What we can learn about language from exploring multilingual language models

Isabel Papadimitriou
Some context
Some context

At last, we have language models that model language (pretty well!)
Some context

At last, we have language models that model language (pretty well!)

This gives us two things: a mystery, and a scientific tool
Some context

At last, we have language models that model language (pretty well!)

This gives us two things: a mystery, and a scientific tool
Some context

At last, we have language models that model language (pretty well!)

This gives us two things: a mystery, and a scientific tool
How are language models a tool?
How are language models a tool?

- We have language learners that learn in front of our eyes
How are language models a tool?

- We have language learners that learn in front of our eyes
- We can investigate this in ways we never could before
How are language models a tool?

- We have language learners that learn in front of our eyes
- We can investigate this in ways we never could before
- By looking into their representations…
How are language models a tool?

- We have language learners that learn in front of our eyes
- We can investigate this in ways we never could before
- By looking into their representations…
 - We can relate complex linguistic properties
How are language models a tool?

- We have language learners that learn in front of our eyes
- We can investigate this in ways we never could before
- By looking into their representations…
 - We can relate complex linguistic properties
- By observing learning under controlled conditions…
How are language models a tool?

- We have language learners that learn in front of our eyes
- We can investigate this in ways we never could before
- By looking into their representations...
 - We can relate complex linguistic properties
- By observing learning under controlled conditions...
 - We can investigate the inductive learning biases that contribute to language learning
This talk:

Using a multilingual lens to approach these questions
This talk:

Using a multilingual lens to approach these questions

Human language
This talk:

Using a multilingual lens to approach these questions
This talk:

Using a multilingual lens to approach these questions
This talk:

Using a multilingual lens to approach these questions
Language Variation and Universals

Concrete

Abstract
Language Variation and Universals

Concrete

- How to understand multifaceted, cross-lingual properties?

Abstract
Concrete

- How to understand multifaceted, cross-lingual properties?
- **LM Embedding spaces** provide a plausible testing ground.

Abstract
Language Variation and Universals

Concrete

● How to understand multifaceted, cross-lingual properties?
● **LM Embedding spaces** provide a plausible testing ground.

Abstract

● What **inductive learning biases** make good language learners?
Language Variation and Universals

Concrete

• How to understand multifaceted, cross-lingual properties?
• **LM Embedding spaces** provide a plausible testing ground.

Abstract

• What **inductive learning biases** make good language learners?
• What are the abstractions that underlie language?
Can we really prove anything?

[Baroni 2021, On the proper role of linguistically-oriented deep net analysis in linguistic theorizing]
Can we really prove anything?

No

[Baroni 2021, On the proper role of linguistically-oriented deep net analysis in linguistic theorizing]
Can we really prove anything?

No

- But an LM is a **concrete theory** for how to model a language

[Baroni 2021, *On the proper role of linguistically-oriented deep net analysis in linguistic theorizing*]
Can we really prove anything?

No

- But an LM is a **concrete theory** for how to model a language
- We can investigate it, and it’s outside the box

[Baroni 2021, *On the proper role of linguistically-oriented deep net analysis in linguistic theorizing*]
Can we really prove anything?

No

- But an LM is a **concrete theory** for how to model a language
- We can investigate it, and it’s outside the box
- Computational models provide **possibilities**, and **interesting cases** we’d not considered

[Baroni 2021, *On the proper role of linguistically-oriented deep net analysis in linguistic theorizing*]
Can we really prove anything?

No

- But an LM is a **concrete theory** for how to model a language
- We can investigate it, and it’s outside the box
- Computational models provide **possibilities**, and **interesting cases** we’d not considered

[Baroni 2021, *On the proper role of linguistically-oriented deep net analysis in linguistic theorizing*]
Representing subjecthood

Transfer learning with syntactic primitives

{{}}} [()]
Representing subjecthood

- A discrete category, but with subtleties and complexities

Transfer learning with syntactic primitives

{ {} [()] }
Representing subjecthood

- A discrete category, but with subtleties and complexities
- One coherent continuous space

Transfer learning with syntactic primitives

\{ \{ \} \} [()] \}
Representing subjecthood

- A discrete category, but with subtleties and complexities
- One coherent continuous space
- How does this work?

