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Abstract

Fine-tuning large pre-trained models with task-
specific data has achieved great success in
NLP. However, it has been demonstrated that
the majority of information within the self-
attention networks are redundant and not uti-
lized effectively during the fine-tuning stage.
This leads to inferior results when generalizing
the obtained models to out-of-domain distribu-
tions. To this end, we propose a simple yet ef-
fective data augmentation technique, Hidden-
Cut, to better regularize the model and en-
courage it to learn more generalizable features.
Specifically, contiguous spans within the hid-
den space are dynamically and strategically
dropped during training. Experiments show
that our HiddenCut method outperforms the
state-of-the-art augmentation methods on the
GLUE benchmark, and consistently exhibit su-
perior generalization performances on out-of-
distribution and challenging counterexamples.
We have publicly released our code at https:
//github.com/GT-SALT/HiddenCut.

1 Introduction

Fine-tuning large-scale pre-trained language mod-
els (PLMs) has become a dominant paradigm in the
natural language processing community, achieving
state-of-the-art performances in a wide range of
natural language processing tasks (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019a; Joshi
et al., 2019; Sun et al., 2019; Clark et al., 2019;
Lewis et al., 2020; Bao et al., 2020; He et al., 2020;
Raffel et al., 2020). Despite the great success, due
to the huge gap between the number of model pa-
rameters and that of task-specific data available, the
majority of the information within the multi-layer
self-attention networks is typically redundant and
ineffectively utilized for downstream tasks (Guo
et al., 2020; Gordon et al., 2020; Dalvi et al., 2020).
As a result, after task-specific fine-tuning, mod-
els are very likely to overfit and make predictions

based on spurious patterns (Tu et al., 2020; Kaushik
et al., 2020), making them less generalizable to out-
of-domain distributions (Zhu et al., 2019; Jiang
et al., 2019; Aghajanyan et al., 2020).

In order to improve the generalization abilities
of over-parameterized models with limited amount
of task-specific data, various regularization ap-
proaches have been proposed, such as adversarial
training that injects label-preserving perturbations
in the input space (Zhu et al., 2019; Liu et al., 2020;
Jiang et al., 2019), generating augmented data via
carefully-designed rules (McCoy et al., 2019; Xie
et al., 2020; Andreas, 2020; Shen et al., 2020), and
annotating counterfactual examples (Goyal et al.,
2019; Kaushik et al., 2020). Despite substantial
improvements, these methods often require signif-
icant computational and memory overhead (Zhu
et al., 2019; Liu et al., 2020; Jiang et al., 2019; Xie
et al., 2020) or human annotations (Goyal et al.,
2019; Kaushik et al., 2020).

In this work, to alleviate the above issues, we
rethink the simple and commonly-used regulariza-
tion technique—dropout (Srivastava et al., 2014)—
in pre-trained transformer models (Vaswani et al.,
2017). With multiple self-attention heads in trans-
formers, dropout converts some hidden units to ze-
ros in a random and independent manner. Although
PLMs have already been equipped with the dropout
regularization, they still suffer from inferior perfor-
mances when it comes to out-of-distribution cases
(Tu et al., 2020; Kaushik et al., 2020). The un-
derlying reasons are two-fold: (1) the linguistic
relations among words in a sentence is ignored
while dropping the hidden units randomly. In real-
ity, these masked features could be easily inferred
from surrounding unmasked hidden units with the
self-attention networks. Therefore, redundant in-
formation still exists and gets passed to the upper
layers. (2) The standard dropout assumes that ev-
ery hidden unit is equally important with the ran-
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dom sampling procedure, failing to characterize
the different roles these features play in distinct
tasks. As a result, the learned representations are
not generalized enough while applied to other data
and tasks. To drop the information more effec-
tively, Shen et al. (2020) recently introduce Cutoff
to remove tokens/features/spans in the input space.
Even though models will not see the removed infor-
mation during training, examples with large noise
may be generated when key clues for predictions
are completely removed from the input.

