
Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

Michihiro Yasunaga 1 Percy Liang 1

Abstract

We consider the problem of learning to repair pro-
grams from diagnostic feedback (e.g., compiler
error messages). Program repair is challenging
for two reasons: First, it requires reasoning and
tracking symbols across source code and diag-
nostic feedback. Second, labeled datasets avail-
able for program repair are relatively small. In
this work, we propose novel solutions to these
two challenges. First, we introduce a program-
feedback graph, which connects symbols relevant
to program repair in source code and diagnostic
feedback, and then apply a graph neural network
on top to model the reasoning process. Second,
we present a self-supervised learning paradigm
for program repair that leverages unlabeled pro-
grams available online to create a large amount
of extra program repair examples, which we use
to pre-train our models. We evaluate our pro-
posed approach on two applications: correcting
introductory programming assignments (DeepFix
dataset) and correcting the outputs of program
synthesis (SPoC dataset). Our final system, DrRe-
pair, significantly outperforms prior work, achiev-
ing 68.2% full repair rate on DeepFix (+22.9%
over the prior best), and 48.4% synthesis success
rate on SPoC (+3.7% over the prior best).

1. Introduction
Automatic program repair has the potential to dramatically
improve the productivity of programming. In particular,
a common source of program errors are compiler errors,
which include use of unresolved symbols, missing delimiters
(e.g. braces), and type errors. These errors are commonly
observed in both beginner programmers (Parihar et al., 2017)
and professional developers (Seo et al., 2014), as well as in
the predicted code of program synthesis (Kulal et al., 2019).
Accordingly, the use of machine learning in fixing compiler

1Stanford University, Stanford, CA. Correspondence to: Michi-
hiro Yasunaga <myasu@cs.stanford.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM code(1) LSTM code(1) LSTM code(1) LSTM msg(1)

LSTM code(2) LSTM code(2) LSTM code(2) LSTM msg(2)

Graph Attention

Pointer-Generator
Decoder

x13x12x11 x13x12x11 x13x12x11 m3m2m1nerr

MLP
+ softmax

Gold code
Y1 Y2 Y3n*

Error line idx

LSTM code(3)

Line 3

Source code

Line idx Msg content

Feedback
(compiler message)

Line 2Line 1

Line 1

Line 2

Line 3

Message
content

hx11 hx12 hx13 ...

hm 1 hm 2 hm 3 ..

hx21 hx22 hx23 ...

hx31 hx32 hx33 ...

hm1’

Aggregate

Program-Feedback
Graph

Multi-Head
Attention

Position
embedding

 1 #include <bits/stdc++.h>
 2 #include <string>
 3 using namespace std;
 4 int main() {
 5 char tmp, a , b;
 6 map<string,int> mp;
 7 cin >> a >> b;
 8 int i, j;
 9 for (i = 0; i < a .size(); i++){
 10 tmp.push_back(a [i]);
 11 string tmp1 = tmp;
 12 for (j = 0; j < b.size(); j++){
 13 tmp1.push_back(b[j]);
 14 mp[tmp1] = 1;
 15 }
 16 }
 17 map<string,int>::iterator it;
 18 it = mp.begin();
 19 cout << it.first << endl;
 20 }

 (`char` should be `string` instead in line 5)

Example taken from SPoC dataset
(909A-45398788.cpp)

line 9:error: request for
member ‘size’ in ‘a’,
which is of non-class
type ‘char’

Evaluator (compiler)

Feedback

Goal
1. Localize error: line 5
2. Edit

 char tmp, a, b;
 → string tmp, a, b;

Dr Repair (our model)

1. Error localized line 5
2. Repair

char tmp, a, b;
 → string tmp, a, b;

Source code
 4 int main() {
 5 char tmp, a, b;
 6 map<string,int> mp;
 7 cin >> a >> b;
 8 int i, j;
 9 for (i = 0; i < a.size() ...
 10 tmp.push_back(a[i]);
 11 string tmp1 = tmp;
 ...