Transfer learning with syntactic primitives

\{
\{\}
[()]
\}
Representing subjecthood

- A discrete category, but with subtleties and complexities
- One coherent continuous space
- How does this work?

Transfer learning with syntactic primitives

- Pretrain on non-linguistic data

\{ \{ \} \ [()] \}
Representing subjecthood

- A discrete category, but with subtleties and complexities
- One coherent continuous space
- How does this work?

Transfer learning with syntactic primitives

- Pretrain on non-linguistic data
- Create learners with known inductive biases
Representing subjecthood

- A discrete category, but with subtleties and complexities
- One coherent continuous space
- How does this work?

Transfer learning with syntactic primitives

- Pretrain on non-linguistic data
- Create learners with known inductive biases
- A window into language learning
Representing subjecthood

- A discrete category, but with subtleties and complexities
- One coherent continuous space
- How does this work?

Transfer learning with syntactic primitives

- Pretrain on non-linguistic data
- Create learners with known inductive biases
- A window into language learning
Property: subjecthood
Property: subjecthood

- Who does what to who, being the subject vs the object
Property: subjecthood

- Who does what to who, being the subject vs the object
- Subjecthood is relevant in basically every utterance, and is handled differently in different languages
Subjecthood is complicated!

[Comrie 1989 *Language Universals and Linguistic Typology*]
[Hopper and Thompson 1980 *Transitivity in Grammar and Discourse*]
Subjecthood is complicated!

Discrete

```
S
 NP
   NP
      A
      N
      V
      Adv

Colorless green ideas sleep furiously
```
Subjecthood is complicated!

Intransitives
The glass broke
Isabel broke the glass

Discrete

[Comrie 1989 *Language Universals and Linguistic Typology*]
[Hopper and Thompson 1980 *Transitivity in Grammar and Discourse*]
Subjecthood is complicated!

Intransitives

The glass broke

Isabel broke the glass

Discrete

Animacy

He ran all day

The fridge ran all day

[Comrie 1989 *Language Universals and Linguistic Typology*]

[Hopper and Thompson 1980 *Transitivity in Grammar and Discourse*]
Subjecthood is complicated!

Intransitives

The *glass* broke

Isabel broke the *glass*

Passive voice

The *cat* jumped on to the perch

The *perch* was jumped on to by the cat

Discrete

[Diagram of a tree structure]

Animacy

He ran all day

The *fridge* ran all day

[Comrie 1989 *Language Universals and Linguistic Typology*]
[Hopper and Thompson 1980 *Transitivity in Grammar and Discourse*]
Subjecthood is complicated!

Intransitives

The **glass** broke

Isabel broke the **glass**

Discrete

Animacy

He ran all day

The **fridge** ran all day

Passive voice

The **cat** jumped on to the perch

The **perch** was jumped on to by the cat

Animacy

Volitionality

Mary punched **Sam**

Mary liked **Sam**

Mary forgot **Sam**

[Comrie 1989 *Language Universals and Linguistic Typology*]

[Hopper and Thompson 1980 *Transitivity in Grammar and Discourse*]
Subjecthood is complicated!

Intransitives
The glass broke
Isabel broke the glass

Discrete

Animacy
He ran all day
The fridge ran all day

Case

Passive voice
The cat jumped on to the perch
The perch was jumped on to by the cat

Volitionality
Mary punched Sam
Mary liked Sam
Mary forgot Sam

[Comrie 1989 Language Universals and Linguistic Typology]
[Hopper and Thompson 1980 Transitivity in Grammar and Discourse]
Subjecthood is complicated!

Intransitives

The **glass** broke

Isabel broke the **glass**

Discrete

```
S
  /\     \
 NP   VP
  /\     \
 A   A   N   Y   Adv
```

Colorless green ideas sleep furiously

Animacy

He ran all day

The **fridge** ran all day

Case

Passive voice

The **cat** jumped on to the perch

The **perch** was jumped on to by the cat

Volitionality

Mary punched **Sam**
Mary liked **Sam**
Mary forgot **Sam**

[Comrie 1989 *Language Universals and Linguistic Typology*]
[Hopper and Thompson 1980 *Transitivity in Grammar and Discourse*]
Subjecthood is complicated!

