Structural Transfer Learning: Exploring Neural Models and Language Structure Through Understanding Transfer

Isabel Papadimitriou

Stanford NLP Isabel Papadimitriou 2

Transfer learning has practical applications

But also an **analysis methodology** for understanding data and learning

 Power machine learning models let us explore questions about language in new ways

Shared structures between modalities

Structural Transfer: a testbed for linguistic structure hypotheses

Structural Transfer: a testbed for linguistic structure hypotheses

Structural Transfer: a testbed for linguistic structure hypotheses

Using structural transfer learning to explore the **role of structure** in language and language learning

Transfer learning in NLP

• Recent NLP: pretrain so much, that the task can be described in language. **Prompting**

Transfer learning now

- Looking beyond the dominant languages where we can do things like prompting
- And for understanding **structure**

Structure and language

- Structure is characteristic of human language
- Most obviously in syntax
- But also beyond syntax
 - Meaning, discourse, reference, information structure
- What structural biases are sufficient for language learning?
- (beyond this talk) Role of communication and language use in creating structure

1) Recursion

Constituents "Clumping"

The cat sat on the mat

I think that the cat sat on the mat

You always accuse me that I think that the cat sat on the mat

1) Recursion

Nesting Context-free

2) Crossing links and dependencies

Linking in meaning and reference

2) Crossing links and dependencies

And syntactic structures

[Schieber 1985]

3) Zipfian vocabulary distribution

Outline

- What structural biases are useful for human language learners?
 - Disentangling the effects of recursive and linking structures

- How does vocabulary distribution transfer as a structural bias?
 - The structural effect of vocabulary

Outline

- What structural biases are useful for human language learners?
 - Disentangling the effects of recursive and linking structures
- How does vocabulary distribution transfer as a structural bias?
 - The structural effect of vocabulary

Exploring inductive bias

Use transfer learning to test different **structural inductive learning biases**

Transfer learning methodology

Symbolic pretraining languages

Nesting Parentheses

Nested Parentheses Primitive

- Well-nested, matching pairs
- Constituents

Symbolic pretraining languages

Nesting Parentheses Crossing Dependencies

Crossing Dependencies

$$1_{(\ 54_{(\ 225_{(\ 1)}\ 54_{)}\ 225_{)}\ 248_{(\ 248_{)}\ 123_{(\ 103_{(\ 123_{)}\ 103_{)}}}}$$

- Tokens have to match, but not nest
- Where does the structure come from?
 - **Dependency length distribution:** sample from empirical distances of nesting parentheses

Symbolic pretraining languages

Simple Repetition Primitive

Randomly sample *k* words, then repeat them, then randomly sample *k* words...

499 472 300 345 272 499 472 300 345 272 309 17 15

(Example is for k=5, we do k=10 in experiments)

Symbolic pretraining languages

Nesting structure helps language learning Baseline – no structure 120 Baseline – English structure Perplexity on English (lower is better) 80 40 Random Nesting Control: Parens Pretrained GPT-2 **Pretrained Model**

Multilingual case – Japanese and Basque

Symbolic pretraining languages

Question: does **nesting** really help? Or would any structure help?

499 472 300 345 272 499 472 300 345 272 309 17 15

Again, a multilingual effect

Symbolic pretraining languages

Crossing links, without nesting, provide a better inductive bias

This is also true across languages

The kinds of structure that make language are multifaceted

- Structural transfer lets us explore hypotheses about structure in language
- Language as a learnable system, independent of linguistic theory

Mixing nesting and crossing parentheses

A language that is mostly nesting, with 1%, or 10% of parentheses not following the structure

Slightly breaking constituent structure makes better language learners

Also a multilingual effect

Structural inductive bias through transfer learning

- Complex structural relationships are important in language
- Multiple crossing dependencies a good starting point for language learning
- Computational models as hypothesis generators: testing linguistic structure in theory-free ways

Outline

- What structural biases are useful for human language learners?
 - Disentangling the effects of recursive and linking structures
- How does vocabulary distribution transfer as a structural bias?
 - The structural effect of vocabulary

Outline

- What structural biases are useful for human language learners?
 - Disentangling the effects of recursive and linking structures

- How does vocabulary distribution transfer as a structural bias?
 - The structural effect of vocabulary

The lexicon in linguistics

- A good amount of structure is in the vocabulary:
- Vocabulary distribution
- Structure in meaning
- and also in grammar
 - Properties like transitive verb
 - Constructions, like "Let alone"

Ο.

We throw out the vocabulary between pretraining and fine-tuning

Structural Transfer: a testbed for linguistic structure hypotheses

Does a Zipfian vocabulary distribution in pretraining have a **structural** effect?

Even though we discard vocabulary information

Yes, Zipfian information is transferred

Stanford NLP Isabel Papadimitriou 47

... but does not necessarily combine with structure

Uniform

Zipfian

Vocab Distribution

English Basque Japanese 50. Ŧ I 75 -40 20 -Perplexity (Lower is better) 30 50 -20 10 -25 -10 0-0 -0 -Nesting Crossing Nesting Crossing Nesting Crossing Parens Dependencies Parens Dependencies Parens Dependencies Pretrained Model

The role of vocabulary in transfer learning is an interesting problem

Stanford NLP Isabel Papadimitriou 49

The role of vocabulary in transfer learning is an interesting problem

- A practical problem: without enough data, it's hard to see a word often enough to learn a good vector
- A puzzle: how is structural information separated between vocabulary matrix and model weights?
 - Vocabulary information like distribution can have structural effects

Transfer learning, language, and structure

- Transfer learning is a test bed for understanding structure in language learning
- Computational models of cognitive processes can't prove anything – but they serve as interesting hypotheses generators
- It's an exciting time: machine learning opens up new avenues for exploring questions in language

