
Planning and Generating Natural and Diverse Disfluent Texts as
Augmentation for Disfluency Detection

Jingfeng Yang, Diyi Yang, Zhaoran Ma
Georgia Institute of Technology

{jyang690, makima, dyang888}@gatech.edu

Abstract

Existing approaches to disfluency detection
heavily depend on human-annotated data.
Numbers of data augmentation methods have
been proposed to alleviate the dependence on
labeled data. However, current augmentation
approaches such as random insertion or
repetition fail to resemble training corpus
well and usually resulted in unnatural and
limited types of disfluencies. In this work,
we propose a simple Planner-Generator based
disfluency generation model to generate
natural and diverse disfluent texts as aug-
mented data, where the Planner decides on
where to insert disfluent segments and the
Generator follows the prediction to generate
corresponding disfluent segments. We further
utilize this augmented data for pretraining
and leverage it for the task of disfluency
detection. Experiments demonstrated that
our two-stage disfluency generation model
outperforms existing baselines; those disflu-
ent sentences generated significantly aided
the task of disfluency detection and led to
state-of-the-art performance on Switchboard
corpus. We have publicly released our
code at https://github.com/GT-SALT/

Disfluency-Generation-and-Detection.

1 Introduction

Disfluency is a para-linguistic concept defining the
interruption to the flow of speech (Kowal, 2009).
As shown in Figure 1, a standard annotation of
the disfluency structure indicates the reparandum
(the region to repair), an optional interregnum
(filled pauses, discourse cue words, etc.) and the
associated repair (corrected linguistic materials)
(Nakatani and Hirschberg, 1994). Disfluency de-
tection (Lou et al., 2018; Wang et al., 2019) mainly
deals with identifying and removing reparandum1,

1We use reparandum and disfluent segments interchange-
ably in this paper.

I want a flight [to Boston + {um} to Denver]
reparandum interregnum repair

Figure 1: Example of an annotated disfluent sentence.

Type Example
Repetition they they learn to share.

Deletion this is just happened yesterday.
Substitution it’s nothing but wood up here down here.

Table 1: Different types of reparandum.

since interregnum can be easily detected in that
they belong to a closed set of words and phrases,
e.g. “uh” “I mean” “you know” etc. The output flu-
ent sentences from disfluency detection can serve
as clean inputs for most downstream NLP tasks,
like dialogue systems, question answering, and ma-
chine translation (Wang et al., 2010).

Reparandum in disfluency can be categorized as
repetition, deletion and substitution (McDougall
and Duckworth, 2017), as shown in Table 1. Repe-
tition occurs when linguistic materials repeat, usu-
ally in form of partial words, words or short phrases.
Substitution occurs when linguistic materials are
replaced in order to clarify a concept or idea. Dele-
tion, also known as false restart, refers to aban-
doned linguistics materials.

Neural models have achieved reasonable perfor-
mance in disfluency detection on English Switch-
board (SWBD) corpus (Godfrey et al., 1992). Such
models involve applying pretrained models to con-
duct disfluency detection as sequence tagging or
seq2seq tasks (Wang et al., 2019, 2018). Recently,
data augmentation techniques are also used to gen-
erate augmented disfluent sentences for model pre-
training. Those models are limited in that the aug-
mented data is generated based on simple heuristics
such as random repetition or insertion of ngrams
(Wang et al., 2019, 2018). Sentences generated

https://github.com/GT-SALT/Disfluency-Generation-and-Detection
https://github.com/GT-SALT/Disfluency-Generation-and-Detection

METHODS EXAMPLE
Random repetition (1) that ’s that ’s really good.
Random insertion (2) of a that ’s really good.
Generation (ours) (3) it ’s that ’s really good.
Generation (ours) (4) that would be more be worth doing.

Table 2: Disfluent text generated from random repeti-
tion, insertion, and our Disfluency Generation model

by such methods do not resemble natural disfluent
sentences and have different distribution of disflu-
ency patterns from original sentences in SWBD
dataset. For example, in Table 2, the random inser-
tion of “of a” to the example (2) “of a that’s really
good” results in a quite unnatural disfluent text, not
representative of our disfluency corpus nor most
commonly used practices. As a result, most sen-
tences generated by random insertion are inefficient
as augmented samples, and even lead models to de-
viate from SWBD dataset. This is also supported
by Gontijo-Lopes et al. (2020) that suggested the
augmented data should have high affinity to the
original dataset. Furthermore, based on our small
corpus studies, we observed that current disfluency
detection models usually struggle with substitu-
tion and deletion based disfluencies, largely due to
the under-representation of substitution and dele-
tion in current training corpus. Disfluent sentences
generated by random repetition or insertion rarely
contain substitutions, and are thus inadequate in
introducing diverse forms of disfluency.

