
On-the-Job Learning with Bayesian Decision Theory

Keenon Werling
Department of Computer Science

Stanford University
keenon@cs.stanford.edu

Arun Chaganty
Department of Computer Science

Stanford University
chaganty@cs.stanford.edu

Percy Liang
Department of Computer Science

Stanford University
pliang@cs.stanford.edu

Christopher D. Manning
Department of Computer Science

Stanford University
manning@cs.stanford.edu

Abstract

Our goal is to deploy a high-accuracy system starting with zero training examples.
We consider an on-the-job setting, where as inputs arrive, we use real-time crowd-
sourcing to resolve uncertainty where needed and output our prediction when con-
fident. As the model improves over time, the reliance on crowdsourcing queries
decreases. We cast our setting as a stochastic game based on Bayesian decision
theory, which allows us to balance latency, cost, and accuracy objectives in a prin-
cipled way. Computing the optimal policy is intractable, so we develop an approx-
imation based on Monte Carlo Tree Search. We tested our approach on three
datasets—named-entity recognition, sentiment classification, and image classifi-
cation. On the NER task we obtained more than an order of magnitude reduction
in cost compared to full human annotation, while boosting performance relative to
the expert provided labels. We also achieve a 8% F1 improvement over having a
single human label the whole set, and a 28% F1 improvement over online learning.

“Poor is the pupil who does not surpass his master.”
– Leonardo da Vinci

1 Introduction

There are two roads to an accurate AI system today: (i) gather a huge amount of labeled training
data [1] and do supervised learning [2]; or (ii) use crowdsourcing to directly perform the task [3, 4].
However, both solutions require non-trivial amounts of time and money. In many situations, one
wishes to build a new system — e.g., to do Twitter information extraction [5] to aid in disaster relief
efforts or monitor public opinion — but one simply lacks the resources to follow either the pure ML
or pure crowdsourcing road.

In this paper, we propose a framework called on-the-job learning (formalizing and extending ideas
first implemented in [6]), in which we produce high quality results from the start without requiring
a trained model. When a new input arrives, the system can choose to asynchronously query the
crowd on parts of the input it is uncertain about (e.g. query about the label of a single token in a
sentence). After collecting enough evidence the system makes a prediction. The goal is to maintain
high accuracy by initially using the crowd as a crutch, but gradually becoming more self-sufficient
as the model improves. Online learning [7] and online active learning [8, 9, 10] are different in that
they do not actively seek new information prior to making a prediction, and cannot maintain high
accuracy independent of the number of data instances seen so far. Active classification [11], like us,

1

ar
X

iv
:1

50
6.

03
14

0v
2

 [
cs

.A
I]

 7
 D

ec
 2

01
5

y1

x1

y2

x2

y3

x3

r1

y4

x4

y5

x5

Soup on George str. #Katrina

RESOURCE LOCATION

y1

x1

y2

x2

y3

x3

y4

x4

y5

x5

Soup on George

“George”

str. #Katrina

32%: LOCATION
2%: NONE

12%: RESOURCE
44%: PERSON

Decide to ask a crowd
worker in real time

Get beliefs under
learned model

Incorporate feedback,
return a prediction

soup on george str,
#katrina

location

person

none

resource

What is `George` here?

http://www.crowd-workers.com

1. 2. 3.

Figure 1: Named entity recognition on tweets in on-the-job learning.

strategically seeks information (by querying a subset of labels) prior to prediction, but it is based on
a static policy, whereas we improve the model during test time based on observed data.

To determine which queries to make, we model on-the-job learning as a stochastic game based on
a CRF prediction model. We use Bayesian decision theory to tradeoff latency, cost, and accuracy
in a principled manner. Our framework naturally gives rise to intuitive strategies: To achieve high
accuracy, we should ask for redundant labels to offset the noisy responses. To achieve low latency,
we should issue queries in parallel, whereas if latency is unimportant, we should issue queries se-
quentially in order to be more adaptive. Computing the optimal policy is intractable, so we develop
an approximation based on Monte Carlo tree search [12] and progressive widening to reason about
continuous time [?].

We implemented and evaluated our system on three different tasks: named-entity recognition, sen-
timent classification, and image classification. On the NER task we obtained more than an order of
magnitude reduction in cost compared to full human annotation, while boosting performance rela-
tive to the expert provided labels. We also achieve a 8% F1 improvement over having a single human
label the whole set, and a 28% F1 improvement over online learning. An open-source implementa-
tion of our system, dubbed LENSE for “Learning from Expensive Noisy Slow Experts” is available
at http://www.github.com/keenon/lense.