Compiler message
 request for
 member ‘size’ in
 ‘a’, which is of
 non-class type
 ‘char’

Program-Feedback Graph

Source code
 4 int main() {
 5 char tmp, a, b;
 6 map<string,int> mp;
 7 cin >> a >> b;
 8 int i, j;
 9 for (i = 0; i < a.size() ...
 10 tmp.push_back(a[i]);
 11 string tmp1 = tmp;

Compiler message
 request for
 member ‘size’ in
 ‘a’, which is of
 non-class type
 ‘char’

Program-Feedback Graph

 1 #include <bits/stdc++.h>
 2 #include <string>
 3 using namespace std;
 4 int main() {
 5 char tmp, a , b;
 6 map<string,int> mp;
 7 cin >> a >> b;
 8 int i, j;
 9 for (i = 0; i < a .size(); i++){
 10 tmp.push_back(a [i]);
 11 string tmp1 = tmp;
 12 for (j = 0; j < b.size(); j++){
 13 tmp1.push_back(b[j]);

 14 mp[tmp1] = 1;
 15 }
 16 }
 17 map<string,int>::iterator it;
 18 it = mp.begin();
 19 cout << it.first << endl;
 20 }

Program with errors
(`char` should be `string` instead in line 5)

Example taken from SPoC dataset
(909A-45398788.cpp)

line 9:error: request
for member ‘size’ in
‘a’, which is of
non-class type ‘char’

Evaluator (compiler)

Feedback

Dr Repair (our model)

1. Error localized line 5
2. Repair

char tmp, a, b;
 → string tmp, a, b;

Error type Common compiler messages Statistics Relevant auto-corruption module
(our proposal)DeepDelta DeepFix SPoC Avg.

Expected ...
● operator/punctuator
● primary expression

expected @@@ (e.g. expected ‘;’ before...,
expected ‘}’ at end of input, expected
primary-expression before...)

missing @@@ (e.g. terminating " character)

9%
 48%

● 37%
● 11%

 35%
● 29%
● 6%

 30%
● 23%
● 7%

 Syntax (deletion, insertion, replacement of
op/punc)

 ID-typo (deletion, insertion of IDentifier)

Identifier
type/declaration conflict

redeclaration/conflicting declaration @@@
invalid conversion from <type> to <type>
no match for ‘operator @@@’ (operand
types are @@@)

9% 5% 18% 11% ID-type (deletion, insertion, replacement of
type)

Identifier undeclared @@@ was not declared 62% 33% 31% 42% ID-typo (deletion, replacement of IDentifier)

Others

‘else’ without a previous ‘if’

no matching function for call to... 20% 14% 16% 17%
 Keyword (deletion, insertion, replacement)

Above modules (e.g. Syntax , ID-type , ID-typo)
can also cause errors clustered here

Our auto-corruption module Example

 Syntax (deletion, insertion,
replacement of operator/
punctuator ,.;(){}'"++, etc.)

return 0; } → return 0; } }
cout << "YES"; → cout << YES;
min(s.size(), n) → min(s.size()), n)
tmp = *a; → tmp = &a

 ID-type (deletion, insertion,
replacement of type)

for (int i=0; i<n;) → for (i=0; i<n;)
k = k + 1; → int k = k + 1;
string tmp; → char tmp;

 ID-typo (deletion, insertion,
replacement of IDentifier)

int a, b=0, m, n; → int a, m, n;
string x,y,z; → string x,y,z,z;
for (i=0; i<n;) → for (j=0; i<n;)

 Keyword (deletion, insertion,
replacement of keyword/call)

if (n >= 0) → while (n >= 0)
l = s.length(); → l = s.;

 1 #include <bits/stdc++.h>
 2 #include <string>
 3 using namespace std;
 4 int main() {
 5 char tmp, a , b;
 6 map<string,int> mp;
 7 cin >> a >> b;
 8 int i, j;
 9 for (i = 0; i < a .size(); i++){
 10 tmp.push_back(a [i]);
 11 string tmp1 = tmp;
 12 for (j = 0; j < b.size(); j++){
 13 tmp1.push_back(b[j]);
 14 mp[tmp1] = 1;
 15 }
 16 }
 17 map<string,int>::iterator it;
 18 it = mp.begin();
 19 cout << it.first << endl;
 20 }

Program with errors
 (`char` should be `string` instead in line 5)

