Humans Learn From Task Descriptions. And So Should Our Models!

Hinrich Schütze, Timo Schick

Center for Information and Language Processing, LMU Munich

2021-04-20

Outline

- OPT3 & task descriptions
- 3 Pattern Exploiting Training (PET)
- PET outperforms GPT3

How do humans learn?

How do humans learn?

How do humans learn?

Let's look at a typical example of human learning: How to open and eat a pomegranate

The BEST Way To Open & Eat A Pomegranate: https://www.youtube.com/watch?v=5BExPRwPdAs timestamps 10s to 45s Read the closed captions Pay attention to (i) descriptions, (ii) # training instances

Open & Eat A Pomegranate: What did we see?

- The teacher gives a detailed description of the task and of the solution
- Task description: way of opening/eating that is not "a pain in the butt" and not "messy"
- Solution description:
 "score the pomegranate along the ridges" etc.
- Very few training instances
- E.g., 3 instances of:

"score the pomegranate along the ridge"

A typical form of human learning

- Detailed description
- Very few training instances (10 or fewer)

Typical machine learning setup

- No descriptions
- Large training sets
- Even few-shot learning often uses 1000s of examples

GPT3 & task descriptions

Pattern Exploiting Training (PET)

PET outperforms GPT3

Motivation for our approach

- Humans take advantage of task descriptions, our machine learning models don't.
- This is specifically a problem in few-shot learning.
- How can task descriptions benefit machine learning?
- One success story in NLP: GPT3

Overview

3 Pattern Exploiting Training (PET)

Team:

- Timo Schick (conception & actual work)
- Hinrich Schütze (PhD advisor)

Outline

- 3 Pattern Exploiting Training (PET)
- PET outperforms GPT3

- GPT3: a transformer-based language model, very large model, pretrained on very large corpus
- Key innovation: No supervised finetuning for a specific task
- Instead: "in-context learning" –
 I will call this priming in this talk
- The "priming" input to GPT3 consists of
 - Task description
 - A few training instances
 - A cloze question

GPT3 priming (in-context learning)

Translate English to French: thanks => merci

hello => bonjour

mint => menthe

cheese =>

(task description) (training instance 1) (training instance 2) (training instance 3) (cloze question)

- GPT3: a transformer-based language model, very large model, pretrained on very large corpus
- Key innovation: No supervised finetuning for a specific task
- Instead: "in-context learning" –
 I will call this priming in this talk
- The "priming" input to GPT3 consists of
 - Task description
 - A few training instances
 - A cloze question

- GPT3: a transformer-based language model, very large model, pretrained on very large corpus
- Key innovation: No supervised finetuning for a specific task
- Instead: "in-context learning" –
 I will call this priming in this talk
- The "priming" input to GPT3 consists of
 - Task description
 - A few training instances
 - A cloze question
- No parameter updates during priming

- GPT3: a transformer-based language model, very large model, pretrained on very large corpus
- Key innovation: No supervised finetuning for a specific task
- Instead: "in-context learning" –
 I will call this priming in this talk
- The "priming" input to GPT3 consists of
 - Task description
 - A few training instances
 - A cloze question
- No parameter updates during priming
- ullet \to No real learning takes place for a specific task.

GPT3: Excellent few-shot performance

	SuperGLUE	E BoolQ	CB	CB	COPA	RTE
	Average	Accuracy	y Accurac	y F1	Accuracy	Accuracy
Fine-tuned SOTA	89.0	91.0	96.9	93.9	94.8	92.5
Fine-tuned BERT-Large	69.0	77.4	83.6	75.7	70.6	71.7
GPT-3 Few-Shot	71.8	76.4	75.6	52.0	92.0	69.0
	WiC	WSC	MultiRC	MultiRC	ReCoRD	ReCoRD
	Accuracy	Accuracy	Accuracy	F1a	Accuracy	F1
Fine-tuned SOTA	76.1	93.8	62.3	88.2	92.5	93.3
Fine-tuned BERT-Large	69.6	64.6	24.1	70.0	71.3	72.0
GPT-3 Few-Shot	49.4	80.1	30.5	75.4	90.2	91.1

