
Stanford: Probabilistic Edit Distance Metrics for STS

Mengqiu Wang and Daniel Cer∗
Computer Science Department

Stanford University
Stanford, CA 94305 USA

{mengqiu,danielcer}@cs.stanford.edu

Abstract

This paper describes Stanford University’s sub-
mission to SemEval 2012 Semantic Textual
Similarity (STS) shared evaluation task. Our
proposed metric computes probabilistic edit
distance as predictions of semantic similarity.
We learn weighted edit distance in a probabilis-
tic finite state machine (pFSM) model, where
state transitions correspond to edit operations.
While standard edit distance models cannot
capture long-distance word swapping or cross
alignments, we rectify these shortcomings us-
ing a novel pushdown automaton extension of
the pFSM model. Our models are trained in
a regression framework, and can easily incor-
porate a rich set of linguistic features. The
performance of our edit distance based models
is contrasted with an adaptation of the Stan-
ford textual entailment system to the STS task.
Our results show that the most advanced edit
distance model, pPDA, outperforms our en-
tailment system on all but one of the genres
included in the STS task.

1 Introduction

We describe a probabilistic edit distance based met-
ric, which was originally designed for evaluating ma-
chine translation quality, for computing semantic tex-
tual similarity (STS). This metric models weighted
edit distance in a probabilistic finite state machine
(pFSM), where state transitions correspond to edit
operations. The weights of the edit operations are au-
tomatically learned in a regression framework. One
of the major contributions of this paper is a novel

∗ Daniel Cer is one of the organizers for the STS task. The
STS test set data was not used in any way for the development
or training of the systems described in this paper.

extension of the pFSM model into a probabilistic
Pushdown Automaton (pPDA), which enhances tradi-
tional edit-distance models with the ability to model
phrase shift and word swapping. Furthermore, we
give a new log-linear parameterization to the pFSM
model, which allows it to easily incorporate rich lin-
guistic features. We contrast the performance of our
probabilistic edit distance metric with an adaptation
of the Stanford textual entailment system to the STS
task.

2 pFSMs for Semantic Textual Similarity

We start off by framing the problem of semantic
textual similarity in terms of weighted edit distance
calculated using probabilistic finite state machines
(pFSMs). A FSM defines a language by accepting
a string of input tokens in the language, and reject-
ing those that are not. A probabilistic FSM defines
the probability that a string is in a language, extend-
ing on the concept of a FSM. Commonly used mod-
els such as HMMs, n-gram models, Markov Chains
and probabilistic finite state transducers all fall in
the broad family of pFSMs (Knight and Al-Onaizan,
1998; Eisner, 2002; Kumar and Byrne, 2003; Vidal
et al., 2005). Unlike all the other applications of
FSMs where tokens in the language are words, in
our language tokens are edit operations. A string of
tokens that our FSM accepts is an edit sequence that
transforms one side of the sentence pair (denoted as
s1) into the other side (s2).

Our pFSM has a unique start and stop state, and
one state per edit operation (i.e., Insert, Delete, Sub-
stitution). The probability of an edit sequence e is
generated by the model is the product of the state tran-
sition probabilities in the pFSM, formally described

Figure 1: This diagram illustrates an example sentence pair from the statistical machine translation subtask of STS. The
three rows below are the best state transition (edit) sequences that transforms REF(s1) to SYS(s2). The corresponding
alignments generated by the models (pFSM, pPDA, pPDA+f) are shown with different styled lines, with later models
in the order generating strictly more alignments than earlier ones. The gold human evaluation score is 6.5, and model
predictions are: pPDA+f 5.5, pPDA 4.3, pFSM 3.1.

as:

w(e | s1,s2) =
1
Z

|e|

∏
i=1

exp θ · f(ei−1,ei,s1,s2) (1)

We featurize each of the state changes with a log-
linear parameterization; f is a set of binary feature
functions defined over pairs of neighboring states
(by the Markov assumption) and the input sentences,
and θ are the associated feature weights; Z is a parti-
tion function. In this basic pFSM model, the feature
functions are simply identity functions that emit the
current state, and the state transition sequence of the
previous state and the current state.