Example taken from SPoC dataset
(909A-45398788.cpp)

line 9:error: request
for member ‘size’ in
‘a’, which is of
non-class type ‘char’

Evaluator (compiler)

Feedback

Dr Repair (our model)

1. Error localized line 5
2. Repair

char tmp, a, b;
 → string tmp, a, b;

Source code
 4 int main() {
 5 char tmp, a, b;
 6 map<string,int> mp;
 7 cin >> a >> b;
 8 int i, j;
 9 for (i = 0; i < a .size () ...
 10 tmp.push_back(a [i]);
 11 string tmp1 = tmp;
 ...

Compiler message
 request for
 member ‘size ’ in
 ‘a’, which is of
 non-class type
 ‘Char ’

Program-Feedback Graph

Broken Program

a

‘a’

a

a

a

char

char

size

size

b

b

 1 #include <bits/stdc++.h>
 2 #include <string>
 3 using namespace std;
 4 int main() {
 5 char tmp, a , b;
 6 map<string,int> mp;
 7 cin >> a >> b;
 8 int i, j;
 9 for (i = 0; i < a .size(); i++){
 10 tmp.push_back(a [i]);
 11 string tmp1 = tmp;
 12 for (j = 0; j < b.size(); j++){
 13 tmp1.push_back(b[j]);
 14 mp[tmp1] = 1;
 15 }
 16 }
 17 map<string,int>::iterator it;
 18 it = mp.begin();
 19 cout << it.first << endl;
 20 }

 (`char` should be `string` instead in line 5)

Example taken from SPoC dataset
(909A-45398788.cpp)

line 9:error: request for
member ‘size’ in ‘a’,
which is of non-class
type ‘char’

Evaluator (compiler)

Feedback

Dr Repair (our model)

1. Error localized line 5
2. Repair

char tmp, a, b;
 → string tmp, a, b;

Program with errors

Source code
 4 int main() {
 5 char tmp, a, b;
 6 map<string,int> mp;
 7 cin >> a >> b;
 8 int i, j;
 9 for (i = 0; i < a .size () ...
 10 tmp.push_back(a [i]);
 11 string tmp1 = tmp;
 ...

Compiler message
 request for
 member ‘size ’ in
 ‘a’, which is of
 non-class type
 ‘Char ’

Program-Feedback Graph

a

‘a’

a

a

a

char

char

size

size

b

b

LSTM code(1) LSTM code(1) LSTM code(1) LSTM msg(1)

LSTM code(2) LSTM code(2) LSTM code(2) LSTM msg(2)

Graph Attention

Pointer-Generator
Decoder

x13x12x11 x13x12x11 x13x12x11 m3m2m1nerr

MLP
+ softmax

Gold code
Y1 Y2 Y3n*

Error line idx

LSTM code(3)

Line 3

Source code

Line idx Msg content

Feedback
(compiler message)

Line 2Line 1

Line 1

Line 2

Line 3

Message
content

hx11 hx12 hx13 ...

hm 1 hm 2 hm 3 ..

hx21 hx22 hx23 ...

hx31 hx32 hx33 ...

hm1’

Aggregate

Program-Feedback
Graph

Multi-Head
Attention

Position
embedding

LSTM code(1) LSTM code(1) LSTM code(1) LSTM msg(1)

LSTM code(2) LSTM code(2) LSTM code(2) LSTM msg(2)

Graph Attention

Pointer-Generator
Decoder

x13x12x11 x13x12x11 x13x12x11 m3m2m1ierr

MLP
+ softmax

Gold code
Y1 Y2 Y3i*

Error line idx

LSTM code(3)

Line 3

Source code

Line idx Msg content

Feedback
(compiler message)

Line 2Line 1

Line 1

Line 2

Line 3

Message
content

hx11 hx12 hx13 ...

hm 1 hm 2 hm 3 ..

hx21 hx22 hx23 ...

hx31 hx32 hx33 ...

hm1’

Aggregate

Program-Feedback
Graph

Multi-Head
Attention

Position
embedding

Graph attention

Initial encoding

Recontextualization

Decoding

Our auto-corruption module Example

 Syntax (deletion, insertion,
replacement of operator/
punctuator ,.;(){}'"++, etc.)