2 Problem formulation

Consider a structured prediction problem from input x = (x1, . . . , xn) to output y = (y1, . . . , yn).
For example, for named-entity recognition (NER) on tweets, x is a sequence of words in the tweet
(e.g., “on George str.”) and y is the corresponding sequence of labels (e.g., NONE LOCATION
LOCATION). The full set of labels of PERSON, LOCATION, RESOURCE, and NONE.

In the on-the-job learning setting, inputs arrive in a stream. On each input x, we make zero or more
queries q1, q2, . . . on the crowd to obtain labels (potentially more than once) for any positions in
x. The responses r1, r2, . . . come back asynchronously, which are incorporated into our current
prediction model pθ. Figure 2 (left) shows one possible outcome: We query positions q1 = 2
(“George”) and q2 = 3 (“str.”). The first query returns r1 = LOCATION, upon which we make
another query on the the same position q3 = 3 (“George”), and so on. When we have sufficient
confidence about the entire output, we return the most likely prediction ŷ under the model. Each
query qi is issued at time si and the response comes back at time ti. Assume that each query costs
m cents. Our goal is to choose queries to maximize accuracy, minimize latency and cost.

We make several remarks about this setting: First, we must make a prediction ŷ on each input x in
the stream, unlike in active learning, where we are only interested in the pool or stream of examples
for the purposes of building a good model. Second, we evaluate on accuracy(y, ŷ) against the
true label sequence y (on named-entity recognition, this is the F1 metric), but y is never actually

2

http://www.github.com/keenon/lense

1

S o G s S o G s S o G s

q1 = 1 r1 = res

q2 = 3 r2 = loc

2

S o G s S o G s S o G s S o G s

q1 = 1 r1 = res

q2 = 3 r2 = per

q4 = 3 r4 = loc

per

loc

res

none

Legend

(a) Incorporating information from responses. The bar graphs
represent the marginals over the labels for each token (indicated
by the first character) at different points in time. The two time-
lines show how the system updates its confidence over labels
based on the crowd’s responses. The system continues to issue
queries until it has sufficient confidence on its labels. See the
paragraph on behavior in Section 3 for more information.

∅W

r1 = loc

0.47

∅R

4

∅W

r1 = loc

0.27

∅R

= system
= crowd

σ = (tnow,q, s, r, t)

(1, (3), (0), (∅), (∅))

(1.7, (3), (0), (1.7), (loc))

(b) Game tree. An example of a partial
game tree constructed by the system when
deciding which action to take in the state
σ = (1, (3), (0), (∅), (∅)), i.e. the query
q1 = 3 has already been issued and the
system must decide whether to issue an-
other query or wait for a response to q1.

Figure 2: Example behavior while running structure prediction on the tweet “Soup on George str.”
We omit the RESOURCE from the game tree for visual clarity.

observed—the only feedback is via the responses, like in partial monitoring games [13]. Therefore,
we must make enough queries to garner sufficient confidence (something we can’t do in partial
monitoring games) on each example from the beginning. Finally, the responses are used to update
the prediction model, like in online learning. This allows the number of queries needed (and thus
cost and latency) to decrease over time without compromising accuracy.

3 Model
We model on-the-job learning as a stochastic game with two players: the system and the crowd.
The game starts with the system receiving input x and ends when the system turns in a set of labels
y = (y1, . . . , yn). During the system’s turn, the system may choose a query action q ∈ {1, . . . , n}
to ask the crowd to label yq . The system may also choose the wait action (q = ∅W) to wait for the
crowd to respond to a pending query or the return action (q = ∅R) to terminate the game and return
its prediction given responses received thus far. The system can make as many queries in a row (i.e.
simultaneously) as it wants, before deciding to wait or turn in.1 When the wait action is chosen,
the turn switches to the crowd, which provides a response r to one pending query, and advances
the game clock by the time taken for the crowd to respond. The turn then immediately reverts back
to the system. When the game ends (the system chooses the return action), the system evaluates a
utility that depends on the accuracy of its prediction, the number of queries issued and the total time
taken. The system should choose query and wait actions to maximize the utility of the prediction
eventually returned.

In the rest of this section, we describe the details of the game tree, our choice of utility and specify
models for crowd responses, followed by a brief exploration of behavior admitted by our model.

