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How do humans learn?

Let's look at a
typical example of
human learning:
How to open and eat a
pomegranate
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The BEST Way To Open & Eat A Pomegranate:
https://www.youtube.com/watch?v=5BExPRwPdAs
timestamps 10s to 45s
Read the closed captions
Pay attention to (i) descriptions, (ii) # training instances

https://www.youtube.com/watch?v=5BExPRwPdAs
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Open & Eat A Pomegranate:
What did we see?

The teacher gives a detailed description
of the task and of the solution

Task description: way of opening/eating
that is not \a pain in the butt" and not \messy"

Solution description:
\score the pomegranate along the ridges" etc.

Very few training instances

E.g., 3 instances of:
\score the pomegranate along the ridge"
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A typical form of human learning
Detailed description

Very few training instances (10 or fewer)
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Typical machine learning setup
No descriptions

Large training sets

Even few-shot learning often uses 1000s of examples
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Motivation for our approach

Humans take advantage of task descriptions,
our machine learning models don't.

This is speci�cally a problem in few-shot
learning.

How can task descriptions bene�t machine
learning?

One success story in NLP: GPT3
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Overview

1 How do humans learn?

2 GPT3 & task descriptions

3 Pattern Exploiting Training (PET)

4 PET outperforms GPT3
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GPT3

GPT3: a transformer-based language model,
very large model,
pretrained on very large corpus

Key innovation:
No supervised �netuning for a speci�c task

Instead: \in-context learning" {
I will call this priming in this talk
The \priming" input to GPT3 consists of

Task description
A few training instances
A cloze question
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GPT3 priming (in-context learning)

Translate English to French: (task description)
thanks => merci (training instance 1)
hello => bonjour (training instance 2)
mint => menthe (training instance 3)
cheese => (cloze question)
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GPT3

GPT3: a transformer-based language model,
very large model,
pretrained on very large corpus

Key innovation:
No supervised �netuning for a speci�c task

Instead: \in-context learning" {
I will call this priming in this talk
The \priming" input to GPT3 consists of

Task description
A few training instances
A cloze question

No parameter updates during priming

! No real learning takes place for a speci�c task.
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GPT3: Excellent few-shot performance
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GPT3 task description (\prompt")
is key for few-shot learning
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GPT3 vs. Supervised learning

Arguably, humans do parameter updates
when they learn.

E.g., you don't start from scratch when you open a
second pomegranate a day later.

In contrast, GPT3 arguably doesn't learn anything after
the completion of pretraining!

So why not use:
both task descriptionand supervised learning?

Which is what humans do . . .

! PET
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Task description: Terminological note

Description of the task

vs. Description of an aspect of the task

vs. Description of the solution

vs. Description of properties of training instances
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Task description: Terminological note

Description of the task

vs. Description of an aspect of the task

vs. Description of the solution

vs. Description of properties of training instances

I will use \task description" for all of these {
to be discussed at the end.
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Pattern Exploiting Training (PET): Training set

PET = Pattern Exploiting Training

Task: Sentiment analysis

Review: \Excellent pizza!"

Gold label: 1 (positive)

Training instance = (\Excellent pizza!",1)

We vary the size of the training set from 0 to 1000, but are
particularly interested in 10.
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Pattern Exploiting Training (PET): Pattern

De�ne a pattern for the task

pattern � cloze question

Example pattern:reviewIt was MASK.
(\ Excellent pizza!It was MASK.")

Another example pattern:
reviewIn summary, the restaurant is MASK.
(\ Excellent pizza!In summary, the restaurant is MASK.")
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Pattern Exploiting Training (PET): Verbalizer

De�ne a verbalizer:
It associates MASK substitutions with class labels.

In our example:
\good" $ 1
\bad" $ 0

Here, \good" and \bad" are label descriptions.

Task description mainly in the form of label descriptions

This taps into the masked language model's pretrained
knowledge of the task.

The MLM probably knows that
\Excellent Pizza! It was good."
is a lot more probable than
\Excellent Pizza! It was bad."
(even zero-shot)
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Pattern Exploiting Training (PET): Overview

(\Excellent pizza!",1) training instance

+ use pattern: \ review It was MASK."