Intransitives

The glass broke

Isabel broke the glass

Discrete

“There is…”

Animacy

He ran all day

The fridge ran all day

Case

Passive voice

The cat jumped on to the perch

The perch was jumped on to by the cat

Volitionality

Mary punched Sam

Mary liked Sam

Mary forgot Sam

[Comrie 1989 *Language Universals and Linguistic Typology*]

[Hopper and Thompson 1980 *Transitivity in Grammar and Discourse*]
Multilingual Language Models

![Multilingual Language Models](image)

<table>
<thead>
<tr>
<th>Language</th>
<th>Deutsch</th>
<th>English</th>
<th>Español</th>
<th>Français</th>
<th>Italiano</th>
<th>Nederlands</th>
<th>Português</th>
<th>Română</th>
<th>Русский</th>
<th>Türkçe</th>
</tr>
</thead>
<tbody>
<tr>
<td>العربية</td>
</tr>
<tr>
<td>Asturian</td>
<td>Español</td>
</tr>
<tr>
<td>Azerbaijani</td>
</tr>
<tr>
<td>Bashkir</td>
</tr>
<tr>
<td>Belarusian</td>
</tr>
<tr>
<td>Bulgarian</td>
</tr>
<tr>
<td>Catalan</td>
<td>Català</td>
</tr>
<tr>
<td>Chinese</td>
<td>中文</td>
</tr>
</tbody>
</table>

Stanford NLP Isabel Papadimitriou
● They represent different **words**, in different **contexts**, in different **languages**
Multilingual Language Models

- They represent different **words**, in different **contexts**, in different **languages**
- All in one high-dimensional space
Multilingual Language Models

- They represent different **words**, in different **contexts**, in different **languages**

- All in one high-dimensional space

How do they do this for subjecthood?
Subjecthood in Multilingual Language Models
Subjecthood in Multilingual Language Models

- Subjecthood is a concrete handle for looking into LM internals
Subjecthood in Multilingual Language Models

- Subjecthood is a concrete handle for looking into LM internals
- LMs give us a concrete view of how multilingual subjecthood *can* be represented and influenced
Deep Subjecthood: Higher-Order Grammatical Features in Multilingual BERT

Isabel Papadimitriou
Stanford University
isabelvp@stanford.edu

Ethan A. Chi
Stanford University
ethanchi@cs.stanford.edu

Richard Futrell
University of California, Irvine
rfutrell@uci.edu

Kyle Mahowald
University of California, Santa Barbara
mahowald@ucsb.edu

(EACL 2021)
Three questions:
Three questions:

- Is subjecthood a universal category?
Three questions:

- Is subjecthood a universal category?
- Is subjecthood a discrete category?
Three questions:

- Is subjecthood a universal category?
- Is subjecthood a discrete category?
- What happens with typological variation?
Main experimental tool:

- Train a **binary classifier** on mBERT embeddings to distinguish **subjects** from **objects** in one language
Main experimental tool:

- Train a **binary classifier** on mBERT embeddings to distinguish **subjects** from **objects** in one language.

Subject
The **cat** is chasing the **dog**
Main experimental tool:

- Train a binary classifier on mBERT embeddings to distinguish **subjects** from **objects** in one language

- Zero-shot transfer classifiers from one language to another

Subject	Object
The cat is chasing the dog
Main experimental tool:

- Train a **binary classifier** on mBERT embeddings to distinguish **subjects** from **objects** in one language.

- Zero-shot transfer classifiers from one language to another.

The cat is chasing the dog

Subject: cat
Object: dog

Τον σκύλο τον κυνηγάει η γάτα

这只猫在追那条狗

?? ?? ?? ??
Cross-lingual accuracy is comparable to in-language accuracy.

