A Structural Probe for Finding Syntax in Word Representations

John Hewitt

Christopher Manning
Some thoughts:

Human language has rich hierarchical structure.
Some thoughts:

Human language has rich hierarchical structure.

BERT and ELMo work really well. [citation needed]
Some thoughts:

Human language has rich hierarchical structure.

BERT and ELMo work really well. [citation needed]

...without explicit representations of hierarchy.
This work’s questions!

Do ELMo and BERT encode English dependency trees in their contextual representations?
This work’s questions!

Do ELMo and BERT encode English dependency trees in their *contextual* representations?

How do we ask whether vector representations encode trees?
This work’s questions!

Do ELMo and BERT encode English dependency trees in their contextual representations?

How do we ask whether vector representations encode trees?

By **structural probes**: look at the geometry! A hypothesis for syntax in word representations.
This work’s questions!

Do ELMo and BERT encode English dependency trees in their *contextual* representations?

We provide evidence for yes, *approximately!*

How do we ask whether vector representations encode trees?

By **structural probes**: look at the geometry! A hypothesis for syntax in word representations.
Related work: what does my unsupervised neural network learn about language?

Probing: train a simple model to extract linguistic properties from vector representations.

+ Other things! [Shi et al., 2016. Peters et al., 2018. Tenney et al., 2019. Liu et al., 2019,...]
Related work: what does my unsupervised neural network learn about language?

Probing: train a simple model to extract linguistic properties from vector representations.

Part-of-speech!

The chef made five pizzas

+ Other things! [Shi et al., 2016. Peters et al., 2018. Tenney et al., 2019. Liu et al., 2019, ...]
Related work: what does my unsupervised neural network learn about language?

Probing: train a simple model to extract linguistic properties from vector representations.

Part-of-speech!

The chef made five pizzas

Partial dependency info!

The chef made five pizzas

+ Other things! [Shi et al., 2016. Peters et al., 2018. Tenney et al., 2019. Liu et al., 2019,...]
Related work: what does my unsupervised neural network learn about language?

Probing: train a simple model to extract linguistic properties from vector representations. **But hard to ask about whole trees!**

Part-of-speech!

```
The chef made five pizzas
```

Partial dependency info!

```
The chef made five pizzas
```

+ Other things! [Shi et al., 2016. Peters et al., 2018. Tenney et al., 2019. Liu et al., 2019,...]
Outline

1. connecting **vector spaces** and **trees**

2. The **structural probe** method

3. Results and pictures and fun
Are vector spaces and trees reconcilable?

Are vector space representations in NLP reconcilable with the discrete (syntactic) tree structures hypothesized in language?
Distance metrics unify trees and vectors

An undirected tree defines a distance metric on pairs of words, the path metric: the number of edges in the path between the words.

[For more fun, see Deza and Laurent. *A Geometry of Cuts and Metrics*. Springer. 2009]
Distance metrics unify trees and vectors

An **undirected tree** defines a **distance metric** on pairs of words, the path metric: the number of edges in the path between the words.

[For more fun, see Deza and Laurent. *A Geometry of Cuts and Metrics*. Springer. 2009]
Distance metrics unify trees and vectors

An **undirected tree** defines a **distance metric** on pairs of words, the path metric: the number of edges in the path between the words.

For more fun, see Deza and Laurent. *A Geometry of Cuts and Metrics*. Springer. 2009
Distance metrics unify trees and vectors

An **undirected tree** defines a **distance metric** on pairs of words, the path metric: the number of edges in the path between the words.

The edges of the tree can be recovered by looking at all distance=1 pairs.

[For more fun, see Deza and Laurent. *A Geometry of Cuts and Metrics*. Springer. 2009]
Norms unify edge directions and vectors

A **rooted tree** defines a **norm** on the words, the parse depth:
the number of edges from each word to ROOT.
Norms unify edge directions and vectors

A **rooted tree** defines a **norm** on the words, the parse depth: the number of edges from each word to ROOT.
Norms unify edge directions and vectors

A **rooted tree** defines a **norm** on the words, the parse depth: the number of edges from each word to ROOT.

