Backpropagation Through
Backpropagation Through The Void
Backpropagation Through The Void

Will Grathwohl
Dami Choi
Yuhuai Wu
Geoff Roeder
David Duvenaud
Where do we see this guy?

\[\mathcal{L}(\theta) = \mathbb{E}_{p(b|\theta)} [f(b)] \]

- Just about everywhere!
- Variational Inference
- Reinforcement Learning
- Hard Attention
- And so many more!
Gradient based optimization

- Gradient based optimization is the standard method used today to optimize expectations.
- Necessary if models are neural-net based.
- Very rarely can this gradient be computed analytically.
Otherwise, we estimate...

- A number of approaches exist to estimate this gradient
- They make varying levels of assumptions about the distribution and function being optimized
- Most popular methods either make strong assumptions or suffer from high variance
REINFORCE (Williams, 1992)

\[\hat{g}_{\text{REINFORCE}}[f] = f(b) \frac{\partial}{\partial \theta} \log p(b|\theta), \quad b \sim p(b|\theta) \]

- Unbiased
- Has few requirements
- Suffers from high variance
- Easy to compute
Reparameterization (Kingma & Welling, 2014)

\[\hat{g}_{\text{reparam}}[f] = \frac{\partial f}{\partial b} \frac{\partial b}{\partial \theta} \]

- Lower variance empirically
- Unbiased
- Makes stronger assumptions
- Requires \(f(b) \) is known and differentiable
- Requires \(p(b|\theta) \) is reparameterizable
Concrete (Maddison et al., 2016)

\[
\hat{g}_{\text{concrete}}[f] = \frac{\partial f}{\partial \sigma(z/t)} \frac{\partial \sigma(z/t)}{\partial \theta} \\
\]

- Works well in practice
- Low variance from reparameterization

- Biased
- Adds temperature hyper-parameter
- Requires that \(f(b)\) is known, and differentiable
- Requires \(p(z|\theta)\) is reparameterizable
- Requires \(f(b)\) behaves predictably outside of domain
Control Variates

- Allow us to reduce variance of a Monte Carlo estimator

\[\hat{g}_{\text{new}}(b) = \hat{g}(b) - c(b) + \mathbb{E}_{p(b)}[c(b)] \]

- Variance is reduced if \(\text{corr}(g, c) > 0 \)

- Does not change bias
Putting it all together

• We would like a general gradient estimator that is
 • unbiased
 • low variance
 • usable when $f(b)$ is unknown
 • useable when $p(b|\theta)$ is discrete
Our Approach

\[\hat{g}_{LAX} = g_{REINFORCE}[f] - g_{REINFORCE}[c_\phi] + g_{reparam}[c_\phi] \]
Our Approach

\[
\hat{g}_{LAX} = g_{\text{REINFORCE}}[f] - g_{\text{REINFORCE}}[c_\phi] + g_{\text{reparam}}[c_\phi] \\
= [f(b) - c_\phi(b)] \frac{\partial}{\partial \theta} \log p(b|\theta) + \frac{\partial}{\partial \theta} c_\phi(b)
\]

- Start with the reinforce estimator for \(f(b)\)
- We introduce a new function \(c_\phi(b)\)
- We subtract the reinforce estimator of its gradient and add the reparameterization estimator
- Can be thought of as using the reinforce estimator of \(c_\phi(b)\) as a control variate
Optimizing the Control Variate

\[
\frac{\partial}{\partial \phi} \text{Variance}(\hat{g}) = \mathbb{E} \left[\frac{\partial}{\partial \phi} \hat{g}^2 \right]
\]

- For any unbiased estimator we can get Monte Carlo estimates for the gradient of the variance of \(\hat{g} \)
- Use to optimize \(c_\phi \)
Extension to discrete $p(b|\theta)$

$$\hat{g}_{\text{RELAX}} = [f(b) - c_\phi(\tilde{z})] \frac{\partial}{\partial \theta} \log p(b|\theta) + \frac{\partial}{\partial \theta} c_\phi(z) - \frac{\partial}{\partial \theta} c_\phi(\tilde{z})$$

$$b = H(z), z \sim p(z|\theta), \tilde{z} \sim p(z|b, \theta)$$

- When b is discrete, we introduce a relaxed distribution $p(z|\theta)$ and a function H where $H(z) = b \sim p(b|\theta)$

- We use the conditioning scheme introduced in REBAR (Tucker et al. 2017)

- Unbiased for all c_ϕ
A Simple Example

\[\mathbb{E}_{p(b|\theta)}[(t - b)^2] \]

- Used to validate REBAR (used \(t = .45 \))
- We use \(t = .499 \)
- REBAR, REINFORCE fail due to noise outweighing signal
- Can RELAX improve?
• RELAX outperforms baselines

• Considerably reduced variance!

• RELAX learns reasonable surrogate
Analyzing the Surrogate

- REBAR’s fixed surrogate cannot produce consistent and correct gradients
- RELAX learns to balance REINFORCE variance and reparameterization variance
A More Interesting Application

\[\log p(x) \geq \mathcal{L}(\theta) = \mathbb{E}_{q(b|x)}[\log p(x|b) + \log p(b) - \log q(b|x)] \]

- Discrete VAE
- Latent state is 200 Bernoulli variables
- Discrete sampling makes reparameterization estimator unusable

\[c_\phi(z) = f(\sigma_\lambda(z)) + r_\rho(z) \]
Results
Reinforcement Learning

- Policy gradient methods are very popular today (A2C, A3C, ACKTR)

- Seeks to find $\arg\max_\theta E_{\tau \sim \pi(\tau|\theta)} [R(\tau)]$

- Does this by estimating $\frac{\partial}{\partial \theta} E_{\tau \sim \pi(\tau|\theta)} [R(\tau)]$

- R is not known so many popular estimators cannot be used
Actor Critic

\[\hat{g}_{AC} = \sum_{t=1}^{T} \frac{\partial \log \pi(a_t|s_t, \theta)}{\partial \theta} \left[\sum_{t'=t}^{T} r_{t'} - c_{\phi}(s_t) \right] \]

- \(c_{\phi} \) is an estimate of the value function
- This is exactly the REINFORCE estimator using an estimate of the value function as a control variate
- Why not use action in control variate?
- Dependence on action would add bias
LAX for RL

\[\hat{J}_{\text{LAX}} = \sum_{t=1}^{T} \frac{\partial \log \pi(a_t | s_t, \theta)}{\partial \theta} \left[\sum_{t'=t}^{T} r_{t'} - c_\phi(s_t, a_t) \right] + \frac{\partial}{\partial \theta} c_\phi(s_t, a_t) \]

- Allows for action dependence in control variate
- Remains unbiased
- Similar extension available for discrete action spaces
Results

- Improved performance
- Lower variance gradient estimates
Future Work

• RL
 • Incorporate other variance reduction techniques (GAE, reward bootstrapping, trust-region)
 • Ways to train the surrogate off-policy

• Applications
 • Inference of graph structure (Submitted to NIPS 2018)
 • Inference of discrete neural network architecture components (ICLR 2018 Workshop)
 • RELAX applied to text GANS! (ReGAN)
 • Sequence models with discrete latent variables