Red dots are in-language accuracy, black dots are cross-language accuracy.
Cross-lingual accuracy is comparable to in-language
Parallel, Multilingual Subjecthood
Parallel, Multilingual Subjecthood

- **Linguistic generalization** in pretrained LMs:
 - Encode subjecthood separately from language
Parallel, Multilingual Subjecthood

- **Linguistic generalization** in pretrained LMs:
 - Encode subjecthood separately from language

- Subjecthood is available to a learner as a universal
Three questions:

- Is subjecthood a universal category?
- Is subjecthood a discrete category?
- What happens with typological variation?
But is subjecthood a simple binary issue?

Discrete

Prototype

Animacy,
Passive voice,
Volitionality,
Agency,
Case,
...

Colorless green ideas sleep furiously
But is subjecthood a simple binary issue?

- Different views on how to think of subjecthood

Discrete

Prototype

- Animacy,
- Passive voice,
- Volitionality,
- Agency,
- Case,
- ...

Colorless green ideas sleep furiously
But is subjecthood a simple binary issue?

- Different views on how to think of subjecthood
- Multilingual LMs can help us tease out this conflict

Discrete

```
S
  | NP
  |   | NP
  |   |   | VP
  |   | A  | A  | N  | V  | Adv
Colorless green ideas sleep furiously
```

Prototype

- Animacy,
- Passive voice,
- Volitionality,
- Agency,
- Case,
- ...

VS.
Main experimental tool:

- Train a **binary classifier** on mBERT embeddings to separate **subjects** from **objects** in one language
Main experimental tool:

- Train a **binary classifier** on mBERT embeddings to separate **subjects** from **objects** in one language.

Probabilities: Subjecthood projection space

- Object: $P(\text{subject}) = 0$
- Subject: $P(\text{subject}) = 1$
Main experimental tool:

- Train a **binary classifier** on mBERT embeddings to separate **subjects** from **objects** in one language.

 Probabilities: Subjecthood projection space

 - **Object** \(P(\text{subject}) = 0 \)
 - **Subject** \(P(\text{subject}) = 1 \)

- *How*, not *if*, the classifier encodes subjecthood.
Main experimental tool:

- Train a **binary classifier** on mBERT embeddings to separate **subjects** from **objects** in one language.

Probabilities: Subjecthood projection space

- *Object*: \(P(\text{subject}) = 0 \)
- *Subject*: \(P(\text{subject}) = 1 \)

- *How*, not *if*, the classifier encodes subjecthood
Discrete

Prototype

Animacy,
Passive voice,
Volitionality,
Agency,
Case,
...

Colorless green ideas sleep furiously

VS.

Stanford NLP Isabel Papadimitriou
Do probe probabilities reflect the effect of other features?
Classifier probabilities show animacy effects

Animacy

He ran all day

The fridge ran all day
Classifier probabilities show animacy effects

Animacy

He ran all day

The fridge ran all day

Even when controlling for syntactic role, animacy has an effect
Classifier probabilities show passive voice effects

Passive voice
The cat jumped on to the perch
The perch was jumped on to by the cat
Classifier probabilities show passive voice effects

Passive voice
The cat jumped on to the perch
The perch was jumped on to by the cat
Classifier probabilities show passive voice effects

Passive voice

The **cat** jumped on to the perch

The **perch** was jumped on to by the cat
• We see **prototype effects** in mBERT embeddings

• **Many factors** play into making something a subject

Also look at the effect of **case**.
Future work: discourse, information structure (given/new)
But is it all just prototypes?

Discrete

Prototype

Animacy, Passive voice, Volitionality, Agency, Case, ...

Colorless green ideas sleep furiously
When classifying grammatical role, BERT doesn’t care about word order...except when it matters

Isabel Papadimitriou
Stanford University
isabelvp@stanford.edu

Richard Futrell
University of California, Irvine
rfutrell@uci.edu

Kyle Mahowald
The University of Texas at Austin
mahowald@utexas.edu

(ACL 2022)
What if we test the probe on the same sentences *(with the same prototype effects)* but we **swap the labels**?

The **chef** chopped the **onion**, The **onion** chopped the **chef**
What if we test the probe on the same sentences (with the same prototype effects) but we swap the labels?