return 0; } → return 0; } }
cout << "YES"; → cout << YES;
min(s.size(), n) → min(s.size()), n)
tmp = *a; → tmp = &a

 ID-type (deletion, insertion,
replacement of type)

for (int i=0; i<n;) → for (i=0; i<n;)
k = k + 1; → int k = k + 1;
string tmp; → char tmp;

 ID-typo (deletion, insertion,
replacement of IDentifier)

int a, b=0, m, n; → int a, m, n;
string x,y,z; → string x,y,z,z;
for (i=0; i<n;) → for (j=0; i<n;)

 Keyword (deletion, insertion,
replacement of keyword/call)

if (n >= 0) → while (n >= 0)
l = s.length(); → l = s.;

Compiler message type Frequency in original
train data (SPoC)

Repair acc. (SPoC dev)

base + graph + graph + pretrain

‘@@@’ was not declared ... 35.2 % 50.2 58.9 65.0
redeclaration of ‘@@@’ 8.9 % 40.7 43.0 49.1
expected ‘@@@’ before ‘@@@’ 3.2 % 67.6 70.7 86.1
expected primary-expression before ... 3.0 % 47.4 47.4 49.1
request for member ‘@@@’ in ‘@@@’, ... (e.g. Figure 1) 2.9 % 37.9 56.9 48.4
expected initializer before ‘@@@’ 2.1 % 48.8 51.1 93.0
‘@@@’ without a previous ‘@@@’ 1.3 % 37.0 39.7 44.4

A bolded score in the ``+graph’’ column indicates a particularly big improvement
from ``base’’. Those compiler errors typically require analyses of multiple lines of
code, suggesting the usefulness of program-feedback graph in fixing such errors.

A bolded score in the ``+graph +pretrain’’ column indicates a particularly big
improvement from ``+graph’’. We observe that those compiler errors were
relatively rare in the original training data of SPoC and self-supervised pre-training
is especially helpful in those cases.

Compiler message type Frequency in original
train data (SPoC)

Repair acc. (SPoC dev)

base + graph + graph + pretrain
‘@@@’ was not declared ... 35.2 % 50.2 58.9 65.0
redeclaration of ‘@@@’ 8.9 % 40.7 43.0 49.1
expected ‘@@@’ before ‘@@@’ 3.2 % 67.6 70.7 86.1
expected primary-expression before ... 3.0 % 47.4 47.4 49.1
request for member ‘@@@’ in ‘@@@’, ... (e.g. Figure 1) 2.9 % 37.9 56.9 48.4
expected initializer before ‘@@@’ 2.1 % 48.8 50.1 93.0
‘@@@’ without a previous ‘@@@’ 1.3 % 37.0 38.7 44.4

Compiler message type
Frequency
in original
train data

(SPoC)

Repair acc. (SPoC dev)

base + graph + graph
+ pre-train

‘@@@’ was not declared ... 35.2 % 50.2 58.9 65.0
redeclaration of ‘@@@’ 8.9 % 40.7 43.0 49.1
expected ‘@@@’ before ‘@@@’ 3.2 % 67.6 70.7 86.1
expected primary-expression
before ... 3.0 % 47.4 47.4 49.1

request for member ‘@@@’ in
‘@@@’, ... 2.9 % 37.9 56.9 48.4

expected initializer before
‘@@@’ 2.1 % 48.8 51.1 93.0

‘@@@’ without a previous
‘@@@’ 1.3 % 37.0 39.7 44.4

Figure 1. Given a broken program and diagnostic feedback (com-
piler error message), our goal is to localize an erroneous line and
generate a repaired line.

errors has garnered significant interest recently (Gupta et al.,
2017; Hajipour et al., 2019; Mesbah et al., 2019).

