
CS3242 assignment 2 report

Content-based music retrieval

Luong Minh Thang & Nguyen Quang Minh Tuan

1. INTRODUCTION

With the development of the Internet, searching for information has proved to be a vital

and necessary part, and particularly for multimedia, the search task becomes even more

challenging. When dealing with multimedia content, plain-text search engines are not

enough because they are too simple and have very limited functions. In this report, we

will discuss new algorithms of content-based music retrieval using slope matching. This

report is a part of CS3242 - Multimedia technology - module at School of Computing,

NUS. We were given source code for a basic query-by-humming music-retrieval engine

and our task were to modify it to make its performance better.

2. APPROACHES

At the beginning, we identify that there are two possible areas where could modify the

given source code as described in (Zhu, Xu, & Kankanhalli, 2001) to achieve better

performance, which are feature extraction and matching algorithm. Feature extraction

is , however, relatively hard to modify as we need to deal with audio processing. As

such we decide to modify the matching algorithm. The existing matching algorithm is

quite complex, so we decide that each of us will write a totally new matching algorithm.

After that, the top results by each algorithm will be synthesized to give the final best

results. Our two new algorithms are Metric Distance with Gap detection and Dynamic

Programming with Local alignment.

2.1. Metric distance and gap detection

In this approach, we used the concept of metric distance to calculate the difference be-

tween the humming query and a sequence of slopes in the MIDI files at the macro level.

Assume that we have a humming query (H) and part of the MIDI files (M), with the

same number of slopes (n). Firstly, we normalized H and M such that the pitch range

of the slopes is from 0 to 1, and the total duration of H and M is 1. Therefore, we can

represent H and M in the same coordinate system.

The difference between H and M can be calculate as:

diff(H, M) =
n

∑

i=1

(
√

(Hdi − Mdi)2 + (Hpi − Mpi)2)

where Hdi, Mdi refer to the durations of slope i; Hpi Mpi refer to the pitches.

1

We did a sequential search for all the MIDI files to find the one having the part

with minimum diff(H,M). However, the results acquired were not satisfactory, so we

decided to make an enhancement for this algorithm by adding gap detection feature. We

observed that people often start the humming queries at the beginning of a song or right

after a silent note (which we called a gap). Hence, it seemed to be reasonable that we

concentrated more to these parts of the MIDI files. Generally, parts right after a gap of

the MIDI file are more important than other parts. To detect a gap, we averaged all the

notes of the MIDI files and choose a threshold for the gap (we chose 1.5 times duration of

the average note). If M is right after a gap, then diff(H,M) will be reduced by 2/3 to 3/4

in our implementation. In fact, the metric distance with gap detection works reasonably

well and it proved to be a good component for the original slope matching method.

2.2. Dynamic programming - local alignment

In this approach, we employ a form dynamic programming DP algorithm, local alignment,

to tackle the problem. Local alignment has been well studied and extensively used in

computational biology (Gusfield, 1997) to find the two best-match subsequences from

the given two sequences. In the context of our query-by-humming system, we have two

sequences of slopes M [1..m] and H [1..n] representing humming query (H) and MIDI file

(M) accordingly. The idea is we want to find a subsequence in M that best matches H,

and obtain a similarity score for H and M. Using DP approach, we expect the program

to be more error-tolerant as several slopes could be skipped before matching next slopes;

thus, the accuracy could be enhanced.

More specifically, base condition and recurrence relation in DP are described below in

which V (i, j) gives the best value when locally aligning M [1..i] and H [1..j]. s(M [i], H [j])

gives the similarity value of MIDI slope i vs. humming slope j, while s(M[i],) and s(

, H[j]) are skip penalties, all of which we will provide the formula later. It is worth to

mention that the comparing value 0 in the recurrence relation is the subtle part of

2

local alignment, which functions as the restarting for the alignment path.