The chef chopped the onion, The onion chopped the chef

Will the probe tell them apart?
Yes – Representation differences that are caused **only** by syntactic word order

![Diagram showing progressions of the same words in original and swapped sentences.](image)

- **Original, as Subject**
- **Swapped, as Object**

Stanford NLP Isabel Papadimitriou
Both grammatical subjecthood and prototype effects

- Future work: *How* can a representation embody both of these types of information?

- LMs as a tool to **better understand this middle ground**
Three questions:

- Is subjecthood a universal category?
- Is subjecthood a discrete category?
- What happens with typological variation?
Typological variation: Intransitives
Typological variation: **Intransitives**

- Subjecthood is encoded in parallel between languages
Typological variation: *Intransitives*

- Subjecthood is encoded in parallel between languages
- But are the *particularities* of each language also encoded?
Typological variation: Intransitives

- Subjecthood is encoded in parallel between languages
- But are the **particularities** of each language also encoded?
- Do we see variation in treatment of intransitives?
Typological variation: **Intransitives**

Transitive: The *dog* chased the *cat*

Intransitive: The *glass* broke
Ergative languages treat **intransitive subjects** like **objects**

![Diagram showing the difference between nominative and ergative languages. In nominative languages, the subject is marked first (A), followed by the object (S, O). In ergative languages, the object is marked first (A), followed by the subject (S, O).]
Typological variation: *Intransitives*

- Subjecthood is encoded in parallel between languages.
- But are the *particularities* of each language also encoded?
- Do we see variation in treatment of intransitives?
Typological variation: \textit{Intransitives}

- Subjecthood is encoded in parallel between languages
- But are the \textit{particularities} of each language also encoded?
- Do we see variation in treatment of intransitives?
Typological variation: Intransitives

• Subjecthood is encoded in parallel between languages
• But are the particularities of each language also encoded?
• Do we see variation in treatment of intransitives?
 ○ Can higher-order information be represented in embedding space?
Hold out intransitives from classifier training

Probabilities: Subjecthood projection space

- **Transitive object**
 \[P(\text{subject}) = 0 \]

- **Unseen:** Intransitives
 \[P(\text{subject}) = ?? \]

- **Transitive subject**
 \[P(\text{subject}) = 1 \]
Hold out intransitives from classifier training

Probabilities: Subjecthood projection space

Transitive object
$P(\text{subject}) = 0$

Unseen: Intransitives
$P(\text{subject}) = ?$

Transitive subject
$P(\text{subject}) = 1$
Hold out intransitives from classifier training

Probabilities: Subjecthood projection space

- Transitive object
 \(P(\text{subject}) = 0 \)

- Unseen: Intransitives
 \(P(\text{subject}) = ?? \)

- Transitive subject
 \(P(\text{subject}) = 1 \)

- Classifier probabilities show how intransitives align
Transitive Subjects (A) > Intransitive Subjects (S) > Transitive Objects (O)
These are ergative languages!
These are ergative languages!

And this also comes out when we transfer classifiers cross-lingually!
Classifiers Reflect Intransitive Alignment

• Alignment of intransitives is a feature of a grammar, not of any one utterance

• But it is apparent in embedding space, even when they are held out
Subjecthood: what we learned
Subjecthood: what we learned

- Subjecthood representation can be, and is, \textit{multilingual}
Subjecthood: what we learned

- Subjecthood representation can be, and is, multilingual
- Prototype effects co-exist with discrete grammatical classes
Subjecthood: what we learned

- Subjecthood representation can be, and is, *multilingual*.
- Prototype effects **co-exist** with discrete grammatical classes.
- **Higher-order information** (like what to do with intransitives) is represented in the same space as meaning.
Subjecthood: what we learned

- Subjecthood representation can be, and is, **multilingual**
- Prototype effects **co-exist** with discrete grammatical classes
- **Higher-order information** (like what to do with intransitives) is represented in the same space as meaning

Future work: better understanding the geometric expression of these properties
Representing subjecthood

- A discrete category, but with subtleties and complexities
- One coherent continuous space
- How does this work?

