Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

Michihiro Yasunaga '

Abstract

We consider the problem of learning to repair pro-
grams from diagnostic feedback (e.g., compiler
error messages). Program repair is challenging
for two reasons: First, it requires reasoning and
tracking symbols across source code and diag-
nostic feedback. Second, labeled datasets avail-
able for program repair are relatively small. In
this work, we propose novel solutions to these
two challenges. First, we introduce a program-
feedback graph, which connects symbols relevant
to program repair in source code and diagnostic
feedback, and then apply a graph neural network
on top to model the reasoning process. Second,
we present a self-supervised learning paradigm
for program repair that leverages unlabeled pro-
grams available online to create a large amount
of extra program repair examples, which we use
to pre-train our models. We evaluate our pro-
posed approach on two applications: correcting
introductory programming assignments (DeepFix
dataset) and correcting the outputs of program
synthesis (SPoC dataset). Our final system, DrRe-
pair, significantly outperforms prior work, achiev-
ing 68.2% full repair rate on DeepFix (+22.9%
over the prior best), and 48.4% synthesis success
rate on SPoC (+3.7% over the prior best).

1. Introduction

Automatic program repair has the potential to dramatically
improve the productivity of programming. In particular,
a common source of program errors are compiler errors,
which include use of unresolved symbols, missing delimiters
(e.g. braces), and type errors. These errors are commonly
observed in both beginner programmers (Parihar et al., 2017)
and professional developers (Seo et al., 2014), as well as in
the predicted code of program synthesis (Kulal et al., 2019).
Accordingly, the use of machine learning in fixing compiler

!Stanford University, Stanford, CA. Correspondence to: Michi-
hiro Yasunaga <myasu@cs.stanford.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Percy Liang '

Broken Program

<> Evaluator (compiler)

("char’ should be ‘string" instead in line 5) \

Feedback

1 #include <bits/stdc++.h>
2 #include <string>

3 using namespace std;
4 int main() {

5 char tmp, . b;
6 map<string,int> mp;
7

8

9

line 9:error: request for
member ‘size’ in ‘a’,
which is of non-class
type ‘char’

cin >> a >> b;

int i, j;

for (i = 0; i < |@.size(); i++){
10 tmp.push_back(al[il);
1 string tmp1l tmp;
12 for (j = 0; j < b.size(); j++){
13 tmp1.push_back(b[j]);

14 mpCtmp1] = 1; & DrRepair (our model)
15 }

16 3} . .

17 map<string,int>::iterator it; 1. Error localized line 5
18 it = mp.begin(); 2. Repair

19 cout << it.first << endl; char tmp, a, b;

20 3 — string tmp, a, b;

Example taken from SPoC dataset
(909A-45398788.cpp)

Figure 1. Given a broken program and diagnostic feedback (com-
piler error message), our goal is to localize an erroneous line and
generate a repaired line.

errors has garnered significant interest recently (Gupta et al.,
2017; Hajipour et al., 2019; Mesbah et al., 2019).

In this work, we consider the problem of learning to re-
pair programs based on diagnostic feedback (compiler error
messages). Figure 1 illustrates the setup. Given a broken
program and diagnostic feedback, we aim to localize an
erroneous line in the program and generate a repaired line.
Learning program repair has two major challenges: First,
the system needs to connect and jointly reason over the bro-
ken source code and the diagnostic feedback (Fitzgerald
et al., 2008). Second, existing works rely on manual effort
to curate labeled datasets for program repair (e.g. (broken
program, fixed program) pairs), which does not scale up
(Mesbah et al., 2019). Here we present DrRepair, a novel
approach to program repair that addresses these two chal-
lenges. Our key innovations are two-fold: 1) modeling
of program repair with program-feedback graphs and 2)
self-supervised learning with unlabeled programs.

Program-feedback graph. Program repair requires reasoning
jointly over the symbols (e.g. identifiers, types, operators)
across source code and diagnostic feedback. For instance,
in the example given in Fig. 1, while the compiler message
points to line 9, the error is related to the type of identi-

Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

er " a, and one needs to track how' has been used or
declared earlier to resolve this error. To formalize this rea-
soning process, we propose a joint graph representation of a
program and diagnostic feedback that captures the underly-
ing semantic structure of symbols in the context of program
repair (program-feedback graph). Speci cally, it takes all
identi ers (e.g. a, b) in the source code and any symbols
in the diagnostic arguments (e.ga’,” char') as nodes,

and connects instances of the same symbols with edges to

encode the semantic correspondence (Fig. 2). We then de-

sign a neural net model with a graph-attention mechanisrfigure 2.IIIus_trati_on ofprogram-feedback graph correspondingo _
(Velickovi¢ et al., 2018) on the program-feedback graph tothe example in Fig. 1. The graph capt.ures long-range dependenm.es
model the symbol tracking process described above. Whil@f symbols to help model the reasoning process of program repair.
prior works in program repair purely apply sequence-to-

sequence (seg2seq) models to programs (Gupta et al., 201@st set (+3.7% absolute over the prior best at the time of
Hajipour et al., 2019) or rely on the program's Abstract Syn-this work). Additionally, our analysis shows that the use of
tax Tree (AST) representations (Mesbah et al., 2019; Tarlova program-feedback graph is particularly helpful for xing
etal., 2019), our program-feedback graph directly connecterrors that require reasoning over multiple lines of code, and
symbols involved in the reasoning process of program repaithat self-supervised pre-training facilitates the learning of
and allows ef cient information ow across them. program repair for the types of errors with fewer training