GPT3 task description ("prompt") is key for few-shot learning

GPT3 vs. Supervised learning

- Arguably, humans do parameter updates when they learn.
- E.g., you don't start from scratch when you open a second pomegranate a day later.
- In contrast, GPT3 arguably doesn't learn anything after the completion of pretraining!
- So why not use: both task description and supervised learning?
- Which is what humans do ...
- \rightarrow PET

GPT3 vs. Supervised learning

- Arguably, humans do parameter updates when they learn.
- E.g., you don't start from scratch when you open a second pomegranate a day later.
- In contrast, GPT3 arguably doesn't learn anything after the completion of pretraining!
- So why not use: both task description and supervised learning?
- Which is what humans do ...
- \rightarrow PET

Task description: Terminological note

- Description of the task
- vs. Description of an aspect of the task
- vs. Description of the solution
- vs. Description of properties of training instances

Task description: Terminological note

- Description of the task
- vs. Description of an aspect of the task
- vs. Description of the solution
- vs. Description of properties of training instances
- I will use "task description" for all of these to be discussed at the end.

Outline

Pattern Exploiting Training (PET): Training set

- PET = Pattern Exploiting Training
- Task: Sentiment analysis
- Review: "Excellent pizza!"
- Gold label: 1 (positive)
- Training instance = ("Excellent pizza!",1)
- We vary the size of the training set from 0 to 1000, but are particularly interested in 10.

Pattern Exploiting Training (PET): Pattern

- Define a pattern for the task
- pattern pprox cloze question
- Example pattern: review It was MASK. ("Excellent pizza! It was MASK.")
- Another example pattern:

review In summary, the restaurant is MASK.

("Excellent pizza! In summary, the restaurant is MASK.")

Pattern Exploiting Training (PET): Verbalizer

• Define a verbalizer:

It associates MASK substitutions with class labels.

- In our example:
 - $\label{eq:good} \begin{array}{l} \text{``good''} \leftrightarrow 1 \\ \text{``bad''} \leftrightarrow 0 \end{array}$
- Here, "good" and "bad" are label descriptions.
- Task description mainly in the form of label descriptions
- This taps into the masked language model's pretrained knowledge of the task.
- The MLM probably knows that "Excellent Pizza! It was good." is a lot more probable than "Excellent Pizza! It was bad." (even zero-shot)

Pattern Exploiting Training (PET): Overview

("Excellent pizza!",1)	training instance
\Downarrow	use pattern: "review It was MASK."
"Excellent pizza! It was MASK."	
\Downarrow	input to MLM
Masked Language Model (MLM)	<i>MLM predicts: P</i> (^{good} MASK)
\Downarrow	verbalizer
good 1 0.82 bad 0 0.18	
个	finetune MLM with cross-entropy
("Excellent pizza!",1)	training instance

Formalization

Pattern P(x),

function from input to cloze question

- Verbalizer v(l), injective function: class labels → English words
- PVP (pattern-verbalizer pair): (P, v)
- q(v(l)|P(x)): for input P(x), the probability that the MLM assigns to substituting v(l) for MASK
 - softmax over "label" words
- Training objective: cross-entropy between q(v(l)|P(x)) and truth (discrete distribution)

How to exploit multiple patterns

x	X	X	unlabeled instance x
	\Downarrow		
$P_1(x)$	$P_2(x)$	$P_3(x)$	multiple patterns
	\Downarrow		
MLM_1	MLM_2	MLM_3	finetuned MLM for each pattern
	\Downarrow		
score ₁	score ₂	score ₃	each pattern scored by its MLM
	\Downarrow		
aggregate score		ore	
\downarrow			
	classifier		final classification decision

Multiple patterns: Example for sentiment

Verbalizer	
$v(\star) =$	terrible
$v(\star\star) =$	bad
$v(\star\star\star) =$	okay
$v(\star\star\star\star) =$	good
$v(\star\star\star\star) =$	great

Multiple patterns: Example for sentiment

Verbalizer	
$v(\star) =$	terrible
$v(\star\star) =$	bad
$v(\star\star\star) =$	okay
$v(\star\star\star\star) =$	good
$v(\star\star\star\star) =$	great

Patterns

 $P_1(review) =$ "It was MASK. review " $P_2(review) =$ "Just MASK. review " $P_3(review) =$ "review. All in all, it was MASK." $P_4(review) =$ "review. In summary, the restaurant is MASK."