To overcome these limitations, we propose a sim-
ple yet effective data augmentation method, Hid-
denCut, to regularize PLMs during the fine-tuning
stage. Specifically, the approach is based on the lin-
guistic intuition that hidden representations of ad-
jacent words are more likely to contain similar and
redundant information. HiddenCut drops hidden
units more structurally by masking the whole hid-
den information of contiguous spans of tokens after
every encoding layer. This would encourage mod-
els to fully utilize all the task-related information,
instead of learning spurious patterns during train-
ing. To make the dropping process more efficient,
we dynamically and strategically select the infor-
mative spans to drop by introducing an attention-
based mechanism. By performing HiddenCut in the
hidden space, the impact of dropped information
is only mitigated rather than completely removed,
avoiding injecting too much noise to the input. We
further apply a Jensen-Shannon Divergence con-
sistency regularization between the original and
these augmented examples to model the consistent
relations between them.

To demonstrate the effectiveness of our methods,
we conduct experiments to compare our HiddenCut
with previous state-of-the-art data augmentation
method on 8 natural language understanding tasks
from the GLUE (Wang et al., 2018) benchmark
for in-distribution evaluations, and 5 challenging
datasets that cover single-sentence tasks, similarity
and paraphrase tasks and inference tasks for out-of-
distribution evaluations. We further perform abla-
tion studies to investigate the impact of different
selecting strategies on HiddenCut’s effectiveness.
Results show that our method consistently outper-
forms baselines, especially on out-of-distribution
and challenging counterexamples. To sum up, our
contributions are:

• We propose a simple data augmentation
method, HiddenCut, to regularize PLMs dur-

ing fine-tuning by cutting contiguous spans of
representations in the hidden space.

• We explore and design different strategic sam-
pling techniques to dynamically and adap-
tively construct the set of spans to be cut.

• We demonstrate the effectiveness of Hidden-
Cut through extensive experiments on both in-
distribution and out-of-distribution datasets.

2 Related Work

2.1 Adversarial Training
Adversarial training methods usually regularize
models through applying perturbations to the input
or hidden space (Szegedy et al., 2013; Goodfel-
low et al., 2014; Madry et al., 2017) with addi-
tional forward-backward passes, which influence
the model’s predictions and confidence without
changing human judgements. Adversarial-based
approaches have been actively applied to various
NLP tasks in order to improve models’ robustness
and generalization abilities, such as sentence clas-
sification (Miyato et al., 2017), machine reading
comprehension (MRC) (Wang and Bansal, 2018)
and natural language inference (NLI) tasks (Nie
et al., 2020). Despite its success, adversarial train-
ing often requires extensive computation overhead
to calculate the perturbation directions (Shafahi
et al., 2019; Zhang et al., 2019a). In contrast, our
HiddenCut adds perturbations in the hidden space
in a more efficient way that does not require extra
computations as the designed perturbations can be
directly derived from self-attentions.

2.2 Data Augmentation
Another line of work to improve the model ro-
bustness is to directly design data augmentation
methods to enrich the original training set such as
creating syntactically-rich examples (McCoy et al.,
2019; Min et al., 2020) with specific rules, crowd-
sourcing counterfactual augmentation to avoid
learning spurious features (Goyal et al., 2019;
Kaushik et al., 2020), or combining examples in the
dataset to increase compositional generalizabilities
(Jia and Liang, 2016; Andreas, 2020; Chen et al.,
2020b,a). However, they either require careful de-
sign (McCoy et al., 2019; Andreas, 2020) to infer
labels for generated data or extensive human anno-
tations (Goyal et al., 2019; Kaushik et al., 2020),
which makes them hard to generalize to different
tasks/datasets. Recently Shen et al. (2020) intro-
duce a set of cutoff augmentation which directly



creates partial views to augment the training in a
more task-agnostic way. Inspired by these prior
work, our HiddenCut aims at improving models’
generalization abilities to out-of-distribution via
linguistic-informed strategically dropping spans of
hidden information in transformers.

