manipulate and modify than traditional regular ex-
pressions over strings.

Regular expressions over tokens also allow match-
ing on additional token-level features, such as part-of-
speech annotations and named entity tags. This allows
for concise rules at a higher level than just matching
against the individual tokens.

In addition, with TOKENSREGEX, we can easily com-
bine the robustness of statistical methods with the con-
trol of a rule based system. Typically the best per-
forming part-of-speech annotations and named entity
tags come from statistical taggers. However, statistical
systems depend on appropriate training data, which is
unfortunately not always available. Furthermore, even
when training data is available, it is hard to finely con-
trol the output of a statistical system. TOKENSREGEX

complements supervised learning methods by provid-
ing a rule-based system for handling cases with lim-
ited training data.

We have used TOKENSREGEX to implement SU-
TIME (Chang and Manning, 2012), a rule-based tem-
poral tagger. We also demonstrate how we can aug-
ment statistical methods with rules and information
extraction systems with patterns. We first describe the
main components of the system in the following sec-
tions.

2. TokensRegex Patterns

Traditional regular expressions over strings have
proven to be powerful and useful, with libraries avail-
able in most programming languages. However, these
implementations are typically limited in that they can
only handle regular expressions over strings (i.e. se-
quences of characters). In TOKENSREGEX, we pro-
vide a regular expression implementation that general-
izes to sequences of tokens and can also be extended to
handle other types as well. These patterns can then be
stacked to form finite-state cascades. Our implemen-
tation supports many of the features found in modern
regular expression libraries while allowing for more
expressive power.

We provide our implementation as a Java library with
a similar interface to the Java regular expression li-
brary (java.util.regex).

We define a syntax for regular expressions over tokens
that is similar to the traditional syntax used for regular
expressions over strings. The main difference lies in
the syntax for matching individual tokens.

2.1. Token Syntax

In NLP applications, text is typically tokenized into
units of characters (tokens). Each token is then an-
notated with various attributes, such as part-of-speech
(POS), or named entity type (NER).

For example, given the sentence: “Reykjavı́k is the
capital of Iceland.”, we have the following tokens:

word Reykjavı́k is the capital of Iceland .
pos NNP VBZ DT NN IN NNP .
ner LOC O O O O LOC .

In our token syntax we indicate each token by
[<expression>] where <expression> speci-
fies token attributes which should be matched as fol-
lows. We use the symbol [] to indicate any token.

Basic Expressions: describe how a token attribute
should be matched.

Example Description
"abc" token text is abc
/abc/ token text matches regular expres-

sion abc
pos:"NNP" token POS is abc
pos:/NN.*/ token POS matches regular ex-

pression NN.*
word>30 text is number and greater than 30.

(>=, <,<=,==, ! = supported)

Compound Expressions: formed by combining basic
expressions with boolean operators.

Example Description
!(pos:/NN.*/) POS is not noun
pos:/NN.*/ | pos:/VB.*/ POS noun or verb
word>=1 & word<=10 text numeric and

between 1 and 10

2.2. Regular Expression Syntax

Tokens are combined using similar syntax as regu-
lar expressions over strings. TOKENSREGEX sup-
ports most features found in regular expression li-
braries including both greedy and reluctant quanti-
fiers, grouping, capturing, and back references. In
addition, TOKENSREGEX also supports features such
as named groups, macros, and conjunctions. Table 1
shows a summary of the syntax used.

Syntax Description
X Y X followed by Y
X | Y X or Y
X & Y X and Y

Grouping
(X) X as a capturing group
(?name X) X as capturing group with name name
(?: X) X as a non capturing group

Quantifiers (greedy/reluctant)
X?, X?? X, once or not at all
X*, X*? X, zero or more times
X+, X+? X, one or more times

Table 1: TOKENSREGEX Regular expression syntax

Below, we give some examples of TOKENSREGEX

regular expressions.

Sequences: in a token sequence, individual tokens
are bracketed by [], which can be omitted when pat-
tern matching against the text field. Quantification is
marked using the standard symbols *,+,?.

