Profiting from Mark-Up:
Hyper-Text Annotations
for Guided Parsing

Valentin I. Spitkovsky

with Daniel Jurafsky (Stanford University)
and Hiyan Alshawi (Google Inc.)
Constraints: Supervised and Unsupervised
Constraints: Supervised and Unsupervised

- compact summaries of high-level insights into a domain
Constraints: Supervised and Unsupervised

- compact summaries of high-level insights into a domain — e.g., a sentence should have a verb
Constraints: Supervised and Unsupervised

- compact summaries of high-level insights into a domain
 — e.g., a sentence should have a verb
 — can significantly reduce the search space
Constraints: **Supervised** and **Unsupervised**

- **Compact summaries** of high-level insights into a domain — e.g., a sentence should have a verb
- can significantly **reduce** the **search space**
- easier to list than annotating data (a few key rules)
Constraints: **Supervised** and **Unsupervised**

- **compact summaries** of high-level insights into a domain
 - e.g., a sentence should have a verb
 - can significantly **reduce** the **search space**
 - easier to list than annotating data (a few key rules)
 - enforce rather than model (avoid non-local features)
Constraints: **Supervised** and **Unsupervised**

- **compact summaries** of high-level insights into a domain
 - e.g., a sentence should have a verb
 - can significantly **reduce** the search space
 - easier to list than annotating data (a few key rules)
 - enforce rather than model (avoid non-local features)
 - enable simple, painless NLP, e.g., **joint inference**
Constraints: **Supervised and Unsupervised**

- compact summaries of high-level insights into a domain — e.g., a sentence should have a verb
- can significantly reduce the search space
- easier to list than annotating data (a few key rules)
- enforce rather than model (avoid non-local features)
- enable simple, painless NLP, e.g., joint inference

“Integer Linear Programming in NLP” Tutorial (Chang et al., 2010)

Constraints: Supervised and Unsupervised

- compact summaries of high-level insights into a domain
 - e.g., a sentence should have a verb
 - can significantly reduce the search space
 - easier to list than annotating data (a few key rules)
 - enforce rather than model (avoid non-local features)
 - enable simple, painless NLP, e.g., joint inference
 “Integer Linear Programming in NLP” Tutorial (Chang et al., 2010)

- relevant to unsupervised learning (less rope to hang self)
Constraints: Supervised and Unsupervised

- **compact summaries** of high-level insights into a domain
 — e.g., a sentence should have a verb
 — can significantly **reduce** the search space
 — easier to list than annotating data (a few key rules)
 — enforce rather than model (avoid non-local features)
 — enable simple, painless NLP, e.g., **joint inference**

 “Integer Linear Programming in NLP” Tutorial (Chang et al., 2010)

- relevant to **unsupervised learning** (less rope to hang self)
 — inherently underconstrained problems...
Overview

Constraints: Supervised and Unsupervised

- **compact summaries** of high-level insights into a domain
 - e.g., a sentence should have a verb
 - can significantly **reduce** the search space
 - easier to list than annotating data (a few key rules)
 - enforce rather than model (avoid non-local features)
 - enable simple, painless NLP, e.g., **joint inference**
 “Integer Linear Programming in NLP” Tutorial (Chang et al., 2010)

- relevant to **unsupervised learning** (less rope to hang self)
 - inherently underconstrained problems...
 - in general, steer at the “right” regularities in data
Constraints: Supervised and Unsupervised

- **compact summaries** of high-level insights into a domain
 - e.g., a sentence should have a verb
 - can significantly **reduce** the search space
 - easier to list than annotating data (a few key rules)
 - enforce rather than model (avoid non-local features)
 - enable simple, painless NLP, e.g., **joint inference**
 “Integer Linear Programming in NLP” Tutorial (Chang et al., 2010)

- relevant to **unsupervised learning** (less rope to hang self)
 - inherently underconstrained problems...
 - in general, steer at the “right” regularities in data
 - specifically, useful for **grammar (parser) induction**
Constraints: Supervised and Unsupervised

- compact summaries of high-level insights into a domain
 - e.g., a sentence should have a verb
 - can significantly reduce the search space
 - easier to list than annotating data (a few key rules)
 - enforce rather than model (avoid non-local features)
 - enable simple, painless NLP, e.g., joint inference
 “Integer Linear Programming in NLP” Tutorial (Chang et al., 2010)

- relevant to unsupervised learning (less rope to hang self)
 - inherently underconstrained problems...
 - in general, steer at the “right” regularities in data
 - specifically, useful for grammar (parser) induction
 - linguistic structure underdetermined by raw text
Constraints: Parser and Grammar Induction
Constraints: Parser and Grammar Induction

- the model
Constraints: Parser and Grammar Induction

- the model, e.g., projective trees (Klein and Manning, 2004)
 — Dependency Model with Valence (DMV)
Overview

Constraints: Parser and Grammar Induction

- the model, e.g., *projective* trees (Klein and Manning, 2004)
 — Dependency Model with Valence (DMV)

- partial *bracketings* (Pereira and Schabes, 1992)
Constraints: Parser and Grammar Induction

- the model, e.g., projective trees (Klein and Manning, 2004) — Dependency Model with Valence (DMV)
- partial bracketings (Pereira and Schabes, 1992)
- synchronous grammars (Alshawi and Douglas, 2000)
Constraints: Parser and Grammar Induction

- the model, e.g., **projective** trees
 — Dependency Model with Valence (DMV) (Klein and Manning, 2004)

- partial **bracketings** (Pereira and Schabes, 1992)
- **synchronous** grammars (Alshawi and Douglas, 2000)
- **linear-time** parsing (Seginer, 2007)
Constraints: Parser and Grammar Induction

- the model, e.g., **projective** trees \((\text{Klein and Manning, 2004})\)
 - Dependency Model with Valence (DMV)

- partial **bracketings** \((\text{Pereira and Schabes, 1992})\)
- **synchronous** grammars \((\text{Alshawi and Douglas, 2000})\)
- **linear-time** parsing \((\text{Seginer, 2007})\)
- **skewness** of trees \((\text{Seginer, 2007})\)
Constraints: Parser and Grammar Induction

- the model, e.g., **projective** trees
 (Klein and Manning, 2004)
 — Dependency Model with Valence (DMV)