Each edge is directed towards the word with greater norm (deeper in the tree)
summary

distance unifies undirected trees and vector space

norm unifies edge directions and vector space
The *structural probe* method
Finding trees in vector spaces

We can look for trees in the vector space by looking for their distances and norms in the space.
Finding trees in vector spaces

We can look for trees in the vector space by looking for their **distances** and **norms** in the space.

Here’s a sentence embedded by a NN!

\[h_i, h_j : \text{vector representation of words } i \text{ and } j. \]
Finding trees in vector spaces

We don't expect all dimensions of the vector space to encode syntax -- NNs have a lot to encode!
Finding trees in vector spaces

We don't expect all dimensions of the vector space to encode syntax -- NNs have a lot to encode!

We find the linear transformation that encodes syntax best.
Finding trees in vector spaces

We don't expect all dimensions of the vector space to encode syntax -- NNs have a lot to encode!

We find the linear transformation that encodes syntax best.

\[B : \text{The syntax transformation matrix} \]
\[Bh_i : \text{Syntax-transformed vector word representation} \]
Finding trees in vector spaces

In the transformed space, (squared) L2 distance approximates tree distance.
Finding trees in vector spaces

In the transformed space, (squared) L2 distance approximates tree distance.

\[d_{\text{path}}(i,j) : \text{Tree path distance} \]
\[\|B(h_i - h_j)\|^2_2 : \text{Squared Vector space distance} \left(\|h_i - h_j\|^2_B \right) \]
Finding trees in vector spaces

With this property, a minimum spanning tree in the vector space distance recovers the tree.
Finding trees in vector spaces

With this property, a minimum spanning tree in the vector space distance recovers the tree.
Does BERT encode undirected parse trees -> does there exist a *distance* transformation?

\[\text{arg min}_B \]

Find a single transformation \(B \)
Does BERT encode undirected parse trees -> does there exist a *distance* transformation?

\[
\arg \min_B \sum_{\ell \in \text{PTB}}
\]

Find a single transformation \(B \) such that over all sentences in PTB training
Does BERT encode undirected parse trees -> does there exist a distance transformation?

\[\arg \min_B \sum_{\ell \in \text{PTB}} \sum_{i,j} \]

Find a single transformation \(B \) such that over all sentences in PTB training

Over all word pairs in each sentence
Does BERT encode undirected parse trees -> does there exist a distance transformation?

\[
\arg \min_B \sum_{\ell \in \text{PTB}} \sum_{i,j} \left| d^\ell_{\text{path}}(i, j) - \| B(h^\ell_i - h^\ell_j) \|_2^2 \right|
\]

- Find a single transformation \(B \) such that over all sentences in PTB training
- Over all word pairs in each sentence
- The difference between tree distance and squared vector distance is minimized
Does BERT encode undirected parse trees -> does there exist a *distance* transformation?

\[
\arg \min_B \sum_{\ell \in \text{PTB}} \frac{1}{|s^\ell|^2} \sum_{i,j} \left| d^\ell_{\text{path}}(i, j) - \| B(h^\ell_i - h^\ell_j) \|_2^2 \right|
\]

Find a single transformation \(B \) such that over all sentences in PTB training

Over all word pairs in each sentence

The difference between tree distance and squared vector distance is minimized
Does BERT encode edge directions -> does there exist a depth transformation?

$$\arg\min_B \sum_{\ell \in \text{PTB}} \frac{1}{|s^\ell|}$$

Find a single transformation B such that over all sentences in PTB training
Does BERT encode edge directions

\[
\arg \min_B \sum_{\ell \in \text{PTB}} \frac{1}{|s^\ell|} \sum_i \left[\right]
\]

Find a single transformation \(B \)

Over all words in each sentence

such that over all sentences in PTB training

\(\text{depth} \)
Does BERT encode edge directions -> does there exist a depth transformation?

\[
\arg \min_B \sum_{\ell \in \text{PTB}} \frac{1}{|s^\ell|} \sum_i \left| \text{depth}^\ell(i) - \| Bh^\ell_i \|_2^2 \right|
\]

Find a single transformation \(B \) such that over all sentences in PTB training

Over all words in each sentence

The difference between tree depth and squared vector norm is minimized
experiments & results

Evaluating ELMo, BERT, and baselines
Training structural probes on PTB train, evaluating on test.

