Perl
Author: Luong Minh Thang

These are my random collection of PERL stuff. I’ll arrange them once I collected enough things here !!!

* DBI http://search.cpan.org/~timb/DBI/DBI.pm
http://oreilly.com/catalog/perldbi/chapter/ch04.html
Get last id http://cipri4ph.wordpress.com/2008/04/05/perl-dbi-last-insert-id/
* Regular expression, Unicode

http://www.regular-expressions.info/unicode.html
Matching quotation if(/\x{0022}/)

http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
* Unicode

http://ripary.com/utf8.html
! 11 Mar., 10

· LWP

http://www.perl.com/pub/a/2002/08/20/perlandlwp.html
Regular expression

?: zero or one

*: zero or more

+: one or more

\d = [0-9]

\w = [A-Za-z0-9]

\s = [\f\t\n\r]
. : anything except \n

\D = [^0-9]

Matching
m/thang/, m{thang}, m%thang%: pattern match using paired delimiters

+ /i : case-insensitive

chomp($_ = <STDIN>)

if(/yes/i) {

}

+ /s : for . to match any character (including \n in which . normally doesn’t match)

/Luong.*Thang/s

+ /x : adding white space for better reading regex (regex doesn’t include white space), comments could be included as part of white space

/-?\d+\.?\d*/ equivalent to

/

-?
an optional minus sign

\d+
one or more digits before decimal point

\.?
an optional decimal point

\d*
some option digits after the decimal point

\#
a hash key

/x
end of patternr

+ \b: word anchor, \B non-word anchor

/\bsearch\B/ matches searches, searching, searched but not search or research

+ =~: binding operator, if($string =~ /regex/) : test if $string matches the regex

+ match memory: using (), store matching results (even empty match) of the nearest matching

$_ = “

If

+ The caret anchor (^) marks the beginning of the string, and the dollar sign ($) marks the end. So, the pattern /^fred/ will match fred only at the start of the string; it wouldn't match manfred mann. And /rock$/ will match rock only at the end of the string; it wouldn't match knute rockne.

+ ($`)($&)($’): before, current, after matched section

if (“Hello there, neighbor” =~ /\s(\w+),/) {

print “($`)”;
#”Hello”

print “($&)”;
#” there,”

print “($’)”;
#”neighbor”

print “($1)”;
#”there”

}
Substitution
s/minh/thang/, s{minh}{thang}, s[minh]{thang}, s<minh>#thang#
+ /g : global replacements (replace more than one time)

s/^\s+//g : strip leading spaces

s/\s+$//g : strip trailing spaces

+ case shifting:
\U (uppercase), \L (lowercase) : affect all following characters
\u, \l: affect only the next character

\E: turn off case shifting

$_ = “minh thang”;

s/(minh|thang)/\U$1/gi
#”MINH THANG”

s/(minh|thang)/\u\L$1/gi
#”Minh Thang”

print “\u\L$_\E, and $_”;
#”Minh Thang, and minh thang”

split

+ $_ = “Luong:Minh:Thang”;

 @words = split/:/;
#(“Luong”, “Minh”, “Thang”)

+ rule : leading empty fields are always returned, while trailing empty fields are discarded

Non-greedy quantifier

+?, *? : matches as few as possible

$_ = “test <a>test test <a> test ” # we want to remove <a>

s/<a>(.*)/$1/g;
#”test test test <a> test “

s/<a>(.*?)/$1/g;
#”test test test test “

Matching multiline text: /m

Open FILE, $filename

Or die “Can’t open ‘$filename’: $!”;
my $lines = join ‘’, <FILE>; # concatenate all lines in the file

$lines = ~ s/^/$filename: /gm; #add the name of the file as a prefix at the start of each line

Updating many files

#!usr/bin/perl –w

use strict;

$^I = “.bak”;
creates backup files with extension .bak

while(<>) { /# traverse all files

updating work for each file

}

In-place editing from the Command line

$perl –p –i.bak –w –e ‘s/minh thang/Minh Thang/g’ data*.txt

-p: tell Perl to write a program while(<>) { print; } (-n: to leave out the print option)

-i.bak: set $^I to “.bak”