- **partial bracketings**
 (Pereira and Schabes, 1992)

- **synchronous grammars**
 (Alshawi and Douglas, 2000)

- **linear-time** parsing
 (Seginer, 2007)

- **skewness** of trees

- **Zipfian** distribution of words
 (Seginer, 2007)
Constraints: Parser and Grammar Induction

- the model, e.g., **projective** trees (Klein and Manning, 2004)
 — Dependency Model with Valence (DMV)

- **partial bracketings** (Pereira and Schabes, 1992)
- **synchronous grammars** (Alshawi and Douglas, 2000)
- **linear-time** parsing (Seginer, 2007)
- **skewness** of trees (Seginer, 2007)
- **Zipfian** distribution of words (Seginer, 2007)
- **sparse** posterior regularization (Ganchev et al., 2009)
Constraints: Parser and Grammar Induction

- the model, e.g., \textbf{projective} trees \hfill (Klein and Manning, 2004)

 \textit{—} \textbf{Dependency Model with Valence (DMV)}

- \textbf{partial} \textit{bracketings} \hfill (Pereira and Schabes, 1992)
- \textbf{synchronous} grammars \hfill (Alshawi and Douglas, 2000)
- \textbf{linear-time} parsing \hfill (Seginer, 2007)
- \textbf{skewness} of trees \hfill (Seginer, 2007)
- \textbf{Zipfian} \textit{distribution} of \textit{words} \hfill (Seginer, 2007)
- \textbf{sparse} \textit{posterior} \textit{regularization} \hfill (Ganchev et al., 2009)
Constraints: Parser and Grammar Induction

- the model, e.g., projective trees (Klein and Manning, 2004)
 — Dependency Model with Valence (DMV)

 (((List (the fares (for (((flight) (number 891)))))),).

- partial bracketings (Pereira and Schabes, 1992)
- synchronous grammars (Alshawi and Douglas, 2000)
- linear-time parsing (Seginer, 2007)
- skewness of trees (Seginer, 2007)
- Zipfian distribution of words (Seginer, 2007)
- sparse posterior regularization (Ganchev et al., 2009)
Constraints: Partial Bracketings
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 — improved time complexity per iteration
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments
- problem: requires supervision (worst case — parse trees)
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments

- problem: requires supervision (worst case — parse trees)

- how to make it work, in the absence of a treebank?
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments

- **problem**: requires supervision (worst case — parse trees)

how to make it work, in the *absence* of a treebank?
 - more, partially annotated corpora:
Constraints: Partial Bracketings

- play well with **EM** *(Pereira and Schabes, 1992)*
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments

- **problem**: requires supervision (worst case — parse trees)

- how to make it work, in the absence of a *treebank*?
 - more, partially annotated *corpora*:
 - English POS chunking *(Chen and Lee, 1995)*
Overview

Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments
- problem: requires supervision (worst case — parse trees)

how to make it work, in the absence of a treebank?

- more, partially annotated corpora:
 - English POS chunking (Chen and Lee, 1995)
 - Japanese clause splitting (Inui and Kotani, 2001)
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments
- problem: requires supervision (worst case — parse trees)

- how to make it work, in the absence of a treebank?
 - more, partially annotated corpora:
 - English POS chunking (Chen and Lee, 1995)
 - Japanese clause splitting (Inui and Kotani, 2001)
 - our approach:
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments
- problem: requires supervision (worst case — parse trees)

- how to make it work, in the absence of a treebank?
 - more, partially annotated corpora:
 - English POS chunking (Chen and Lee, 1995)
 - Japanese clause splitting (Inui and Kotani, 2001)
 - our approach:
 - would like to scale up to the web anyway
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments
- problem: requires supervision (worst case — parse trees)

how to make it work, in the absence of a treebank?

 - more, partially annotated corpora:
 - English POS chunking (Chen and Lee, 1995)
 - Japanese clause splitting (Inui and Kotani, 2001)
 - our approach:
 - would like to scale up to the web anyway
 - use what’s at hand (Verne, 1873; 1972)
Overview

Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments
- problem: requires supervision (worst case — parse trees)

how to make it work, in the absence of a treebank?

 ▶ more, partially annotated corpora:
 - English POS chunking (Chen and Lee, 1995)
 - Japanese clause splitting (Inui and Kotani, 2001)
 ▶ our approach:
 - would like to scale up to the web anyway
 - use what’s at hand (Verne, 1873; 1972)
 - HTML structure
Constraints: Partial Bracketings

- play well with EM (Pereira and Schabes, 1992)
 - improved time complexity per iteration
 - fewer iterations to reach a good grammar
 - better agreement with qualitative judgments

- problem: requires supervision (worst case — parse trees)

- how to make it work, in the absence of a treebank?
 - more, partially annotated corpora:
 - English POS chunking (Chen and Lee, 1995)
 - Japanese clause splitting (Inui and Kotani, 2001)
 - our approach:
 - would like to scale up to the web anyway
 - use what’s at hand (Verne, 1873; 1972)
 - HTML structure

- solution: mark-up!
Web Mark-Up: Diamonds in the Rough

suggestive example:

..., whereas McCain is secure on the topic, Obama <a>[VP worries about winning the pro-Israel vote].
Web Mark-Up: Diamonds in the Rough

suggestive example:

..., whereas McCain is secure on the topic, Obama <a>[VP worries about winning the pro-Israel vote]. Intuition: diamonds in the rough.
Web Mark-Up: Diamonds in the Rough

suggestive example:

..., whereas McCain is secure on the topic, Obama \(<a>[v_P \text{ worries about winning the pro-Israel vote}]\).

intuition:
diamonds in the rough

- natural language pre-processing (NLPP?):
Web Mark-Up: Diamonds in the Rough

suggestive example:

..., whereas McCain is secure on the topic, Obama <a>[VP worries about winning the pro-Israel vote].

intuition: diamonds in the rough

natural language pre-processing (NLPP?): — stripping out HTML is an ugly chore...
Web Mark-Up: Diamonds in the Rough

suggestive example:

..., whereas McCain is secure on the topic, Obama \(<a>[v_p \text{ worries about winning the pro-Israel vote}]\).