Game tree. Let us now formalize the game tree in terms of its states, actions, transitions and
rewards; see Figure 2b for an example. The game state σ = (tnow,q, s, r, t) consists of the current
time tnow, the actions q = (q1, . . . , qk−1) that have been issued at times s = (s1, . . . , sk−1) and the
responses r = (r1, . . . , rk−1) that have been received at times t = (t1, . . . , tk−1). Let rj = ∅ and
tj = ∅ iff qj is not a query action or its responses have not been received by time tnow.

During the system’s turn, when the system chooses an action qk, the state is updated to σ′ =
(tnow,q

′, s′, r′, t′), where q′ = (q1, . . . , qk), s′ = (s1, . . . , sk−1, tnow), r′ = (r1, . . . , rk−1, ∅) and

1 This rules out the possibility of launching a query midway through waiting for the next response. However,
we feel like this is a reasonable limitation that significantly simplifies the search space.

3

t′ = (t1, . . . , tk−1, ∅). If qk ∈ {1, . . . n}, then the system chooses another action from the new state
σ′. If qk = ∅W , the crowd makes a stochastic move from σ′. Finally, if qk = ∅R, the game ends,
and the system returns its best estimate of the labels using the responses it has received and obtains
a utility U(σ) (defined later).

Let F = {1 ≤ j ≤ k − 1 | qj 6= ∅W ∧ rj = ∅} be the set of in-flight requests. During the crowd’s
turn (i.e. after the system chooses ∅W), the next response from the crowd, j∗ ∈ F , is chosen: j∗ =
arg minj∈F t

′
j where t′j is sampled from the response-time model, t′j ∼ pT(t

′
j | sj , t′j > tnow), for

each j ∈ F . Finally, a response is sampled using a response model, r′j∗ ∼ p(r′j∗ | x, r), and the state
is updated to σ′ = (tj∗ ,q, s, r

′, t′), where r′ = (r1, . . . , r
′
j∗ , . . . , rk) and t′ = (t1, . . . , t

′
j∗ , . . . , tk).

Utility. Under Bayesian decision theory, the optimal choice for an action in state σ =
(tnow,q, r, s, t) is the one that attains the maximum expected utility (i.e. value) for the game starting
at σ. Recall that the system can return at any time, at which point it receives a utility that trades
off two things: The first is the accuracy of the MAP estimate according to the model’s best guess
of y incorporating all responses received by time τ . The second is the cost of making queries: a
(monetary) cost wM per query made and penalty of wT per unit of time taken. Formally, we define
the utility to be:

U(σ) , ExpAcc(p(y | x,q, s, r, t))− (nQwM + tnowwT), (1)

ExpAcc(p) = Ep(y)[Accuracy(argmax
y′

p(y′))], (2)

where nQ = |{j | qj ∈ {1, . . . , n}| is the number of queries made, p(y | x,q, s, r, t) is a prediction
model that incorporates the crowd’s responses.

The utility of wait and return actions is computed by taking expectations over subsequent trajectories
in the game tree. This is intractable to compute exactly, so we propose an approximate algorithm in
Section 4.

Environment model. The final component is a model of the environment (crowd). Given input
x and queries q = (q1, . . . , qk) issued at times s = (s1, . . . , sk), we define a distribution over the
output y, responses r = (r1, . . . , rk) and response times t = (t1, . . . , tk) as follows:

p(y, r, t | x,q, s) , pθ(y | x)
k∏
i=1

pR(ri | yqi)pT(ti | si). (3)

The three components are as follows: pθ(y | x) is the prediction model (e.g. a standard linear-chain
CRF); pR(r | yq) is the response model which describes the distribution of the crowd’s response
r for a given a query q when the true answer is yq; and pT(ti | si) specifies the latency of query
qi. The CRF model pθ(y | x) is learned based on all actual responses (not simulated ones) using
AdaGrad. To model annotation errors, we set pR(r | yq) = 0.7 iff r = yq ,2 and distribute the
remaining probability for r uniformly. Given this full model, we can compute p(r′ | x, r, q) simply
by marginalizing out y and t from Equation 3. When conditioning on r, we ignore responses that
have not yet been received (i.e. when rj = ∅ for some j).

