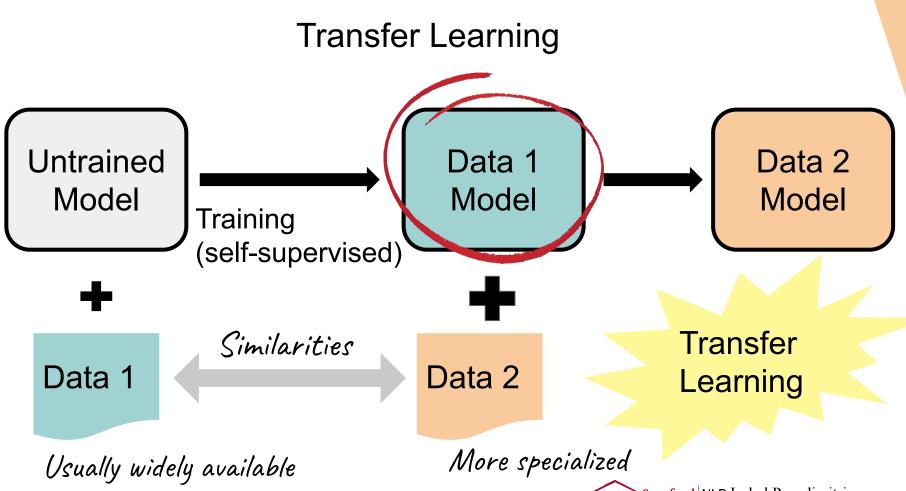
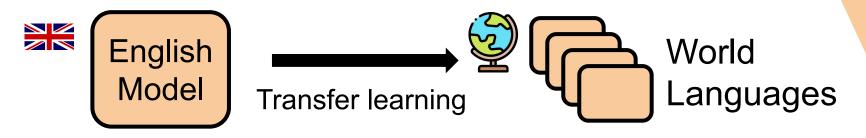
Structural Transfer Learning: Exploring Neural Models and Language Structure Through Understanding Transfer