Base condition:






V (0, j) = 0

V (i, 0) = 0
(1)

Recurrence relation:

V (i, j) = max































V (i − 1, j − 1) + s(M [i], H [j]) if i > 0, j > 0

V (i − 1, j) + s(M [i],) if i > 0

V (i, j − 1) + s(, H [j]) if j > 0

0

(2)

Given two humming and MIDI slopes with normalized durations (∈ [0, 1]) and pitch-

change values (∈ [−1, 1]), we compute the similarity based on the difference (∈ [0, 1])as

below:

s(M[i],H[j]) = −diff + offset (3)

= −(w ∗ duration diff + (1 − w) ∗ pitch diff) + offset (4)

= −(w ∗ |M[i] p − H[j] p|/2 + (1 − w) ∗ |M[i] d − H[j] d|) + offset (5)

Experimentally, we use w = 0.7 to give higher weight for pitch values, offset = 0.3 to

have good mixture of negative and positive similarity values for local alignment to work,

and skip penalty = −0.01, which give good results. The detailed experiment results are

shown later in Section 3.

2.3. Combined approach

After implementing our two new algorithms, now we have three different algorithms for

slope-matching part. To combine three algorithm, we proposed two approaches:

• Using gap dectection algorithm and dynamic-programming algorithm as filters for

the original slope-matching algorithm. We called it the serial approach.

• Running three algorithms one by one, and choosing the top 20 results of each

algorithm. We will then merged the 60 results together to get the final list. We

only considered the first 15 of the final list. We called this approach the parallel

approach.

After trying both approaches, the parallel approach has shown to perform better than

the serial approach. One of the reason is because the relevant MIDI files is usually in

the top 5 results for all the 3 algorithms. Another reason is that previous algorithm

3

might filter correct result before turning to the next algorithm as in the serial approach.

Therefore, we pursue the parallel approach to combining the there result list.

In the parallel approach, we combine the there list of top 20 results from the three

algorithms by computing a weighted average similarity for each song as follow:

final sim(A) = [1.2 ∗ O sim(A) + 0.9 ∗ LA sim (A) + 0.9 ∗ GD sim(A)]/3

O sim(A), LA sim(A), GD sim(A) stand for the similarity of song A in the original,

LA, and GD algorithms respectively. If A is not in a top 20 result of an algorithm, its

corresponding similarity value will be 0.

3. EVALUATION

Our dataset is constructed by first running the original through all available humming

queries. We then pick up the three familiar songs with several queries associated, which

are “Happy birthday”, “Silent night”, and “Qing wang”. We evaluate five different

implementation, i.e. the original algorithm, gap detection (GD), local alignment (LA),

GD & LA, and combined algorithm, on that dataset, and obtain the detailed results as

in the Table 2.

We first notice three challenging queries in which all implementations have difficulties

in retrieving the results. They are queries 9 (very soft voice), and 11, 20 (humming

at different tempos). In overall, GD and LA perform roughly the same, and somewhat

complementary in which GD retrieve better results for “Happy birthday” queries, while

LA is better at “Silent night” queries. The combination of GD and LA gives comparable

performance with the original algorithm, and the combined algorithm perform best.

To better compare the above implementation, we further compute the three metrics

Recall, Precision at seen-relevant documents, and F measure for each algorithm, and

details are given in Table 1. Again, it is true with our observation that LA slightly

outperforms GD with recalls of 56.08% vs. 50.96%, and precisions at 52.32% vs. 46.79%.

The combination of GD and LA gives comparable recall and precision to the original

algorithm with F-measure values of 72.15% vs. 73.5%. Finally, the combined version of

the original algorithm, GD, and LA best perform at recall 91.67%, and precision 74.38%.

4. DISCUSSION

We first discuss on our new implementations in this system, which are gap detection,

and local alignment. Gap detection can match slopes sequentially, so it performs well

with in-tune queries. Moreover, with the mechanism of detecting gap, the algorithm

could quickly match when there is clear occurrences of gaps, and rule out other false

matches with no gaps. However, when dealing with out-of-rhythm or out-of-tune queries,

4

Recall Precision F measure
Original 78.84 68.83 73.5
Gap detection 50.96 46.79 48.78
Local alignment 56.08 52.32 54.14
GD & LA 71.47 72.83 72.15
Combined 91.67 74.38 82.12

Table 1. Recall, precision, and F-measure statistics (in %)