2.3 Dropout-based Regularization

Variations of dropout (Srivastava et al., 2014) have
been proposed to regularize neural models by in-
jecting noise through dropping certain information
so that models do not overfit training data. How-
ever, the major efforts have been put to convo-
lutional neural networks and trimmed for struc-
tures in images recently such as DropPath (Lars-
son et al., 2017), DropBlock (Ghiasi et al., 2018),
DropCluster (Chen et al., 2020c) and AutoDropout
(Pham and Le, 2021). In contrast, our work takes a
closer look at transformer-based models and intro-
duces HiddenCut for natural language understand-
ing tasks. HiddenCut is closely related to Drop-
Block (Ghiasi et al., 2018), which drops contigu-
ous regions from a feature map. However, different
from images, hidden dimensions in PLMs that con-
tain syntactic/semantic information for NLP tasks
are more closely related (e.g., NER and POS in-
formation), and simply dropping spans of features
in certain hidden dimensions might still lead to
information redundancy.

3 HiddenCut Approach

To regularize transformer models in a more struc-
tural and efficient manner, in this section, we intro-
duce a simple yet effective data augmentation tech-
nique, HiddenCut, that reforms dropout to cutting
contiguous spans of hidden representations after
each transformer layer (Section 3.1). Intuitively,
the proposed approach encourages the models to
fully utilize all the hidden information within the
self-attention networks. Furthermore, we propose
an attention-based mechanism to strategically and
judiciously determine the specific spans to cut (Sec-
tion 3.2). The schematic diagram of HiddenCut,
applied to the transformer architecture (and its com-
parison to dropout) are shown in Figure 1.

3.1 HiddenCut

For an input sequence s = {w0, w1, ..., wL} with
L tokens associated with a label y, we employ a
pre-trained transformer model f1:M (·) with M lay-
ers like RoBERTa (Liu et al., 2019) to encode the

text into hidden representations. Thereafter, an
inference network g(·) is learned on top of the pre-
trained models to predict the corresponding labels.
In the hidden space, after layer m, every word wi

in the input sequence is encoded into a D dimen-
sional vector hmi ∈ RD and the whole sequence
could be viewed as a hidden matrix Hm ∈ RL×D.

With multiple self-attention heads in the trans-
former layers, it is found that there is extensive
redundant information across hmi ∈ H that are lin-
guistically related (Dalvi et al., 2020) (e.g., words
that share similar semantic meanings). As a result,
the removed information from the standard dropout
operation may be easily inferred from the remain-
ing unmasked hidden units. The resulting model
might easily overfit to certain high-frequency fea-
tures without utilizing all the important task-related
information in the hidden space (especially when
task-related data is limited). Moreover, the model
also suffers from poor generalization ability while
being applied to out-of-distribution cases.

Inspired by Ghiasi et al. (2018); Shen et al.
(2020), we propose to improve the dropout reg-
ularization in transformer models by creating aug-
mented training examples through HiddenCut,
which drops a contiguous span of hidden informa-
tion encoded in every layer, as shown in Figure 1
(c). Mathematically, in every layer m, a span of
hidden vectors, S ∈ Rl×D, with length l = αL in
the hidden matrix Hm ∈ RL×D are converted to 0,
and the corresponding attention masks are adjusted
to 0, where α is a pre-defined hyper-parameter in-
dicating the dropping extent of HiddenCut. After
being encoded and hiddencut through all the hidden
layers in pre-trained encoders, augmented training
data fHiddenCut(s) is created for learning the infer-
ence network g(·) to predict task labels.