Why multiple patterns are critical

x	x	x	unlabeled instance x
$P_1(x)$	$P_2(x)$	$P_3(x)$	multiple patterns
MLM_1	MLM ₂	MLM_3	finetuned MLM for each pattern
$score_1$	score ₂	score ₃	each pattern scored by its MLM
↓ aggregate score		ore	
	\downarrow		
	classifier		final classification decision

GPT3 & task descriptions

Pattern Exploiting Training (PET)

Why multiple patterns are critical

х	х	х	unlabel
	↓		
$P_1(x)$	$P_2(x)$	$P_3(x)$	multipl
	\downarrow		
MLM_1	MLM_2	MLM ₃	finetun
	₩		
score ₁	score ₂	score ₃	each pa
	₩		
ag			
	↓		
	final cl.		

unlabeled instance x multiple patterns finetuned MLM for each pattern each pattern scored by its MLM

final classification decision

• The patterns provide human expertise – the more the better!

Why multiple patterns are critical

x	х	х	unlabe
	↓		
$P_1(x)$	$P_2(x)$	$P_3(x)$	multip
MLM ₁	MLM ₂	MLM ₃	finetu
	↓ -	5	
score ₁	score ₂	score ₃	each µ
-	.↓	5	
a			
	 1		
	classifier		final c

unlabeled instance x multiple patterns finetuned MLM for each pattern each pattern scored by its MLM final classification decision

- The patterns provide human expertise – the more the better!
- Realistic few-shot learning difficult without human expertise

Schütze & Schick (LMU Munich): Humans learn from task descriptions and so should our models

Why multiple patterns are critical

x	x	x	unlabele		
	₩				
$P_1(x)$	$P_2(x)$	$P_3(x)$	multiple		
	₩				
MLM ₁	MLM ₂	MLM ₃	finetune		
-	11	5			
score ₁	score ₂	score ₃	each pa		
1	↓	5			
aggregate score					
classifier			final cla		

unlabeled instance x multiple patterns finetuned MLM for each pattern each pattern scored by its MLM final classification decision

- The patterns provide human expertise – the more the better!
- Realistic few-shot learning difficult without human expertise
- Can we try out multiple patterns and just keep the best one?

Why multiple patterns are critical

x	x	x	unlabele
	\downarrow		
$P_1(x)$	$P_2(x)$	$P_3(x)$	multiple
	↓		
MLM_1	MLM ₂	MLM ₃	finetuned
	↓		
score ₁	score ₂	score ₃	each pat
	↓		
ag			
classifier			final clas
			1

unlabeled instance × multiple patterns finetuned MLM for each pattern each pattern scored by its MLM final classification decision

- The patterns provide human expertise – the more the better!
- Realistic few-shot learning difficult without human expertise
- Can we try out multiple patterns and just keep the best one?
- No: no dev set in true few-shot learning

PET outperforms GPT3

Distillation creates single model from pattern-specific individual models

Distillation:

- Use individual models to label an unlabeled dataset ${\cal T}$
- \bullet Aggregrate scores to label ${\cal T}$
- Train final PET model on T

iPET: Iterative training

iPET: Iterative training

PET: Key points

- Pattern+verbalizer taps into MLM's pretrained knowledge of the task:
 - Chances are the MLM knows, based on pretraining, that "Excellent Pizza! It was good." is better than "Excellent Pizza! It was bad."
- Patterns are a way of incorporating human expertise into the learning problem.
- PET exploits multiple patterns
 - important to use all human expertise available.
- Truly few-shot: no tuning on dev set (which is not available in a true few-shot setup)
- In contrast to GPT3, PET is supervised: It takes full advantage of the (small) training set.
- Excellent few-shot performance (next section)