To address this gap, we propose a generation
based data augmentation method to generate nat-
ural and diverse disfluent sentences to further im-
prove the performance of disfluency detection. This
method is similar to back-translation (Edunov et al.,
2018), which has been shown effective as a way
of data augmentation in machine translation. Dif-
ferent from classical neural generation models, our
generation model is in a two-stage generation man-
ner, motivated by coarse-to-fine decoding (Dong
and Lapata, 2018). Specifically, given a fluent sen-
tence as the input, in the first stage, a Planner se-
lects the positions of where to insert reparandum;
in the second stage, a Generator generates disflu-
ent segments accordingly for the predicted areas.
Compared to generic end-to-end generation, our
two-stage model separates the generation task into
two steps: where to generate and what to generate.
Such breakdown enables the model to only gener-
ate disfluent segments rather than the whole disflu-
ent sentences, and to carry naturally labeled data as
augmentation for disfluency detection. As shown

in Table 2, the outputs (3) and (4) from our two-
stage Planner-Generator model resemble natural
disfluent sentences better than random insertion (2),
and also introduces more substitutions (example
(3) and (4)). We then utilize this Planner-Generator
disfluency generation to create augmented training
data for the task of disfluency detection. As an
additional benefit, the disfluent texts generated by
our generation model can be used as inputs of text-
to-speech (TTS) systems to generate more natural
speech, thus improving the performance of tasks
like automatic film dubbing, robotics, dialogue sys-
tems, or speech-to-speech translation, as shown by
Betz et al. (2015) and Adell et al. (2006).

To sum up, our contributions are as follows:

• We design a simple two-stage Planner-
Generator generation model to generate dis-
fluent texts, and demonstrate its effectiveness
over various generation baseline models.

• We utilize our generation model to generate
natural and diverse augmented disfluent data
for the task of disfluency detection, and ob-
tain state-of-the-art performance. We conduct
thorough error analysis and discuss specific
challenges faced by current approaches.

2 Related Work

Disfluency Generation Betz et al. (2015) and
Adell et al. (2006) used heuristic rules to generate
filled pauses, repetitions in disfluent speech gen-
eration. Their works demonstrate that disfluency
generation enhances the naturalness and intelligi-
bility of speech generated by text-to-speech (TTS)
systems. Wang et al. (2018) and Wang et al. (2019)
randomly inserted or repeated ngrams to generate
augmented disfluent sentences. Disfluent sentences
generated in this method have low affinity to dis-
fluent sentences from the benchmark dataset, and
they contain few substitutions, causing limited di-
versity. To achieve better affinity and diversity, we
design generation based data augmentation which
generates natural disfluent sentences that can then
be directly used to train the disfluency detection
model. We adapt multi-stage coarse-to-fine neural
decoders (Dong and Lapata, 2018) for generation
tasks to design our disfluency generation model.

Disfluency Detection Disfluency detection mod-
els mainly fall into four categories. The first one
utilizes noisy channel models (Zwarts and Johnson,
2011; Lou and Johnson, 2018), which require Tree

Adjoining Grammar (TAG) based transducer in
the channel model. The second category leverages
phrase structure, which is often related to transition-
based parsing yet requires annotated syntactic struc-
ture (Rasooli and Tetreault, 2013; Yoshikawa et al.,
2016; Wu et al., 2015; Jamshid Lou and Johnson,
2020). The third category frames the task as a se-
quence tagging task (Ferguson et al., 2015; Hough
and Schlangen, 2015; Zayats et al., 2016; Lou and
Johnson, 2018; Wang et al., 2019), and the last
one employs end-to-end Encoder-Decoder models
(Wang et al., 2016, 2018) to detect disfluent seg-
ments automatically. Traditional disfluency detec-
tion models often required additional features (e.g.
POS tags) (Wang et al., 2017), syntactic annota-
tions or external tools (e.g. TAG based transducer)
(Lou and Johnson, 2018) for learning. Recent dis-
fluency detection approaches leveraged neural rep-
resentations and obtained comparable results. For
instance, Lou et al. (2018) adopted CNN and intro-
duced the Auto-Correlation Operator which mod-
els more accurate word relations and similarities
in order to capture “rough copies”. However, most
of them still heavily depend on human-annotated
data. As a result, different kinds of data augmen-
tation approaches and pretraining have been de-
signed to alleviate such dependence. For example,
Bach and Huang (2019) incorporated ELMo (Pe-
ters et al., 2018) to sequence tagging model and
Dong et al. (2019) used a pretrained denoising auto-
encoder to initialize the encoder-decoder model.
Wang et al. (2019) achieved state-of-the-art per-
formance by using data augmentation and BERT
(Devlin et al., 2018) in a sequence tagging task, and
Wang et al. (2018) obtained similar performance
by using the same data augmentation methods in
an encoder-decoder fashion. These aforementioned
data-augmentation methods created augmented dis-
fluent sentences only by randomly inserting or re-
peating ngrams. To this end, we introduce gen-
eration based data augmentation to first generate
disfluencies and then use them for sequence tag-
ging of disfluency detection. Note that there was a
similar trend in grammatical error detection. Felice
and Yuan (2014); Kasewa et al. (2018) generated
sentences with grammatical errors to augment the
training data of grammatical error detection.

3 Method

3.1 Disfluency Generation
Our goal is to generate a natural disfluent sentence
from a fluent sentence. For this purpose, we in-
troduced a Planner and Generator based model, as
shown in Figure 2, which is described as follows.