intuition:

diamonds
in the
rough

natural language pre-processing (NLPP?):
— stripping out HTML is an ugly chore...
— instead of rushing to discard it, try polishing!
Outline:

- structure of this talk (as guided by the time constraints):
Outline:

- structure of this talk (as guided by the time constraints):
 - linguistic analysis of a single blog
Outline:

- structure of this talk (as guided by the time constraints):
 - linguistic analysis of a single blog
 — is there a connection between syntax and mark-up?
Outline:

- structure of this talk (as guided by the time constraints):
 1. **linguistic analysis** of a single blog
 - is there a connection between *syntax* and *mark-up*?
 - yes...
Outline:

- structure of this talk (as guided by the time constraints):
 - **linguistic analysis** of a single blog
 - is there a connection between *syntax* and *mark-up*?
 - yes... (but what is it? and is it useful?)
Outline:

- structure of this talk (as guided by the time constraints):
 1. linguistic analysis of a single blog
 — is there a connection between syntax and mark-up?
 — yes... (but what is it? and is it useful?)
 2. proposed parsing constraints, refined from mark-up
Outline:

- structure of this talk (as guided by the time constraints):
 1. linguistic analysis of a single blog
 — is there a connection between syntax and mark-up?
 — yes... (but what is it? and is it useful?)
 2. proposed parsing constraints, refined from mark-up
 3. experimental results for unsupervised dependency parsing
Outline:

• structure of this talk (as guided by the time constraints):

1. linguistic analysis of a single blog
 — is there a connection between syntax and mark-up?
 — yes... (but what is it? and is it useful?)

2. proposed parsing constraints, refined from mark-up

3. experimental results for unsupervised dependency parsing
 — parsed the web
Outline:

- structure of this talk (as guided by the time constraints):
 1. **linguistic analysis** of a single blog
 - is there a connection between **syntax** and **mark-up**?
 - yes... (but what is it? and is it useful?)
 2. proposed **parsing constraints**, refined from mark-up
 3. **experimental results** for unsupervised dependency parsing
 - parsed the web
 - but you don’t have to...
Outline:

- structure of this talk (as guided by the time constraints):
 1. linguistic analysis of a single blog
 - is there a connection between syntax and mark-up?
 - yes... (but what is it? and is it useful?)
 2. proposed parsing constraints, refined from mark-up
 3. experimental results for unsupervised dependency parsing
 - parsed the web
 - but you don’t have to...
 - best results with just the blog
Outline:

- structure of this talk (as guided by the time constraints):
 1. linguistic analysis of a single blog
 - is there a connection between syntax and mark-up?
 - yes... (but what is it? and is it useful?)
 2. proposed parsing constraints, refined from mark-up
 3. experimental results for unsupervised dependency parsing
 - parsed the web
 - but you don’t have to...
 - best results with just the blog
 - ... web news also state-of-the-art
Outline:

- structure of this talk (as guided by the time constraints):
 1. **linguistic analysis** of a single blog
 - is there a connection between *syntax* and *mark-up*?
 - yes... (but what is it? and is it useful?)
 2. proposed **parsing constraints**, refined from mark-up
 3. **experimental results** for unsupervised dependency parsing
 - parsed the web
 - but you don’t have to...
 - best results with just the blog
 - ... web news also state-of-the-art

- minor yet recurring theme: **less is more**
Outline:

- dropped details:
Outline:

- dropped details:
 - model: Dependency Model with Valence (DMV) [POS tags] (Klein and Manning, 2004)
Outline:

- **dropped details:**
 - **model:** Dependency Model with Valence (DMV) [POS tags] (Klein and Manning, 2004)
 - **learning engine:** Viterbi EM (not Inside-Outside) [CoNLL] (Spitkovsky et al., 2010)
Outline:

- **dropped details:**
 - **model:** Dependency Model with Valence (DMV)
 [POS tags] (Klein and Manning, 2004)
 - **learning engine:** Viterbi EM (not Inside-Outside)
 [CoNLL] (Spitkovsky et al., 2010)
 - **methodology:** experimental design (hundreds of runs)
 [ACL] (Spitkovsky et al., 2010)
Data:
Data:

- variety of data-set sizes and genres:
Data:

- variety of data-set sizes and genres:
 — from biggest to smallest
Data:

- variety of data-set *sizes* and *genres*:
 — from biggest to smallest, from messiest to cleanest
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest

1. English web
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest
 - English web
 - nearly $100B$ POS tokens

http://google.com/en
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest

 1. English web
 - nearly $100B$ POS tokens
 - TnT-tagged (Brants, 2000)
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest
 1. English web
 - nearly $100B$ POS tokens
 - TnT-tagged (Brants, 2000)
 2. web news
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest

 1. English web
 - nearly 100B POS tokens
 - TnT-tagged

 2. web news
 - about 30B tokens

http://google.com/en
(Brants, 2000)
http://news.google.com/
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest

1. English web
 - nearly $100B$ POS tokens
 - TnT-tagged

2. web news
 - about $30B$ tokens

3. political opinion blog
Data:

- **variety of data-set sizes and genres:**
 - from biggest to smallest, from messiest to cleanest

 1. **English web**
 - nearly $100B$ POS tokens
 - TnT-tagged

 2. **web news**
 - about $30B$ tokens

 3. **political opinion blog**
 - a little over $1M$ tokens
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest

1. English web
 - nearly 100B POS tokens
 - TnT-tagged (Brants, 2000)

2. web news
 - about 30B tokens

3. political opinion blog
 - a little over 1M tokens
 - manually cleaned up (for analysis)
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest
 1. English web
 - nearly 100B POS tokens
 - TnT-tagged (Brants, 2000)
 2. web news
 - about 30B tokens
 3. political opinion blog
 - a little over 1M tokens
 - manually cleaned up (for analysis)
 - Charniak-parsed (Charniak and Johnson, 2005)
Data:

- **variety of data-set sizes and genres:**
 - from biggest to smallest, from messiest to cleanest
 1. **English web**
 - nearly 100B POS tokens
 - TnT-tagged
 2. **web news**
 - about 30B tokens
 3. **political opinion blog**
 - a little over 1M tokens
 - manually cleaned up (for analysis)
 - Charniak-parsed
 - Stanford-tagged

http://news.google.com/ (Toutanova et al., 2003)
Overview

Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest

1. **English web**
 - nearly $100B$ POS tokens
 - TnT-tagged (Brants, 2000)

