Interactive Learning for Conversational Understanding

Gokhan Tur
Alexa AI
December 2020
Dawn of Conversational AI

Radio Rex - First Voice Controlled Device - Circa ~1920

https://www.youtube.com/watch?v=AdUi_St-BdM
Spoken Dialog Systems

- Brief History

Early 1990s

- Call Routing: (e.g. AT&T HMIHY)

 User: “I’d like to have a copy of my March bill.”

Late 1990s

- Keyword Spotting:

 System: “Please say collect, calling card, person, third number, or operator”

2000

- Task-specific argument extraction: (e.g. DARPA ATIS)

 User: “I want to fly from Boston to New York next week.”

Multi-modal system demos: e.g., MS MiPad, AT&T Match

2010

Intelligent Personal Assistant systems: e.g., Apple Siri, MS Cortana, Alexa

Multi-modal system demos: e.g., MS MiPad, AT&T Match

Intelligent Personal Assistant systems: e.g., Apple Siri, MS Cortana, Alexa
Task-Oriented Dialogue Systems (TODS)

Conversational Language Understanding

- **Restaurants**
 - reserve_restaurant
 - Inform(
 - Rest._name: Cascal,
 - Num_people: 2)

Dialogue State Tracking

- Request(time)

Dialogue Manager

Response Generation

BackEnd Action/Knowledge Providers

Request

- Book me a table at Cascal for 2 people

Response

- Sure, at what time do you want the reservation?
Language Understanding in TODS

Semantic Representation: Flat or hierarchical frame of domain, intent, and slots.

<table>
<thead>
<tr>
<th>Domain = Movies</th>
<th>Domain = Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>“When was James Cameron’s Avatar released?”</td>
<td>“Show me media companies in California”</td>
</tr>
<tr>
<td>Intent: Find release date</td>
<td>Intent: Find company</td>
</tr>
<tr>
<td>Movie name: avatar</td>
<td>Location: california</td>
</tr>
<tr>
<td>Director name: james cameron</td>
<td>Industry: media</td>
</tr>
</tbody>
</table>

Intents

<table>
<thead>
<tr>
<th>Intents</th>
<th>Intents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find movie</td>
<td>Find company</td>
</tr>
<tr>
<td>Find showtime</td>
<td>Find revenue</td>
</tr>
<tr>
<td>Find theater</td>
<td>Find founder</td>
</tr>
<tr>
<td>Buy tickets</td>
<td>Find contact</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Slots

<table>
<thead>
<tr>
<th>Slots</th>
<th>Slots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movie genre</td>
<td>Company name</td>
</tr>
<tr>
<td>Movie award</td>
<td>Company address</td>
</tr>
<tr>
<td>Theater location</td>
<td>Company revenue</td>
</tr>
<tr>
<td>Number of tickets</td>
<td>Company industry</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Domain/Intent Classification

• Mainly viewed as utterance classification.
• Given a collection of labeled utterances:
 \[D = \{(u_1, c_1), \ldots, (u_n, c_n)\} \]
 where \(c_i \in C \), the goal is to estimate
 \[c_k' = \text{argmax}_{c \in C} P(c | u_k) \]

 Example: “Show me the nearest movie theater”
 Domain: movies
 Intent: find-theater
Slot Filling

• Word sequence classification
• Given a collection tagged word sequences,

\[S=\{(w_1,t_1),\ldots,(w_n,t_n)\} \]

where \(t_i = t_{i,1},\ldots,t_{i,|ui|} \), and \(t_{i,m} \in M \), the goal is to estimate

\[t_k' = \arg\max_t P(t|w_k) \]

Example:

<table>
<thead>
<tr>
<th>flights</th>
<th>from</th>
<th>Boston</th>
<th>to</th>
<th>New</th>
<th>York</th>
<th>today</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>B-city</td>
<td>O</td>
<td>B-city</td>
<td>I-city</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>B-dept</td>
<td>O</td>
<td>B-arrival</td>
<td>I-arrival</td>
<td>B-date</td>
</tr>
</tbody>
</table>
LU for Goal Oriented Dialogue Systems

• LU has been a hot R&D area since early 90s
• LU error rate has significantly reduced, especially after 2012 Deep Learning era
• A. M. Turing (1950) – “Nevertheless I believe that at the end of the century the use of words and general educated opinion will have altered so much that one will be able to speak of machines thinking without expecting to be contradicted.”
LU for Goal Oriented Dialogue Systems

• So why doesn’t Conversational Understanding feel like a solved technology unlike Speech Recognition or Image Classification?
 • Because we do not *truly* understand, we only act as if we understand.