Let x = x1, x2, · · · , x|x| denote a fluent sen-
tence, y = y1, y2, . . . , y|y| denote the correspond-
ing disfluent sentence. We estimated p(y|x) via a
two stage generation process:

p(y|x) = p(y|x,a)p(a|x), (1)

where a = a1, a2, . . . , a|a| is a decision sequence
with the same length as x. ai is either 1 or 0, which
represents whether a disfluent segment (reparan-
dum) should be added after xi or not. We assumed
ai are independent of each other and further de-
composed our objective as follows:

p(a|x) =
∏
i

p(ai|x) (2)

p(y|x,a) =
∏
j

p(yj |y<j ,x,a) (3)

Planner At the first Planning stage, we used an
encoder e1 to obtain representations of x :

h = h1, h2, · · · , h|x| = fe1(x1, x2, · · · , x|x|)
(4)

Then we used h to get the decision probability ai:

p(ai|x) = softmax(W1hi + b1) (5)

Generator: Encoder We used another encoder
e2 to get the representations of x as the conditional
state of the second stage:

ĥ = ĥ1, ĥ2, · · · , ĥ|x| = fe2(x1, x2, · · · , x|x|)
(6)

Encoder e1 and e2 can be Bidirectional LSTM
or Transformer (Vaswani et al., 2017).

Generator: Decoder p(yj |y<j ,x,a) was com-
puted based on the output (h̄j) of the corresponding
step of decoder. As shown in Figure 2, in our PG
model, the input zj of j-th step of decoder is deter-
mined by the value of corresponding ai (E is the
embedding layer of decoder):

zj =

hi if ai = 0 or (ai = 1 and

yj is the first word of reparandum)
E(yj−1) otherwise,

(7)

to Boston <EOD>

<BOS> When will the flight to Denver take off

When will the flight to Boston <EOD> to Denver take off <EOS>

G
en
er
at
or

Pl
an
ne
r

0 0 0 0 1 0 0 0 0

<BOS> When will the flight to Denver take off

𝑧

𝑥

𝑥

𝑦

𝑎

Encoder

Decoder

Figure 2: Our two-stage disfluency generation model with Planner and Generator (PG model).

Alternatively, to make the model focus less on local
contexts for less copied words, we can use a de-
coder with less connection with Planner (PG-LC):

zj =

E(xi) if ai = 0

hi if ai = 1 and
yj is the first word of reparandum

E(yj−1) otherwise,
(8)

We can also use a decoder with no connection with
Planner (PG-NC), where we separate Generator
from Planner and only use the decision sequence
to guide generation. This modification is the basis
of the models with higher generation diversity:

zj =

E(xi) if ai = 0 or (ai = 1 and

yj is the first word of reparandum)
E(yj−1) otherwise,

(9)
We used LSTM as the decoder, and the decoder’s
hidden vector at the j-th time step is computed by

h̄j = fLSTM(h̄j−1, zj) (10)

where h̄0 = ĥ|x| if we use the last hidden state
of encoder to initialize the first state of decoder;
h̄0 = 0 if we do not use such initialization (ID), de-
creasing the decoder’s dependence on the encoder
for high diversity of generated disfluent segments.

Based on encoder’s hidden vectors ĥ and de-
coder’s hidden vectors h̄, we used attention and
copying mechanism to compute p(yj |y<j ,x,a),
similarly to See et al. (2017). Alternatively, we
also computed it without attention (AD) or copying

mechanism (CD) for high diversity of the gener-
ated reparandum. The decoder can also be replaced
with Transformer or GPT2 (Radford et al., 2019).

Training and Inference The training objective
is to maximize the log likelihood of the disfluent
sentence given the fluent sentence:

max
∑

(x,a,y)∈D

log p(y|x,a) + log p(a|x), (11)

here D represents all training pairs.
During inference stage, Planner chose 0 or 1 with

higher probability in each step to generate the deci-
sion sequence a. Alternatively, the Planner can also
be an oracle Planner, whose predictions are gold
decision sequences for the purpose of higher accu-
racy, or a heuristic Planner, whose predictions are
selected according to simple heuristics for higher
diversity in data augmentation. When generating
the final disfluent sentence y, assume yj is gener-
ated based on ai. If ai = 0, we directly copy xi+1

as yj ; if ai = 1, the Generator generates a sequence
of words as reparandum before copying xi+1.

3.2 Disfluency Detection

We regarded the disfluency detection task as a se-
quence tagging task. We denoted i-th sentence with
T words as si = {wt|t = 1, . . . , T}, the input of
our model is {s1, s2, . . . , sN}, where N is the num-
ber of sentences in the dataset. The corresponding
output is {q1, q2, . . . , qN}, where qi is the label se-
quence of i-th sentence, qi = {lt|t = 1, . . . , T}.
lt ∈ {I,O}, where I (O) represents that the word
is in (or outside) the region of reperandum.

3.2.1 Heuristic based Data Augmentation
Pretraining the model on augmented data has been
proved as effective (Wang et al., 2019, 2018) be-
fore training the model on the SWBD dataset. Note
that, compared to multi-task learning and using
Sentence Pair Classification Task as an auxiliary
task by Wang et al. (2019), our study mainly fo-
cuses on sequence tagging pretraining. To generate
an augmented disfluent sentence for any fluent sen-
tence, we followed the augmentation method in
Wang et al. (2019). First we used the heuristic of
randomly choosing one to three positions in a fluent
sentence. Then, for each position k:

• Insertion : we randomly picked a m-gram (m
is randomly selected from one to six) from the
news corpus and inserted it to the position k.

• Repetition : m (the length of repeated words,
randomly selected from one to six) words
starting from the position k were repeated.

3.2.2 Generation based Data Augmentation
These augmented sentences generated from Inser-
tion are often not natural, since those inserted m-
grams are randomly picked from the whole corpus
which may be irrelevant to the current sentence.
This creates large discrepancies between the dis-
tribution of augmented sentences and the original
corpus, and further hinders the effectiveness of aug-
mented data. To introduce more natural and diverse
generated disfluencies, we introduced this genera-
tion based data augmentation mode:

• Generation: we used our PG-based model to
generate reparandum starting from position k.