2. **web news**
 - about $30B$ tokens

3. **political opinion blog**
 - a little over $1M$ tokens
 - manually cleaned up (for analysis)
 - Charniak-parsed (Charniak and Johnson, 2005)
 - Stanford-tagged (Toutanova et al., 2003)

4. **WSJ** — just over $1M$ tokens (Marcus et al., 1993)
Data:

- variety of data-set sizes and genres:
 - from biggest to smallest, from messiest to cleanest

1. English web
 - nearly $100B$ POS tokens
 - TnT-tagged

2. web news
 - about $30B$ tokens

3. political opinion blog
 - a little over $1M$ tokens
 - manually cleaned up (for analysis)
 * Charniak-parsed
 * Stanford-tagged

4. WSJ — just over $1M$ tokens

5. Brown — under $400K$ tokens
Syntax of Mark-Up: POS Sequences $\langle a, b, i, u \rangle$

<table>
<thead>
<tr>
<th>Sequence</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP NNP</td>
<td>16.1</td>
</tr>
<tr>
<td>NNP</td>
<td>8.3</td>
</tr>
<tr>
<td>NNP NNP NNP</td>
<td>5.4</td>
</tr>
<tr>
<td>NN</td>
<td>5.4</td>
</tr>
<tr>
<td>JJ NN</td>
<td>2.6</td>
</tr>
<tr>
<td>DT NNP NNP</td>
<td>1.8</td>
</tr>
<tr>
<td>NNS</td>
<td>1.8</td>
</tr>
<tr>
<td>JJ</td>
<td>1.5</td>
</tr>
<tr>
<td>VBD</td>
<td>1.3</td>
</tr>
<tr>
<td>DT NNP NNP NNP</td>
<td>1.2</td>
</tr>
<tr>
<td>JJ NNS</td>
<td>1.1</td>
</tr>
<tr>
<td>NNP NN</td>
<td>1.0</td>
</tr>
<tr>
<td>NN NN</td>
<td>1.0</td>
</tr>
<tr>
<td>VBN</td>
<td>0.8</td>
</tr>
<tr>
<td>NNP NNP NNP NNP</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>50.0</td>
</tr>
</tbody>
</table>
Syntax of Mark-Up: Dominating Non-Terminals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>74.5</td>
</tr>
<tr>
<td>VP</td>
<td>12.9</td>
</tr>
<tr>
<td>S</td>
<td>6.8</td>
</tr>
<tr>
<td>PP</td>
<td>1.6</td>
</tr>
<tr>
<td>ADJP</td>
<td>0.9</td>
</tr>
<tr>
<td>FRAG</td>
<td>0.8</td>
</tr>
<tr>
<td>ADVP</td>
<td>0.5</td>
</tr>
<tr>
<td>SBAR</td>
<td>0.5</td>
</tr>
<tr>
<td>PRN</td>
<td>0.2</td>
</tr>
<tr>
<td>NX</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>99.0</td>
</tr>
</tbody>
</table>
Syntax of Mark-Up: Common Constituents

..., but \[S [NP the <a>Toronto Star] [VP reports [NP this] [PP in the softest possible way]], [S stating ...]]]
Syntax of Mark-Up: Common Constituents

..., but \[S \rightarrow NP _VP \]

\[S \rightarrow [NP _Toronto \ Star][VP \ reports \ [NP _this][PP \ in \ the \ softest \ possible \ way]][S \ stating \ ...]] \]

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 11 / 33
Syntax of Mark-Up: Common Constituents

..., but \[S \rightarrow [NP \text{ the } \langle a \rangle \text{Toronto Star}] [VP \text{ reports } [NP \text{ this}] [PP \text{ in the softest possible way}] \langle /a \rangle, [S \text{ stating } ...]]] \]

\[S \rightarrow NP _VP \rightarrow DT _NNP _NNP _VBZ _NP _PP _S \]
Syntax of Mark-Up: Constituent Productions

<table>
<thead>
<tr>
<th>Production</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP → NNP NNP</td>
<td>9.6</td>
</tr>
<tr>
<td>NP → NNP</td>
<td>4.6</td>
</tr>
<tr>
<td>NP → NP PP</td>
<td>3.4</td>
</tr>
<tr>
<td>NP → NNP NNP NNP</td>
<td>2.4</td>
</tr>
<tr>
<td>NP → DT NNP NNP</td>
<td>2.1</td>
</tr>
<tr>
<td>NP → NN</td>
<td>1.8</td>
</tr>
<tr>
<td>NP → DT NNP NNP NNP</td>
<td>1.7</td>
</tr>
<tr>
<td>NP → DT NN</td>
<td>1.7</td>
</tr>
<tr>
<td>NP → DT NNP NNP</td>
<td>1.6</td>
</tr>
<tr>
<td>S → NP VP</td>
<td>1.4</td>
</tr>
<tr>
<td>NP → DT NNP NNP NNP</td>
<td>1.2</td>
</tr>
<tr>
<td>NP → DT JJ NN</td>
<td>1.1</td>
</tr>
<tr>
<td>NP → NNS</td>
<td>1.0</td>
</tr>
<tr>
<td>NP → JJ NN</td>
<td>0.8</td>
</tr>
<tr>
<td>NP → NP NP</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>35.3</td>
</tr>
</tbody>
</table>
Syntax of Mark-Up: Constituent Productions

<table>
<thead>
<tr>
<th>Production</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP → NNP</td>
<td>9.6</td>
</tr>
<tr>
<td>NP → NNP NNP</td>
<td>4.6</td>
</tr>
<tr>
<td>NP → NP PP</td>
<td>3.4</td>
</tr>
<tr>
<td>NP → NNP NNP NNP</td>
<td>2.4</td>
</tr>
<tr>
<td>NP → DT NNP NNP</td>
<td>2.1</td>
</tr>
<tr>
<td>NP → NN</td>
<td>1.8</td>
</tr>
<tr>
<td>NP → DT NNP NNP NNP</td>
<td>1.7</td>
</tr>
<tr>
<td>NP → DT NN</td>
<td>1.7</td>
</tr>
<tr>
<td>NP → DT NNP NNP</td>
<td>1.6</td>
</tr>
<tr>
<td>S → NP VP</td>
<td>1.4</td>
</tr>
<tr>
<td>NP → DT NNP NNP NNP</td>
<td>1.2</td>
</tr>
<tr>
<td>NP → DT JJ NN</td>
<td>1.1</td>
</tr>
<tr>
<td>NP → NNS</td>
<td>1.0</td>
</tr>
<tr>
<td>NP → JJ NN</td>
<td>0.8</td>
</tr>
<tr>
<td>NP → NP NP</td>
<td>0.8</td>
</tr>
</tbody>
</table>