-w: turns on warnings

-e [code] : put the [code] inside the for loop before print command

Added stuff

* chomp(@lines = <STDIN>); # Read the lines, not the newlines

* binmode(STDIN, “:utf8”): allow input in unicode

Some regular expression in perl unicode IsAlpha, IsN,…

http://search.cpan.org/~rgarcia/perl-5.10.0/pod/perlretut.pod

http://search.cpan.org/~rgarcia/perl-5.10.0/pod/perlunicode.pod
*

my @arr = (“t”, “h”, “a”, “n”, “g”);

my $tmp = shift (@arr); # tmp = “t”, @arr = (“h”, “a”, “n”, “g”)

unshift (@arr, “t”); # @arr = (“t”, “h”, “a”, “n”, “g”)

http://www.perl.com/pub/a/2001/01/begperl6.html

* #!/usr/local/bin/perl –w: turn on warnings

* #!/usr/local/bin/perl –Tw: T (taint) prevent Perl codes from being insecure

“taint” marks any variable that the user can possibly control as being insecure: user input, file input and environment variables.

Anything that you set within your own program is considered safe

* open (LOG, ">>$filename") or die "Couldn't open $filename: $!"; # write to file $filename

print LOG "Test\n";

close LOG;

* use strict; # makes you declare all your variables (``strict vars''), and it makes it harder for Perl to mistake your intentions when you are using subs (``strict subs'').

* Mastering Perl – p.181: Getopt::Std, Getopt::Long

This is for creating command-line switches
GetOptions(

 "help" => \$help,

 "lowercase|lc" => \$lc,

 "encoding=s" => \$enc,

) or exit(1);

* a way of printing multiline_text

print <<END_of_Multiline_Text;

Content-type: text/html

<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

<H1>Greetings, Terrans!</H1>

</BODY>

</HTML>

END_of_Multiline_Text
* CGI programming

use CGI qw(:standard);

print header(), start_html("Hello World"), h1("Greetings, Terrans!");

my $favorite = param("flavor");

print p("Your favorite flavor is $favorite.");

print end_html();

* @numbers = (1, 2, 3); foreach $number (@numbers) {
print $number, “ “; }

* $append = 0;
if ($append)
 {
 open(MYOUTFILE, ">filename.out"); #open for write, overwrite
 }
else
 {
 open(MYOUTFILE, ">>filename.out"); #open for write, append
 }

print MYOUTFILE "Timestamp: "; #write text, no newline
print MYOUTFILE ×tamp(); #write text-returning fcn
print MYOUTFILE "\n"; #write newline

* Three-way comparison operator:

<=>: number

cmp: string

my @result = sort by_number @some_numbers;

sub by_number { $a <=> $b }
sub ASCIIbetically { $a cmp $b }

sub case_insensitive { "\L$a" cmp "\L$b" }

my @numbers = sort { $a <=> $b } @some_numbers;

my @descending = reverse sort { $a <=> $b } @some_numbers;

my @descending = sort { $b <=> $a } @some_numbers;

* sort hash by value

my %score = ("barney" => 195, "fred" => 205, "dino" => 30);

my @winners = sort by_score keys %score;
sub by_score { $score{$b} <=> $score{$a} }

 my @sorted = sort {$a <=> $b} keys %alignedId;
* These are the two easiest ways to find the size of an array.

$size = @arrayName ;
$#arrayName + 1;

* Reading files in a directory
 my @files = <FRED/*>; ## a glob

 my @lines = <FRED>; ## a filehandle read

 my $name = "FRED";

 my @files = <$name/*>; ## a glob

* Unicode http://www.regular-expressions.info/unicode.html

· \p{L} or \p{Letter}: any kind of letter from any language.

· \p{Ll} or \p{Lowercase_Letter}: a lowercase letter that has an uppercase variant.

· \p{Lu} or \p{Uppercase_Letter}: an uppercase letter that has a lowercase variant.

· \p{Lt} or \p{Titlecase_Letter}: a letter that appears at the start of a word when only the first letter of the word is capitalized.

· \p{L&} or \p{Letter&}: a letter that exists in lowercase and uppercase variants (combination of Ll, Lu and Lt).