3.2.3 Sequence Tagging
For the sequence tagging model, instead of using
Transformer or the combination of trainable Trans-
former and frozen BERT as Wang et al. (2019) did,
we directly adopted trainable BERT for both pre-
training and fine tuning. First we got the probability
of labels of each word:

{h1, h2, . . . , hT } =BERT({w1, w2, . . . , wT })
pt =softmax(Wht + b)

(12)

Eventually, the goal of the model is to minimize
the objective, the cross-entropy (CE) loss:

L = E(s,l)

T∑
t=1

CE(lt, pt) (13)

4 Experiments and Results

4.1 Dataset
For disfluency detection, we used English Switch-
board Dataset. Similar to Charniak and John-
son (2001), we split the dataset to training set
sw23[?].dps, development set sw4[5-9][?].dps, and
test set sw4[0-1][?].dps. Following Hough and
Schlangen (2015), we lower-cased the text and re-
moved all punctuation and partial words. For dis-
fluency generation, all sentences with reparandum
were treated as disfluent sentences. Specifically,
our training set contains 29k disfluent sentences
out of 173k sentences. In development set, 2k
sentences in a total of 10k sentences are disfluent
sentences. In test set, 1.6k sentences out of 7.9k
sentences are disfluent sentences.

4.2 Evaluation
To measure whether generated disfluent sentences
are natural, we compared them with reference dis-
fluent sentences based on two generation related
metrics: BLEU (Papineni et al., 2002) and Sen-
tence Accuracy, i.e. the percentage of the gener-
ated sentences that exactly match the ground-truth
disfluent sentences.

Furthermore, we evaluated the naturalness of
model outputs according to human judgment. Due
to budget issue, we only selected the model (PG-
NC-AD-ID) and the baseline (Insertion & Repeti-
tion) with the highest diversity based on automatic
measures. For those two models, we randomly se-
lected 100 generated disfluent sentences and they
were assessed on Amazon Mechanical Turk. We
elicited 3 responses per HIT. For each sentence,
Natural was marked with a score of one, Unnatural
sentences with 0.5, and zero for Incomprehensible
ones. Average Human-evaluated Naturalness (HN)
score thus ranged from 0 (worst) to 1 (best).

We also designed metrics to measure the diver-
sity of disfluent segments, similarly to Li et al.
(2015). Specifically, we calculated the number of
new unigrams and bigrams in the generated disflu-
ent segments. The value was scaled by the total
number of generated tokens in the disfluent seg-
ments (shown as Diverse-1 and Diverse-2 in Table
3). To evaluate disfluency detection, we used stan-
dard metrics: Precision, Recall and F-score.

4.3 Training Details
For disfluency detection, we used BERT-base-
uncased (Wolf et al., 2019). In both pretraining

Without Oracle Decision With Oracle Decision
BLEU Sent Acc Diverse-1 Diverse-2 HN BLEU Sent Acc Diverse-1 Diverse-2

Simple Copy 0.8023 0 - - - - - - -
Seq2Seq (Luong et al., 2015) 0.7244 0.1036 - - - - - - -

CopyNet (Gu et al., 2016) 0.8037 0.1390 - - - - - - -
BART (Lewis et al., 2019) 0.8050 0.0644 - - - - - - -

Insertion & Repetition 0.5792 0.0006 47.34% 43.04% 0.6517 - - - -
PG-Transformer (ours) 0.8176 0.1308 2.63% 0.79% - 0.8662 0.3519 0.82% 4.02%

PG (ours) 0.8173 0.1428 1.34% 2.16% - 0.8727 0.3765 0.85% 3.37%
PG-LC (ours) 0.8177 0.1421 1.70% 0.51% - 0.8684 0.3588 1.74% 0.48%
PG-NC (ours) 0.8155 0.0992 4.15% 1.71% - 0.7144 0.1642 3.34% 7.81%
PG-CD (ours) 0.8297 0.1346 1.50% 1.82% - 0.8716 0.3481 1.40% 3.57%

PG-NC-CD (ours) 0.8179 0.1030 3.47% 13.35% - 0.7579 0.1598 7.19% 36.73%
PG-NC-AD (ours) 0.8178 0.1061 4.38% 8.64% - 0.7738 0.1819 9.63% 34.26%

PG-NC-AD-ID (ours) 0.7925 0.0310 61.04% 52.06% 0.7642 0.747 0.0499 64.85% 69.75%

Table 3: Disfluency generation results in terms of BLEU, Sentence Accuracy (Sent Acc), Human-evaluated Natu-
ralness (HN), Diverse-1 and Diverse-2. We show the performances of all variants of our PG-based models.

Insertion Repetition Generation Total
BERT-RI3 1.5M 1.5M 0M 3M
BERT-G3 0M 0M 3M 3M

BERT-GR3 0M 1.5M 1.5M 3M
BERT-GRI3 1M 1M 1M 3M

BERT-GRI20 6.6M 6.7M 6.7M 20M

Table 4: Composition of augmented data for each model.

and fine-tuning stages, we used Adam optimizer
with learning rate 1e-5 and batch size 32. For dis-
fluency generation, we trained LSTM with learning
rate 1e-2 and Transformer with learning rate 1e-4.