The feature weights are then automatically learned
by training a global regression model where the hu-
man judgment score for each sentence pair is the
regression target (ŷ). Since the “gold” edit sequence
are not given at training or prediction time, we treat
the edit sequences as hidden variables and sum over
them in our model. We introduce a new regression
variable y ∈ R which is the log-sum of the unnormal-
ized weights (Eqn. (1)) of all edit sequences, formally
expressed as:

y = log ∑
e′⊆e∗

|e′ |

∏
i=1

exp θ · f(ei−1,ei,s1,s2) (2)

e∗ is the set of all possible alignments. The sum
over an exponential number of edit sequences in e∗
is solved efficiently using a forward-backward style
dynamic program. Any edit sequence that does not
lead to a complete transformation of the sentence pair
has a probability of zero in our model. Our regression
target then seeks to minimize the least squares error
with respect to ŷ, plus a L2-norm regularizer term
parameterized by λ :

θ
∗ = min

θ
{∑

s1
i ,s

2
i

[ŷi − (
y

|s1
i |+ |s2

i |
+α)]2 +λ‖θ‖2}

(3)
The |s1

i |+ |s2
i | is a length normalization term for

the ith training instance, and α is a scaling con-
stant whose value is to be learned. At test time,
y/(|s1|+ |s2|)+α is computed as the predicted score.

We replaced the standard substitution edit opera-
tion with three new operations: Sword for same word
substitution, Slemma for same lemma substitution, and
Spunc for same punctuation substitution. In other
words, all but the three matching-based substitutions
are disallowed. The start state can transition into any
of the edit states with a constant unit cost, and each
edit state can transition into any other edit state if
and only if the edit operation involved is valid at the
current edit position (e.g., the model cannot transi-
tion into Delete state if it is already at the end of

s1; similarly it cannot transition into Slemma unless
the lemma of the two words under edit in s1 and s2

match). When the end of both sentences are reached,
the model transitions into the stop state and ends
the edit sequence. The first row in Figure 1 starting
with pFSM shows a state transition sequence for an
example sentence pair. There exists a one-to-one
correspondence between substitution edits and word
alignments. Therefore this example state transition
sequence correctly generates an alignment for the
word 43 and people.

2.1 pPDA Extension

A shortcoming of edit distance models is that they
cannot handle long-distance word swapping — a
pervasive phenomenon found in most natural lan-
guages. 1 Edit operations in standard edit distance
models need to obey strict incremental order in their
edit position, in order to admit efficient dynamic pro-
gramming solutions. The same limitation is shared
by our pFSM model, where the Markov assumption
is made based on the incremental order of edit po-
sitions. Although there is no known solution to the
general problem of computing edit distance where
long-distance swapping is permitted (Dombb et al.,
2010), approximate algorithms do exist. We present
a simple but novel extension of the pFSM model
to a probabilistic pushdown automaton (pPDA), to
capture non-nested word swapping within limited
distance, which covers a majority of word swapping
in observed in real data (Wu, 2010).

A pPDA, in its simplest form, is a pFSM where
each control state is equipped with a stack (Esparza
and Kucera, 2005). The addition of stacks for each
transition state endows the machine with memory, ex-
tending its expressiveness beyond that of context-free
formalisms. By construction, at any stage in a normal
edit sequence, the pPDA model can “jump” forward
within a fixed distance (controlled by a max distance
parameter) to a new edit position on either side of the
sentence pair, and start a new edit subsequence from
there. Assuming the jump was made on the s2 side, 2

1The edit distance algorithm described in Cormen et
al. (2001) can only handle adjacent word swapping (transpo-
sition), but not long-distance swapping.

2Recall that we transform s1 into s2, and thus on the s2 side,
we can only insert but not delete. The argument applies equally
to the case where the jump was made on the other side.

the machine remembers its current edit position in s2

as Jstart , and the destination position on s2 after the
jump as Jlanding.

We constrain our model so that the only edit op-
erations that are allowed immediately following a
“jump” are from the set of substitution operations
(e.g., Sword). And after at least one substitution
has been made, the device can now “jump” back
to Jstart , remembering the current edit position as
Jend . Another constraint here is that after the back-
ward “jump”, all edit operations are permitted except
for Delete, which cannot take place until at least one
substitution has been made. When the edit sequence
advances to position Jlanding, the only operation al-
lowed at that point is another “jump” forward opera-
tion to position Jend , at which point we also clear all
memory about jump positions and reset.

