Capitalization Cues Improve
Dependency Grammar Induction

Valentin I. Spitkovsky
with Daniel Jurafsky (Stanford University)
and Hiyan Alshawí (Google Inc.)
Problem: Grammar Induction is Hard
Problem: Grammar Induction is Hard

Major challenges:
Problem: Grammar Induction is Hard

Major challenges:
- non-convex objectives
Problem: Grammar Induction is Hard

Major challenges:
- non-convex objectives
- poor correlations between likelihood and accuracy
Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
Problem: Grammar Induction is Hard

Major challenges:
- non-convex objectives (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
 - e.g., optimizers run away from supervised MLE solutions
Problem: Grammar Induction is Hard

Major challenges:

- **non-convex objectives** (Gimpel and Smith, 2012)
- **poor correlations between likelihood and accuracy** (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
 - e.g., optimizers run away from supervised MLE solutions (to the tune of 20 points of accuracy)
Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
 - e.g., optimizers run away from supervised MLE solutions (to the tune of 20 points of accuracy)
- flaws in evaluation (Schwartz et al., 2011)
Problem: Grammar Induction is Hard

Major challenges:
- non-convex objectives (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
 - e.g., optimizers run away from supervised MLE solutions (to the tune of 20 points of accuracy)
- flaws in evaluation (Schwartz et al., 2011)

Partial solutions:
Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
 - e.g., optimizers run away from supervised MLE solutions (to the tune of 20 points of accuracy)
- flaws in evaluation (Schwartz et al., 2011)

Partial solutions:

- train on more / better data (Mareček and Zabokrtský, 2012)
Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives
 (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy
 (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
 - e.g., optimizers run away from supervised MLE solutions
 (to the tune of 20 points of accuracy)
- flaws in evaluation
 (Schwartz et al., 2011)

Partial solutions:

- train on more / better data
 (Mareček and Zabokrtský, 2012)
- test many data sets / languages
 (fight noise with CLT)
Problem: Grammar Induction is Hard

Major challenges:

- non-convex objectives (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
 - e.g., optimizers run away from supervised MLE solutions (to the tune of 20 points of accuracy)
- flaws in evaluation (Schwartz et al., 2011)

Partial solutions:

- train on more / better data (Mareček and Zabokrtský, 2012)
- test many data sets / languages (fight noise with CLT)
- employ less ad-hoc initializers (‘‘eat your own dog food’’)

Spitkovsky et al. (Stanford & Google)
Problem: Grammar Induction is Hard

Major challenges:
- non-convex objectives (Gimpel and Smith, 2012)
- poor correlations between likelihood and accuracy (Pereira and Schabes, 1992; Elworthy, 1994; Merialdo, 1994; Liang and Klein, 2008; Spitkovsky et al., 2009–2011)
 - e.g., optimizers run away from supervised MLE solutions (to the tune of 20 points of accuracy)
- flaws in evaluation (Schwartz et al., 2011)

Partial solutions:
- train on more / better data (Mareček and Zabokrtský, 2012)
- test many data sets / languages (fight noise with CLT)
- employ less ad-hoc initializers (‘‘eat your own dog food’’)
- constrain search space (structure is underdetermined)
Idea: Use Capitalization as Parsing Cues
Idea: Use Capitalization as Parsing Cues

Partial bracketing constraints: (Pereira and Schabes, 1992)
Idea: Use Capitalization as Parsing Cues

Partial bracketing constraints:
- semantic annotations (Pereira and Schabes, 1992)
- punctuation marks (Naseem and Barzilay, 2011)
- web markup (Ponvert et al., 2010)
- (Spitkovsky et al., 2010)
Idea: Use Capitalization as Parsing Cues

Partial bracketing constraints:

- semantic annotations
- punctuation marks
- web markup

(Pereira and Schabes, 1992)
(Naseem and Barzilay, 2011)
(Ponvert et al., 2010)
(Spitkovsky et al., 2010)

... defined over raw text (no POS tags).
Example: (no punctuation, etc. cues)
Example: (no punctuation, etc. cues)