4.4 Models and Baselines

For pretraining, we followed Wang et al. (2019) to
use WMT2017 monolingual language model train-
ing data as unlabeled data. The data augmentation
methods in Section 3.2 were used to generate aug-
mented disfluent sentences. Wang et al. (2019)
used 3 million sentences in the sequence tagging
task and 9 million sentence pairs in the sentence
classification task. We used 3 million sentences
for fair comparison and also experimented with 20
million sentences to examine the effect of data size.
In Table 4, we show the composition of augmented
sentences in all of our models. Note that Wang
et al. (2018) and Bach and Huang (2019) treated
interregnum and reparandum types equally as dis-
fluent segments when training and evaluating their
models, while others in Table 5 only focused on
reparandum which is more difficult to detect. Bach
and Huang (2019) used a different way of splitting
training and development set, whose training set
had more data. Given the different setups, we did
not compare with Wang et al. (2018) and Bach and
Huang (2019).

For disfluency generation, we applied various

combinations of our model settings described in
3.1. In PG-Transformer, encoders and decoders
are all Transformer, while all the other models
use LSTM. Planner-Generator (PG), PG with less
Planner-Generator connection (PG-LC), and PG
with no Planner-Generator connection (PG-NC)
are models that generate relatively natural disfluent
sentences (high BLEU and Sent Acc). For higher
diversity, PG-CD is PG without copying mecha-
nism. Likewise, PG-NC-CD is PG-NC without
copying mechanism, while PG-NC-AD is PG-NC
without attention mechanism. In the extreme case,
PG-NC-AD-ID is PG-NC without attention mech-
anism and encoder-Initialized decoder for high
diversity. We used Simple Copy (directly copy
input as output), Random Insertion & Repetition
of ngrams, LSTM and Attention based Seq2Seq
model, CopyNet and pretrained BART as baselines.

Since our models enable the control of gener-
ating reparandum based on any given decision se-
quences, we examined their performances with and
without oracle decision sequences, i.e. the posi-
tions of the reparandum in generated sentences are
the same as the references.

In order to use our model to generate diverse dis-
fluent sentences, we experimented with different
variants of PG and found PG-NC-AD-ID produced
better performances. Thus we finally chose PG-
NC-AD-ID and the heuristic Planner applying the
position choosing heuristic described in Section
3.2.1, since the model-based Planner always chose
certain most probable positions, and generated less
diverse disfluent sentences, which did not work
well as augmented data GPT2 was used to replace
the LSTM decoder and trained on a partial pretrain-
ing dataset to alleviate the domain gap.

Setting Precision Recall F-score
LSTM (Zayats et al., 2016) seq-tagging & ad-hoc features 0.878 0.711 0.786

semi-CRF (Ferguson et al., 2015) seq-tagging & ad-hoc features 0.900 0.812 0.854
Bi-LSTM (Zayats et al., 2016) seq-tagging & ad-hoc features 0.918 0.806 0.859

LSTM-NCM (Lou and Johnson, 2018) seq-tagging - - 0.868
Transition-based (Wang et al., 2017) parsing & ad-hoc features 0.911 0.841 0.875

NMT (Dong et al., 2019) sequence to sequence & denoising 0.945 0.841 0.890
Transformer (Wang et al., 2019) seq-tagging & multitask & 3M pretraining 0.934 0.873 0.902

Transformer & BERT (Wang et al., 2019) seq-tagging & multitask & 3M pretraining - - 0.914
BERT (ours) seq-tagging 0.949 0.867 0.906

BERT-G3 (ours) seq-tagging & 3M pretraining 0.946 0.878 0.911
BERT-RI3 (ours) seq-tagging & 3M pretraining 0.951 0.881 0.915
BERT-GR3 (ours) seq-tagging & 3M pretraining 0.946 0.890 0.917
BERT-GRI3 (ours) seq-tagging & 3M pretraining 0.951 0.894 0.922†

BERT-GRI20 (ours) seq-tagging & 20M pretraining 0.945 0.902 0.923

Table 5: Results of disfluency detection. F-score is the major metric. “ours” represents our implementations. The
mark † denotes that the results are significant with the significance level p < 0.05. Specifically, p-value is 0.0003
comparing BERT-GRI3 and BERT. p-value is 0.0259 comparing and BERT-GRI3 and BERT-RI3.

4.5 Disfluency Generation Result

Table 3 shows the disfluency generation results.
Despite its relatively high diversity, Insertion &
Repetition baseline had a low BLEU score and an
almost zero Sent Acc, which indicates that disflu-
ent sentences generated in such manners are neither
natural nor similar to real disfluency distributions in
SWBD dataset. Simple Copy baseline maintained
high BLEU yet failed to generate any disfluent sen-
tences with zero Sent Acc. Other neural baselines
were able to achieve reasonable BLEU and Sent
Acc. However, their results could not serve as aug-
mented data to pretrain sequence tagging models,
since there was no indication where were the dis-
fluent segments in output sentences.

All of our proposed PG-based models outper-
formed Insertion & Repetition in terms of BLEU
and Sent Acc, which shows that our generated re-
sults were closer to natural disfluent sentences than
random Insertion & Repetition of ngrams were.
Among our models, PG-Transformer, PG and PG-
LC generated the most natural disfluent sentences,
leading to the highest BLEU and Sent Acc. Our
LSTM-based models PG and PG-LC outperformed
all of the baselines in terms of Sent Acc and BLEU,
despite that PG-Transformer was slightly overshad-
owed by CopyNet in terms of Sent Acc. The per-
formance boost of our PG based models mainly
came from our two-stage Planner-Generator pro-
cess, since the hidden states of the first stage were
used as initial input to guide the generation of
reparandum in the second stage.