· \p{Lm} or \p{Modifier_Letter}: a special character that is used like a letter.

· \p{Lo} or \p{Other_Letter}: a letter or ideograph that does not have lowercase and uppercase variants.

· \p{M} or \p{Mark}: a character intended to be combined with another character (e.g. accents, umlauts, enclosing boxes, etc.).

· \p{Mn} or \p{Non_Spacing_Mark}: a character intended to be combined with another character that does not take up extra space (e.g. accents, umlauts, etc.).

· \p{Mc} or \p{Spacing_Combining_Mark}: a character intended to be combined with another character that takes up extra space (vowel signs in many Eastern languages).

· \p{Me} or \p{Enclosing_Mark}: a character that encloses the character is is combined with (circle, square, keycap, etc.).

· \p{Z} or \p{Separator}: any kind of whitespace or invisible separator.

· \p{Zs} or \p{Space_Separator}: a whitespace character that is invisible, but does take up space.

· \p{Zl} or \p{Line_Separator}: line separator character U+2028.

· \p{Zp} or \p{Paragraph_Separator}: paragraph separator character U+2029.

· \p{S} or \p{Symbol}: math symbols, currency signs, dingbats, box-drawing characters, etc..

· \p{Sm} or \p{Math_Symbol}: any mathematical symbol.

· \p{Sc} or \p{Currency_Symbol}: any currency sign.

· \p{Sk} or \p{Modifier_Symbol}: a combining character (mark) as a full character on its own.

· \p{So} or \p{Other_Symbol}: various symbols that are not math symbols, currency signs, or combining characters.

· \p{N} or \p{Number}: any kind of numeric character in any script.

· \p{Nd} or \p{Decimal_Digit_Number}: a digit zero through nine in any script except ideographic scripts.

· \p{Nl} or \p{Letter_Number}: a number that looks like a letter, such as a Roman numeral.

· \p{No} or \p{Other_Number}: a superscript or subscript digit, or a number that is not a digit 0..9 (excluding numbers from ideographic scripts).

· \p{P} or \p{Punctuation}: any kind of punctuation character.

· \p{Pd} or \p{Dash_Punctuation}: any kind of hyphen or dash.

· \p{Ps} or \p{Open_Punctuation}: any kind of opening bracket.

· \p{Pe} or \p{Close_Punctuation}: any kind of closing bracket.

· \p{Pi} or \p{Initial_Punctuation}: any kind of opening quote.

· \p{Pf} or \p{Final_Punctuation}: any kind of closing quote.

· \p{Pc} or \p{Connector_Punctuation}: a punctuation character such as an underscore that connects words.

· \p{Po} or \p{Other_Punctuation}: any kind of punctuation character that is not a dash, bracket, quote or connector.

· \p{C} or \p{Other}: invisible control characters and unused code points.

· \p{Cc} or \p{Control}: an ASCII 0x00..0x1F or Latin-1 0x80..0x9F control character.

· \p{Cf} or \p{Format}: invisible formatting indicator.

· \p{Co} or \p{Private_Use}: any code point reserved for private use.

· \p{Cs} or \p{Surrogate}: one half of a surrogate pair in UTF-16 encoding.

· \p{Cn} or \p{Unassigned}: any code point to which no character has been assigned.

#!/usr/bin/perl

print "content-type: text/html \n\n"; #HTTP HEADER

AN ARRAY

@coins = ("Quarter","Dime","Nickel");

ADD ELEMENTS

push(@coins, "Penny");

print "@coins";

print "
";

unshift(@coins, "Dollar");

print "@coins";

REMOVE ELEMENTS

pop(@coins);

print "
";

print "@coins";

shift(@coins);

print "
";

BACK TO HOW IT WAS

print "@coins";

@rocks = qw/ bedrock slate lava /;

@tiny = (); # the empty list

@giant = 1..1e5; # a list with 100,000 elements

@stuff = (@giant, undef, @giant); # a list with 200,001 elements

$dino = "granite";

@quarry = (@rocks, "crushed rock", @tiny, $dino);

qw(fred

 barney betty

 wilma dino) # same as above, but pretty strange whitespace

* Hash of array http://www.unix.org.ua/orelly/perl/prog3/ch09_02.htm

$HoA{$who} = [@fields];

print "$family: @{ $HoA{$family} }\n";