Isabel Papadimitriou



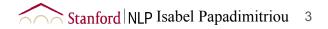
Stanford NLP Isabel Papadimitriou 2

Transfer learning has practical applications

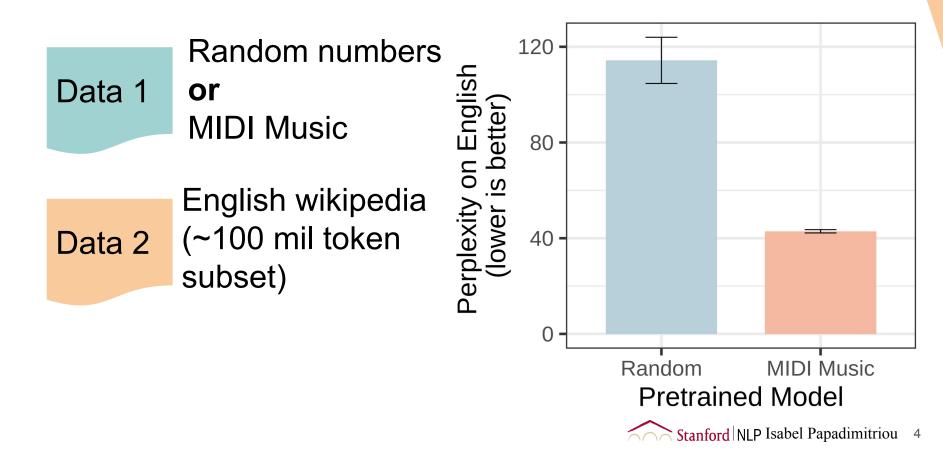


But also an **analysis methodology** for understanding data and learning

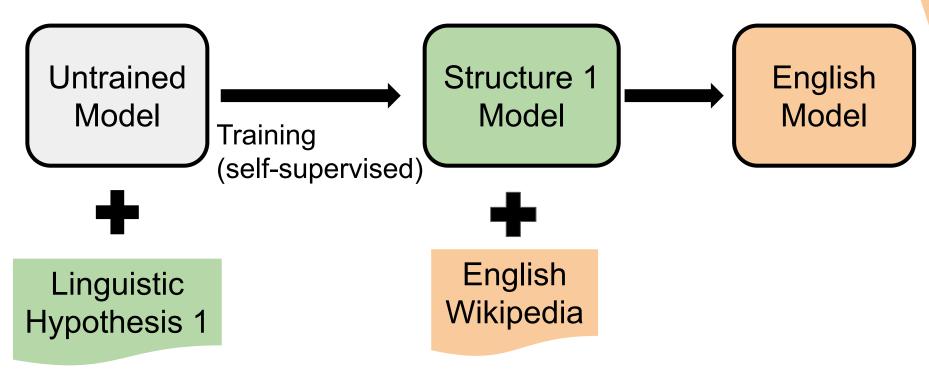
 Power machine learning models let us explore questions about language in new ways

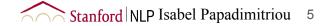


Shared structures between modalities

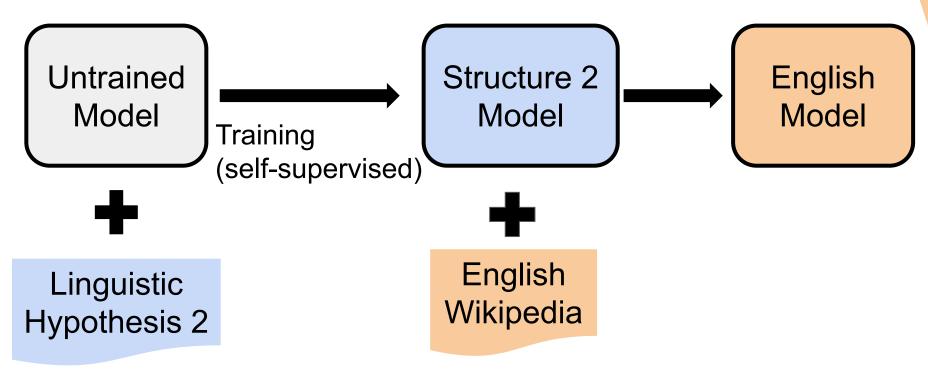


Structural Transfer: a testbed for linguistic structure hypotheses

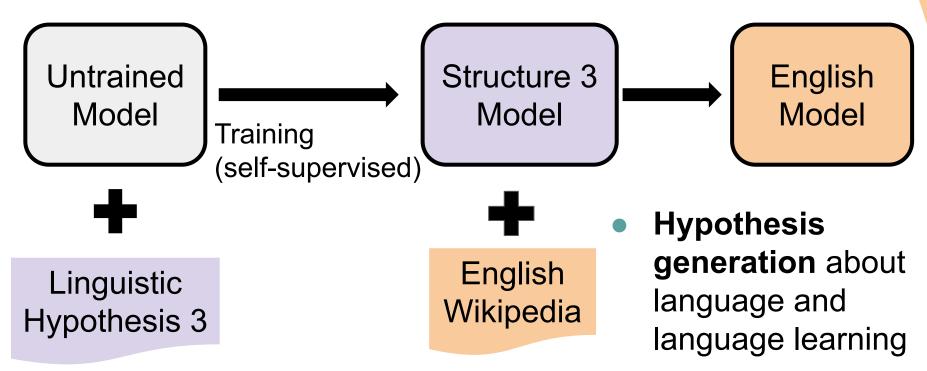


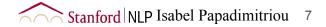


Structural Transfer: a testbed for linguistic structure hypotheses

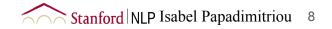


Structural Transfer: a testbed for linguistic structure hypotheses





Using structural transfer learning to explore the **role of structure** in language and language learning

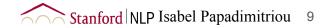


Transfer learning in NLP

• Recent NLP: pretrain so much, that the task can be described in language. **Prompting**

Transfer learning now

- Looking beyond the dominant languages where we can do things like prompting
- And for understanding **structure**



Structure and language

- Structure is characteristic of human language
- Most obviously in syntax
- But also beyond syntax
 - Meaning, discourse, reference, information structure
- What structural biases are sufficient for language learning?
- (beyond this talk) Role of communication and language use in creating structure

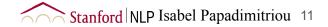
1) Recursion

Constituents "Clumping"