In this work, we consider the problem of learning to re-
pair programs based on diagnostic feedback (compiler error
messages). Figure 1 illustrates the setup. Given a broken
program and diagnostic feedback, we aim to localize an
erroneous line in the program and generate a repaired line.
Learning program repair has two major challenges: First,
the system needs to connect and jointly reason over the bro-
ken source code and the diagnostic feedback (Fitzgerald
et al., 2008). Second, existing works rely on manual effort
to curate labeled datasets for program repair (e.g. 〈broken
program, fixed program〉 pairs), which does not scale up
(Mesbah et al., 2019). Here we present DrRepair, a novel
approach to program repair that addresses these two chal-
lenges. Our key innovations are two-fold: 1) modeling
of program repair with program-feedback graphs and 2)
self-supervised learning with unlabeled programs.

Program-feedback graph. Program repair requires reasoning
jointly over the symbols (e.g. identifiers, types, operators)
across source code and diagnostic feedback. For instance,
in the example given in Fig. 1, while the compiler message
points to line 9, the error is related to the type of identi-

Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

�er ` a', and one needs to track how `a' has been used or
declared earlier to resolve this error. To formalize this rea-
soning process, we propose a joint graph representation of a
program and diagnostic feedback that captures the underly-
ing semantic structure of symbols in the context of program
repair (program-feedback graph). Speci�cally, it takes all
identi�ers (e.g. a, b) in the source code and any symbols
in the diagnostic arguments (e.g. `a', `char') as nodes,
and connects instances of the same symbols with edges to
encode the semantic correspondence (Fig. 2). We then de-
sign a neural net model with a graph-attention mechanism
(Veli �cković et al., 2018) on the program-feedback graph to
model the symbol tracking process described above. While
prior works in program repair purely apply sequence-to-
sequence (seq2seq) models to programs (Gupta et al., 2017;
Hajipour et al., 2019) or rely on the program's Abstract Syn-
tax Tree (AST) representations (Mesbah et al., 2019; Tarlow
et al., 2019), our program-feedback graph directly connects
symbols involved in the reasoning process of program repair,
and allows ef�cient information �ow across them.

Self-supervised learning.Motivated by the vast amount of
program data available online (e.g. GitHub has 28 million
public repositories), we propose a self-supervised learning
paradigm for program repair that leverages unlabeled pro-
grams to create a large amount of extra training data. Specif-
ically, we collect working programs from online resources
related to our problem domain (programming contests in our
case), and design a procedure that corrupts a working pro-
gram into a broken one, thereby generating new examples
of hbroken program, �xed programi . In our experiments,
we prepare extra data� 10 times the size of original datasets
in this way, use it to pre-train our models, and �ne-tune on
the target task. We also describe an effective corruption
procedure that covers a diverse set of errors. While prior
works in program repair rely on labeled datasets (Mesbah
et al., 2019; Tarlow et al., 2019; Kulal et al., 2019), we are
the �rst to present a self-supervised learning method for
program repair that leverages unlabeled programs online.

We evaluate the ef�cacy of our proposed approach on two
applications, using publicly available datasets:
a) Correcting introductory programming assignments. We

use DeepFix dataset (Gupta et al., 2017), where the task
is to repair broken C programs submitted by students.

b) Correcting the output code in program synthesis. We
use the SPoC dataset (Kulal et al., 2019), where the task
is to translate pseudocode into C++ implementation, and
programs synthesized by prior models (seq2seq) often
fail to compile. We apply our repair model to correct the
candidate programs generated in this task.

Experimental results show that our approach (DrRepair)
outperforms prior work signi�cantly, achieving 68.2% full
repair on the DeepFix test set (+22.9% absolute over the
prior best), and 48.4% synthesis success rate on the SPoC

Figure 2.Illustration ofprogram-feedback graph, correspondingto
the example in Fig.1. The graph captures long-range dependencies
of symbols to help model the reasoning process of program repair.

test set (+3.7% absolute over the prior best at the time of
this work). Additionally, our analysis shows that the use of
a program-feedback graph is particularly helpful for �xing
errors that require reasoning over multiple lines of code, and
that self-supervised pre-training facilitates the learning of
program repair for the types of errors with fewer training
examples in the original dataset.