Behavior. Let’s look at typical behavior that we expect the model and utility to capture. Figure 2a
shows how the marginals over the labels change as the crowd provides responses for our running
example, i.e. named entity recognition for the sentence “Soup on George str.”. In the both timelines,
the system issues queries on “Soup” and “George” because it is not confident about its predictions
for these tokens. In the first timeline, the crowd correctly responds that “Soup” is a resource and
that “George” is a location. Integrating these responses, the system is also more confident about
its prediction on “str.”, and turns in the correct sequence of labels. In the second timeline, a crowd
worker makes an error and labels “George” to be a person. The system still has uncertainty on
“George” and issues an additional query which receives a correct response, following which the
system turns in the correct sequence of labels. While the answer is still correct, the system could
have taken less time to respond by making an additional query on “George” at the very beginning.

2We found the humans we hired were roughly 70% accurate in our experiments

4

4 Game playing

In Section 3 we modeled on-the-job learning as a stochastic game played between the system and
the crowd. We now turn to the problem of actually finding a policy that maximizes the expected
utility, which is, of course, intractable because of the large state space.

Our algorithm (Algorithm 1) combines ideas from Monte Carlo tree search [12] to systematically
explore the state space and progressive widening [?] to deal with the challenge of continuous vari-
ables (time). Some intuition about the algorithm is provided below. When simulating the system’s
turn, the next state (and hence action) is chosen using the upper confidence tree (UCT) decision
rule that trades off maximizing the value of the next state (exploitation) with the number of visits
(exploration). The crowd’s turn is simulated based on transitions defined in Section 3. To handle the
unbounded fanout during the crowd’s turn, we use progressive widening that maintains a current set
of “active” or “explored” states, which is gradually grown with time. Let N(σ) be the number of
times a state has been visited, and C(σ) be all successor states that the algorithm has sampled.

Algorithm 1 Approximating expected utility with MCTS and progressive widening

1: For all σ, N(σ)← 0, V (σ)← 0, C(σ)← [] . Initialize visits, utility sum, and children
2: function MONTECARLOVALUE(state σ)
3: increment N(σ)
4: if system’s turn then
5: σ′ ← arg maxσ′

{
V (σ′)
N(σ′) + c

√
logN(σ)
N(σ′)

}
. Choose next state σ′ using UCT

6: v ←MONTECARLOVALUE(σ′)
7: V (σ)← V (σ) + v . Record observed utility
8: return v
9: else if crowd’s turn then

10: if max(1,
√
N(σ)) ≤ |C(σ)| then . Restrict continuous samples using PW

11: σ′ is sampled from set of already visited C(σ) based on (3)
12: else
13: σ′ is drawn based on (3)
14: C(σ)← C(σ) ∪ {[σ′]}
15: end if
16: return MONTECARLOVALUE(σ′)
17: else if game terminated then
18: return utility U of σ according to (1)
19: end if
20: end function

5 Experiments

In this section, we empirically evaluate our approach on three tasks. While the on-the-job setting we
propose is targeted at scenarios where there is no data to begin with, we use existing labeled datasets
(Table 1) to have a gold standard.

Baselines. We evaluated the following four methods on each dataset:

1. Human n-query: The majority vote of n human crowd workers was used as a prediction.
2. Online learning: Uses a classifier that trains on the gold output for all examples seen so

far and then returns the MLE as a prediction. This is the best possible offline system: it
sees perfect information about all the data seen so far, but can not query the crowd while
making a prediction.

3. Threshold baseline: Uses the following heuristic: For each label, yi, we ask for m queries
such that (1−pθ(yi | x))×0.3m ≥ 0.98. Instead of computing the expected marginals over
the responses to queries in flight, we simply count the in-flight requests for a given variable,
and reduces the uncertainty on that variable by a factor of 0.3. The system continues
launching requests until the threshold (adjusted by number of queries in flight) is crossed.

5

Dataset (Examples) Task and notes Features
NER (657) We evaluate on the CoNLL-2003

NER task3, a sequence labeling
problem over English sentences.
We only consider the four tags cor-
responding to persons, locations,
organizations or none4.

We used standard features [14]: the
current word, current lemma, pre-
vious and next lemmas, lemmas in
a window of size three to the left
and right, word shape and word
prefix and suffixes, as well as word
embeddings.

Sentiment (1800) We evaluate on a subset of the
IMDB sentiment dataset [15] that
consists of 2000 polar movie re-
views; the goal is binary classifica-
tion of documents into classes POS
and NEG.