The cat sat on the mat

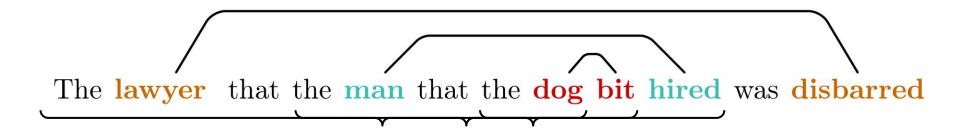
I think that the cat sat on the mat

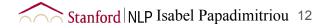
You always accuse me that I think that the cat sat on the mat



1) Recursion

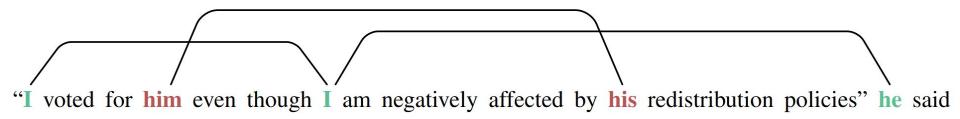
Nesting Context-free

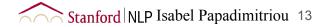




2) Crossing links and dependencies

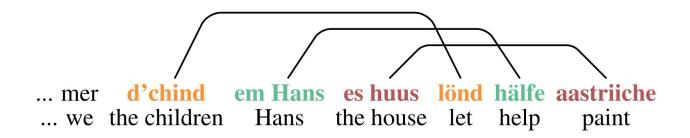
Linking in meaning and reference

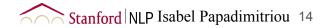




2) Crossing links and dependencies

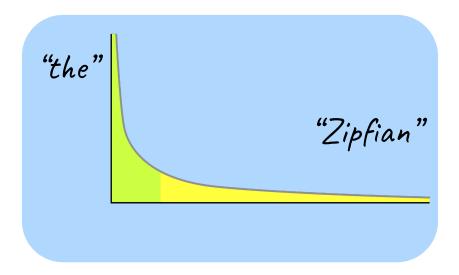
And syntactic structures

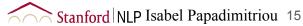




[Schieber 1985]

3) Zipfian vocabulary distribution

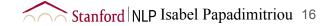




Outline

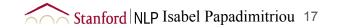
- What structural biases are useful for human language learners?
 - Disentangling the effects of recursive and linking structures

- How does vocabulary distribution transfer as a structural bias?
 - The structural effect of vocabulary



Outline

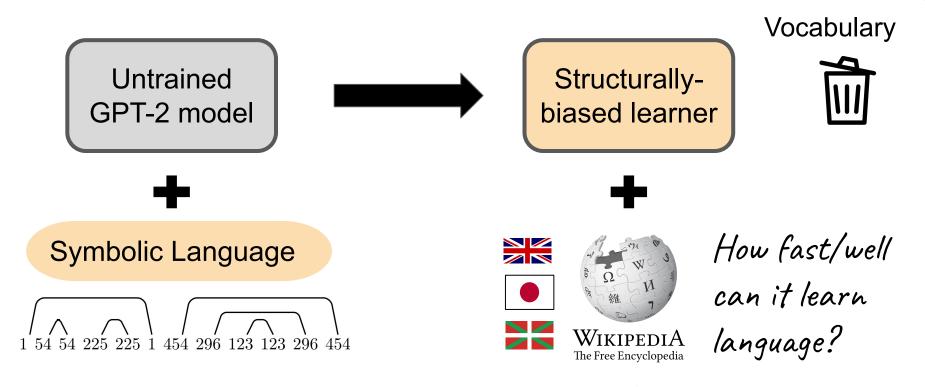
- What structural biases are useful for human language learners?
 - Disentangling the effects of recursive and linking structures
- How does vocabulary distribution transfer as a structural bias?
 - The structural effect of vocabulary



Exploring inductive bias

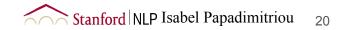
Use transfer learning to test different **structural inductive learning biases**

Transfer learning methodology

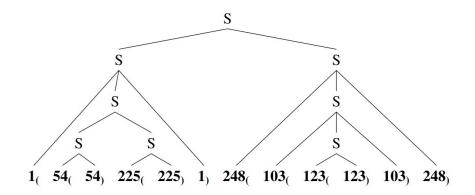


Symbolic pretraining languages

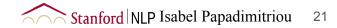
Nesting Parentheses



Nested Parentheses Primitive

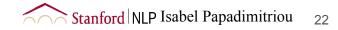


- Well-nested, matching pairs
- Constituents



Symbolic pretraining languages

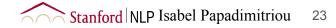
Nesting Parentheses Crossing Dependencies