3.2 Strategic Sampling

Different tasks rely on learning distinct sets of in-
formation from the input to predict the correspond-
ing task labels. Performing HiddenCut randomly
might be inefficient especially when most of the
dropping happens at task-unrelated spans, which
fails to effectively regularize model to take advan-
tage of all the task-related features. To this end, we
propose to select the spans to be cut dynamically
and strategically in every layer. In other words, we
mask the most informative span of hidden repre-
sentations in one layer to force models to discover
other useful clues to make predictions instead of



Figure 1: Illustration of the differences between Dropout (a) and HiddenCut (b), and the position of HiddenCut
in transformer layers (c). A sentence in the hidden space can be viewed as a L ×D matrix where L is the length
of the sentence and D is the number of hidden dimensions. The cells in blue represent that they are masked.
Dropout masks random independent units in the matrix while our HiddenCut selects and masks a whole span of
hidden representations based on attention weights received in the current layer. In our experiments, we perform
HiddenCut after the feed-forward network in every transformer layer.

relying on a small set of spurious patterns.

Attention-based Sampling Strategy The most
direct way is to define the set of tokens to be cut
by utilizing attention weights assigned to tokens
in the self-attention layers (Kovaleva et al., 2019).
Intuitively, we can drop the spans of hidden rep-
resentations that are assigned high attentions by
the transformer layers. As a result, the information
redundancy is alleviated and models would be en-
courage to attend to other important information.
Specifically, we first derive the average attention for
each token, ai, from the attention weights matrix
A ∈ RP×L×L after self-attention layers, where
P is the number of attention heads and L is the
sequence length:

ai =

∑P
j (

∑L
k A[j][k][i])

P
.

We then sample the start token hi for HiddenCut
from the set that contains top βL tokens with higher
average attention weights (β is a pre-defined param-
eter). Then HiddenCut is performed to mask the
hidden representations between hi and hi+l. Note
that the salient sets are different across different
layers and updated throughout the training.

Other Sampling Strategies We also explore
other widely used word importance discovery meth-
ods to find a set of tokens to be strategically cut by
HiddenCut, including:

• Random: All spans of tokens are viewed as
equally important, thus are randomly cut.

• LIME (Ribeiro et al., 2016) defines the impor-
tance of tokens by examining the locally faith-
fulness where weights of tokens are assigned
by classifiers trained with sentences whose
words are randomly removed. We utilized
LIME on top of a SVM classifier to pre-define
a fixed set of tokens to be cut.

• GEM (Yang et al., 2019b) utilizes orthogo-
nal basis to calculate the novelty scores that
measure the new semantic meaning in tokens,
significance scores that estimate the alignment
between the semantic meaning of tokens and
the sentence-level meaning, and the unique-
ness scores that examine the uniqueness of the
semantic meaning of tokens. We compute the
GEM scores using the hidden representations
at every layer to generate the set of tokens to
be cut, which are updated during training.

• Gradient (Baehrens et al., 2010): We define
the set of tokens to be cut based on the rank-
ings of the absolute values of gradients they re-
ceived at every layer in the backward-passing.
This set would be updated during training.

3.3 Objectives

During training, for an input text sequence s with
a label y, we generate N augmented examples
{fHiddenCut

1 (s), ..., fHiddenCut
N (s)} through perform-

ing HiddenCut in pre-trained encoder f(·). The
whole model g(f(·)) is then trained though sev-
eral objectives including general classification loss



(Lori and Laug) on data-label pairs and consistency
regularization (Ljs) (Miyato et al., 2017, 2018;
Clark et al., 2018; Xie et al., 2019; Shen et al.,
2020) across different augmentations:

Lori = CE(g(f(s)), y)

Laug =
∑
N

CE(g(fHiddenCut
i (s)), y)

Ljs =
∑
N

KL[p(y|g(fHiddenCut
i (s))||pavg]

where CE and KL represent the cross-entropy loss
and KL-divergence respectively. pavg stands for the
average predictions across the original text and all
the augmented examples.

Combining these three losses, our overall objec-
tive function is:

L = Lori + γLaug + ηLjs

where γ and η are the weights used to balance the
contributions of learning from the original data and
augmented data.