We used two feature sets, the
first (UNIGRAMS) containing only
word unigrams, and the second
(RNN) that also contains sentence
vector embeddings from [16].

Face (1784) We evaluate on a celebrity face
classification task [17]. Each im-
age must be labeled as one of the
following four choices: Andersen
Cooper, Daniel Craig, Scarlet Jo-
hansson or Miley Cyrus.

We used the last layer of a 11-
layer AlexNet [2] trained on Ima-
geNet as input feature embeddings,
though we leave back-propagating
into the net to future work.

Table 1: Datasets used in this paper and number of examples we evaluate on.

Named Entity Recognition Face Identification
System Delay/tok Qs/tok PER F1 LOC F1 ORG F1 F1 Latency Qs/ex Acc.
1-vote 467 ms 1.0 90.2 78.8 71.5 80.2 1216 ms 1.0 93.6
3-vote 750 ms 3.0 93.6 85.1 74.5 85.4 1782 ms 3.0 99.1
5-vote 1350 ms 5.0 95.5 87.7 78.7 87.3 2103 ms 5.0 99.8
Online n/a n/a 56.9 74.6 51.4 60.9 n/a n/a 79.9
Threshold 414 ms 0.61 95.2 89.8 79.8 88.3 1680 ms 2.66 93.5
LENSE 267 ms 0.45 95.2 89.7 81.7 88.8 1590 ms 2.37 99.2

Table 2: Results on NER and Face tasks comparing latencies, queries per token (Qs/tok) and perfor-
mance metrics (F1 for NER and accuracy for Face).

Predictions are made using MLE on the model given responses. The baseline does not
reason about time and makes all its queries at the very beginning.

4. LENSE: Our full system as described in Section 3.

Implementation and crowdsourcing setup. We implemented the retainer model of [18] on Ama-
zon Mechanical Turk to create a “pool” of crowd workers that could respond to queries in real-time.
The workers were given a short tutorial on each task before joining the pool to minimize systematic
errors caused by misunderstanding the task. We paid workers $1.00 to join the retainer pool and
an additional $0.01 per query (for NER, since response times were much faster, we paid $0.005
per query). Worker response times were generally in the range of 0.5–2 seconds for NER, 10–15
seconds for Sentiment, and 1–4 seconds for Faces.

When running experiments, we found that the results varied based on the current worker quality. To
control for variance in worker quality across our evaluations of the different methods, we collected
5 worker responses and their delays on each label ahead of time5. During simulation we sample the
worker responses and delays without replacement from this frozen pool of worker responses.

Summary of results. Table 2 and Table 3 summarize the performance of the methods on the three
tasks. On all three datasets, we found that on-the-job learning outperforms machine and human-only

3http://www.cnts.ua.ac.be/conll2003/ner/
4 The original also includes a fifth tag for miscellaneous, however the definition for miscellaneos is complex,

making it very difficult for non-expert crowd workers to provide accurate labels.
5These datasets are available in the code repository for this paper

6

http://www.cnts.ua.ac.be/conll2003/ner/

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 0 20 40 60 80 100 120 140 160 180 200

Q
ue

ri
es

 p
er

 e
xa

m
pl

e

Time

Unigrams
Unigrams + RNN embeddings

Figure 3: Queries per example for LENSE on
Sentiment. With simple UNIGRAM features, the
model quickly learns it does not have the ca-
pacity to answer confidently and must query the
crowd. With more complex RNN features, the
model learns to be more confident and queries
the crowd less over time.

System Latency Qs/ex Acc.
1-vote 6.6 s 1.00 89.2
3-vote 10.9 s 3.00 95.8
5-vote 13.5 s 5.00 98.7
UNIGRAMS
Online n/a n/a 78.1
Threshold 10.9 s 2.99 95.9
LENSE 11.7 s 3.48 98.6

RNN
Online n/a n/a 85.0
Threshold 11.0 s 2.85 96.0
LENSE 11.0 s 3.19 98.6

Table 3: Results on the Sentiment task compar-
ing latency, queries per example and accuracy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

F
1

Time

online learning
LENSE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200 300 400 500 600 700

Q
ue

ri
es

 p
er

 to
ke

n

Time

1 vote baseline
LENSE

Figure 4: Comparing F1 and queries per token on the NER task over time. The left graph compares
LENSE to online learning (which cannot query humans at test time). This highlights that LENSE
maintains high F1 scores even with very small training set sizes, by falling back the crowd when it
is unsure. The right graph compares query rate over time to 1-vote. This clearly shows that as the
model learns, it needs to query the crowd less.

comparisons on both quality and cost. On NER, we achieve an F1 of 88.4% at more than an order of
magnitude reduction on the cost of achieving comporable quality result using the 5-vote approach.
On Sentiment and Faces, we reduce costs for a comparable accuracy by a factor of around 2. For the
latter two tasks, both on-the-job learning methods perform less well than in NER. We suspect this
is due to the presence of a dominant class (“none”) in NER that the model can very quickly learn to
expend almost no effort on. LENSE outperforms the threshold baseline, supporting the importance
of Bayesian decision theory.