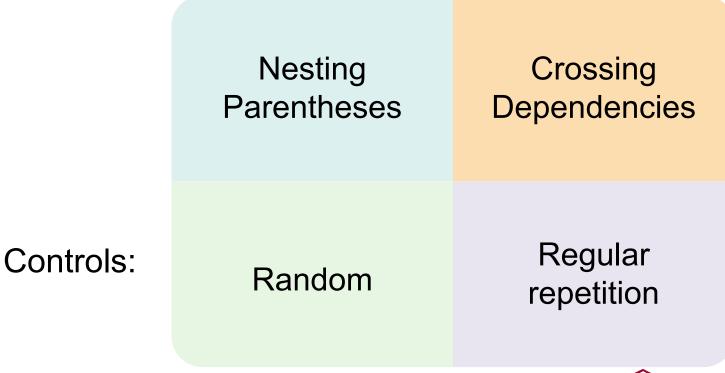
Crossing Dependencies

$$1_{(\ 54_{(\ 225_{(\ 1)}\ 54_{)}\ 225_{)}\ 248_{(\ 248_{)}\ 123_{(\ 103_{(\ 123_{)}\ 103_{)}}}}$$

- Tokens have to match, but not nest
- Where does the structure come from?
 - **Dependency length distribution:** sample from empirical distances of nesting parentheses



Symbolic pretraining languages

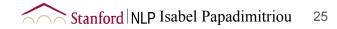


Simple Repetition Primitive

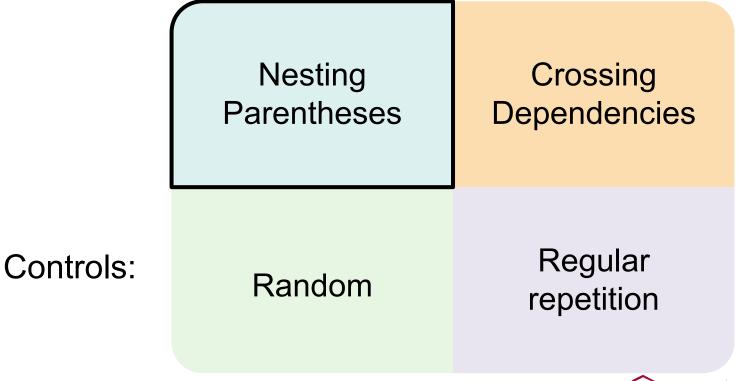
Randomly sample *k* words, then repeat them, then randomly sample *k* words...

499 472 300 345 272 499 472 300 345 272 309 17 15

(Example is for k=5, we do k=10 in experiments)