• Ray Jackendoff (2002) – “Meaning” is the holy grail for linguistics and philosophy

• Shannon 1948: “Semantic aspects of communication are irrelevant to the engineering problem.”

5. First-order word approximation. Rather than continue with tetragram,..., n-gram structure it is easier and better to jump at this point to word units. Here words are chosen independently but with their appropriate frequencies.

 REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition probabilities are correct but no further structure is included.

 THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.
LU for Goal Oriented Dialogue Systems

• We only perform targeted understanding
• Buying a movie ticket is intent number XX in domain number YYY to the model.
• The system has not lived the experience of watching a movie in a theater buying a ticket unlike some humans. It has only read about it. There has been no situational grounding.
Persistent Areas of LU Research

- Issues:
 - Second turn
 - Variability in natural language
 - Long distance dependencies
 - Domain/Intent scaling
 - ASR noise
 - Model overfitting
 - Out-of-domain requests
 - New, dynamic, streaming events and entities
 - Uncovered in-domain requests
 - ...

- Algorithms:
 - Contextual Modeling
 - Yet Another BERT based Model
 - Self Learning
 - Few Shot Learning
 - Joint ASR/LU Modeling
 - Multimodal Modeling
 - Offline intent/slot clustering
 - Teachable AI
 - ...
Life Cycle of an LU system

• From Gary Marcus on GPT-3:

You are a defense lawyer and you have to go to court today. Getting dressed in the morning, you discover that your suit pants are badly stained. However, your bathing suit is clean and very stylish. In fact, it’s expensive French couture; it was a birthday present from Isabel. You decide that you should wear the bathing suit to court. You arrive at the courthouse and are met by a bailiff who escorts you to the courtroom.

• But this does not mean that large transformer based pretrained language models are useless. On the contrary, the future of LU will be built on top of them.
 • ... and probably on multimodal versions (e.g., ViLBERT or MAttNet)
LU for Goal Oriented Dialogue Systems

• My vision: The only way we can solve ConvAI is to make it experience the real world, *interacting with users and things*, instead of offline supervised models trained for target domains.
 • Visual situational grounding for unknown objects:
 • “*look at my new porg plush*”

• Humans are very good at generalizing from few examples

• The conventional operation modes will change:
 • Supervised learning will not be mainstream.
 • Interactive self learning coupled with reinforcement learning will pave the way.
Interactive Learning

• Earliest study by Allan et al. 2007
 • “Show me Gokhan Tur’s papers”
 • “I don’t know how to do that, can you teach me?”

• Recent implementation by Li et al.
Interactive Learning

• HRI: Multimodal (Gao et al. 2017)
Interactive Learning

• 3 key research challenges:
 • How to model when to interact (“Can you teach me?”)
 • How to understand the response (“Let me teach you”)
 • How to reuse and generalize the learning
Concept Teaching

• Most relevant by Jia et al. 2017:
 • “Buy a movie ticket for my birthday”
 • “When is your birthday?”

• Amazon Alexa AI Interactive Concept Teaching paper in this session!
Concept Teaching

Slot Concepts

- Alexa, Set the living room light to study mode
- I don’t know what study mode is. Can you teach me?

- Well I mean set it to 50 percent brightness
- Got it. Setting the living room light to study mode

- Alexa, set my work room light to study mode
- Sure, setting the work room light to 50 percent brightness
Concept Teaching – Model When to Interact
Concept Teaching – Understand the Teaching
HRI: Just Ask! (Chi et al. 2019)

... Walk straight, right before you reach the bed.
HRI: Just Ask!

... Walk straight, right before you reach the bed.

I’m lost.
Please help me!
HRI: Just Ask!

... Walk straight, right before you reach the bed.

I’m lost.
Please help me!

Go left!
HRI: Just Ask!

... Walk straight, right before you reach the bed.

Thanks!
Proposed Model

• Seq2Seq with interactions
Proposed Model

- Seq2Seq with interactions
Summary

• Still scratching the surface on natural language conversational understanding after 30 years of research on goal oriented dialogue systems

• It is very possible that advances in computer vision will help language understanding significantly due to grounding.

• Personalization, reasoning, and active learning for interactive human-in-the-loop learning will be hot research directions for dialogue systems.