Figure 4 tracks the performance and cost of LENSE over time on the NER task. LENSE is not only
able to consistently outperform other baselines, but the cost of the system steadily reduces over time.
On the NER task, we find that LENSE is able to trade off time to produce more accurate results than
the 1-vote baseline with fewer queries by waiting for responses before making another query.

While on-the-job learning allows us to deploy quickly and ensure good results, we would like to
eventually operate without crowd supervision. Figure 3, we show the number of queries per example
on Sentiment with two different features sets, UNIGRAMS and RNN (as described in Table 1). With
simpler features (UNIGRAMS), the model saturates early and we will continue to need to query to
the crowd to achieve our accuracy target (as specified by the loss function). On the other hand,
using richer features (RNN) the model is able to learn from the crowd and the amount of supervision
needed reduces over time. Note that even when the model capacity is limited, LENSE is able to
guarantee a consistent, high level of performance.

7

6 Related Work

On-the-job learning draws ideas from many areas: online learning, active learning, active classifica-
tion, crowdsourcing, and structured prediction.

Online learning. The fundamental premise of online learning is that algorithms should improve
with time, and there is a rich body of work in this area [7]. In our setting, algorithms not only
improve over time, but maintain high accuracy from the beginning, whereas regret bounds only
achieve this asymptotically.

Active learning. Active learning (see [19] for a survey) algorithms strategically select most in-
formative examples to build a classifier. Online active learning [8, 9, 10] performs active learning
in the online setting. Several authors have also considered using crowd workers as a noisy oracle
[20, 21, 22, 23]. It differs from our setup in that it assumes that labels can only be observed after
classification, which makes it nearly impossible to maintain high accuracy in the beginning.

Active classification. Active classification [24, 25, 26] asks what are the most informative features
to measure at test time. Existing active classification algorithms rely on having a fully labeled
dataset which is used to learn a static policy for when certain features should be queried, which does
not change at test time. On-the-job learning differs from active classification in two respects: true
labels are never observed, and our system improves itself at test time by learning a stronger model.
A notable exception is Legion:AR [6], which like us operates in on-the-job learning setting to for
real-time activity classification. However, they do not explore the machine learning foundations
associated with operating in this setting, which is the aim of this paper.

Crowdsourcing. A burgenoning subset of the crowdsourcing community overlaps with machine
learning. One example is Flock [27], which first crowdsources the identification of features for an
image classification task, and then asks the crowd to annotate these features so it can learn a decision
tree. In another line of work, TurKontrol [28] models individual crowd worker reliability to optimize
the number of human votes needed to achieve confident consensus using a POMDP.

Structured prediction. An important aspect our prediction tasks is that the output is structured,
which leads to a much richer setting for one-the-job learning. Since tags are correlated, the impor-
tance of a coherent framework for optimizing querying resources is increased. Making active partial
observations on structures and has been explored in the measurements framework of [29] and in the
distant supervision setting [30].

7 Conclusion

We have introduced a new framework that learns from (noisy) crowds on-the-job to maintain high
accuracy, and reducing cost significantly over time. The technical core of our approach is modeling
the on-the-job setting as a stochastic game and using ideas from game playing to approximate the
optimal policy. We have built a system, LENSE, which obtains significant cost reductions over a
pure crowd approach and significant accuracy improvements over a pure ML approach.

References

[1] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems (NIPS), pages 1097–1105, 2012.

[3] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman, D. R. Karger, D. Crowell, and
K. Panovich. Soylent: a word processor with a crowd inside. In Symposium on User Interface Software
and Technology, pages 313–322, 2010.

[4] N. Kokkalis, T. Köhn, C. Pfeiffer, D. Chornyi, M. S. Bernstein, and S. R. Klemmer. Emailvalet: Manag-
ing email overload through private, accountable crowdsourcing. In Conference on Computer Supported
Cooperative Work, pages 1291–1300, 2013.