Jay Stevens of Dean Witter actually cut his per-share earnings estimate to $9 from $9.50 for 1989 and to $9.50 from $10.35 in 1990 because he decided sales would be even weaker than he had expected.
Example: (less WSJ-ish)
Example:

(np Jurors) in (np U.S. District Court) in (np Miami) cleared (np Harold Hershenson), a former executive vice president; (np John Pagones), a former vice president; and (np Stephen Vadas) and (np Dean Ciporkin), who had been engineers with (np Cordis).
Analysis: (English PTB)

- Mostly noun phrases (96%):
Analysis:

Mostly noun phrases (96%):

- Apple II
- World War I
- Mayor William H. Hudnut III
- International Business Machines Corp.
- Alexandria, Va
Analysis: (English PTB)

- Mostly noun phrases (96%):
 - Apple II
 - World War I
 - Mayor William H. Hudnut III
 - International Business Machines Corp.
 - Alexandria, Va

- Some proper adjectives (5%);
Analysis: (English PTB)

- Mostly noun phrases (96%):
 - Apple II
 - World War I
 - Mayor William H. Hudnut III
 - International Business Machines Corp.
 - Alexandria, Va

- Some proper adjectives (5%);

- First-person pronoun, I (2%).
Analysis:

Mostly noun phrases (96%):

- Apple II
- World War I
- Mayor William H. Hudnut III
- International Business Machines Corp.
- Alexandria, Va

Some proper adjectives (5%);

First-person pronoun, I (2%).

— Yields more accurate dependency parsing constraints than either markup or punctuation (for WSJ).
Experiments: (CoNLL 2006/7)

- Data:
 - Spitkovsky et al. (Stanford & Google)
 - Capitalization

WILS (2012-06-07)
Experiments: (CoNLL 2006/7)

Data:

- 14 languages with case information
Experiments: (CoNLL 2006/7)

Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
Experiments: *(CoNLL 2006/7)*

- **Data:**
 - 14 languages with case information
 - not Spanish or Basque (because of post-processing)
 - not Japanese, Chinese or Arabic...
Experiments: (CoNLL 2006/7)

Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...

Model:
Experiments: (CoNLL 2006/7)

- **Data:**
 - 14 languages with case information
 - not Spanish or Basque (because of post-processing)
 - not Japanese, Chinese or Arabic...

- **Model:**
 - DBM-1
 (Spitkovsky et al., 2012)
Experiments: (CoNLL 2006/7)

- **Data:**
 - 14 languages with case information
 - not Spanish or Basque (because of post-processing)
 - not Japanese, Chinese or Arabic...

- **Model:**
 - DBM-1
 - first dependency-and-boundary model (Spitkovsky et al., 2012)
Experiments: (CoNLL 2006/7)

Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...

Model:
- DBM-1
 - first dependency-and-boundary model (Spitkovsky et al., 2012)

Training:
Experiments: (CoNLL 2006/7)

- **Data:**
 - 14 languages with case information
 - not Spanish or Basque (because of post-processing)
 - not Japanese, Chinese or Arabic...

- **Model:**
 - DBM-1 (Spitkovsky et al., 2012)
 - first dependency-and-boundary model (see EMNLP)

- **Training:**
 - vanilla EM
Experiments: (CoNLL 2006/7)

- Data:
 - 14 languages with case information
 - not Spanish or Basque (because of post-processing)
 - not Japanese, Chinese or Arabic...

- Model:
 - DBM-1 (Spitkovsky et al., 2012)
 - first dependency-and-boundary model (see EMNLP)

- Training:
 - vanilla EM
 - controls: uniform Viterbi init (Cohen and Smith, 2010)
Experiments:

(ConLL 2006/7)

Data:
- 14 languages with case information
- not Spanish or Basque (because of post-processing)
- not Japanese, Chinese or Arabic...