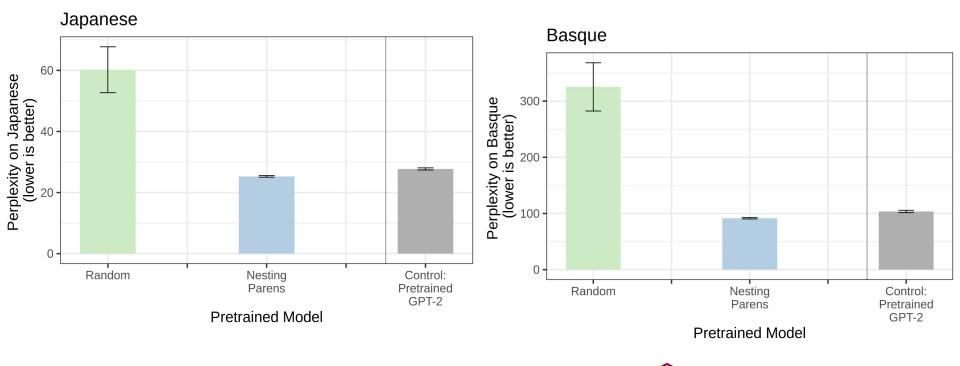


Symbolic pretraining languages

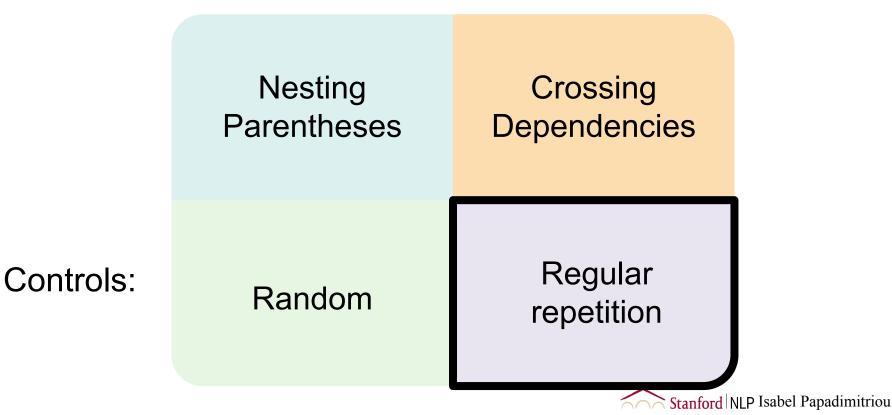


Nesting structure helps language learning Baseline – no structure 120 Baseline – English structure Perplexity on English (lower is better) 80 40 Random Nesting Control: Parens Pretrained GPT-2 **Pretrained Model**

Multilingual case – Japanese and Basque

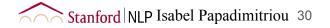


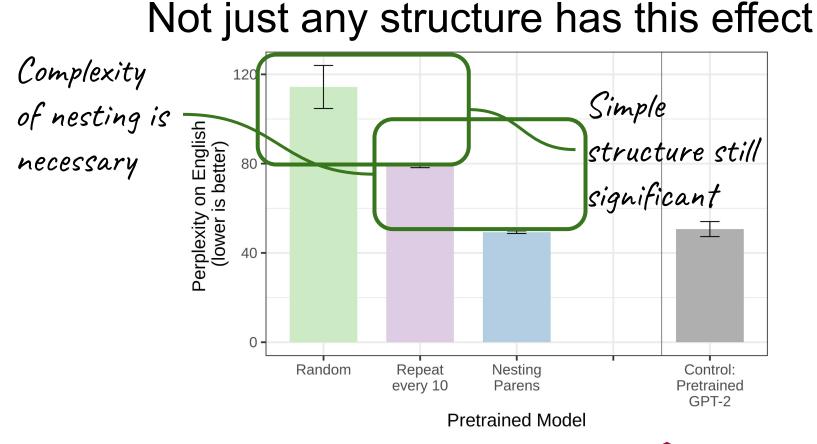
Symbolic pretraining languages



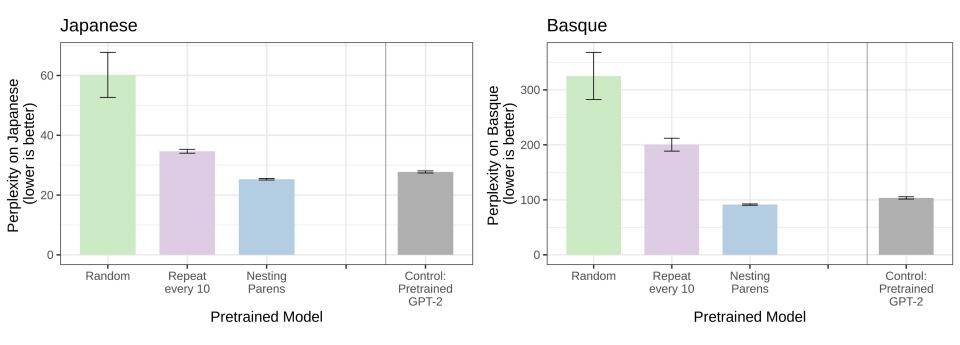
Question: does **nesting** really help? Or would any structure help?