[5] C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and B. Lee. Twiner: named entity recognition in targeted
twitter stream. In ACM Special Interest Group on Information Retreival (SIGIR), pages 721–730, 2012.

8

[6] Walter S Lasecki, Young Chol Song, Henry Kautz, and Jeffrey P Bigham. Real-time crowd labeling for
deployable activity recognition. In Proceedings of the 2013 conference on Computer supported coopera-
tive work, pages 1203–1212. ACM, 2013.

[7] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

[8] D. Helmbold and S. Panizza. Some label efficient learning results. In Conference on Learning Theory
(COLT), pages 218–230, 1997.

[9] D. Sculley. Online active learning methods for fast label-efficient spam filtering. In Conference on Email
and Anti-spam (CEAS), 2007.

[10] W. Chu, M. Zinkevich, L. Li, A. Thomas, and B. Tseng. Unbiased online active learning in data streams.
In International Conference on Knowledge Discovery and Data Mining (KDD), pages 195–203, 2011.

[11] T. Gao and D. Koller. Active classification based on value of classifier. In Advances in Neural Information
Processing Systems (NIPS), pages 1062–1070, 2011.

[12] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In European Conference on Machine
Learning (ECML), pages 282–293, 2006.

[13] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Regret minimization under partial monitoring. Mathematics
of Operations Research, 31:562–580, 2006.

[14] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into information extrac-
tion systems by Gibbs sampling. In Association for Computational Linguistics (ACL), pages 363–370,
2005.

[15] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon,
USA, June 2011. Association for Computational Linguistics.

[16] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep mod-
els for semantic compositionality over a sentiment treebank. In Empirical Methods in Natural Language
Processing (EMNLP), 2013.

[17] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and Simile Classifiers for Face
Verification. In IEEE International Conference on Computer Vision (ICCV), Oct 2009.

[18] M. S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger. Crowds in two seconds: Enabling realtime
crowd-powered interfaces. In User Interface Software and Technology, pages 33–42, 2011.

[19] B. Settles. Active learning literature survey. Technical report, University of Wisconsin, Madison, 2010.

[20] P. Donmez and J. G. Carbonell. Proactive learning: cost-sensitive active learning with multiple imperfect
oracles. In Conference on Information and Knowledge Management (CIKM), pages 619–628, 2008.

[21] D. Golovin, A. Krause, and D. Ray. Near-optimal Bayesian active learning with noisy observations. In
Advances in Neural Information Processing Systems (NIPS), pages 766–774, 2010.

[22] Y. Yan, G. M. Fung, R. Rosales, and J. G. Dy. Active learning from crowds. In International Conference
on Machine Learning (ICML), pages 1161–1168, 2011.

[23] Sudheendra Vijayanarasimhan and Kristen Grauman. Large-scale live active learning: Training object
detectors with crawled data and crowds. International Journal of Computer Vision, 108(1-2):97–114,
2014.

[24] R. Greiner, A. J. Grove, and D. Roth. Learning cost-sensitive active classifiers. Artificial Intelligence,
139(2):137–174, 2002.

[25] X. Chai, L. Deng, Q. Yang, and C. X. Ling. Test-cost sensitive naive Bayes classification. In International
Conference on Data Mining, pages 51–58, 2004.

[26] S. Esmeir and S. Markovitch. Anytime induction of cost-sensitive trees. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 425–432, 2007.

[27] J. Cheng and M. S. Bernstein. Flock: Hybrid Crowd-Machine learning classifiers. In Proceedings of the
18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pages 600–611,
2015.

[28] P. Dai, Mausam, and D. S. Weld. Decision-theoretic control of crowd-sourced workflows. In Association
for the Advancement of Artificial Intelligence (AAAI), 2010.

[29] P. Liang, M. I. Jordan, and D. Klein. Learning from measurements in exponential families. In Interna-
tional Conference on Machine Learning (ICML), 2009.

[30] G. Angeli, J. Tibshirani, J. Y. Wu, and C. D. Manning. Combining distant and partial supervision for
relation extraction. In Empirical Methods in Natural Language Processing (EMNLP), 2014.

9

	1 Introduction
	2 Problem formulation
	3 Model
	4 Game playing
	5 Experiments
	6 Related Work
	7 Conclusion