* Hash of hash http://www.unix.org.ua/orelly/perl/prog3/ch09_04.htm

$HoH{$who}{$key} = $value;

for $role (keys %{ $HoH{$family} }) {

 print "$role=$HoH{$family}{$role} ";

 }

http://www.troubleshooters.com/codecorn/littperl/perlsub.htm
In Perl, you can pass only one kind of argument to a subroutine: a scalar. To pass any other kind of argument, you need to convert it to a scalar. You do that by passing a reference to it. A reference to anything is a scalar. If you're a C programmer you can think of a reference as a pointer (sort of).

The following table discusses the referencing and de-referencing of variables. Note that in the case of lists and hashes, you reference and dereference the list or hash as a whole, not individual elements (at least not for the purposes of this discussion).

	Variable
	Instantiating
the scalar
	Instantiating a
reference to it
	Referencing it
	Dereferencing it
	Accessing an element

	$scalar
	$scalar = "steve";
	$ref = \"steve";
	$ref = \$scalar
	$$ref or
${$ref}
	N/A

	@list
	@list = ("steve", "fred");
	$ref = ["steve", "fred"];
	$ref = \@list
	@{$ref}
	${$ref}[3]
$ref->[3]

	%hash
	%hash = ("name" => "steve",
 "job" => "Troubleshooter");
	$hash = {"name" => "steve",
 "job" => "Troubleshooter"};
	$ref = \%hash
	%{$ref}
	${$ref}{"president"}
$ref->{"president"}

	FILE
	
	
	$ref = *FILE
	{$ref} or scalar <$ref>
	

+ Pass by values:
my @words = @{processWordFile($wordFile)};

processCorpusFile($corpusFile, $outFile, @words);
sub processCorpusFile{

 my ($inFile, $outFile, @words) = @_;

 foreach (@words){

 print "$_\n";

 }

}
+ Pass by reference:

my @words = @{processWordFile($wordFile)};

processCorpusFile($corpusFile, $outFile, \@words);
sub processCorpusFile{

 my ($inFile, $outFile, $words) = @_;

 foreach (@words){

 print "$_\n";

 }

}
sub processCorpusFile{

 my $inFile= shift @_;

 my $outFile = shift @_;

 my @words = @{shift @_};

}
http://www.cs.mcgill.ca/~abatko/computers/programming/perl/howto/hash/
Initialize (clear, or empty) a hash

Assigning an empty list is the fastest method.

Solution
 my %hash = ();

while (my ($key, $value) = each(%hash)) {

 print "$key => $value\n";

}

9.2.3. Access and Printing of a Hash of Arrays

http://www.unix.com.ua/orelly/perl/prog3/ch09_02.htm

You can set the first element of a particular array as follows:

$HoA{flintstones}[0] = "Fred";

To capitalize the second Simpson, apply a substitution to the appropriate array element:

$HoA{simpsons}[1] =~ s/(\w)/\u$1/;

You can print all of the families by looping through the keys of the hash:

for $family (keys %HoA) {

 print "$family: @{ $HoA{$family} }\n";

}

With a little extra effort, you can add array indices as well:

for $family (keys %HoA) {

 print "$family: ";

 for $i (0 .. $#{ $HoA{$family} }) {

 print " $i = $HoA{$family}[$i]";

 }

 print "\n";

}

Or sort the arrays by how many elements they have:

for $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {

 print "$family: @{ $HoA{$family} }\n"

}

Or even sort the arrays by the number of elements and then order the elements ASCIIbetically (or to be precise, utf8ically):

Print the whole thing sorted by number of members and name.

for $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {

 print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";

}

* Problem of Wide character in print
Indicate utf8 mode

binmode STDOUT, ':utf8';
http://www.somacon.com/p127.php
Metacharacters

These need to be escaped to be matched.