A straightforward task description

Translate English to French:				
thanks => merci				
hello => bonjour				
mint => menthe				

cheese =>

(task description) (training instance 1) (training instance 2) (training instance 3) (cloze question)

Actually, it is not that straightforward

Translate English to French:				
thanks => merci				
hello => bonjour				
mint => menthe				

cheese =>

(task description) (training instance 1) (training instance 2) (training instance 3) (cloze question)

PET sentiment: Pattern and verbalizer interact

Verbalizer ("label description")			
$v(\star) =$	terrible		
$v(\star\star) =$	bad		
$v(\star\star\star) =$	okay		
$v(\star\star\star\star) =$	good		
$v(\star\star\star\star) =$	great		

Patterns

 $P_1(review) =$ "It was MASK. review" $P_2(review) =$ "Just MASK. review" $P_3(review) =$ "review. All in all, it was MASK." $P_4(review) =$ "review. In summary, the restaurant is MASK."

PET "Word in Context": Task description as question

Verbalizer ("label de	escri	ption")
v(same_sense)	=	yes
v(different_senses)	=	no

Pattern

 $P_1(s_1, s_2, w) = s_1 s_2$ Does w have the same meaning in both sentences? MASK

PET "Winograd Schema Challenge": No use of label descriptions

Verbalizer (not a label description)

v(w) = w (identity, for all words)

Pattern

 $P_1(s) = s$ In the previous sentence, the pronoun " $\star p \star$ " refers to MASK.

• Task descriptions are not simple descriptions of the task.

- Task descriptions are not simple descriptions of the task.
- They can be complex translations of the structure of the task into plain text (plus a MASK).

- Task descriptions are not simple descriptions of the task.
- They can be complex translations of the structure of the task into plain text (plus a MASK).
- Task descriptions are created by the system designer based on their understanding of task and language model.

- Task descriptions are not simple descriptions of the task.
- They can be complex translations of the structure of the task into plain text (plus a MASK).
- Task descriptions are created by the system designer based on their understanding of task and language model.
- Difficult to automate, requires the ingenuity of the system designer.

Outline

- How do humans learn?
- OPT3 & task descriptions
- 3 Pattern Exploiting Training (PET)
- PET outperforms GPT3

PET results on YELP FULL, 10 training examples

PET results on YELP FULL, effect of training set size

PET/iPET vs. UDA/MixText, 10 training examples

(i)PET vs. GPT3: Size of model

model	# params	
GPT3	175G	100.0%
GPT3 med	350M	0.2%
(i)PET	223M	0.1%

(i)PET vs. GPT3: Size of model

model	# params	
GPT3	175G	100.0%
GPT3 med	350M	0.2%
(i)PET	223M	0.1%

PET outperforms GPT3

(i)PET vs. GPT3: Size of model

model	# params	
GPT3	175G	100.0%
GPT3 med	350M	0.2%
(i)PET	223M	0.1%

PET vs. GPT3 on SuperGLUE, 32 training examples

Effect of (not) using unlabeled data

PET outperforms GPT3

Different sets of 32 training examples: The choice of shots matters

PET vs. GPT3

_	PET	GPT3	
perform.	great	great	$\begin{array}{l} \rightarrow {\sf PET} \text{ broadly deployable} \\ \rightarrow {\sf PET} \text{ can exploit all train data} \\ {\sf few-shot} \rightarrow {\sf no dev set} \\ {\sf supervision improves performance} \\ {\sf different PET model for each task} \\ {\sf GPT3 mimicks human fluidity} \\ {\sf GPT3 easily handles generative tasks} \end{array}$
model size	small	huge	
few shots	no restriction	ctx w. limit	
dev set	not needed?	needed?	
supervision	supervised	unsupervised	
supervision	supervised	unsupervised	
fluidity	nonfluid	fluid	
generation	hard	easy	

PET: Summary

- PET leverages task descriptions for better few-shot learning.
- Task descriptions / patterns are a way of incorporating human expertise into the learning problem.
- PET exploits multiple patterns
 important to use all human expertise available.
- Truly few-shot: no tuning on dev set (which is not available in a true few-shot setup)
- In contrast to GPT3, PET is supervised: It takes full advantage of the (small) training set.
- Excellent few-shot performance

Schütze & Schick (LMU Munich): Humans learn from task descriptions and so should our models

• We have seen diverse types of task descriptions.