Model:
- DBM-1
 (Spitkovsky et al., 2012)
- first dependency-and-boundary model
 (see EMNLP)

Training:
- vanilla EM
- controls: uniform Viterbi init
 (Cohen and Smith, 2010)
- capitalization: constrained sampling of initial parse trees
Results:

Spitkovsky et al. (Stanford & Google)

WILS (2012-06-07)
Results:

- 2^+ increase in accuracy
Results:

- 2^+ increase in accuracy (on average, $42.8 \rightarrow 45$)
Results:

- 2+ increase in accuracy (on average, 42.8 → 45)
 - over a state-of-the-art baseline
Results:

- 2\(^+\) increase in accuracy (on average, 42.8 → 45)
 - over a state-of-the-art baseline
 - with various different constraints
Results:

- 2+ increase in accuracy (on average, 42.8 → 45)
 - over a state-of-the-art baseline
 - with various different constraints
 - helps in training and during inference
Results:

- 2+ increase in accuracy (on average, $42.8 \rightarrow 45$)
 - over a state-of-the-art baseline
 - with various different constraints
 - helps in training and during inference
 - and also in combination with punctuation
Results:

- 2\(^+\) increase in accuracy (on average, 42.8 → 45)
 - over a state-of-the-art baseline
 - with various different constraints
 - helps in training and during inference
 - and also in combination with punctuation

- but, most of the gain is from just two languages...
Results:

- 2+ increase in accuracy (on average, 42.8 → 45)
 - over a state-of-the-art baseline
 - with various different constraints
 - helps in training and during inference
 - and also in combination with punctuation

- but, most of the gain is from just two languages...
 - Italian (+11) and Greek (+18)
Results:

- 2\(^+\) increase in accuracy (on average, 42.8 → 45)
 - over a state-of-the-art baseline
 - with various different constraints
 - helps in training and during inference
 - and also in combination with punctuation

- **but**, most of the gain is from just two languages...
 - Italian (+11) and Greek (+18)
 - worst impact on English (-0.02)
Results:

2\(^+\) increase in accuracy (on average, 42.8 \(\rightarrow\) 45)
- over a state-of-the-art baseline
- with various different constraints
- helps in training and during inference
- and also in combination with punctuation

but, most of the gain is from just two languages...
- Italian (+11) and Greek (+18)
- worst impact on English (-0.02), so much for inspiration...
Results:

- 2\(^+\) increase in accuracy (on average, 42.8 → 45)
 - over a state-of-the-art baseline
 - with various different constraints
 - helps in training and during inference
 - and also in combination with punctuation

- **but**, most of the gain is from just two languages...
 - Italian (+11) and Greek (+18)
 - worst impact on English (-0.02), so much for inspiration...
 - still, virtually no harm — even in the worst case!
Conclusion:
Conclusion:

- informative signal, but requires further investigation
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results...
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results...
 - cues may be more useful as features!
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results…
 - cues may be more useful as features!

- miscellaneous observations:
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results...
 - cues may be more useful as features!

- miscellaneous observations:
 - transitions between scripts
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results...
 - cues may be more useful as features!

- miscellaneous observations:
 - transitions between scripts
 - e.g., for Arabic, CJK, numerals, etc.
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results...
 - cues may be more useful as features!

- miscellaneous observations:
 - transitions between scripts
 - e.g., for Arabic, CJK, numerals, etc.
 - interaction with punctuation / “operator” precedence
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results...
 - cues may be more useful as features!

Miscellaneous observations:

- transitions between scripts
 - e.g., for Arabic, CJK, numerals, etc.

- interaction with punctuation / “operator” precedence
 - e.g., Alexandria, Va
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results...
 - cues may be more useful as features!

- miscellaneous observations:
 - transitions between scripts
 - e.g., for Arabic, CJK, numerals, etc.
 - interaction with punctuation / “operator” precedence
 - e.g., Alexandria, Va
 - vs. Kawasaki Heavy Industries Ltd., Mitsubishi Heavy Industries Ltd. and ...
Conclusion:

- informative signal, but requires further investigation
 - very preliminary results...
 - cues may be more useful as features!

- miscellaneous observations:
 - transitions between scripts
 - e.g., for Arabic, CJK, numerals, etc.
 - interaction with punctuation / “operator” precedence
 - e.g., Alexandria, Va
 - vs. Kawasaki Heavy Industries Ltd., Mitsubishi Heavy Industries Ltd. and ...
 - properties of first (and last) words
Thanks!

No questions at this time...