Query Song Original GD LA GD & LA Combined
1 0114144842 Happy Birthday X 1st X 1st 4th
2 0114150748 Silent Night 1, 2, 3, 4th 1,2,3,4th 2,3, 6th 2,3, 6th 1, 2, 3, 4th
3 0226104251 Silent Night 1, 2, 3rd, 6th 1,2, 3rd 1, 2, 3, 6th 1, 2, 3, 6th 1, 2, 3,6th
4 0226133350 Silent Night 1, 2, 3, 14th 1,2, 3rd 1, 2, 3, 11th 1, 2, 3, 11th 1,2, 3rd,14th
5 0226145115 Silent Night 1, 2, 3, 4th X 1, 2, 3rd 1, 2, 3rd 1, 2, 3, 5th
6 0312102415 Happy birthday 1st 1st 1st 1st 1st
7 0328093006 Happy birthday 1st 3rd 3rd 3rd 1st
8 0328093240 Happy birthday Corrupted 1st 2nd 1st 1st
9 0328142041 Silent Night 10, 11, 15th X X X 12,13th
10 0620111910 Silent Night 1, 2, 3rd X 1, 2, 3, 4th 1, 2, 3, 4th 1, 2, 3, 12th
11 0704164259 Happy birthday X X X X X
12 0707102307 Happy birthday 1st 1st 6th 1st 1st
13 0707102335 Qing wang 1, 2, 3rd X 1st 1st 1, 6, 7th
14 0707102455 Silent Night 1, 2, 3, 6th 1,2, 3rd 1, 2, 3rd 1, 2, 3rd 1,2, 3,5th
15 0710140837 Happy birthday 1st X 1st 1st 1st
16 0710141732 Happy birthday 1st 8th 1st 1st 1st
17 0710143633 Qing wang X X 6th 6th 14th
18 0710150819 Qing wang 1, 2, 3rd 1st X 1st 1, 2, 3rd
19 0710152442 Happy birthday 8th 1st X 1st 1st
20 0710153421 Happy birthday X X 11th 11th 12th
21 0710154400 Happy birthday 1st 8th X 8th 1st
22 0711095404 Happy birthday 2nd 1st 8th 1st 1st
23 0723085153 Silent nights 2,3,4,5th X X X 1,4,5,6th
24 1015155425 Happy birthday 1st X 3rd 3rd 1st
25 1015160015 Qing wang 1, 2, 3rd X 1st 1st 1, 6, 7th
26 1015165838 Qing wang 1, 2, 9th 2,3,16,17th 1st 1st 3, 4, 5th

Table 2. Compare results across different implementations: original algorithm, gap detection (GD),
local alignment (LA), GD & LA, and combined algorithm

its performance is not satisfactory, especially when the out-of-tune part happens at the

beginning of the query. Dynamic programming, on the other hand, could complement for

the gap detection approach in the sense that DP is more tolerant to out-of-tune queries,

e.g. several slopes could be skipped until matching a slope. The limitation of DP is that

the irrelevant MIDI file could happen to have the slope shape that result in a high-value

alignment path. We expect that if we have two levels of retrieval, i.e. coarse grain and

5

fine grain, DP could be used for the latter level and results in better performance. The

parameters for DP could be tuned to provide better retrieval as well.

Another important thing to note is that our current GD and LA implementations

use only global features, which are slope duration and pitch changes. As compare to the

use of local features including note duration and pitches of the original algorithm, we

have obtained a promising precision of 72.83%, which is higher than 68.83% precision of

the original, and a recall of 71.47% which is acceptable as compare to 78.84% recall of

the original. We believe that we could possibly outperform the original system if local

features are considered.

5. CONCLUSION

In this assignment, we have achieved the following things:

• We have discovered new ways for doing slope matching. Although comparing with

the original system, our algorithms are much simpler, but still the performance has

reached an acceptable level.

• This assignment has provided us a good exposure to content-based retrieval system,

particularly real query-by-humming retrieval system, which is a good basis for our

further study in multimedia IR.

• It might look intimidating at first to modify a published algorithm. However, as we

go further into the assignment, the modification is really feasible, in which we have

learned how to identify important parts of the system, and had a good starting

point by identifying a set of testing queries.

In future work, we will further investigate in the use of local features. Besides, the

application could be enhanced to perform online recording, as well as be able to playback

matched position directly.

6. REFERENCES

[1] Gusfield, D. (1997). Algorithms on strings, trees, and sequences: computer science

and computational biology. New York, NY, USA: Cambridge University Press.

[2] Zhu, Y., Xu, C., & Kankanhalli, M. (2001). Melody curve processing for music

retrieval. icme, 00 , 2001, 73.

6