An intuitive explanation is that when pPDA makes
the first forward jump, a gap is left in s2 that has not
been edited yet. It remembers where it left off, and
comes back to it after some substitutions have been
made to complete the edit sequence. The second
row in Figure 1 (starting with pPDA) illustrates an
edit sequence in a pPDA model that involves three
“jump” operations, which are annotated and indexed
by number 1-3 in the example. “Jump 1” creates an
un-edited gap between word 43 and western, after
two substitutions, the model makes “jump 2” to go
back and edit the gap. The only edit permitted imme-
diately after “jump 2” is deleting the comma in s1,
since inserting the word 43 in s2 before any substi-
tution is disallowed. Once the gap is completed, the
model resumes at position Jend by making “jump 3”,
and completes the jump sequence.

The “jumps” allowed the model to align words
such as western India, in addition to the alignments
of 43 people found by the pFSM. In practice, we
found that our extension gives a big boost to model
performance (cf. Section 4), with only a modest
increase in computation time. 3

2.2 Parameter Estimation
Since the least squares operator preserves convexity,
and the inner log-sum-exponential function is con-
vex, the resulting objective function is also convex.

3The length of the longest edit sequence with jumps only
increased by 0.5∗max(|s1|, |s2|) in the worst case, and by and
large swapping is rare in comparison to basic edits.

Figure 2: Stanford Entailment Recognizer: The pipelined approach used by the Stanford entailment recognizer to
analyze sentence pairs and determine whether or not an entailment relationship is present. The entailment recognizer
first obtains dependency parses for both the passage and the hypothesis. These parses are then aligned based upon
lexical and structural similarity between the two dependency graphs. From the aligned graphs, features are extracted
that suggest the presence or absence of an entailment relationship. Figure courtesy of (Pado et al., 2009).

For parameter learning, we used the limited memory
quasi-newton method (Liu and Nocedal, 1989) to find
the optimal feature weights and scaling constant for
the objective. We initialized θ =~0, α = 0, and λ = 5.
We also threw away features occurring fewer than
five times in training corpus. Gradient calculation
was similar to other pFSM models, such as HMMs,
we omitted the details here, for brevity.

2.3 Rich Linguistic Features

We add new substitution operations beyond those in-
troduced in Section 2, to capture synonyms and para-
phrase in the sentence pair. Synonym relations are
defined according to WordNet (Miller et al., 1990),
and paraphrase matches are given by a lookup table.
To better take advantage of paraphrase information at
the multi-word phrase level, we extended our substi-
tution operations to match longer phrases by adding
one-to-many and many-to-many bigram block substi-
tutions. In our experiments on machine translation
evaluation task, which our metric was originally de-

veloped for, we found that most of the gain came
from unigrams and bigrams, with little to no addi-
tional gains from trigrams. Therefore, we limited our
experiments to bigram pFSM and pPDA models, and
pruned the paraphrase table adopted from TERplus 4

to unigrams and bigrams, resulting in 2.5 million
paraphrase pairs. Trained on all available training
data, the resulting pPDA model has a total of 218
features.

2.4 Model Configuration
We evaluate both the pFSM and pPDA models with
the addition of rich linguistic features, as described
in the previous section. For pPDA model, the jump
distance is set to five. For each model, we experi-
mented with two different training schemes. In the
first scheme, we train a separate model for each sec-
tion of the training dataset (i.e., MSRpar, MSRvid,
and SMTeuroparl), and use that model to test on their
respective test set. For the two unseen test sets (SMT-

4Available from www.umiacs.umd.edu/~snover/terp.

HYP: Virus was infected.

REF: No one was infected by the virus.

no entailment no entailment

HYP: The virus did not infect anybody.

REF: No one was infected by the virus.

entailment entailment

Figure 3: Semantic similarity as determined by mutual textual entailment. Figure courtesy of (Pado et al., 2009).

news and OnWN), we used a joint model trained on
all of the available training data. We refer to this
scheme as Indi henceforth. In the second scheme,
we used the joint model trained on all training data
to make preditions for all test sets (we refer to this
scheme as All). Our official submission contains
two runs – pFSM with scheme Indi, and pPDA with
scheme All.

3 Textual Entailment for STS

We contrast the performance of the probabilistic edit
distance metrics with an adaptation of the Stanford
Entailment Recognizer to the STS task. In this sec-
tion, we review the textual entailment task, the op-
eration of the Stanford Entailment Recognizer, and
describe how we adapted our entailment system to
the STS task.