35.3
Syntax of Mark-Up: Constituent Productions

<table>
<thead>
<tr>
<th>Production</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP → NNP NNP</td>
<td>9.6</td>
</tr>
<tr>
<td>NP → NNP</td>
<td>4.6</td>
</tr>
<tr>
<td>NP → NP PP</td>
<td>3.4</td>
</tr>
<tr>
<td>NP → NNP NNP NNP</td>
<td>2.4</td>
</tr>
<tr>
<td>NP → DT NNP NNP</td>
<td>2.1</td>
</tr>
<tr>
<td>NP → NN</td>
<td>1.8</td>
</tr>
<tr>
<td>NP → DT NNP NNP NNP</td>
<td>1.7</td>
</tr>
<tr>
<td>NP → DT NN</td>
<td>1.7</td>
</tr>
<tr>
<td>NP → DT NNP NNP</td>
<td>1.6</td>
</tr>
<tr>
<td>S → NP VP</td>
<td>1.4</td>
</tr>
<tr>
<td>NP → DT NNP NNP NNP</td>
<td>1.2</td>
</tr>
<tr>
<td>NP → DT JJ NN</td>
<td>1.1</td>
</tr>
<tr>
<td>NP → NNS</td>
<td>1.0</td>
</tr>
<tr>
<td>NP → JJ NN</td>
<td>0.8</td>
</tr>
<tr>
<td>NP → NP NP</td>
<td>0.8</td>
</tr>
</tbody>
</table>

35.3
Syntax of Mark-Up: Common Dependencies

..., but $[S [NP the <a>Toronto Star] [VP reports [NP this] [PP in the softest possible way]]$, stating ...
Syntax of Mark-Up: Common Dependencies

..., but [S [NP the <a>Toronto Star] [VP reports [NP this] [PP in the softest possible way]<a>], [S stating ...]]]
Syntax of Mark-Up: Common Dependencies

..., but \[S [\text{NP the } \texttt{Toronto Star}] [\text{VP reports } \text{NP this}] [\text{PP in the softest possible way}]] , [S stating ...]]

\[DT \text{ NNP NNP VBZ DT IN DT JJS JJ NN} \]

\[DT \text{ NNP VBZ} \]
Syntax of Mark-Up: Common Dependencies

..., but [S [NP the <a>Toronto Star] [VP reports [NP this] [PP in the softest possible way]], [S stating ...]]

DT NNP NNP VBZ DT IN DT JJS JJ NN

DT NNP VBZ

“the <a>Star reports”
Syntax of Mark-Up: Head-Outward Spawns

<table>
<thead>
<tr>
<th>Part of Speech</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP</td>
<td>24.4</td>
</tr>
<tr>
<td>NN</td>
<td>8.1</td>
</tr>
<tr>
<td>DT</td>
<td>6.1</td>
</tr>
<tr>
<td>NNP</td>
<td>5.9</td>
</tr>
<tr>
<td>NNS</td>
<td>4.5</td>
</tr>
<tr>
<td>NNPS</td>
<td>1.4</td>
</tr>
<tr>
<td>VBG</td>
<td>1.3</td>
</tr>
<tr>
<td>NNP</td>
<td>1.2</td>
</tr>
<tr>
<td>VBD</td>
<td>1.0</td>
</tr>
<tr>
<td>IN</td>
<td>1.0</td>
</tr>
<tr>
<td>VBN</td>
<td>1.0</td>
</tr>
<tr>
<td>DT</td>
<td>0.9</td>
</tr>
<tr>
<td>JJ</td>
<td>0.9</td>
</tr>
<tr>
<td>VBZ</td>
<td>0.9</td>
</tr>
<tr>
<td>POS</td>
<td>0.9</td>
</tr>
<tr>
<td>JJ</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Total: 59.4%

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14)
Syntax of Mark-Up: Head-Outward Spawns

<table>
<thead>
<tr>
<th>Part of Speech</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP</td>
<td>24.4</td>
</tr>
<tr>
<td>NN</td>
<td>8.1</td>
</tr>
<tr>
<td>DT NNP</td>
<td>6.1</td>
</tr>
<tr>
<td>DT NN</td>
<td>5.9</td>
</tr>
<tr>
<td>NNS</td>
<td>4.5</td>
</tr>
<tr>
<td>NNPS</td>
<td>1.4</td>
</tr>
<tr>
<td>VBG</td>
<td>1.3</td>
</tr>
<tr>
<td>NNP NNP NN</td>
<td>1.2</td>
</tr>
<tr>
<td>VBD</td>
<td>1.0</td>
</tr>
<tr>
<td>IN</td>
<td>1.0</td>
</tr>
<tr>
<td>VBN</td>
<td>1.0</td>
</tr>
<tr>
<td>DT JJ NN</td>
<td>0.9</td>
</tr>
<tr>
<td>VBZ</td>
<td>0.9</td>
</tr>
<tr>
<td>POS NNP</td>
<td>0.9</td>
</tr>
<tr>
<td>JJ</td>
<td>0.8</td>
</tr>
<tr>
<td>Total</td>
<td>59.4</td>
</tr>
</tbody>
</table>
Syntax of Mark-Up: Head-Outward Spawns

<table>
<thead>
<tr>
<th>Part of Speech</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNP</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>NNP</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>NNS</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>NNPS</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>VBG</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>NNP NNP NN</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>VBD</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>VBN</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>DT JJ NN</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>VBZ</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>POS NNP</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>JJ</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59.4</td>
<td></td>
</tr>
</tbody>
</table>
Syntax of Mark-Up: Exception

... [NP a 1994 <i>New Yorker</i> article] ...