Match: Picasso is an artist
[ner:PERSON]+ [pos:VBZ] /an?/

/artist|painter/

Match: five thousand kilometers
([ner:NUMBER]+) /km|kilometers?/

Groups: parentheses () are used for grouping. By
default, groups are captured and accessed using $n
where the group number n is obtained by counting
the number of opening parentheses (from left to right).
Group 0 is the entire matched expression. Non captur-
ing groups (?...) do not count toward the overall
number of groups. For convenience, groups can also
be named (?name ...).
Match: 50 kilometers
(?:quant [ner:NUMER]+) /km|kilometers?/

The 50 corresponds to group 1 and can be referred to
by using $quant or $1.

Macros: to improve regular expression readability,
TOKENSREGEX supports definition of macros that
can be used in later regular expressions.
$UNIT = /km/kilometers?/

[ner:NUMBER]+) $UNIT

3. Matching multiple regular expressions

Often it is useful to match not just one, but many reg-
ular expressions. TOKENSREGEX provides an extrac-
tion pipeline for matching against multiple regular ex-
pressions in stages. The pipeline is similar to a cas-
cade of finite automata. During each stage, a series

Syntax Description
$n Matched tokens for capture group n
$n[i] ith token for capture group n
$n[i].key Attribute key (for above token)
$$n.value Value for capture group n
$$n.text Text for capture group n

Table 2: Syntax for accessing capture groups

of extraction rules are applied, and expressions are
matched based on the specified pattern of each rule.
If multiple rules can be matched, a rule is selected
based on the priority of the rule, then the length of
the sequence matched, and finally the order in which
the rule is specified.

When an expression is matched, additional attributes
can be added to the matched tokens. The matched
expression can also be treated as an aggregate token
(with its own attributes) over which the extraction
rules can be reapplied, giving a finite-state cascade.

We use a domain specific language (DSL) for defining
the extraction rules and how the expressions should be
matched, as described below.

3.1. Extraction Rule Syntax

Extraction rules are specified with a JSON-like syntax.

{ ruleType: "tokens",

pattern: (([ner:PERSON]) /was/ /born/

/on/ ([ner:DATE])),

result: "DATE_OF_BIRTH" }

Associated with each rule is the ruleType and the
pattern to match against. The ruleType specifies
how the pattern should be used and is described
in the next section. Optionally, the rule can have a
priority and a stage. If these are not specified,
then all rules have the same priority and are grouped
into one stage. The result and action fields de-
scribe what should happen when the rule is matched.
With each matched expression, we can optionally as-
sociate a value. The value can be used to create new
annotation for the matched expression. The result
field indicates how this value should be derived. The
DSL allows for referring back to the captured groups
(see Table 2).

3.2. Extraction Rule Types

TOKENSREGEX has four types of extraction rules:

1. Text: applied on raw text, match against regular
expressions over strings (the tokenization is ig-
nored)

Figure 1: TOKENSREGEX extraction pipeline.

2. Tokens: applied on tokens, match against regular
expressions over tokens

3. Compositional: applied on previously matched
expressions (text, tokens, or previous compos-
ite rules), and repeatedly applied until no new
matches

4. Filtering: applied on previously matched expres-
sions, matches are filtered out and not returned

Figure 2: Parsing of a temporal expression using the
TOKENSREGEX pipeline.

Extraction rules are grouped into stages. Figure 1
shows how the rules are applied for each stage. Figure
2 shows an example of how TOKENSREGEX extrac-
tion rules are used to parse temporal expressions in
SUTIME.

Initially, rules over text and tokens are matched. For
instance, in Figure 2, token rules are used to match
Tuesday to DATE XXXX-WXX-2 and afternoon to TIME
TAF.

Next, composite rules are applied. Tokens from
matched expressions are combined to form an aggre-
gate token, and composite rules are applied recur-
sively until no more changes to the matched expres-
sions are detected. Only expressions with an associ-
ated value, indicated by result, are kept. By adding
the result to the aggregate token as an annotation,
it can be matched against. An example of a compos-
ite rule specification for SUTIME is given below. For
SUTIME, the result values are temporal objects that
can be composed and operated on.