- We have seen diverse types of task descriptions.
- Both in GPT3 and PET

- We have seen diverse types of task descriptions.
- Both in GPT3 and PET
- Task descriptions in PET are pattern-verbalizer combinations where the verbalizer mostly provides label descriptions.

- We have seen diverse types of task descriptions.
- Both in GPT3 and PET
- Task descriptions in PET are pattern-verbalizer combinations where the verbalizer mostly provides label descriptions.
- What is key: the method exploits the MLM's understanding of language descriptions for understanding/solving the task.

- We have seen diverse types of task descriptions.
- Both in GPT3 and PET
- Task descriptions in PET are pattern-verbalizer combinations where the verbalizer mostly provides label descriptions.
- What is key: the method exploits the MLM's understanding of language descriptions for understanding/solving the task.
- This gives the method a head start compared to other few-shot learners.

. . .

- We have seen diverse types of task descriptions.
- Both in GPT3 and PET
- Task descriptions in PET are pattern-verbalizer combinations where the verbalizer mostly provides label descriptions.
- What is key: the method exploits the MLM's understanding of language descriptions for understanding/solving the task.
- This gives the method a head start compared to other few-shot learners.
- Other types of descriptions: solution description comments on training instances useful background information

Related work

- Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners. CoRR, abs/2012.15723, 2020. URL https://arxiv.org/abs/2012.15723
- Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank Srivastava, and Colin Raffel. Improving and simplifying pattern exploiting training, 2021
- Taylor Shin, Yasaman Razeghi, Robert L. Logan IV au2, Eric Wallace, and Sameer Singh. Autoprompt: Eliciting knowledge from language models with automatically generated prompts, 2020
- Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. Warp: Word-level adversarial reprogramming, 2021
- Teven Le Scao and Alexander M. Rush. How many data points is a prompt worth?, 2021
- Guanghui Qin and Jason Eisner. Learning how to ask: Querying Ims with mixtures of soft prompts, 2021
- Xiang Chen, Xin Xie, Ningyu Zhang, Jiahuan Yan, Shumin Deng, Chuanqi Tan, Fei Huang, Luo Si, and Huajun Chen. Adaprompt: Adaptive prompt-based finetuning for relation extraction, 2021

PET publications

- Timo Schick and Hinrich Schütze. Exploiting cloze questions for few-shot text classification and natural language inference.
 CoRR, abs/2001.07676, 2020b.
 URL https://arxiv.org/abs/2001.07676 (EACL 2021)
- Timo Schick and Hinrich Schütze. It's not just size that matters: Small language models are also few-shot learners.
 CoRR, abs/2009.07118, 2020a.
 URL https://arxiv.org/abs/2009.07118 (NAACL 2021)

Timo Schick, Helmut Schmid, and Hinrich Schütze. Automatically identifying words that can serve as labels for few-shot text classification. In Donia Scott, Núria Bel, and Chengqing Zong, editors, Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pages 5569-5578. International Committee on Computational Linguistics, 2020. doi: 10.18653/v1/2020.coling-main.488. URL https://doi.org/10.18653/v1/2020.coling-main.488

- Timo Schick, Sahana Udupa, and Hinrich Schütze. Self-diagnosis and self-debiasing: A proposal for reducing corpus-based bias in NLP. CoRR, abs/2103.00453, 2021. URL https://arxiv.org/abs/2103.00453
- Timo Schick and Hinrich Schütze. Generating datasets with pretrained language models, 2021
- Timo Schick and Hinrich Schütze. Few-shot text generation with pattern-exploiting training, 2020

PET outperforms GPT3

GPT3/PET: Size vs. performance