2. Problem statement

Figure 1 illustrates the program repair task. The system is
given (a) a broken program withL lines,x = (x1; :::; xL),
and (b) diagnostic feedback provided by a compiler,f =
(i err ; merr), wherei err denotes the reported line number,
andmerr the error message (a sequence of tokens). If the
compiler returns multiple error messages, we use only the
�rst one.1 Our task is to identify the index of an erroneous
line k 2 f 1; : : : ; Lg (error localization), and generate a
repaired version of the lineyk (repair). Let y= y1:L denote
the �xed version of the full program (yi = x i for i 6= k).
In the example given in Figure 1,x5 = “ char tmp, a,
b; ”, i err = 9 , merr = “ request for ... type `char' ”, and
k =5 , yk = “ string tmp, a, b; ”. Note that the line number
reported by a compiler (i err) does not necessarily match the
line we need to repair (k).

3. Approach

We approach program repair from two angles. First, we
propose aprogram-feedback graphto model the reasoning
process involved in program repair. Second, we introduce a
self-supervised learning paradigm that leverages unlabeled
programs to create a large amount of extra training data.

3.1. Modeling

To model program repair, we start off with a sequence-to-
sequence learning setup, and incorporate the information of

1Note that here we are de�ning a module that repairs a single
line of code in a program. We describe how we apply this repair
module to programs with multiple errors inx4. We also explain
the application-dependent evaluation metrics inx4.

Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

Figure 3.DrRepair model. It takes in a programx = (x1 ; :::; x L) and diagnostic feedback from a compilerf = (i err; merr) as inputs
(bottom), encodes them via LSTM and graph attention layers, and decodes the error line indexk and repaired codeyk (top). The
right-hand side illustrates the graph attention mechanism. Best viewed in color.

a program-feedback graph through a graph attention model,
which we describe below. Given an input programx1:L

and its feedbackf =(i err; merr), we �rst tokenize each line
x i and the compiler messagemerr into a sequence of sym-
bols: x i = (x i 1; x i 2; :::) andmerr = (m1; m2; :::). As seen
in our motivating example in Fig. 1, program repair requires
reasoning and tracking symbols across different lines of
code and compiler messages (e.g., given the compiler er-
ror about à', a programmer will jump to the source code
line reported by the message, and then track how `a' has
been used/declared in earlier lines). These long-range de-
pendencies of tokens are dif�cult to capture using previous
seq2seq or AST-based models, which only propagate infor-
mation locally at the line or syntax level (Gupta et al., 2017;
Mesbah et al., 2019). To enable more ef�cient information
�ow, we introduce a program-feedback graphG thatdirectly
connects tokens relevant to the reasoning of program repair.

3.1.1. Program-feedback graph

A program-feedback graphG = (V; E) has nodesV that
consist of tokens in the diagnostic arguments (those within
` ' in the message, i.e.,size, a, char in Fig. 2), their occur-
rences in the source code, and all remaining identi�ers in
the code (e.g.a, b, i, j). The type of each token, such as
identi�er (for a), operator (for=) and data type (forchar),
is recognized by the C/C++ tokenizer in Gupta et al. (2017).

We then form the graph by connecting identical tokens in
V with undirected edges (E) to capture the semantic corre-
spondence. The resulting graph is as a set of cliques, one
for each symbol (e.g.à'). We keep the program-feedback
graph simple for two reasons: 1) we use the graph and
graph-attention to speci�cally capture the (long-range) con-
nections of tokens crucial to program repair reasoning, and
perform other local information propagation via LSTMs

(we elaborate inx3.1.2), and 2) it is nontrivial to analyze the
code further (e.g. parsing) to add information to the graph,
as the program can be syntactically ill-formed. Compared
to AST-based graph representations (Allamanis et al., 2018;
Tarlow et al., 2019), our program-feedback graph is more
relaxed and robust to errors in source code.

3.1.2. Model architecture

Fig. 3 illustrates our program repair model. It has an en-
coder that takes in a programx and feedbackf , and a
decoder that predicts a distribution over which line is er-
roneousk and a repaired lineyk . The encoder has three
stages: 1) initial encodingh = InitEnc(x; f) which en-
codes each input token at the line level, 2) graph attention
g = GraphAttn(h) which propagates information across
tokens on a program-feedback graph, and 3) recontextual-
izations= ReContext(g) which contextualizes token repre-
sentations at the line level again to produce an embedding
si for each linei . Finally,Decode(s) outputs a distribution
over the erroneous line index and a repaired line(k; yk). We
describe each of the model stages in detail below.