\Excellent pizza! It was MASK."

+ input to MLM

Masked Language Model (MLM) MLM predicts: P(
good
bad

jMASK)

+ verbalizer

good 1 0.82
bad 0 0.18

* �netune MLM with cross-entropy

(\Excellent pizza!",1) training instance
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Formalization

Pattern P(x),
function from input to cloze question

Verbalizerv(l ),
injective function: class labels7! English words

PVP (pattern-verbalizer pair): (P; v)
q(v(l )jP(x)): for input P(x), the probability that the MLM
assigns to substitutingv(l ) for MASK

softmax over \label" words

Training objective: cross-entropy betweenq(v(l )jP(x)) and
truth (discrete distribution)
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How to exploit multiple patterns

x x x unlabeled instance x

+

P1(x) P2(x) P3(x) multiple patterns

+

MLM1 MLM2 MLM3 �netuned MLM for each pattern

+

score1 score2 score3 each pattern scored by its MLM

+

aggregate score

+

classi�er �nal classi�cation decision
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Multiple patterns: Example for sentiment

Verbalizer

v(?) = terrible
v(??) = bad
v(? ? ?) = okay
v(? ? ??) = good
v(? ? ? ? ?) = great
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Multiple patterns: Example for sentiment

Verbalizer

v(?) = terrible
v(??) = bad
v(? ? ?) = okay
v(? ? ??) = good
v(? ? ? ? ?) = great

Patterns

P1(review) = \It was MASK. review"
P2(review) = \Just MASK. review"
P3(review) = \ review. All in all, it was MASK."
P4(review) = \ review. In summary, the restaurant is MASK."
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Why multiple patterns are critical
x x x unlabeled instance x

+
P1(x) P2(x) P3(x) multiple patterns

+
MLM 1 MLM 2 MLM 3 �netuned MLM for each pattern

+
score1 score2 score3 each pattern scored by its MLM

+
aggregate score

+
classi�er �nal classi�cation decision
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Why multiple patterns are critical
x x x unlabeled instance x

+
P1(x) P2(x) P3(x) multiple patterns

+
MLM 1 MLM 2 MLM 3 �netuned MLM for each pattern

+
score1 score2 score3 each pattern scored by its MLM

+
aggregate score

+
classi�er �nal classi�cation decision

The patterns provide
human expertise { the
more the better!

Realistic few-shot learning
di�cult without human
expertise

Can we try out multiple
patterns and just keep the
best one?

No: no dev set in true
few-shot learning
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Distillation creates single model
from pattern-speci�c individual models

Distillation:

Use individual models to label
an unlabeled datasetT

Aggregrate scores to labelT

Train �nal PET model on T
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iPET: Iterative training
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iPET: Iterative training

iPET = iterative PET
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PET: Key points

Pattern+verbalizer taps into MLM's pretrained knowledge of
the task:

Chances are the MLM knows, based on pretraining, that
\Excellent Pizza! It was good." is better than
\Excellent Pizza! It was bad."

Patterns are a way of incorporating human expertise into the
learning problem.

PET exploits multiple patterns
{ important to use all human expertise available.

Truly few-shot: no tuning on dev set
(which is not available in a true few-shot setup)

In contrast to GPT3, PET is supervised:
It takes full advantage of the (small) training set.

Excellent few-shot performance (next section)

Sch•utze & Schick (LMU Munich): Humans learn from task descr iptions and so should our models 30 / 52
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What exactly is a task description?
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A straightforward task description

Translate English to French: (task description)
thanks => merci (training instance 1)
hello => bonjour (training instance 2)
mint => menthe (training instance 3)
cheese => (cloze question)
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Actually, it is not that straightforward

Translate English to French: (task description)
thanks => merci (training instance 1)
hello => bonjour (training instance 2)
mint => menthe (training instance 3)
cheese => (cloze question)
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PET sentiment: Pattern and verbalizer interact

Verbalizer (\label description")

v(?) = terrible
v(??) = bad
v(? ? ?) = okay
v(? ? ??) = good
v(? ? ? ? ?) = great