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14)
Syntax of Mark-Up: Exception

... [NP a 1994 <i>New Yorker</i> article] ...

- consequence of bare NPs
 — ... and “head percolation” rules
Syntax of Mark-Up: Summary

- not just single words
- (lots of long noun phrases)
Syntax of Mark-Up: Summary

- not just single words (lots of long noun phrases)
- some verbs, adjectives, etc. (i.e., not just nouns)
Syntax of Mark-Up: Summary

- not just single words (lots of long noun phrases)
- some verbs, adjectives, etc. (i.e., not just nouns)
- apparent agreement with constituents
Syntax of Mark-Up: Summary

- not just single words (lots of long noun phrases)
- some verbs, adjectives, etc. (i.e., not just nouns)
- apparent agreement with constituents
- and also with dependencies
Syntax of Mark-Up: Summary

- not just single words (lots of long noun phrases)
- some verbs, adjectives, etc. (i.e., not just nouns)

- apparent agreement with constituents

- and also with dependencies

— but is there enough mark-up?
Syntax of Mark-Up: Summary

- not just single words
 (lots of long noun phrases)
- some verbs, adjectives, etc.
 (i.e., not just nouns)
- apparent agreement with constituents
- and also with dependencies

— but is there enough mark-up?

- 11% of all sentences in the blog are annotated
Syntax of Mark-Up: Summary

- not just single words (lots of long noun phrases)
- some verbs, adjectives, etc. (i.e., not just nouns)
- apparent agreement with constituents
- and also with dependencies

— but is there enough mark-up?

- 11% of all sentences in the blog are annotated
- 9% have multi-token bracketings
Proposed Constraints: Constituents?
Proposed Constraints: Constituents?

- 48.0% agreement with Charniak’s trees
Proposed Constraints: Constituents?

- 48.0% agreement with Charniak’s trees, e.g.,

 ... in [NP an analysis] PP of perhaps the most astonishing PC item I have yet stumbled upon].
Proposed Constraints: Constituents?

- 48.0% agreement with Charniak’s trees, e.g.,

 ... in \([\text{NP} <a> \text{NP an analysis} \text{PP} \text{of perhaps the most astonishing PC item I have yet stumbled upon}]\).

- these are rough diamonds...
Proposed Constraints: Constituents?

- 48.0% agreement with Charniak’s trees, e.g.,

 ... in \[\text{NP}<a>\text{NP an analysis}[\text{PP of perhaps the most astonishing PC item I have yet stumbled upon}]. \]

- these are rough diamonds...

- many disagreements due to treebank idiosyncrasies:
Proposed Constraints: Constituents?

- 48.0% agreement with Charniak’s trees, e.g.,

 ... in \([\text{NP} < a > \text{NP an analysis}] < / a > \text{PP of perhaps the most astonishing PC item I have yet stumbled upon}]\).

- these are rough diamonds...

- many disagreements due to treebank idiosyncrasies:
 — bare NPs (internal structure)
Proposed Constraints: Constituents?

- 48.0% agreement with Charniak’s trees, e.g.,

 ... in \[NP \text{an analysis PP} \text{of perhaps the most astonishing PC item I have yet stumbled upon}]\].

- these are rough diamonds...

- many disagreements due to treebank idiosyncrasies:
 - bare NPs (internal structure)
 - N-bars (missing determiners)
Proposed Constraints: Constituents?

- 48.0% agreement with Charniak’s trees, e.g.,

 ... in $[\text{NP< }a\text{>}[\text{NP an analysis }]<a>\text{[PP of perhaps the most astonishing PC item I have yet stumbled upon}]]$.

- these are rough diamonds...

- many disagreements due to treebank idiosyncrasies:
 - bare NPs (internal structure)
 - N-bars (missing determiners)

- ... but we’ll polish them anyway!
Proposed Constraints: Dependencies!
Proposed Constraints: Dependencies!

- a more stylistically-forgiving framework
Proposed Constraints: Dependencies!

- a more stylistically-forgiving framework
- start with the strictest possible constraint
Proposed Constraints: Dependencies!

- a more stylistically-forgiving framework
- start with the strictest possible constraint
- then slowly relax it
Proposed Constraints: Dependencies!

- a more stylistically-forgiving framework
- start with the strictest possible constraint
- then slowly relax it
- every example demonstrating a softer constraint doubles as a counter-example against all previous
Proposed Constraints: Strict
Proposed Constraints: Strict

- seal mark-up into attachments
Proposed Constraints: Strict

- seal mark-up into attachments, e.g.,

 As author of `<i>The Satanic Verses</i>`, I ...
Proposed Constraints: Strict

- seal mark-up into attachments, e.g.,

As author of *The Satanic Verses*, I ...

— just 35.6% agreement with head-percolated trees
Proposed Constraints: Loose
Proposed Constraints: Loose

- allow bracketed head word external dependents
Proposed Constraints: Loose

- allow bracketed **head** word external dependents, e.g.,

 ... the *Toronto Star* reports ...

[Diagram showing the structure of the sentence with the 'Toronto Star' highlighted and annotated with the tag `<i>`]
Proposed Constraints: **Loose**

- allow bracketed *head* word external dependents, e.g.,

 ... the `<i>Toronto Star</i>` reports ...

 — already 87.5% agreement with head-percolated trees
Proposed Constraints: Sprawl
Proposed Constraints: Sprawl

- allow all bracketed words external dependents
Proposed Constraints: Sprawl

- allow all bracketed words external dependents, e.g.,

... the `<a>`Toronto Star reports` ... `<a>` ...
Proposed Constraints: Sprawl

- allow all bracketed words external dependents, e.g.,

 ... the `<a>` Toronto Star reports ... `` ...

— now 95.1% agreement with head-percolated trees
Proposed Constraints: Tear
Proposed Constraints: Tear

- fracture by same-side external heads
Proposed Constraints: Tear

- fracture by same-side external heads, e.g.,

... concession ... has raised eyebrows among those waiting for Fox News in Canada.
Proposed Constraints: Tear

- fracture by same-side external heads, e.g.,

... concession ... has raised eyebrows among those waiting for Fox News in Canada.