Initial encoding. Given source codex1:L and feedback
f =(i err; merr) (Fig. 3 bottom), we encode each linex i and
compiler messagemerr with two bidirectional LSTM net-
works (Hochreiter & Schmidhuber, 1997),LSTM(1)

code and
LSTM(1)

msg. For the tokens in the source code, we also inject
the information of the reported line index (i err) by concate-
nating the outputs ofLSTM(1)

codewith the positional encoding
(Vaswani et al., 2017) of the line offset� i = i err� i , and ap-
plying a feedforward network. We denote the representation
of each token in the code and message at this point ashx ij

andhm ` , respectively. This stage is analogous to the input
encoding in Kulal et al. (2019).

Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

Table 1.Analysis of common compiler errors in three settings: experienced developers(DeepDelta), beginner programmers(DeepFix),
and predicted code of program synthesis(SPoC). ForDeepDelta, the statistics is taken from Mesbah et al. (2019). The rightmost column
shows the program perturbation modules that we design to generate corresponding types of errors.

Graph attention. Next, to model the reasoning (symbol
tracking) process in program repair, we use a graph attention
network (Veli�cković et al., 2018) to allow information to
�ow across symbols in the program-feedback graphG (Fig.
3 right). In aN -layer graph attention network, each layer
computes contextualized representations of tokens via

cn = AttentionG (hn � 1) (1)

hn = MLP([hn � 1; cn]) (2)

wherehn � 1, hn denote the input/output representation of
each token at then-th layer. Initially, h0 is hx ij or hm ` ,
and the �nal outputg = hN . AttentionG (h t) computes
attention weights over the neighboring nodes of a tokent
on the graphG, NG (t), and takes the weighted average of
the token representations amongNG (t). MLP is a feedfor-
ward network. For a more detailed description about graph
attention, we refer readers to Veli�cković et al. (2018).

Recontextualization. We allow the information updated
via the graph to propagate on the local context again, by
passing the token representationsg to additional sequence
networks,LSTM(2)

codeandLSTM(2)
msg. We obtain an embedding

of each linei by concatenating their �nal hidden states,

r i =
�
LSTM(2)

code(gx i �)
�nal ; LSTM(2)

msg(gm �)
�nal � (3)

which is further contextualized to be the �nal line embed-
dingsi , via s1:L = LSTM(3)

code(r 1:L) (Fig. 3 top).

Decoding. Given the line embeddingss1:L , we model
the probability of a linek 2 f 1; : : : ; Lg being erroneous
via a feedforward network, and model its repairyk , via a
pointer-generator decoder (See et al., 2017):

p(k j s1:L) = softmax(MLP(s1:L)) (4)

p(yk j s1:L) = PtrGen(sk): (5)

Training. A training example consists of a broken program
x, feedbackf , an erroneous line indexk, and the repaired
line yk . The loss on a given example is the standard negative
log-likelihood,� logp(k; yk j x; f). The error localization

Table 2.Proposed program perturbation modules for generating
self-supervised data.

and repair components are learned jointly. Inx3.2 andx4.1,
we will discuss how we generate training examples of this
form for pre-training and target applications.

3.2. Self-supervised learning

Labeled datasets for program repair (hx; yi pairs) are lim-
ited in size (10–100K data points) (Mesbah et al., 2019),
but there is a vast amount of unlabeled programs avail-
able online: for instance, GitHub2 alone has 28 million
public repositories as of 2019. Can we leverage this freely-
available code to improve the learning of program repair?

With this motivation, we propose a new self-supervised
learning paradigm that utilizes unlabeled, working programs
to create a large amount of training data for program repair.
Speci�cally, we �rst collect a large set of working programs
y's (ones that compile, in our setting), related to the domain
of interest. We design a randomized procedureP that auto-
matically corruptsy into a broken programx to generate a
new training examplehbroken codex, ground-truthyi . We
repeatedly apply this procedure to the collected programs,
and use the generated training data to perform pre-training
(Erhan et al., 2010) of our model, facilitating it to learn

2https://github.com/