Patterns

P1(review) = \It was MASK. review"
P2(review) = \Just MASK. review"
P3(review) = \ review. All in all, it was MASK."
P4(review) = \ review. In summary, the restaurant is MASK."
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PET \Word in Context": Task description as question

Verbalizer (\label description")

v(samesense) = yes
v(di�erent senses) = no

Pattern
P1(s1; s2; w) = s1 s2 Doesw have the same meaning in both
sentences? MASK

Sch•utze & Schick (LMU Munich): Humans learn from task descr iptions and so should our models 35 / 52
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PET \Winograd Schema Challenge":
No use of label descriptions

Verbalizer (not a label description)

v(w) = w (identity, for all words)

Pattern
P1(s) = s In the previous sentence, the pronoun \?p?" refers to
MASK.
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What exactly is a task description?
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What exactly is a task description?

Task descriptions are not simple descriptions of the task.
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What exactly is a task description?

Task descriptions are not simple descriptions of the task.

They can be complex translations of the structure of the task
into plain text (plus a MASK).
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What exactly is a task description?

Task descriptions are not simple descriptions of the task.

They can be complex translations of the structure of the task
into plain text (plus a MASK).

Task descriptions are created by the system designer based on
their understanding of task and language model.
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What exactly is a task description?

Task descriptions are not simple descriptions of the task.

They can be complex translations of the structure of the task
into plain text (plus a MASK).

Task descriptions are created by the system designer based on
their understanding of task and language model.

Di�cult to automate, requires the ingenuity of the system
designer.
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PET results on YELP FULL, 10 training examples

RoBERTa large

Sch•utze & Schick (LMU Munich): Humans learn from task descr iptions and so should our models 39 / 52



How do humans learn? GPT3 & task descriptions Pattern Exploiting Training (PET) PET outperforms GPT3

PET results on YELP FULL, e�ect of training set size

RoBERTa large
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PET/iPET vs. UDA/MixText, 10 training examples

RoBERTa base

Sch•utze & Schick (LMU Munich): Humans learn from task descr iptions and so should our models 41 / 52



How do humans learn? GPT3 & task descriptions Pattern Exploiting Training (PET) PET outperforms GPT3

(i)PET vs. GPT3: Size of model

model # params
GPT3 175G 100.0%
GPT3 med 350M 0.2%
(i)PET 223M 0.1%

ALBERT xxlarge
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PET vs. GPT3 on SuperGLUE, 32 training examples

ALBERT xxlarge
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E�ect of (not) using unlabeled data

ALBERT xxlarge
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Di�erent sets of 32 training examples:
The choice of shots matters

ALBERT xxlarge
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PET vs. GPT3

PET GPT3
perform. great great
model size small huge ! PET broadly deployable
few shots no restriction ctx w. limit ! PET can exploit all train data
dev set not needed? needed? few-shot! no dev set
supervision supervised unsupervised supervision improves performance
supervision supervised unsupervised di�erent PET model for each task

uidity non
uid 
uid GPT3 mimicks human 
uidity
generation hard easy GPT3 easily handles generative tasks
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PET: Summary

PET leveragestask descriptionsfor better few-shot learning.

Task descriptions / patterns are a way of incorporating
human expertiseinto the learning problem.

PET exploitsmultiple patterns
{ important to use all human expertise available.

Truly few-shot: no tuning on dev set
(which is not available in a true few-shot setup)

In contrast to GPT3,PET is supervised:
It takes full advantage of the (small) training set.

Excellent few-shot performance
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The full potential of descriptions
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The full potential of descriptions

We have seen diverse types of task descriptions.
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We have seen diverse types of task descriptions.

Both in GPT3 and PET

Task descriptions in PET are pattern-verbalizer combinations
where the verbalizer mostly provides label descriptions.

What is key: the method exploits the MLM's understanding
of language descriptions for understanding/solving the task.

This gives the method a head start compared to other
few-shot learners.

Other types of descriptions:
solution description
comments on training instances
useful background information
. . .
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GPT3/PET: Size vs. performance

PET/iPET performance = single points

Sch•utze & Schick (LMU Munich): Humans learn from task descr iptions and so should our models 52 / 52


	How do humans learn?
	GPT3 & task descriptions
	Pattern Exploiting Training (PET)