Transfer learning with syntactic primitives

- Pretrain on non-linguistic data
- Create learners with known inductive biases
- A window into language learning
Learning Music Helps You Read: Using Transfer to Study Linguistic Structure in Language Models

Isabel Papadimitriou
Stanford University
isabelvp@stanford.edu

Dan Jurafsky
Stanford University
jurafsky@stanford.edu

(EMNLP 2020)
Main Question:

What structural inductive biases make a good language learner?
We can’t really have blank-slate learners that work

[Baroni 2021, *On the proper role of linguistically-oriented deep net analysis in linguistic theorizing*]
We can’t really have blank-slate learners that work

- Small networks can’t model the data well

[Baroni 2021, *On the proper role of linguistically-oriented deep net analysis in linguistic theorizing*]
We can’t really have blank-slate learners that work

- Small networks can’t model the data well
- Large models come with many inductive biases

[Baroni 2021, *On the proper role of linguistically-oriented deep net analysis in linguistic theorizing*]
We can’t really have blank-slate learners that work

- Small networks can’t model the data well
- Large models come with many inductive biases

This paper:
- But, (if we’re careful about data) pre-training creates a powerful learner with a known inductive learning bias

[Baroni 2021, On the proper role of linguistically-oriented deep net analysis in linguistic theorizing]
untrained model, unknown inductive biases

Pretraining, non-linguistic

Learner whose inductive biases we know

(Because we pretrained them in!)
untrained model, unknown inductive biases

Pretraining, non-linguistic

Learner whose inductive biases we know

(Because we pretrained them in!)

Transfer learning

How well can this model learn from language data?
Pretraining data
Pretraining data

Real Data:

Music

Code
Pretraining data

Real Data:

Music

Code

Synthetic Structural Primitives:

Hierarchical

Non-hierarchical
Transfer learning should be *constrained*

- We want to make sure that we’re using inductive biases, not re-pretraining

- Two ways of constraining transfer learning:
 - Limit *data*
 - Limit *trainable parameters*
Transfer learning should be *constrained*

- We want to make sure that we’re using inductive biases, not re-pretraining

- Two ways of constraining transfer learning:
 - Limit data
 - Limit trainable parameters
Transfer learning should be \textit{constrained}

- We want to make sure that we’re using inductive biases, not re-pretraining

- Two ways of constraining transfer learning:
 - Limit data
 - Limit \textbf{trainable parameters}

 Freeze everything except \textbf{word embeddings}. Can LM internals be effectively repurposed?
Random Baselines – Randomly sampled tokens

Ppl tested on Spanish (L2) (Lower is better)

Pretraining Language (L1)

- Random Uniform
- Random Zipf
- Music
- Code
- Nesting Pairs
- Flat Pairs
Random Baselines – Randomly sampled tokens

- Control - How far can we get with just word embeddings?
Random Baselines – Randomly sampled tokens

- Control - How far can we get with just word embeddings?
- Vocabulary distribution has a significant effect
Random Baselines – Randomly sampled tokens

- Control - How far can we get with just word embeddings?
- Vocabulary distribution has a significant effect
Random Baselines – Randomly sampled tokens

- Control - How far can we get with just word embeddings?
- Vocabulary distribution has a significant effect
Music and Code

- Non-linguistic, structured data, with **different surface forms**
- Is this structural bias helpful for language modeling?
Ppl tested on Spanish (L2)
(Lower is better)

Pretraining Language (L1)
- Impressive improvement in perplexity
- Impressive improvement in perplexity
- MIDI surface form is very different (and vocabulary is just 310 tokens)
- Impressive improvement in perplexity
- MIDI surface form is very different (and vocabulary is just 310 tokens)
- But music and language have structural similarities
- Impressive improvement in perplexity
- MIDI surface form is very different (and vocabulary is just 310 tokens)
- But music and language have structural similarities
Is this because of hierarchical structures?

Human language

Code

Music
This is testable
This is testable

Pretrain on a simple hierarchical structure:

Nesting (Recursive) Parentheses:
Pretrain on a simple hierarchical structure:

Nesting (Recursive) Parentheses: 0 → 29 → 29 → 0 → 0 → 5 → 5 → 0 → 1016 → 1016 → 9 → 8 → 8 → 28 → 28 → 9

But also have a control:

Flat Parentheses: 21 → 13 → 21 → 6294 → 13 → 6294 → 5 → 5471 → 5 → 32 → 32 → 5471
• Simple underlying structure causes huge increase in performance compared to random.
- **Simple underlying structure** causes huge increase in performance compared to random

- Flat parentheses are as good as hierarchical parentheses
Parentheses inductive bias is much better than random

- But the Flat Parentheses corpus is very similar to the Random corpus
Difference from placing a random token twice instead of once
What to take away from these experiments?
What to take away from these experiments?