. . . examples in the original dataset.
Self-supervised learning/otivated by the vast amount of P g

program dat_a ayailable online (e.g. GitHub has 28 milliqnz_ Problem statement

public repositories), we propose a self-supervised learning

paradigm for program repair that leverages unlabeled prd=igure 1 illustrates the program repair task. The system is
grams to create a large amount of extra training data. Speciiven (a) a broken program with lines,x = (x1; 13X,),
ically, we collect working programs from online resourcesand (b) diagnostic feedback provided by a compiler,
related to our problem domain (programming contests in ouierr ; Merr), Whereie, denotes the reported line number,
case), and design a procedure that corrupts a working prandme,; the error message (a sequence of tokens). If the
gram into a broken one, thereby generating new examplesompiler returns multiple error messages, we use only the
of tbroken program, xed program In our experiments, rst one.! Our task is to identify the index of an erroneous

in this way, use it to pre-train our models, and ne-tune onrepaired version of the ling, (repair). Lety=y1. denote
the target task. We also describe an effective corruptiothe xed version of the full programy{ = x; fori 6 k).
procedure that covers a diverse set of errors. While prioin the example given in Figure ks = “ char tmp, a,
works in program repair rely on labeled datasets (Mesbah; ", ier =9, Mer = “ request for ... type “char' ”, and
etal., 2019; Tarlow et al., 2019; Kulal et al., 2019), we arek=5, yx = “ string tmp, a, b; ". Note that the line number
the rst to present a self-supervised learning method forreported by a compileii &) does not necessarily match the
program repair that leverages unlabeled programs online.line we need to repaiky.

We evaluate the ef cacy of our proposed approach on twi
applications, using publicly available datasets:
a) Correcting introductory programming assignments. WeWe approach program repair from two angles. First, we
use DeepFix dataset (Gupta et al., 2017), where the tagk’opose grogram-feedback grapto model the reasoning
is to repair broken C programs submitted by students. Process involved in program repair. Second, we introduce a
b) Correcting the output code in program synthesis. weself-supervised learning paradigm that leverages unlabeled
use the SPoC dataset (Kulal et al., 2019), where the tasRfograms to create a large amount of extra training data.
is to translate pseudocode into C++ implementation, an 1. Modelin
programs synthesized by prior models (seq2seq) often'™ 9
fail to compile. We apply our repair model to correct the To model program repair, we start off with a sequence-to-
candidate programs generated in this task. sequence learning setup, and incorporate the information of

Experimental r_esults Sh_ow_that our ap_pr(_)ach (DrORepal "Note that here we are de ning a module that repairs a single
outperforms prior work signi cantly, achieving 68.2% full line of code in a program. We describe how we apply this repair

repair on the DeepFix test set (+22.9% absolute over thghodule to programs with multiple errors i#. We also explain
prior best), and 48.4% synthesis success rate on the SPak application-dependent evaluation metricg4n

%3. Approach

Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

Figure 3.DrRepair model. It takes in a prograx= (X1;:::; X,) and diagnostic feedback from a compifer (ier; Mer) as inputs
(bottom), encodes them via LSTM and graph attention layers, and decodes the error lin& iadéxepaired codg. (top). The
right-hand side illustrates the graph attention mechanism. Best viewed in color.

a program-feedback graph through a graph attention modedlve elaborate ix3.1.2), and 2) it is nontrivial to analyze the
which we describe below. Given an input program code further (e.g. parsing) to add information to the graph,
and its feedback =(ierr; Merr), We rst tokenize each line as the program can be syntactically ill-formed. Compared
X; and the compiler message., into a sequence of sym- to AST-based graph representations (Allamanis et al., 2018;
bols: Xj =(Xj1;Xj2; 1) andmer=(mg; my; ;). As seen Tarlow et al., 2019), our program-feedback graph is more
in our motivating example in Fig. 1, program repair requiresrelaxed and robust to errors in source code.

reasoning and tracking symbols across different lines of)

code and compiler messages (e.g., given the compiler e3-1.2. Model architecture

ror about &, a programmer will jump to the source code Fig. 3 jllustrates our program repair model. It has an en-
line reported by the message, and then track t@was coder that takes in a prograrmand feedback , and a
been used/declared in earlier lines). These long-range dgecoder that predicts a distribution over which line is er-
pendencies of tokens are dif cult to capture using previous,gneousk and a repaired lingy. The encoder has three
seg2seq or AST-based models, which only propagate infoktages: 1) initial encoding = InitEnc(x; f) which en-
mation locally at the line or syntax level (Gupta et al., 2017;c0des each input token at the line level, 2) graph attention
Mesbah et al., 2019). To enable more ef cient im‘ormationg = GraphAttr(h) which propagates information across
ow, we introduce a program-feedback gra@thatdirectly tokens on a program-feedback graph, and 3) recontextual-
connects tokens relevant to the reasoning of program repajgations= ReContextg) which contextualizes token repre-
sentations at the line level again to produce an embedding
s; for each ling. Finally, Decod€s) outputs a distribution
A program-feedback grapB = (V;E) has node®/ that over the erroneous line index and a repaired (kig/x). We
consist of tokens in the diagnostic arguments (those withirdescribe each of the model stages in detail below.