3.1 Recognizing Textual Entailment

The Recognizing Textual Entailment (RTE) task (Da-
gan et al., 2005) involves determining whether the
meaning of one text can be inferred from another.
The text providing the ground truth for the evaluation
is known as the passage while the text being tested
for entailment is known as the the hypothesis. A pas-
sage entails a hypothesis if a casual speaker would
consider the inference to be correct. This intention-
ally side-steps strict logical entailment and implicitly
brings in all of the world knowledge speakers use to
interpret language.

The STS task and RTE differ in two significant
ways. First, the RTE task is one directional. If a
hypothesis sentence is implied by a passage, the in-
verse does not necessarily hold (e.g., “John is outside
in the snow without a coat.” casually implies “John
is cold”, but not vice versa). Second, the RTE task
forces systems to make a boolean choice about en-
tailment, rather than the graded scale of semantic
relatedness implied by STS.

3.2 Textual Entailment System Description
Shown in Figure 2, the Stanford entailment sys-
tem uses a linguistically rich multi-stage annotation
pipeline. Incoming sentence pairs are first depen-
dency parsed. The dependency parse trees are then
transformed into semantic graphs containing addi-
tional annotations such as named entities and coref-
erence. The two semantic graphs are then aligned
based upon structural overlap and lexical semantic
similarity using a variety of word similarity metrics
based on WordNet, vector space distributional sim-
ilarity as calculated by InfoMap, and a specialized
module for matching ordinal values. The system then
supplies the aligned semantic graphs as input to a
number of feature producing modules. Some mod-
ules produce gross aggregate scores, such as return-
ing the alignment quality between the two sentences.
Others look for specific phenomena that suggest the
presence or absence of an entailment relationship,
such as a match or mismatch in polarity (e.g., “died”
vs. “didn’t die”), tense, quantification, and argument
structure. The resulting features are then passed on
to a down stream classifier to predict whether or not
an entailment relationship exists.

3.3 Adapting RTE to STS
In order to adapt our entailment recognition system to
STS, we follow the same approach Pado et al. (2009)
used to successfully adapt the entailment system to
machine translation evaluation. As shown in Figure 3,
for each pair of sentences presented to the system, we
run the entailment system in both directions and ex-
tract features that describe whether the first sentence
entails the second and vice versa for the opposite di-
rection. This setup effectively treats the STS task as
a bidirectional variant of the RTE task. The extracted
bidirectional entailment features are then passed on
to a support vector machine regression (SVR) model,
which predicts the STS score for the sentence pair.
As in Pado et al. (2009), we augment the bidirec-
tional entailment features with sentence level BLEU

Models All MSRpar MSRvid SMTeuro OnWn SMTnews
pFSMIndi 0.6354(38) 0.3795 0.5350 0.4377 - -
pFSMAll 0.3727 0.3769 0.4569 0.4256 0.6052 0.4164
pPDAIndi 0.6808 0.4244 0.5051 0.4554 - -
pPDAAll 0.4229(77) 0.4409 0.4698 0.4558 0.6468 0.4769
Entailment 0.5589(55) 0.4374 0.8037 0.3533 0.3077 0.3235

Table 1: Absolute score prediction results on STS12 test set. Numbers in this table are Pearson correlation scores. Best
result on each test set is highlighted in bold. Numbers in All column that has superscript are the official submissions.
Their relative ranks among 89 systems are shown in superscripts.

scores, in order to improve robustness over noisy
non-grammatical data. We trained the SVR model
using libSVM over all of the sentence pairs in the
STS training set. The model uses a Gaussian kernel
with γ = 0.125, an SVR ε-loss of 0.25, and margin
violation cost, C, of 2.0. These hyperparameters were
selected by cross validation over the training set.

4 Results

From Table 1, we can see that the pPDA model per-
formed better than the pFSM model on all test sets ex-
cept the MSRvid section. This result clearly demon-
strates the power of the pPDA extension in modeling
long-distance word swapping. The MSRvid test set
has the shortest overall sentence length (13, versus
35 for MSRpar), and therefore it is not too surpris-
ing that long distance word swapping did not help
much here. Furthermore, the pPDA model shows a
much more pronounced performance gain than pFSM
when tested on unseen datasets (OnWn and SMT-
news), suggesting that the pPDA model is more ro-
bust across domain. A second observation is that the
Indi training scheme seems to work better than the
All approach, which shows having more training data
does not compensate the different characteristics of
each training portion. Our best metric on all test set
is the pPDAIndi model, with a Pearson’s correlation
score of 0.6808. If interpolated into the official sub-
mitted runs ranking, it would be placed at the 22nd
place among 89 runs. Among the three official runs
submitted to the shared task (pPDAAll, pFSMIndi
and Entailment), pFSMIndi performs the best, placed
at 38th place among 89 runs. Since our metrics were
originally designed for statistical machine transla-
tion (MT) evaluation, we found that on the unseen
SMTNews test set, which consists of news conversa-
tion sentence pairs from the MT domain, our pPDA

model placed at a much higher position (13 among
89 runs).