4 Experiments

4.1 Datasets
We conducted experiments on both in-distribution
datasets and out-of-distribution datasets to demon-
strate the effectiveness of our proposed HiddenCut.

In-Distribution Datasets We mainly trained and
evaluated our methods on the widely-used GLUE
benchmark (Wang et al., 2018) which covers a
wide range of natural language understanding tasks:
single-sentence tasks including: (i) Stanford Senti-
ment Treebank (SST-2) which predict the sentiment
of movie reviews to be positive or negative, and (ii)
Corpus of Linguistic Acceptability (CoLA) which
predict whether a sentence is linguistically accept-
able or not; similarity and paraphrase tasks includ-
ing (i) Quora Question Pairs (QQP) which predict
whether two question are paraphrases, (ii) Semantic
Textual Similarity Benchmark (STS-B) which pre-
dict the similarity ratings between two sentences,
and (iii) Microsoft Research Paraphrase Corpus
(MRPC) which predict whether two given sen-
tences are semantically equivalent; inference tasks
including (i) Multi-Genre Natural Language In-
ference (MNLI) which classified the relationships
between two sentences into entailment, contradic-
tion, or neutral, (ii) Question Natural Language
Inference (QNLI) which predict whether a given

sentence is the correct answer to a given question,
and (iii) Recognizing Textual Entailment (RTE)
which predict whether the entailment relation holds
between two sentences. Accuracy was used as the
evaluation metric for most of the datasets except
that Matthews correlation was used for CoLA and
Spearman correlation was utilized for STS-B.

Out-Of-Distribution Datasets To demonstrate
the generalization abilities of our proposed meth-
ods, we directly evaluated on 5 different out-of-
distribution challenging sets, using the models that
are fine-tuned on GLUE benchmark datasets:

• Single Sentence Tasks: Models fine-tuned
from SST-2 are directly evaluated on two
recent challenging sentiment classification
datasets: IMDB Contrast Set (Gardner
et al., 2020) including 588 examples and
IMDB Counterfactually Augmented Dataset
(Kaushik et al., 2020) including 733 examples.
Both of them were constructed by asking NLP
researchers (Gardner et al., 2020) or Amazon
Mechanical Turkers (Kaushik et al., 2020) to
make minor edits to examples in the original
IMDB dataset (Maas et al., 2011) so that the
sentiment labels change while the major con-
tents keep the same.

• Similarity and Paraphrase Tasks: Mod-
els fine-tuned from QQP are directly evalu-
ated on the recently introduced challenging
paraphrase dataset PAWS-QQP (Zhang et al.,
2019b) that has 669 test cases. PAWS-QQP
contains sentence pairs with high word over-
lap but different semantic meanings created
via word-swapping and back-translation from
the original QQP dataset.

• Inference Tasks: Models fine-tuned from
MNLI are directly evaluated on two challeng-
ing NLI sets: HANS (McCoy et al., 2019)
with 30,000 test cases and Adversarial NLI
(A1 dev sets) (Nie et al., 2020) including
1,000 test cases. The former one was con-
structed by using syntactic rules (lexical over-
lap, subsequence and constituent) to generate
non-entailment examples with high premise-
hypothesis overlap from MNLI. The latter one
was created by adversarial human-and-model-
in-the-loop framework (Nie et al., 2020) to cre-
ate hard examples based on BERT-Large mod-
els(Devlin et al., 2019) pre-trained on SNLI
(Bowman et al., 2015) and MNLI.



Method MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg
RoBERTa-base 87.6 92.8 91.9 78.7 94.8 89.5 63.6 91.2 86.3

ALUM 88.1 93.1 92.0 80.2 95.3 90.9 63.6 91.1 86.8
Token Cutoff 88.2 93.1 91.9 81.2 95.1 91.1 64.1 91.2 87.0

Feature Cutoff 88.2 93.3 92.0 81.6 95.3 90.7 63.6 91.2 87.0
Span Cutoff 88.4 93.4 92.0 82.3 95.4 91.1 64.7 91.2 87.3
HiddenCut † 88.2 93.7 92.0 83.4 95.8 92.0 66.2 91.3 87.8

Table 1: In-distribution evaluation results on the dev sets of the GLUE benchmark. † means our proposed method.