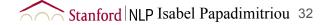
499 472 300 345 272 499 472 300 345 272 309 17 15



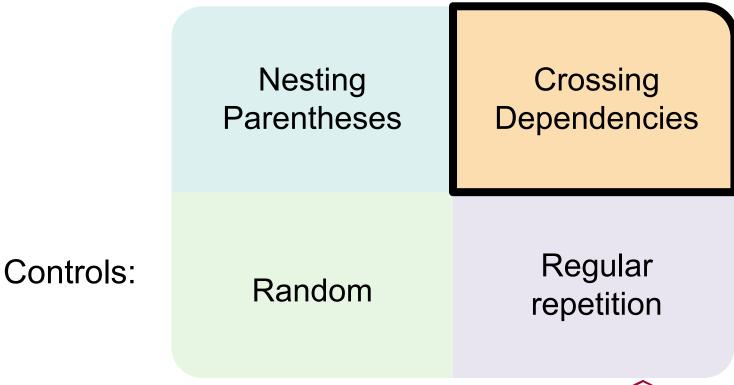


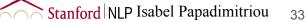
Again, a multilingual effect



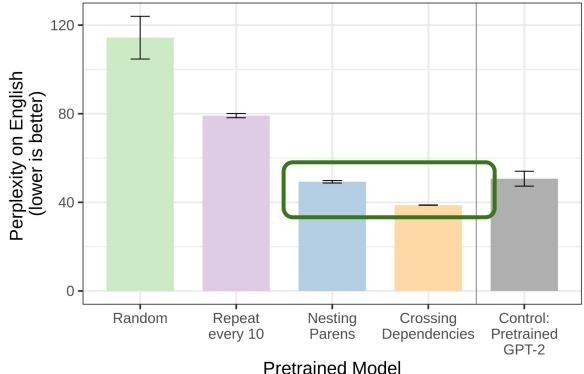


Symbolic pretraining languages

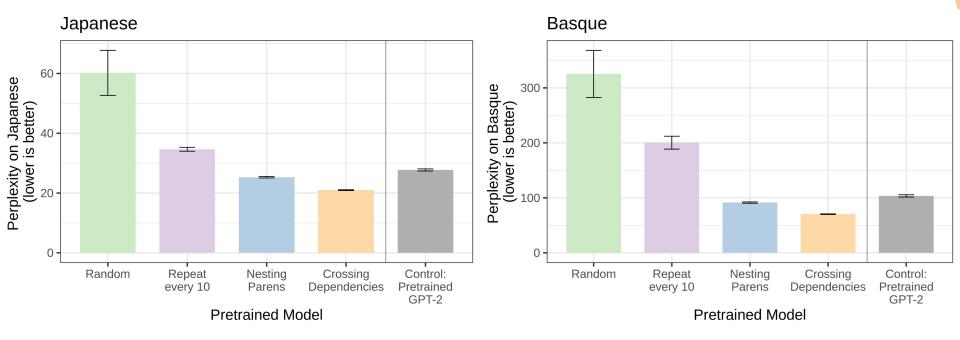


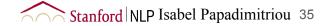


Crossing links, without nesting, provide a better inductive bias



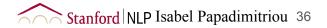
This is also true across languages





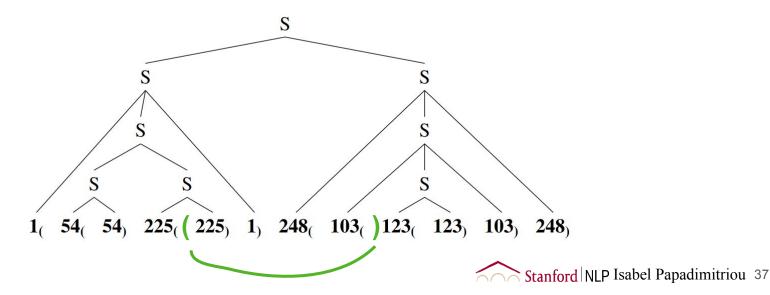
The kinds of structure that make language are multifaceted

- Structural transfer lets us explore hypotheses about structure in language
- Language as a learnable system, independent of linguistic theory

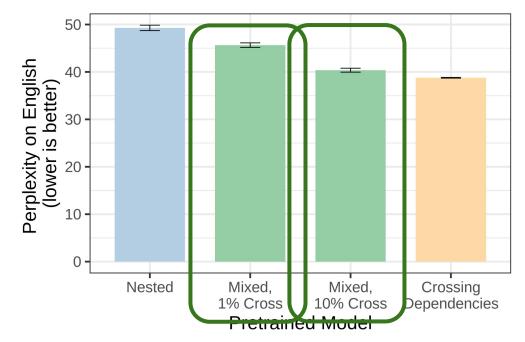


Mixing nesting and crossing parentheses

A language that is mostly nesting, with 1%, or 10% of parentheses not following the structure