— finally, 98.9% agreement with head-percolated trees
Proposed Constraints: Summary
Proposed Constraints: Summary

- remaining 1.1% mostly due to parser errors...
Proposed Constraints: Summary

- remaining 1.1% mostly due to parser errors...
 ... found one (very rare) true negative disagreement
Proposed Constraints: Summary

- remaining 1.1% mostly due to parser errors...
 ... found one (very rare) true negative disagreement

- a suite of highly (88%, 95%, 99%) accurate constraints
Proposed Constraints: Summary

- remaining 1.1% mostly due to parser errors...
 ... found one (very rare) true negative disagreement

- a suite of highly (88%, 95%, 99%) accurate constraints,
 ... of varying degrees of informativeness
Proposed Constraints: Summary

- remaining 1.1% mostly due to parser errors...
 ... found one (very rare) true negative disagreement

- a suite of highly (88%, 95%, 99%) accurate constraints,
 ... of varying degrees of informativeness

- first two can easily guide Viterbi training!
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th>Incarnation</th>
<th>WSJ10</th>
<th>WSJ∞</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cohen and Smith, 2009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Spitkovsky et al., 2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Headden et al., 2009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th>Incarnation</th>
<th>WSJ10</th>
<th>WSJ∞</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cohen and Smith, 2009)</td>
<td>62.0</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td>(Spitkovsky et al., 2010)</td>
<td>57.1</td>
<td>45.0</td>
<td>43.6</td>
</tr>
<tr>
<td>(Headden et al., 2009)</td>
<td>68.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th>Incarnation</th>
<th>WSJ10</th>
<th>WSJ∞</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cohen and Smith, 2009)</td>
<td>62.0</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td>(Spitkovsky et al., 2010)</td>
<td>57.1</td>
<td>45.0</td>
<td>43.6</td>
</tr>
<tr>
<td>(Headden et al., 2009)</td>
<td>68.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOG</td>
<td>69.3</td>
<td>50.4</td>
<td>53.3</td>
</tr>
</tbody>
</table>

- **state-of-the-art** results
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th>Incarnation</th>
<th>WSJ10</th>
<th>WSJ$^\infty$</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cohen and Smith, 2009)</td>
<td>62.0</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td>(Spitkovsky et al., 2010)</td>
<td>57.1</td>
<td>45.0</td>
<td>43.6</td>
</tr>
<tr>
<td>(Headden et al., 2009)</td>
<td>68.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOG</td>
<td>69.3</td>
<td>50.4</td>
<td>53.3</td>
</tr>
<tr>
<td></td>
<td>+0.5</td>
<td>+5.4</td>
<td>+9.7</td>
</tr>
</tbody>
</table>

- **state-of-the-art** results

- **linguistic constraints** help with the task!
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th></th>
<th>WSJ10</th>
<th>WSJ∞</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOG</td>
<td>69.3</td>
<td>50.4</td>
<td>53.3</td>
</tr>
<tr>
<td>NEWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spitkovsky et al. (Stanford & Google) Profiting from Mark-Up ACL (2010-07-14) 25 / 33
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th></th>
<th>WSJ10</th>
<th>WSJ(\infty)</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOG</td>
<td>69.3</td>
<td>50.4</td>
<td>53.3</td>
</tr>
<tr>
<td>NEWS</td>
<td>67.3</td>
<td>50.1</td>
<td>51.6</td>
</tr>
<tr>
<td>WEB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- no need to manually clean data!
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th></th>
<th>WSJ10</th>
<th>WSJ∞</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOG</td>
<td>69.3</td>
<td>50.4</td>
<td>53.3</td>
</tr>
<tr>
<td>NEWS</td>
<td>67.3</td>
<td>50.1</td>
<td>51.6</td>
</tr>
<tr>
<td>WEB</td>
<td>64.1</td>
<td>46.3</td>
<td>46.9</td>
</tr>
</tbody>
</table>

- no need to manually clean data!
- nevertheless, less is more...
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th></th>
<th>WSJ10</th>
<th>WSJ∞</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOG</td>
<td>69.3</td>
<td>50.4</td>
<td>53.3</td>
</tr>
<tr>
<td>NEWS</td>
<td>67.3</td>
<td>50.1</td>
<td>51.6</td>
</tr>
<tr>
<td>WEB</td>
<td>64.1</td>
<td>46.3</td>
<td>46.9</td>
</tr>
</tbody>
</table>

- no need to manually clean data!
- nevertheless, less is more...
- loose constraint consistently delivers best results
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th></th>
<th>WSJ10</th>
<th>WSJ∞</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOG</td>
<td>69.3</td>
<td>50.4</td>
<td>53.3</td>
</tr>
<tr>
<td>NEWS</td>
<td>67.3</td>
<td>50.1</td>
<td>51.6</td>
</tr>
<tr>
<td>WEB</td>
<td>64.1</td>
<td>46.3</td>
<td>46.9</td>
</tr>
</tbody>
</table>

- no need to manually clean data!
- nevertheless, less is more...
- loose constraint consistently delivers best results
- requires domain adaptation (re-training on WSJ)
Experimental Results: Dependency Accuracy (%)

<table>
<thead>
<tr>
<th></th>
<th>WSJ10</th>
<th>WSJ∞</th>
<th>Brown100</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOG</td>
<td>69.3</td>
<td>50.4</td>
<td>53.3</td>
</tr>
<tr>
<td>NEWS</td>
<td>67.3</td>
<td>50.1</td>
<td>51.6</td>
</tr>
<tr>
<td>WEB</td>
<td>64.1</td>
<td>46.3</td>
<td>46.9</td>
</tr>
</tbody>
</table>

- no need to manually clean data!
- nevertheless, less is more...
- loose constraint consistently delivers best results
- requires domain adaptation (re-training on WSJ)
- perhaps bigger gains if lexicalized?
Experimental Results: Why Didn’t the Web Help?
Experimental Results: Why Didn’t the Web Help?

- language identification
Experimental Results: Why Didn’t the Web Help?

- language identification, sentence-breaking
Experimental Results: Why Didn’t the Web Help?

- language identification, sentence-breaking
- boiler-plate
Experimental Results: Why Didn’t the Web Help?

- language identification, sentence-breaking
- boiler-plate, POS-tagging:
Experimental Results: Why Didn’t the Web Help?