- A structural inductive bias (but not necessarily hierarchical) helps learn language
What to take away from these experiments?

- A structural inductive bias *(but not necessarily hierarchical)* helps learn language
What to take away from these experiments?

- A structural inductive bias *(but not necessarily hierarchical)* helps learn language

- Flat, head-to-head dependencies are an important learning bias to consider
Results have been reproduced in transformers

![Comparison of dependency structures.](chart)

[Ri and Tsuruoka, 2022, *Pretraining with Artificial Language: Studying Transferable Knowledge in Language Models*]

Flat parentheses in the wild

Kundan Krishna, Jeffrey Bigham, Zachary C. Lipton (2021) *Does Pretraining for Summarization Require Knowledge Transfer?*
Flat parentheses in the wild

Kundan Krishna, Jeffrey Bigham, Zachary C. Lipton (2021) Does Pretraining for Summarization Require Knowledge Transfer?

- Take a nonsense (random) corpus,
- Create “summarization” input-output pairs with simple summarization-type dependencies
- Good downstream performance!

Figure 1: Procedure to create pretraining dataset using the nonsense corpus and our proposed pretraining tasks.
How about more language-like structures?
How about more **language-like structures**?

- When we transfer between languages, transfer is correlated with **typological syntactic distance**
How about more language-like structures?

- When we transfer between languages, transfer is correlated with **typological syntactic distance**

There’s a correlation – but can we test causes?
How about more language-like structures?

- When we transfer between languages, transfer is correlated with typological syntactic distance

There’s a correlation – but can we test causes?

• **Subjecthood:** One embedding space can encode
• Subjecthood: One embedding space can encode
 ○ A property \textit{generalized} across languages
Subjecthood: One embedding space can encode
- A property **generalized** across languages
- A discrete property also influenced by **prototype** effects
Subjecthood: One embedding space can encode

- A property **generalized** across languages
- A discrete property also influenced by **prototype** effects
- **Higher order features** of the language
Subjecthood: One embedding space can encode
○ A property **generalized** across languages
○ A discrete property also influenced by **prototype** effects
○ **Higher order features** of the language

Structural primitives:
Subjecthood: One embedding space can encode
- A property **generalized** across languages
- A discrete property also influenced by **prototype** effects
- **Higher order features** of the language

Structural primitives:
- We’re in a unique position – we can make powerful learners imbued with **known inductive biases**
• Subjecthood: One embedding space can encode
 ○ A property **generalized** across languages
 ○ A discrete property also influenced by **prototype** effects
 ○ **Higher order features** of the language

{ {} [()] }

• Structural primitives:
 ○ We’re in a unique position – we can make **powerful learners**
 imbued with **known inductive biases**
 ○ Flat dependencies are an important and interesting bias
What can we learn from LMs?
What can we learn from LMs?

- The embedding space of multilingual LMs suggests how the complexities and dualities of universal properties like subjecthood might function
What can we learn from LMs?

- The embedding space of multilingual LMs suggests how the complexities and dualities of universal properties like subjecthood might function.

- Pretraining with structural primitives demonstrates what starting points make language learning possible.

- Exciting moment to be asking cross-lingual questions.
What can we learn from LMs?

- The embedding space of multilingual LMs suggests how the **complexities and dualities** of universal properties like subjecthood might function.
- Pretraining with structural primitives demonstrates what **starting points** make language learning possible.
- Exciting moment to be asking cross-lingual questions.

Thanks!
Transfer between languages

![Graph showing the transfer between languages based on L1 WALS-syntax distance from Spanish.](image)
Transfer between languages

- Transfer is correlated with syntactic similarity
Transfer between languages

- Transfer is correlated with syntactic similarity
- Control for vocabulary overlap