in the.message, I.esize, a, char in Fig. Z)i thgw oceur- Initial encoding. Given source code;. and feedback
rences in the source code, and all remaining identi ers in

the code (e.ga, b, i, j). The type of each token, such as f =(iem Men) (Fig. 3 bottom), we encode each lingand

. . compiler messagme, With two bidirectional LSTM net-
identi er (for a), operator (for=) and data type (fochar), workps (Hochreitgr SecrrSchmidhuber 10915TMY. and

i i i i code

is recognized by the C/C++ tokenizer in Gupta et al. (2017)LSTM,(,113)9. For the tokens in the source code, we also inject
We then form the graph by connecting identical tokens inthe information of the reported line indeb) by concate-

V with undirected edge<$() to capture the semantic corre- nating the outputs dISTMC%LeWith the positional encoding
spondence. The resulting graph is as a set of cliques, or(®aswani et al., 2017) of the line offseti = i i, and ap-

for each symbol (e.ga’). We keep the program-feedback plying a feedforward network. We denote the representation
graph simple for two reasons: 1) we use the graph andf each token in the code and message at this poingas
graph-attention to speci cally capture the (long-range) conandhp,., respectively. This stage is analogous to the input
nections of tokens crucial to program repair reasoning, anéncoding in Kulal et al. (2019).

perform other local information propagation via LSTMs

3.1.1. Program-feedback graph

Graph-based, Self-Supervised Program Repair from Diagnostic Feedback

Table 1.Analysis of common compiler errors in three settings: experienced devel@eesDelta) beginner programme(®eepFix)
and predicted code of program synthgSiBoC) For DeepDeltathe statistics is taken from Mesbah et al. (2019). The rightmost column
shows the program perturbation modules that we design to generate corresponding types of errors.

Graph attention. Next, to model the reasoning (symbol
tracking) process in program repair, we use a graph attention
network (Velckovic et al., 2018) to allow information to
ow across symbols in the program-feedback gr&piFig.

3 right). In aN -layer graph attention network, each layer
computes contextualized representations of tokens via

c" = Attentiong (h" 1) (1)
h"™ = MLP([h" ;c"]))

whereh" 1, h" denote the input/output representation of
each token at tha-th layer. Initially, h® is hyx, orhm.,
and the nal outputg = hN . Attentiong (h;) computes
attention weights over the neighboring nodes of a taken
on the graplG, Ng (1), and takes the weighted average of

the token representations amddg (t). MLP is a feedfor- and repair components are learned jointlyx®2 andx4.1,

ward network. For a more detailed description about graplve will discuss how we generate training examples of this
attention, we refer readers to \tovic et al. (2018) form for pre_training and target app]ications_

Table 2.Proposed program perturbation modules for generating
self-supervised data.

Recontextualization. We allow the information updated 325 . .

. : .2. Self-supervised learning
via the graph to propagate on the local context again, by
passing the token representatign® additional sequence Labeled datasets for program repdix;f/i pairs) are lim-
networksL.STMZ,,andLSTM@,. We obtain an embedding ited in size (10-100K data points) (Mesbah et al., 2019),
of each linel by concatenating their nal hidden states, but there is a vast amount of unlabeled programs avail-

ro= LSTMégLe(gx. ynal- LSTM,ﬁfgg(gm ynal ©) able.online:. fo.r instance, GitHékalone has 28 m_iIIion
L i i public repositories as of 2019. Can we leverage this freely-
which is further contextualized to be the nal line embed-5,5jjaple code to improve the learning of program repair?
dings;, viasy = LSTME), (r.1) (Fig. 3 top).
With this motivation, we propose a new self-supervised
learning paradigm that utilizes unlabeled, working programs
i : o to create a large amount of training data for program repair.
via a feedforward network, and model its repair via @ gpeci cally, we rst collect a large set of working programs
pointer-generator decoder (See et al., 2017): y's (ones that compile, in our setting), related to the domain
p(kjsi:) = softmaXMLP(s;:)) (4) ofinterest. We design a randomized proced®irhat auto-
p(ykjsiL) = PtrGergsy): (5) matically corrupty into a broken program to generate a
new training examplébroken code, ground-truthyi. We
Training. A training example consists of a broken program repeatedly apply this procedure to the collected programs,
x, feedback , an erroneous line indek and the repaired and use the generated training data to perform pre-training
lineyx. The loss on a given example is the standard negativéErhan et al., 2010) of our model, facilitating it to learn
log-likelihood, logp(k;yx j X;f). The error localization

Decoding. Given the line embeddings., , we model

2https://github.com/