Evaluate by comparing structural probe minimum spanning trees to human-annotated parse trees.
Trees aren't well-encoded in baselines

What percent of undirected edges are predicted correctly? (PTB Test)

- Linear chain tree: 48.9
- Structural Probe on Weighted Average of Word Embeddings: 51.7
- Structural Probe on Random BiLSTM: 59.8
But they are in trained representations!

<table>
<thead>
<tr>
<th>Baselines</th>
<th>“Good” Representations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear chain tree 48.9</td>
<td>Structural Probe on BERT Layer 15 82.5</td>
</tr>
<tr>
<td>Structural Probe on Weighted Average of Word Embeddings 51.7</td>
<td>Structural Probe on ELMo Layer 1 77.0</td>
</tr>
<tr>
<td>Structural Probe on Random BiLSTM 59.8</td>
<td></td>
</tr>
</tbody>
</table>
Trees from structural probe parse distances approximate parse trees pretty well!

Black (above sentence): Human-annotated parse tree
Teal (below sentence): Minimum spanning tree, structural probe on BERT

The complex financing plan in the S+L bailout law includes raising $30 billion from debt issued by the newly created RTC
Trees from structural probe parse distances approximate parse trees pretty well!

Black (above sentence): Human-annotated parse tree
Teal (below sentence): Minimum spanning tree, structural probe on BERT

The complex financing plan in the S+L bailout law includes raising $30 billion from debt issued by the newly created RTC.
Trees on baseline representations don't approximate gold trees well!

Black (above sentence): Human-annotated parse tree
Purple (below sentence): MST, structural probe on random-weights BiLSTM

The complex financing plan in the S+L bailout law includes raising $30 billion from debt issued by the newly created RTC
Trees on baseline representations don't approximate gold trees well!

Black (above sentence): Human-annotated parse tree
Purple (below sentence): MST, structural probe on random-weights BiLSTM

The complex financing plan in the S+L bailout law includes raising $30 billion from debt issued by the newly created RTC.
Predicted depths on BERT + ELMo reconstruct parse depths well!

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
Predicted depths on BERT + ELMo reconstruct parse depths well!

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
Predicted depths on BERT + ELMo reconstruct parse depths well!

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
Predicted depths on BERT + ELMo reconstruct parse depths well!

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
Predicted depths on BERT + ELMo reconstruct parse depths well!

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
Predicted depths on BERT + ELMo reconstruct parse depths well!

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
Predicted depths on BERT + ELMo reconstruct parse depths well!

grey circle: gold parse depth
red triangle: ELMo1 squared norm
blue square: BERT large 15 squared norm
Predicted depths on BERT + ELMo reconstruct parse depths well!

- grey circle: gold parse depth
- red triangle: ELMo1 squared norm
- blue square: BERT large 15 squared norm
Not just for language

The structural probe method has since been used to find evolutionary trees in unsupervised representations of proteins!

Have a continuous space and wondering if discrete structures are embedded in it?

Try finding their distance metrics via a structural probe!

Transformer (trained)

Nodes are representations of protein families; distances are evolutionary history tree distances

[Rives et al., 2019]
Summary, Musings, & Limitations

Structural probes show ELMo and BERT encode a surprising amount of syntax!

Structural probes give us intuitions about the geometric properties of contextual word representations, like we’ve had for word2vec and GloVe.

All probes use supervision, and we should be careful what fine-grained syntactic conclusions we make!

See Saphra and Lopez (2019) and Lakretz et al. (2019) for complementary methods!

The code is super ready for you to jump in!

https://github.com/john-hewitt/structural-probes