In comparison to results on MT evaluation
task (Wang and Manning, 2012), we found that the
pPDA and pFSM models work less well on STS.
Whereas in MT evaluation it is common to have ac-
cess to thousands of training examples, there is an
order of magnitude less available training data in STS.
Therefore, learning hundreds of feature parameters
in our models from such few examples are likely to
be ill-posed.

Overall, the RTE system did not perform as well as
the regression based models except for the MSRvid
domain , which has the shortest overall sentence
length. Qualitative evaluation suggests that the
MSRvid domain exhibits the least degree of lexical
divergence between sentence pairs, thus making this
task easier than other domains (the median score of
all 89 official systems for MSRvid is 0.7538, while
for the medians for MSRpar and SMTeuroparl are
0.5128 and 0.4437, respectively). The relative rank
of RTE for MSRvid is 21 out of 89, whereas the
pFSM and pPDA systems ranked 80 and 83, respec-
tively. The low performance of pFSM and pPDA on
this task significantly affected the overall rankings of
these two systems. We do not have a clear explana-
tion as to why RTE system thrives on this easier task
while pPDA and pFSM seem to suffer. For future
work, we aim to gain a better understanding of the
different characteristics of these systems, and explore
model combination techniques.

5 Conclusion

We describe a metric for computing sentence level
semantic textual similarity, which is based on a prob-
abilistic finite state machine model that computes
weighted edit distance. Our model admits a rich set

of linguistic features, and can be trained to learn fea-
ture weights automatically by optimizing a regression
objective. A novel pushdown automaton extension
was also presented for capturing long-distance word
swapping. Our models outperformed Stanford tex-
tual entailment system on all but one of the genres
on the STS task.

Acknowledgements
We gratefully acknowledge the support of the De-
fense Advanced Research Projects Agency (DARPA)
Machine Reading Program under Air Force Research
Laboratory (AFRL) prime contract no. FA8750-
09-C-0181 and the support of the DARPA Broad
Operational Language Translation (BOLT) program
through IBM. Any opinions, findings, and conclusion
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the view of the DARPA, AFRL, or the US govern-
ment.

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
2001. Introduction to Algorithms, Second Edition. MIT
Press.

I. Dagan, O. Glickman, and B. Magnini. 2005. The
PASCAL recognising textual entailment challenge. In
Proceedings of the PASCAL Challenges Workshop on
Recognising Textual Entailment.

Y. Dombb, O. Lipsky, B. Porat, E. Porat, and A. Tsur.
2010. The approximate swap and mismatch edit dis-
tance. Theoretical Computer Science, 411(43).

J. Eisner. 2002. Parameter estimation for probabilistic
finite-state transducers. In Proceedings of ACL.

J. Esparza and A. Kucera. 2005. Quantitative analysis
of probabilistic pushdown automata: Expectations and
variances. In Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science.

K. Knight and Y. Al-Onaizan. 1998. Translation with
finite-state devices. In Proceedings of AMTA.

S. Kumar and W. Byrne. 2003. A weighted finite state
transducer implementation of the alignment template
model for statistical machine translation. In Proceed-
ings of HLT/NAACL.

D. C. Liu and J. Nocedal. 1989. On the limited mem-
ory BFGS method for large scale optimization. Math.
Programming, 45:503–528.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J.
Miller. 1990. WordNet: an on-line lexical database.
International Journal of Lexicography, 3(4).

S. Pado, D. Cer, M. Galley, D. Jurafsky, and C. Manning.
2009. Measuring machine translation quality as seman-
tic equivalence: A metric based on entailment features.
Machine Translation, 23:181–193.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta,
and R. C. Carrasco. 2005. Probabilistic finite-state ma-
chines part I. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(7):1013–1025.

M. Wang and C. Manning. 2012. SPEDE: Probabilistic
edit distance metrics for MT evaluation. In Proceedings
of WMT.

D. Wu, 2010. CRC Handbook of Natural Language Pro-
cessing, chapter Alignment, pages 367–408. CRC
Press.