\ . ^ $ * + ? { } [] () |

(Thang: need to escape - # as well)

Escape sequences for pre-defined character classes

· \d - a digit - [0-9]

· \D - a nondigit - [^0-9]

· \w - a word character (alphanumeric including underscore) - [a-zA-Z_0-9]

· \W - a nonword character - [^a-zA-Z_0-9]

· \s - a whitespace character - [\t\n\r\f]

· \S - a non-whitespace character - [^ \t\n\r\f]

Assertions

Assertions have zero width.

· ^ - Matches the beginning of the line

· $ - Matches the end of the line (or before a newline at the end)

· \B - Matches everywhere except between a word character and non-word character

· \b - Matches between word character and non-word character

· \A - Matches only at the beginning of a string

· \Z - Matches only at the end of a string or before a newline

· \z - Matches only at the end of a string

· \G - Matches where previous m//g left off

Minimal Matching Quantifiers

The quantifiers below match their preceding element in a non-greedy way.

· *? - zero or more times

· +? - one or more times

· ?? - zero or one time

· {n}? - n times

· {n,}? - at least n times

· {n,m}? - at least n times but not more than m times

* Regular expression match punctuation

/[~!\?@\#\$%\^&*\(\)\+\-"'=\{\[\}\]:;\|\\.,\/]/
need to add <, >, _

Count the letters in a string

http://www.perlcircus.org/regex.shtml

$str = "And now to Xanthus' gliding stream they dove...";

$count = $str =~ s/([a-z])/$1/gi;

print $count;

36

How can I count the number of occurrences of a substring within a string?
http://perl.active-venture.com/pod/perlfaq4-datastrings.html
There are a number of ways, with varying efficiency. If you want a count of a certain single character (X) within a string, you can use the tr/// function like so:

	 $string = "ThisXlineXhasXsomeXx'sXinXit";

 $count = ($string =~ tr/X//);

 print "There are $count X characters in the string";

	

This is fine if you are just looking for a single character. However, if you are trying to count multiple character substrings within a larger string, tr/// won't work. What you can do is wrap a while() loop around a global pattern match. For example, let's count negative integers:

	 $string = "-9 55 48 -2 23 -76 4 14 -44";

 while ($string =~ /-\d+/g) { $count++ }

 print "There are $count negative numbers in the string";

	

Another version uses a global match in list context, then assigns the result to a scalar, producing a count of the number of matches.

	
$count = () = $string =~ /-\d+/g;

	

Hash of array

$hash{key} = \@array; #value as a reference

print $hash{key}[0]; #access array element using direct index

print $hash{key}; #print size of the array

my @newArray = @{$hash{$key}}; #dereferencing to have an array structure

$_HELP = 1
 unless &GetOptions('root-dir=s' => \$_ROOT_DIR,

 'bin-dir=s' => \$BINDIR, # allow to override default bindir path

 'corpus-dir=s' => \$_CORPUS_DIR,

 'corpus=s' => \$_CORPUS,
 'corpus-compression=s' => \$_CORPUS_COMPRESSION,

 'f=s' => \$_F,

 'e=s' => \$_E,

 'giza-e2f=s' => \$_GIZA_E2F,

 'giza-f2e=s' => \$_GIZA_F2E,

 'max-phrase-length=i' => \$_MAX_PHRASE_LENGTH,

 'lexical-file=s' => \$_LEXICAL_FILE,

 'no-lexical-weighting' => \$_NO_LEXICAL_WEIGHTING,

 'model-dir=s' => \$_MODEL_DIR,

 'extract-file=s' => \$_EXTRACT_FILE,

 'alignment=s' => \$_ALIGNMENT,

 'alignment-file=s' => \$_ALIGNMENT_FILE,

 'verbose' => \$_VERBOSE,

 'first-step=i' => \$_FIRST_STEP,

 'last-step=i' => \$_LAST_STEP,

 'giza-option=s' => \$_GIZA_OPTION,

 'parallel' => \$_PARALLEL,

 'lm=s' => \@_LM,

 'help' => \$_HELP,

 'debug' => \$debug,

 'dont-zip' => \$_DONT_ZIP,

 'parts=i' => \$_PARTS,

 'direction=i' => \$_DIRECTION,

 'only-print-giza' => \$_ONLY_PRINT_GIZA,

 'reordering=s' => \$_REORDERING,

 'reordering-smooth=s' => \$_REORDERING_SMOOTH,

 'input-factor-max=i' => \$_INPUT_FACTOR_MAX,

 'alignment-factors=s' => \$_ALIGNMENT_FACTORS,

 'translation-factors=s' => \$_TRANSLATION_FACTORS,

 'reordering-factors=s' => \$_REORDERING_FACTORS,

 'generation-factors=s' => \$_GENERATION_FACTORS,

 'decoding-steps=s' => \$_DECODING_STEPS,

 'scripts-root-dir=s' => \$SCRIPTS_ROOTDIR,
 'factor-delimiter=s' => \$_FACTOR_DELIMITER,