We found that without copying mechanism , PG-
CD model harmed Sent Acc but would not drasti-
cally decrease BLEU compared with PG. Without

the state passing between Planner and Generator
Decoder, PG-NC severely harmed Sent Acc as well
as BLEU, while it improved the generation diver-
sity. Without copying mechanism and state passing
(PG-NC-CD), the diversity boosted significantly.
This demonstrates that copying mechanism and
state passing between Planner and Generator De-
coder together forced the model to generate repeti-
tions. The deletion of those two mechanisms were
responsible for increased substitutions and dele-
tions and decreased repetitions in results, leading
to a higher diversity of disfluent sentences.

Without the attention between Generator En-
coder and Generator Decoder, PG-NC-AD had
little improvement in diversity compared to PG-
NC-CD. However, when deleting the mechanism
of using the last state of Generator Encoder as the
initial state of Generator Decoder (PG-NC-AD-
ID), diversity increased substantially. This made
the Generator Decoder an unconditional language
model trained on the dataset. Although the PG-
NC-AD-ID model decreased BLEU and Sent Acc,
it still generated more natural disfluent sentences
than Insertion & Repetition, as demonstrated by
higher automatic evaluation metrics (BLEU, Sent
Acc) and human evaluation metric (HN). Consid-
ering that PG-NC-AD-ID outperformed Insertion
& Repetition in all metrics, we used this model to
generate diverse and natural augmented disfluent
sentences for disfluency detection. As we expected,
with oracle decision sequences, nearly all models
achieved significantly better BLEU and Sent Acc.

4.6 Disfluency Detection Result
We used the above generation based augmented
data to further improve disfluency detection. The

Repetition Substitution Deletion
Insertion & Repetition 46.64% 13.14% 40.22%

PG 85.68% 13.08% 1.24%
PG-NC-AD-ID 19.80% 25.27% 54.93%

Table 6: Different types of generated disfluecies.

Repetition Substitution Deletion
BERT 0.64% 8.51% 2.74%

BERT-RI3 0.35% 8.83% 2.68%
BERT-GR3 0.40% 8.10% 2.95%
BERT-GRI3 0.40% 7.60% 2.60%

Table 7: The percentage of false negative errors in ref-
erence test set of disfluency detection (lower is better).

results are shown in Table 5. We found that BERT
without pretraining already achieved competitive
results. BERT-G3 performed better than BERT,
showing the effectiveness of our generation based
data augmentation. Our BERT-RI3 performed sim-
ilarly to Wang et al. (2019), although we did not
use Sentence Pair Classification Task as an auxil-
iary task during pretraining. The reason might be
that we fine-tuned the BERT model during both
pretraining and SWBD training, while Wang et al.
(2019) trained a Transformer during these stages
and combined it with a fixed BERT when training
on SWBD. Overall, when using Repetition & Inser-
tion to do data augmentation, BERT-RI3 performed
better than BERT.

After replacing Insertion with Generation,
BERT-GR3 outperformed BERT-RI3 and Wang
et al. (2019). When adding Generation upon Rep-
etition and Insertion, BERT-GRI3 achieved even
better performance, a new state-of-the-art perfor-
mance. We also did significance test with Bootstrap
(Berg-Kirkpatrick et al., 2012), BERT-GRI3 signifi-
cantly outperformed BERT-RI3 and BERT with sig-
nificance level p=0.0259 and p=0.0003 respectively.
This not only demonstrated the effectiveness of our
disfluency generation based data augmentation, but
also showed that disfluencies generated by our gen-
eration model are orthogonal to those generated by
Insertion & Repetition. A comparison between the
precision and recall of BERT-GRI3 and BERT re-
vealed that the improvements of pretraining mainly
come from its higher recall, indicating that pretrain-
ing can help the model to detect more disfluencies
while obtaining similar accuracies. When pretrain-
ing data size was increased, BERT-GRI20 did not
significantly outperform BERT-GRI3.

Impact of Augmented Disfluency Types: We
summarized different types of generated disfluen-

Type Count Percentage
Noisy Annotation 112 24.83%

Substitution (False Negative) 103 22.84%
Deletion (False Negative) 90 19.96%

Repetition (False Negative) 45 9.98%
Ambiguous 38 8.43%

False Positive 21 4.66%
Other 42 9.31%

Table 8: Challenge types in disfluency detection. Am-
biguous are cases where annotations and predictions
are both correct.

cies in Table 6 to show how our model contributed
to disfluency detection. Insertion & Repetition gen-
erated limited substitutions, which caused a lack
of natural and diverse disfluencies. Although our
PG model achieved state-of-the-art performance in
terms of BLEU and Sent Acc, it mainly generated
repetitions, leading to low diversity. This was po-
tentially caused by two factors. First, the disfluent
segments in the training dataset were dominated
by 65.39% repetitions, in comparison to 18.99%
substitutions and 15.62% deletions. Second, copy-
ing words and phrases during generation for neural
models proved to be the most convenient and con-
sistent approach, even without copying mechanism.
Our PG-NC-AD-ID model generated more substi-
tutions and deletions compared with PG, leading
to the highest diversity. Compared to random In-
sertion & Repetition, it also generated substantially
more substitutions, leading to a more effective data
augmentation. The decreased number of repeti-
tions can be fixed by combining it with random
repetition, like BERT-GR3. Table 7 presents the
proportion that was not identified by our disfluency
detection models among all repetitions, substitu-
tions and deletions in reference test set. Comparing
our generation based augmentation (BERT-GRI3
and BERT-GR3) with other methods (BERT-RI3
and BERT), we found that pretraining on our gen-
erated data can reduce substitution errors and im-
prove the final metric recall in Table 5, contributed
by increased natural substitutions generated by our
disfluency generation model.