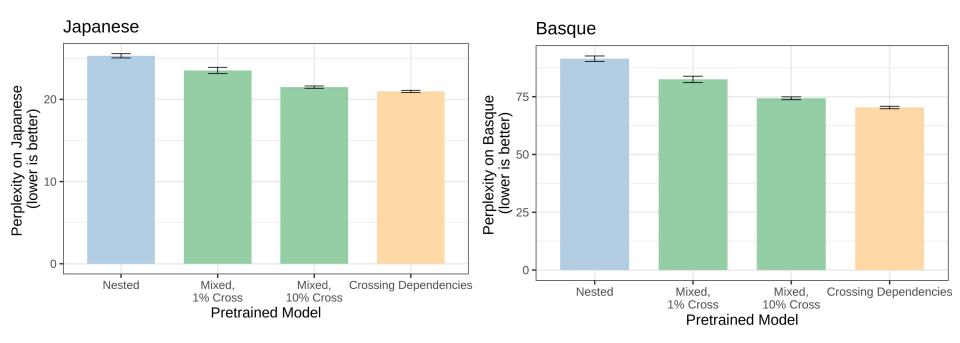


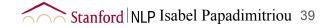
Slightly breaking constituent structure makes better language learners





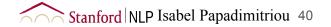
Also a multilingual effect





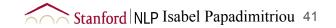
Structural inductive bias through transfer learning

- Complex structural relationships are important in language
- Multiple crossing dependencies a good starting point for language learning
- Computational models as hypothesis generators: testing linguistic structure in theory-free ways



Outline

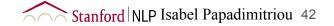
- What structural biases are useful for human language learners?
 - Disentangling the effects of recursive and linking structures
- How does vocabulary distribution transfer as a structural bias?
 - The structural effect of vocabulary



Outline

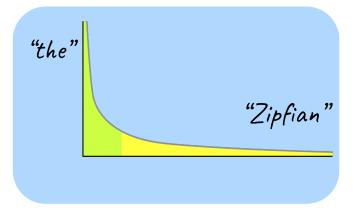
- What structural biases are useful for human language learners?
 - Disentangling the effects of recursive and linking structures

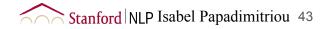
- How does vocabulary distribution transfer as a structural bias?
 - The structural effect of vocabulary



The lexicon in linguistics

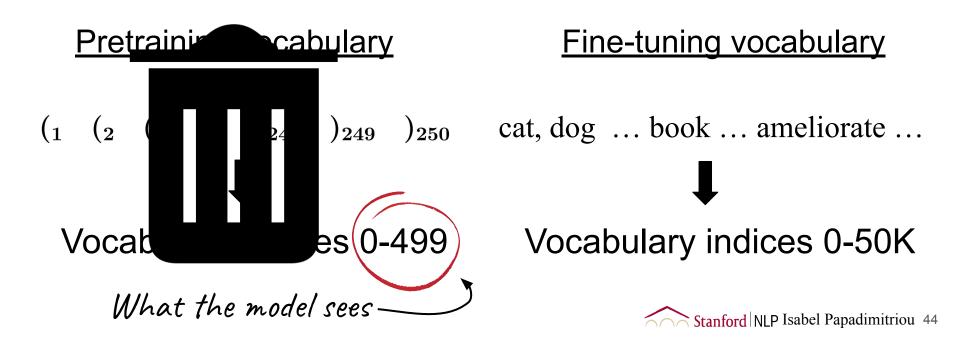
- A good amount of structure is in the vocabulary:
- Vocabulary distribution
- Structure in meaning
- and also in grammar
 - Properties like transitive verb
 - Constructions, like "Let alone"