Method Single-Sentence Similarity&Paraphrase Inference
IMDB-Cont. IMDB-CAD PAWS-QQP HANS AdvNLI (A1)

RoBERTa-base 84.6 88.4 38.4 67.8 31.2
Span Cutoff 85.5 89.2 38.8 68.4 31.1
HiddenCut † 87.8 90.4 41.5 71.2 32.8

Table 2: Out-of-distribution evaluation results on 5 different challenging sets. † means our proposed method. For
all the datasets, we did not use their training sets to further fine-tune the derived models from GLUE.

4.2 Baselines

We compare our methods with several baselines:

• RoBERTa (Liu et al., 2019) is used as our
base model. Note that RoBERTa is regular-
ized with dropout during fine-tuning.

• ALUM (Liu et al., 2020) is the state-of-the-
art adversarial training method for neural lan-
guage models, which regularizes fine-tuning
via perturbations in the embedding space.

• Cutoff (Shen et al., 2020) is a recent data aug-
mentation for natural language understanding
tasks by removing information in the input
space, including three variations: token cutoff,
feature cutoff, and span cutoff.

4.3 Implementation Details

We used the RoBERTa-base model (Liu et al.,
2019) to initialize all the methods. Note that Hid-
denCut is agnostic to different types of pre-trained
models. We followed Liu et al. (2019) to set the
linear decay scheduler with a warmup ratio of 0.06
for training. The maximum learning rate was se-
lected from {5e−6, 8e−6, 1e−5, 2e−5} and the
max number of training epochs was set to be either
5 or 10. All these hyper-parameters are shared for
all the models. The HiddenCut ratio α was set 0.1
after a grid search from {0.05, 0.1, 0.2, 0.3, 0.4}.
The selecting ratio β in the important sets sam-
pling process was set 0.4 after a grid search from
{0.1, 0.2, 0.4, 0.6}. The weights γ and η in our ob-

jective function were both 1. All the experiments
were performed using a GeForce RTX 2080Ti.

4.4 Results on In-Distribution Datasets

Based on Table 1, we observed that, compared to
RoBERTa-base with only dropout regularization,
ALUM with perturbations in the embedding space
through adversarial training has better results on
most of these GLUE tasks. However, the extra
additional backward passes to determine the per-
turbation directions in ALUM can bring in signifi-
cantly more computational and memory overhead.
By masking different types of input during train-
ing, Cutoff increased the performances while being
more computationally efficient.

In contrast to Span Cutoff, HiddenCut not only
introduced zero additional computation cost, but
also demonstrated stronger performances on 7 out
of 8 GLUE tasks, especially when the size of train-
ing set is small (e.g., an increase of 1.1 on RTE
and 1.5 on CoLA). Moreover, HiddenCut achieved
the best average result compared to previous state-
of-the-art baselines. These in-distribution improve-
ments indicated that, by strategically dropping con-
tiguous spans in the hidden space, HiddenCut not
only helps pre-trained models utilize hidden infor-
mation in a more effective way, but also injects less
noise during the augmentation process compared to
cutoff, e.g., Span Cutoff might bring in additional
noises for CoLA (which aims to judge whether
input sentences being linguistically acceptable or
not) when one span in the input is removed, since



Strategy SST-2 QNLI
RoBERTa 94.8 92.8

DropBlock 95.4 93.2
Random 95.4 93.5

LIME 95.2 93.1
LIME-R 95.3 93.2

GEM 95.5 93.4
GEM-R 95.1 93.2

Gradient 95.6 93.6
Gradient-R 95.1 93.4

Attention 95.8 93.7
Attention-R 94.6 93.4

Table 3: The performances on SST-2 and QNLI with
different strategies when dropping information in the
hidden space. Different sampling strategies combined
with HiddenCut are presented. “-R” means sampling
outside the set to be cut given by these strategies.

it might change the labels.