4.7 Error Analysis and Challenges

We manually annotated the errors made by our
disfluency detection model case by case, and pre-
sented a thorough error analysis in terms of dif-
ferent types of errors in Table 8. Note that nearly
one fourth “wrong” predictions were in fact cor-
rect. These mismatches were caused by improper
annotation. For example, the sentence “the thing

is is that’s not enough” was annotated as a fluent
sentence, while the first “is” should be reparan-
dum. Similar noisy annotation issues in the SWBD
dataset were a major hindrance to achieving higher
performance. With respect to other errors, we
saw much more false negatives than false positives.
Among false negatives, errors were dominated by
substitutions and deletions, although the proportion
of repetitions (65.39%) was much more than sub-
stitutions (18.99%) and deletions (15.62%) in the
original SWBD dataset. This showed that current
models do relatively well in identifying repetitions,
while detecting substitutions and deletions is still
challenging for the model.

5 Conclusion

This work presents a simple two-stage disfluency
generation model to generate natural and diverse
disfluent texts. We further used them as augmented
data for pretraining and aiding the task of dis-
fluency detection. Experiments demonstrate that
our proposed disfluency generation model outper-
formed existing baselines; those disfluent sentences
generated significantly aided the task of disfluency
detection and led to state-of-the-art performances.

Acknowledgments

We thank the members of Georgia Tech SALT
group for their feedback on this work. We grate-
fully acknowledge the support of NVIDIA Cor-
poration with the donation of GPU used for this
research. Diyi Yang is supported in part by a grant
from Google. We also thank Nihal Singh and Jinge
Yao for their discussion.

References
Jordi Adell, Antonio Bonafonte, David Escudero, and

D Informatics. 2006. Disfluent speech analysis and
synthesis: a preliminary approach. In in Proc. of 3th
International Conference on Speech Prosody. Cite-
seer.

Nguyen Bach and Fei Huang. 2019. Noisy bilstm-
based models for disfluency detection. Proc. Inter-
speech 2019, pages 4230–4234.

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An empirical investigation of statistical
significance in nlp. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 995–1005. Association for
Computational Linguistics.

Simon Betz, Petra Wagner, and David Schlangen. 2015.
Micro-structure of disfluencies: Basics for conversa-
tional speech synthesis. In Sixteenth Annual Con-
ference of the International Speech Communication
Association.

Eugene Charniak and Mark Johnson. 2001. Edit detec-
tion and parsing for transcribed speech. In Proceed-
ings of the second meeting of the North American
Chapter of the Association for Computational Lin-
guistics on Language technologies, pages 1–9. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. arXiv preprint
arXiv:1805.04793.

Qianqian Dong, Feng Wang, Zhen Yang, Wei Chen,
Shuang Xu, and Bo Xu. 2019. Adapting translation
models for transcript disfluency detection. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 6351–6358.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

Mariano Felice and Zheng Yuan. 2014. Generating arti-
ficial errors for grammatical error correction. In Pro-
ceedings of the Student Research Workshop at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 116–
126.

James Ferguson, Greg Durrett, and Dan Klein. 2015.
Disfluency detection with a semi-markov model and
prosodic features. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 257–262.

John J. Godfrey, Edward C. Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech cor-
pus for research and development. In Proceed-
ings of the 1992 IEEE International Conference on
Acoustics, Speech and Signal Processing - Volume 1,
ICASSP’92, pages 517–520.

Raphael Gontijo-Lopes, Sylvia J Smullin, Ekin D
Cubuk, and Ethan Dyer. 2020. Affinity and diver-
sity: Quantifying mechanisms of data augmentation.
arXiv preprint arXiv:2002.08973.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Julian Hough and David Schlangen. 2015. Recurrent
neural networks for incremental disfluency detec-
tion. Interspeech 2015.

Paria Jamshid Lou and Mark Johnson. 2020. Im-
proving disfluency detection by self-training a self-
attentive model. arXiv, pages arXiv–2004.

Sudhanshu Kasewa, Pontus Stenetorp, and Sebastian
Riedel. 2018. Wronging a right: Generating better
errors to improve grammatical error detection. arXiv
preprint arXiv:1810.00668.

Sabine Kowal. 2009. Communicating with one an-
other: Toward a psychology of spontaneous spoken
discourse. Springer Science & Business Media.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055.

Paria Jamshid Lou, Peter Anderson, and Mark Johnson.
2018. Disfluency detection using auto-correlational
neural networks. arXiv preprint arXiv:1808.09092.

Paria Jamshid Lou and Mark Johnson. 2018. Dis-
fluency detection using a noisy channel model and
a deep neural language model. arXiv preprint
arXiv:1808.09091.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Kirsty McDougall and Martin Duckworth. 2017. Pro-
filing fluency: An analysis of individual variation in
disfluencies in adult males. Speech Communication,
95:16–27.