- language identification, sentence-breaking
- boiler-plate, POS-tagging:

<table>
<thead>
<tr>
<th>POS Sequence</th>
<th>WEB Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample web sentence, chosen uniformly at random.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DT NNS VBN</td>
</tr>
<tr>
<td>2</td>
<td>NNP NNP NNP</td>
</tr>
<tr>
<td>3</td>
<td>NN IN TO VB RB</td>
</tr>
<tr>
<td>4</td>
<td>NN IN IN PRP$ JJ NN</td>
</tr>
</tbody>
</table>

Yuasa et al.

Sign in to YouTube now!

Sign in with your Google Account!
Experimental Results: Why Didn’t the Web Help?

- language identification, sentence-breaking
- boiler-plate, POS-tagging:

<table>
<thead>
<tr>
<th>POS Sequence</th>
<th>WEB Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample web sentence, chosen uniformly at random.</td>
<td>All rights reserved.</td>
</tr>
<tr>
<td>1 DT NNS VBN</td>
<td>82,858,487</td>
</tr>
<tr>
<td>2 NNP NNP NNP</td>
<td>65,889,181</td>
</tr>
<tr>
<td>3 NN IN TO VB RB</td>
<td>31,007,783</td>
</tr>
<tr>
<td>4 NN IN IN PRP$ JJ NN</td>
<td>31,007,471</td>
</tr>
</tbody>
</table>
Experimental Results: Why Didn’t the Web Help?

- language identification, sentence-breaking
- boiler-plate, POS-tagging:

<table>
<thead>
<tr>
<th>POS Sequence</th>
<th>WEB Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample web sentence, chosen uniformly at random.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DT NNS VBN</td>
</tr>
<tr>
<td>2</td>
<td>NNP NNP NNP</td>
</tr>
<tr>
<td>3</td>
<td>NN IN TO VB RB</td>
</tr>
<tr>
<td>4</td>
<td>NN IN IN PRP$ JJ NN</td>
</tr>
</tbody>
</table>

All rights reserved. Yuasa et al.

Sign in to YouTube now!

Sign in with your Google Account!

- ambiguous noun phrases: “click here” and “print post”
Summary
Summary

- strong connection between mark-up and syntax

Summary

- strong **connection** between mark-up and syntax
- state-of-the-art **unsupervised dependency** parsing
Summary

- strong **connection** between mark-up and syntax
- state-of-the-art **unsupervised dependency** parsing
- other **parsing** applications:
Summary

- strong connection between mark-up and syntax
- state-of-the-art unsupervised dependency parsing
- other parsing applications:
 - supervised parsing (via self-training)
Summary

- strong connection between mark-up and syntax
- state-of-the-art unsupervised dependency parsing
- other parsing applications:
 - supervised parsing (via self-training)
 - constituent parsing (via discriminative features)
Summary

- strong connection between mark-up and syntax
- state-of-the-art unsupervised dependency parsing
- other parsing applications:
 - supervised parsing (via self-training)
 - constituent parsing (via discriminative features)
 - balanced punctuation? (e.g., quotes and parens)
Potential
Potential

- another motivating example:
Potential

- another motivating example:

\[
[NP \ [NP \ \text{Libyan ruler}] \ \text{<a>}[NP \ \text{Mu‘ammar al-Qaddafi}]]
\]
Potential

• another motivating example:

\[
\text{[NP \ [NP Libyan ruler] <a>[NP Mu‘ammar al-Qaddafi]]}
\]

— internal structure of a compound

(Vadas and Curran, 2007)
Potential

- another motivating **example**:

 $$\text{[NP [NP Libyan ruler] <a>[NP Mu‘ammar al-Qaddafi]}$$

 — **internal structure** of a compound
 (Vadas and Curran, 2007)

 — **lower-level** tokenization signal
Potential

- another motivating example:

\[
\text{[NP [NP Libyan ruler] <a>[NP Mu‘ammar al-Qaddafi]]
\]

— internal structure of a compound

(Vadas and Curran, 2007)

— lower-level tokenization signal

http://nlp.stanford.edu:8080/parser/

\[
\text{(NP (ADJP (NP (JJ Libyan) (NN ruler)))}
\text{(JJ Mu))}
\text{("‘") (NN ammar) (NNS al-Qaddafi))}
\]
Potential

- other structured tasks in NLP:
Potential

- other structured tasks in NLP:
 - NE-tagging
Potential

- other structured tasks in NLP:
 - NE-tagging
 - NP-chunking
Potential

other structured tasks in NLP:

- NE-tagging
- NP-chunking
- CJK-segmentation
Potential

- other structured tasks in NLP:
 - NE-tagging
 - NP-chunking
 - CJK-segmentation
 - sentence-breaking
Potential

- other structured tasks in NLP:
 - NE-tagging
 - NP-chunking
 - CJK-segmentation
 - sentence-breaking

... and so forth!
Open Questions:
Open Questions:

- does this generalize to other genres?
Open Questions:

- does this generalize to other genres?
- does this generalize to other languages?
Open Questions:

- does this generalize to other genres?
- does this generalize to other languages?
- what would be the impact of lexicalization?
Open Questions:

- does this generalize to other **genres**?
- does this generalize to other **languages**?
- what would be the impact of **lexicalization**?
- are there broader **NLP implications**?
Conclusion

What We Make Available:
What We Make Available:

- all of our cleaned up annotations of the blog
What We Make Available:

- all of our cleaned up annotations of the blog
- a complete analysis of every annotated sentence
What We Make Available:

- all of our cleaned up annotations of the blog
- a complete analysis of every annotated sentence
- and the best (blog) model
What We Make Available:

- all of our cleaned up annotations of the blog

- a complete analysis of every annotated sentence

- and the best (blog) model

http://cs.stanford.edu/~valentin/
Thanks!

Questions?
Proposed Constraints: Exception
Proposed Constraints: Exception

- remaining 1.1% mostly due to parser errors...
Proposed Constraints: Exception

- remaining 1.1% mostly due to parser errors...

- a (very rare) true negative disagreement:
Proposed Constraints: Exception

- remaining 1.1% mostly due to parser errors...
- a (very rare) true negative disagreement:

The French broadcasting authority, [CSA](http://example.com), banned ... Al-Manar satellite television from ...