4.5 Results on Out-Of-Distribution Datasets

To validate the better generalizability of Hidden-
Cut, we tested our models trained on SST-2, QQP
and MNLI directly on 5 out-of-distribution/out-
of-domain challenging sets in zero-shot settings.
As mentioned earlier, these out-of-distribution sets
were either constructed with in-domain/out-of-
domain data and further edited by human to make
them harder, or generated by rules that exploited
spurious correlations such as lexical overlap, which
made them challenging to most existing models.

As shown in Table 2, Span Cutoff slightly im-
proved the performances compared to RoBERTa
by adding extra regularizations through creating
restricted input. HiddenCut significantly outper-
formed both RoBERTa and Span Cutoff. For exam-
ple, it outperformed Span Cutoff. by 2.3%(87.8%
vs. 85.5%) on IMDB-Conts, 2.7%(41.5% vs.
38.8%) on PAWS-QQP, and 2.8%(71.2% vs 68.4%)
on HANS consistently. These superior results
demonstrated that, by dynamically and strategi-
cally dropping contiguous span of hidden represen-
tations, HiddenCut was able to better utilize all the
important task-related information which improved
the model generalization to out-of-distribution and
challenging adversary examples.

4.6 Ablation Studies

This section presents our ablation studies on differ-
ent sampling strategies and the effect of important

hyper-parameters in HiddenCut.

4.6.1 Sampling Strategies in HiddenCut

We compared different ways to cut hidden repre-
sentations (DropBlock (Ghiasi et al., 2018) which
randomly dropped spans in certain random hid-
den dimensions instead of the whole hidden space)
and different sampling strategies for HiddenCut de-
scribed in Section 3.2 (including Random, LIME
(Ribeiro et al., 2016), GEM (Yang et al., 2019b),
Gradient (Yeh et al., 2019), Attention) based on
the performances on SST-2 and QNLI. For these
strategies, we also experimented with a reverse set
denoted by “-R” where we sampled outside the
important set given by above strategies.

From Table 3, we observed that (i) sampling
from important sets resulted in better performances
than random sampling. Sampling outside the de-
fined importance sets usually led to inferior per-
formances. These highlights the importance of
strategically selecting spans to drop. (ii) Sampling
from dynamic sets sampled by their probabilities
often outperformed sampling from predefined fixed
sets (LIME), indicating the effectiveness of dynam-
ically adjusting the sampling sets during training.
(iii) The attention-based strategy outperformed all
other sampling strategies, demonstrating the effec-
tiveness of our proposed sampling strategies for
HiddenCut. (iv) Completely dropping out the spans
of hidden representations generated better results
than only removing certain dimensions in the hid-
den space, which further validated the benefit of
HiddenCut over DropBlock in natural language un-
derstanding tasks.

4.6.2 The Effect of HiddenCut Ratios

The length of spans that are dropped by Hidden-
Cut is an important hyper-parameter, which is con-
trolled by the HiddenCut ratio α and the length
of input sentences. α could also be interpreted
as the extent of perturbations added to the hid-
den space. We presented the results of Hidden-
Cut on MNLI with a set of different α including
{0.05, 0.1, 0.2, 0.3, 0.4} in Table 5. HiddenCut
achieved the best performance with α = 0.1, and
the performance gradually decreased with higher α
since larger noise might be introduced when drop-
ping more hidden information. This suggested the
importance of balancing the trade-off between ap-
plying proper perturbations to regularize models
and injecting potential noises.