Christine H Nakatani and Julia Hirschberg. 1994. A
corpus-based study of repair cues in spontaneous
speech. The Journal of the Acoustical Society of
America, 95(3):1603–1616.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Mohammad Sadegh Rasooli and Joel Tetreault. 2013.
Joint parsing and disfluency detection in linear time.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
124–129.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Feng Wang, Wei Chen, Zhen Yang, Qianqian Dong,
Shuang Xu, and Bo Xu. 2018. Semi-supervised dis-
fluency detection. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 3529–3538.

Shaolei Wang, Wanxiang Che, Qi Liu, Pengda Qin,
Ting Liu, and William Yang Wang. 2019. Multi-
task self-supervised learning for disfluency detec-
tion. arXiv preprint arXiv:1908.05378.

Shaolei Wang, Wanxiang Che, and Ting Liu. 2016.
A neural attention model for disfluency detection.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 278–287.

Shaolei Wang, Wanxiang Che, Yue Zhang, Meishan
Zhang, and Ting Liu. 2017. Transition-based dis-
fluency detection using lstms. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2785–2794.

Wen Wang, Gokhan Tur, Jing Zheng, and Necip Fazil
Ayan. 2010. Automatic disfluency removal for im-
proving spoken language translation. In 2010 IEEE
International Conference on Acoustics, Speech and
Signal Processing, pages 5214–5217. IEEE.

Thomas Wolf, L Debut, V Sanh, J Chaumond, C De-
langue, A Moi, P Cistac, T Rault, R Louf, M Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Shuangzhi Wu, Dongdong Zhang, Ming Zhou, and
Tiejun Zhao. 2015. Efficient disfluency detection
with transition-based parsing. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 495–503.

Masashi Yoshikawa, Hiroyuki Shindo, and Yuji Mat-
sumoto. 2016. Joint transition-based dependency
parsing and disfluency detection for automatic
speech recognition texts. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1036–1041.

Vicky Zayats, Mari Ostendorf, and Hannaneh Ha-
jishirzi. 2016. Disfluency detection using a bidirec-
tional lstm. arXiv preprint arXiv:1604.03209.

Simon Zwarts and Mark Johnson. 2011. The impact of
language models and loss functions on repair disflu-
ency detection. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1,
pages 703–711. Association for Computational Lin-
guistics.

A Model Parameters

A.1 Disfluency Detection

In disfluency detection, we used BERT-base-
uncased (Wolf et al., 2019) for sequence tagging.
In both pretraining and fine-tuning stages, we used
Adam optimizer with learning rate 1e-5 (searched
from [1e-4, 1e-5]) and batch size 32. Hyper-
parameters were searched manually according to
F-score. We ran 20 epochs for pretraining and ran
20 epochs for training on SWBD dataset. After
each epoch, we decayed the learning rate by 0.985.

A.2 Disfluency Generation

For disfluency generation, we used one-layer
LSTM with hidden size 300 and a dropout of 0.5
(searched from [0.1, 0.3, 0.5]), and then trained it
with learning rate 1e-2 (searched from [1e-2, 1e-
3]). Alternatively, we used Transformer with 512
hidden units in attention layer, 2048 hidden units
in feed-forward layer, 8 heads, 6 hidden layers,
GELU activation (Hendrycks and Gimpel, 2016),
and a dropout of 0.1 (searched from [0.1, 0.3, 0.5]),
and then trained it with learning rate 1e-4 (searched
from [1e-3, 1e-4, 1e-5]). Hyper-parameters were
searched manually according to Sent Acc. As we
expected, the performance of Transformer is more
sensitive to learning rate than LSTM. We used
Adam optimizer and batch size 64 for both of them.
After each epoch, we decayed the learning rate by
0.985. We trained them for 30 epochs. When we
used GPT2 (Wolf et al., 2019) as decoder, it was
trained on another 3M WMT2017 mono-lingual
language model training data for 10 epochs.

B Computational Requirements

We ran our models on GeForce RTX 2080 GPU.
Each disfluency generation model required 1 hour
to finish training (GPT2 and Transformer required
4 hours). Each disfluency detection model required
2 hours to finish training on SWBD data. Pre-
training disfluency detection models on 3M data
required 5 days on 1 GPU. Pretraining models on
20M data required 7 days on 4 GPUs.

C Evaluation Metrics

As for metrics, we used NLTK to compute BLEU.
Other metrics are computed by our scripts written
according to descriptions in the paper. Metrics on
validation sets were close to those reported on test
sets for all experiments.

As for Human-evaluated Naturalness on AMT,
we provided the description and example sentences
of three levels of disfluent sentences (incomprehen-
sible, unnatural and natural). For example, ”Natu-
ral disfluent sentence” is ”Perfectly natural speech.
Similar to the talk you could probably have with
someone in life.” To improve annotation quality, an-
notators should have >5000 HITs approved, >98%
HIT Approval Rate and located in the US. We also
require annotators to pass a qualification test con-
sisting of samples with expected answers before
they work on the annotation, to make sure that they
have a good understanding of our task. Annotators
are paid $0.08 for annotating each sentence, and
each sentence was rated by three workers.

D Dataset

SWBD dataset is a part of PDTB and WMT2017
mono-lingual language model training data can be
downloaded from News Crawl: articles from 2016.

https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://catalog.ldc.upenn.edu/LDC2019T05
https://www.statmt.org/wmt17/translation-task.html