{ ruleType: "composite",

pattern: (([temporal::IS_TIMEX_DATE])

/at/? ([temporal::IS_TIMEX_TIME])),

result: TemporalCompose(INTERSECT,

$0[0].temporal,

$0[-1].temporal) }

At the end of each stage, there is a filtering phase in
which the filter rules are applied and invalid expres-
sions are filtered out. For instance, in SUTIME filter-
ing rules are used to filter out ambiguous words such
as fall. If a potential temporal expression is a single
ambiguous word and the part of speech tag is not a
noun, then it is not resolved to a temporal object.
{ ruleType: "filter",

pattern: ([word:/fall|spring|second|march|may/

& !(tag:/NN.*/)]) }

This process is repeated for each stage of rules.

4. Applications

We have seen in Figure 2 how TOKENSREGEX was
used in the temporal tagging scenario to implement
SUTime. The multi-stage extraction pipeline allowed
for temporal expressions to be built up from mappings
of simple tokens (e.g. Tuesday to XXXX-WXX-2), to
more complex patterns involving already recognized
time expressions. SUTIME followed the multi-stage
strategy of: (i) building up patterns over individual
words to find numerical expressions; then (ii) using
patterns over words and numerical expressions to find
simple temporal expressions; and finally (iii) forming
composite patterns over the discovered temporal ex-
pressions.

TOKENSREGEX can also be used to augment the out-
put of statistical systems which require specialized
training data. For instance, to augment the named en-
tity types recognized by a NER system, it is easier to
make a list of entities to be marked (e.g. University of
X, list of shoe brands) than to manually gather the re-
quired training data. This can be easily achieved using
the TokensRegexNERAnnotator. Specification of a
gazetteer for shoe brands, or more complex regular ex-
pressions for recognizing URLs and email addresses is
straight-forward:
Nike SHOE_BRAND

Reebok SHOE_BRAND

http://.* URL

<?\w+@[A-Z0-9.-]+\.[A-Z]{2,4}>? EMAIL

([ner:CITY]+ /High/ /School/) HIGH_SCHOOL

Another application for TOKENSREGEX is in specify-
ing patterns for relation extraction. Patterns have been
show to be effective for relation extraction so many
current systems use a combination of patterns and ma-
chine learning approaches. We have used TOKENS-
REGEX to recognize relations for the TAC KBP slot

filling task (Ji et al., 2010). Some sample rules for
identifying potential relations between the entity and
a slot value are given below.

{ result: "per:children",

pattern: ($SLOT_VALUE /,/ /son|daughter|child/

/of/ $ENTITY) }

{ result: "per:cause_of_death",

pattern: ($ENTITY /died/ /of|from/ $SLOT_VALUE) }

Beyond these specific applications, TOKENSREGEX

can be used to help the development of other NLP
systems. One important benefit of TOKENSREGEX is
that it is easily extensible. Although we have only dis-
cussed regular expressions over tokens, the TOKENS-
REGEX API allows extensions to matching over other
types as well.

5. Conclusion

We have presented TOKENSREGEX, a framework that
brings the power of cascaded regular expressions to
tokenized text. TOKENSREGEX fills an important gap
by providing a system for handling patterns over to-
kens. We hope that it will be a useful tool for the
community and that it will help future research deal-
ing with tokenized text.

References
S. Abney. 1996. Partial parsing via finite-state cascades.

Natural Language Engineering, 2(4):337–344.
A. X. Chang and C. D. Manning. 2012. SUTIME: A li-

brary for recognizing and normalizing time expressions.
In 8th International Conference on Language Resources
and Evaluation (LREC 2012), May.

J. R. Hobbs, D. E. Appelt, J. Bear, D. Israel, M. Kameyama,
M. Stickel, and M. Tyson. 1997. Fastus: A cascaded
finite-state transducer for extracting information from
natural-language text. pages 383–406.

H. Ji, R. Grishman, H. T. Dang, K. Griffitt, and J. Ellis.
2010. Overview of the tac 2010 knowledge base pop-
ulation track. In Third Text Analysis Conference (TAC
2010).