Method Original and Counterfactual Sentences Prediction
RoBERTa <s> I would rate 8 stars out of 10 </s> Positive
HiddenCut <s> I would rate 8 stars out of 10 </s> Positive
RoBERTa <s> The movie became more and more intriguing </s> Positive
HiddenCut <s> The movie became more and more intriguing </s> Positive
RoBERTa <s> I would rate 8 stars out of 20 </s> Positive
HiddenCut <s> I would rate 8 stars out of 20 </s> Negative
RoBERTa <s> The movie became only slightly more intriguing </s> Positive
HiddenCut <s> The movie became only slightly more intriguing </s> Negative

Table 4: Visualization of the attention weights at the last layer in models. The sentences in the first section are
from IMDB with positive labels and the sentences in the second section is constructed by changing ratings or
diminishing via qualifiers (Kaushik et al., 2020) to flip their corresponding labels. Deeper blue represents that
those tokens receive higher attention weights.

α 0.05 0.1 0.2 0.3 0.4
MNLI 88.07 88.23 88.13 88.07 87.64

Table 5: Performances on MNLI with different Hidden-
Cut ratio α, which controls the length of span to cut in
the hidden space.

β 0.1 0.2 0.4 0.6
SST-2 95.18 95.30 95.76 95.46

Table 6: Performances on SST-2 with different sam-
pling ratio β, which controls the size of important token
set from which HiddenCut would sample.

4.6.3 The Effect of Sampling Ratios
The number of words that are considered important
and selected by HiddenCut is also an influential
hyper-parameter controlled by the sampling ratio β
and the length of input sentences. As shown in Ta-
ble 6, we compared the performances on SST-2 by
adopting different β including {0.1, 0.2, 0.4, 0.6}.
When β is too small, the number of words in the im-
portant sets is limited, which might lead HiddenCut
to consistently drop certain hidden spans during the
entire training process. The low diversities reduce
the improvements over baselines. When β is too
large, the important sets might cover all the words
except stop words in sentences. As a result, the
Attention-based Strategy actually became Random
Sampling, which led to lower gains over baselines.
The best performance was achieved when β = 0.4,
indicating a reasonable trade-off between diversi-
ties and efficiencies.

4.7 Visualization of Attentions

To further demonstrate the effectiveness of Hid-
denCut, we visualize the attention weights that the
special start token (“<s>”) assigns to other tokens at
the last layer, via several examples and their coun-

terfactual examples in Table 4. We observed that
RoBERTa only assigned higher attention weights
on certain tokens such as “8 stars”, “intriguing”
and especially the end special token “</s>”, while
largely ignored other context tokens that were also
important to make the correct predictions such as
scale descriptions (e.g., “out of 10”) and qualifier
words (e.g., “more and more”). This was probably
because words like “8 stars” and “intriguing” were
highly correlated with positive label and RoBERTa
might overfit such patterns without probable reg-
ularization. As a result, when the scale of ratings
(e.g., from “10” to “20”) or the qualifier words
changed (e.g., from “more and more” to “only
slightly more”), RoBERTa still predicted the label
as positive even when the groundtruth is negative.
With HiddenCut, models mitigated the impact of
tokens with higher attention weights and were en-
couraged to utilize all the related information. So
the attention weights in HiddenCut were more uni-
formly distributed, which helped models make the
correct predictions for out-of-distribution counter-
factual examples. Taken together, HiddenCut helps
improve model’s generalizability by facilitating it
to learn from more task-related information.

5 Conclusion

In this work, we introduced a simple yet effec-
tive data augmentation technique, HiddenCut, to
improve model robustness on a wide range of
natural language understanding tasks by drop-
ping contiguous spans of hidden representations
in the hidden space directed by strategic attention-
based sampling strategies. Through HiddenCut,
transformer models are encouraged to make use
of all the task-related information during train-
ing rather than only relying on certain spurious
clues. Through extensive experiments on in-
distribution datasets (GLUE benchmarks) and out-



of-distribution datasets (challenging counterexam-
ples), HiddenCut consistently and significantly out-
performed state-of-the-art baselines, and demon-
strated superior generalization performances.
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