 'phrase-translation-table=s' => \@_PHRASE_TABLE,

 'generation-table=s' => \@_GENERATION_TABLE,

 'reordering-table=s' => \@_REORDERING_TABLE,
 'generation-type=s' => \@_GENERATION_TYPE,

 'config=s' => \$_CONFIG
);
use URI::Escape;
my $escaped = uri_escape($unescaped_string);
Installation with CPAN
http://www.dcc.fc.up.pt/~pbrandao/aulas/0203/AR/modules_inst_cpan.html
mkdir -p ~/.cpan/CPAN

echo "\$CPAN::Config = {}"> ~/.cpan/CPAN/MyConfig.pm

perl -MCPAN -e shell

for question on “perl Makefile.PL”, use
PREFIX=~/perl/ LIB=~/perl/lib INSTALLMAN1DIR=~/perl/man1 INSTALLMAN3DIR=~/perl/man3

for question on “perl Makefile”, use

PREFIX=~/perl

for question on “make”, use

PREFIX=~/perl LIB=~/perl/lib INSTALLSITEMAN1DIR=~/perl/share/man/man1 INSTALLSITEMAN3DIR=~/perl/share/man/man3
To install a module, type e.g install CGI

i /CGI/: return a list of modules that match the pattern

Or after all the default CPAN setting, in the cpan cmd use

o conf makepl_arg "LIB=~/perl/lib INSTALLMAN1DIR=~/perl/share/man/man1 INSTALLMAN3DIR=~/perl/share/man/man3" o conf commit
To use the perlmodule, in the .bash_profile, set

 export PERL5LIB=${PERL5LIB}:~/perl
 export MANPATH=~/perl
export PERLDIR=/home/l/luongmin/perl/lib/perl5

export PERL5LIB=${PERL5LIB}:$PERLDIR/5.8.8:$PERLDIR/site_perl/5.8.8
perl Makefile.PL PREFIX=/my/perl_directory to install the modules into /my/perl_directory

http://www.cpan.org/modules/INSTALL.html
· test for matching of \p{P}, notice that it could not match +,#,= and many mores (see my punctuation match above)
my $test="\"";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test="'";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }
 $test=":";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test=",";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test=";";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test="\.";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test="=";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test="~";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test="!";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test="@";

 if($test =~ /\p{P}/){

 print "$test matchs!\n";

 }

 $test="=";

 if($test =~ /=/){

 print "$test matchs! /=/\n";

 }
· multi-line comments in Perl

http://www.perl.com/lpt/a/663
CPAN, automatically,

y (configure)

yes (automatically)

PREFIX=/home/lmthang/usr/local

INSTALLMAN3DIR=/home/lmthang/usr/local/lib/perl5/man/man3

Perl Unicode handle: very good
http://ahinea.com/en/tech/perl-unicode-struggle.html
· counting
http://www.perlmonks.org/index.pl?node_id=674462
Here's a very straight-forward way to do this:

my $digit_count = ($input =~ tr/[0-9]//);

my $white_count;

while ($input =~ m/\s/g) { $white_count++; } # note: can't use tr/\s//

my $word_count;

while ($input =~ m/\w+/g) { $word_count++; }

As is generally the case with perl, there are many ways to perform these tasks.
Anyway, when you use the /g modifier with a pattern match, you can capture all of the matches into a list, eg:
my @digits = ($input =~ m/\d/g);

And then the count you are after is simply the number of items in the list:
print scalar @digits;

* Undef entire hash

http://www.misc-perl-info.com/perl-undef.html
#undef the entire hash

undef %hash;