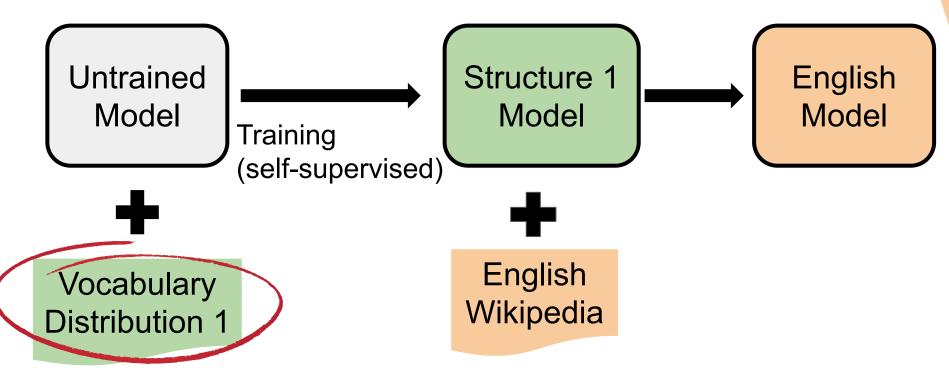


Ο.

We throw out the vocabulary between pretraining and fine-tuning

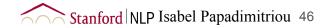


Structural Transfer: a testbed for linguistic structure hypotheses

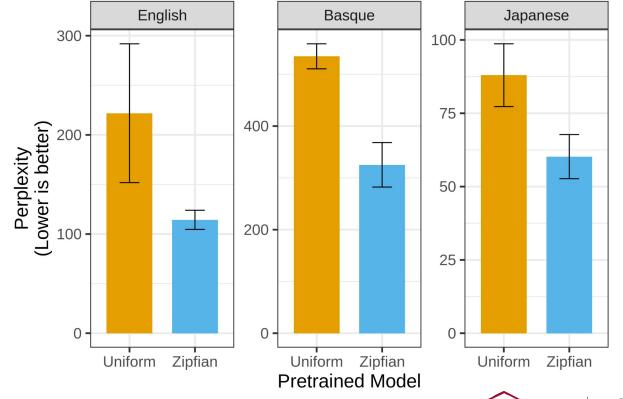


Does a Zipfian vocabulary distribution in pretraining have a **structural** effect?

Even though we discard vocabulary information



Yes, Zipfian information is transferred



Stanford NLP Isabel Papadimitriou 47

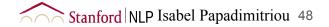
... but does not necessarily combine with structure

Uniform

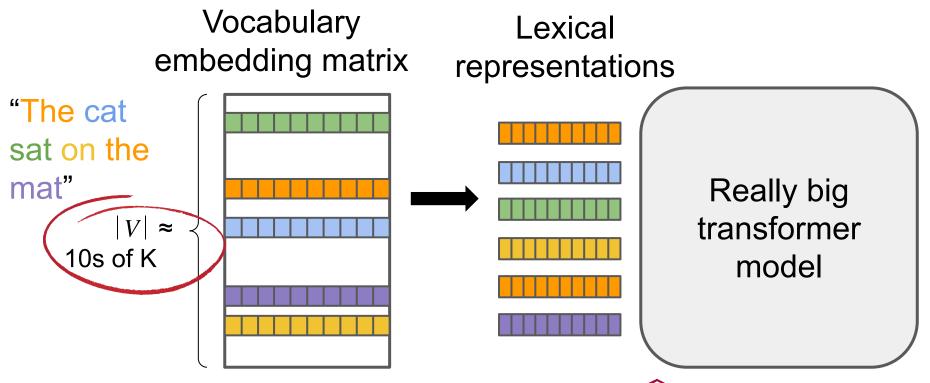
Zipfian

Vocab Distribution

English Basque Japanese 50. Ŧ I 75 -40 20 -Perplexity (Lower is better) 30 50 -20 10 -25 -10 0-0 -0 -Nesting Crossing Nesting Crossing Nesting Crossing Parens Dependencies Parens Dependencies Parens Dependencies Pretrained Model



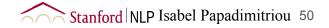
The role of vocabulary in transfer learning is an interesting problem



Stanford NLP Isabel Papadimitriou 49

The role of vocabulary in transfer learning is an interesting problem

- A practical problem: without enough data, it's hard to see a word often enough to learn a good vector
- A puzzle: how is structural information separated between vocabulary matrix and model weights?
 - Vocabulary information like distribution can have structural effects



Transfer learning, language, and structure

- Transfer learning is a test bed for understanding structure in language learning
- Computational models of cognitive processes can't prove anything – but they serve as interesting hypotheses generators
- It's an exciting time: machine learning opens up new avenues for exploring questions in language

