
CS3242 assignment 3 report

Content-based image retrieval

Luong Minh Thang & Nguyen Quang Minh Tuan

1. INTRODUCTION

In content-based image retrieval (CBIR) system, color and edge are fundamental features

used widely in many implementations. In this report, we investigate in various techniques

involving around color and edge features. Besides, implementing those matching strate-

gies that appears frequently in many CBIR system, we have also proposed some other

new approaches, and demonstrated that our system has achieved significant improvement

of 2.01% from the baseline system.

Our work consists of three main parts including color approach, edge/direction feature

approach, and dynamic-confidence merging. In color approach, we compare histograms

in YCrCb color space, adding color perceptual similarity, as well as color coherence. On

the other approach with edge/direction feature, we have tried out several new techniques

which are 4-step edge detection, and edge coherence together with entropy measurement.

Lastly, we combined the results of color and edge features dynamically based on the query

image with our new definition of confidence retrieval values.

2. COLOR FEATURE MATCHING

In this section, we describe our color feature used for image matching, in which we

employ histogram matching technique. Each image histogram is first extracted out, and

is represented by hist[1..N], in which N is the total number of colors, and hist[i] is the

frequency value of each color i. The idea of histogram matching is that we compute

the overall similarity between the query image histogram, query[1..N], and each dataset

image histogram, data[1..N], by going through each bin in the color histograms to see

how corresponding the values are. Our baseline similarity computation, which we called

exact similarity, is formulated as below:

overall sim =

N
∑

i=1

query[i] ∗ sim exact(query[i], data[i]) (1)

=

N
∑

i=1

query[i] ∗ (1 − |query[i] − data[i]|
max(query[i], data[i])

) (2)

In the above formula, we multiply the sim(query[i], data[i]) to query[i] as a weight

so that frequent colors n the query image will contribute significant to the overall simi-

larity value. This formula, however, has a disadvantage that comparisons are only made

1

between two exactly the same colors, but not between colors that look very similar percep-

tually, e.g. between color i and color (i-1). Thus, an improvement for the exact similarity

above is to consider perceptual similarity of each query color i with other similar colors

in the dataset image. In order to accomplish that, we first compute the color similarity

matrix by denoting each color i by its component values Yi, Cri, and Cbi. The similarity

between color i and color j is based on diff[i][j] =

√
(Yi−Yj)2+(Cri−Crj)2+Cbi−Cbj)2

max diff
, in which:

color sim[i][j] =

{

1 − diff diff < t color

0 diff ≥ t color
(3)

A color threshold t color is used to exclude those colors which are very different from

the reference color. We set t color to be equal to the average value of all entries in the

diff matrix, which is 0.5607. From the color similarity matrix, the perceptual similarity

values for each color i in the query image is computed as below:

sim peri =

N
∑

j=1

color sim[i][j] ∗ sim exact(query[i], data[j])

After having the perceptual similarity values, the abstract overall similarity formula:

overall sim =
N

∑

i=1

f(sim exact, sim per)

There are several different ways to specify f as a way to combine the exact and

perceptually values. e.g. f(sim exact, sim per) = sim exact ∗ (1 + query[i] ∗ sim per) as

mentioned in the lecture notes, or f(sim exact, sim per) = sim exact ∗ query[i](w + (1 −
w)sim per). However, after experimenting with many different combinations, we come to

conclude that the performance is much better when sim per is considered independently

with sim exact through f(sim exact, sim per) = w∗sim exact+(1−w)∗sim per. Detailed

experiment results will be presented later in section 5.

3. EDGE/DIRECTION FEATURE APPROACH

In this part, we will discuss about our methods to generate edge-direction histogram as

well as ideas about edge coherence and entropy.

3.1. Four step edge/direction histogram generator(FSED)

To generate edge-direction histogram for a JPEG image, our methods contains of 4 steps:

Step 1 - Detecting edges: In a DCT block, AC values represent the variation of

luminance and color in vertical and horizontal directions. The bigger the variation is,

the more likely the block represents an edge. Thus, we compute the total variation

2

by summing all AC absolute values across Y, Cr, Cb channels. We determine that a

block represents an edge if the total variation is greater than a predefined threshold.

Experimentally, we set threshold = 1150 which gives the best result.

Step 2 - Filtering unimportant edges: After step 1, we found that many detected edges

are not really important which results in inaccurate retrieval. For example, consider the

image of a bird (the main object) in a complex background, the number of edges from

the main bird object is often outweighed by that of the complex background. Another

type of unimportant edges is those inside an object. For example, in the context of a

bird image, normally, the important edges are at the ”boundary” of the bird, not the

edges ”inside” the bird. In our implementation, we tried to omit the edges that are in

the background or inside the object. We assume that the blocks at the boundary of an

image represents its background, and go from the boundary of the images to its center

and tried to detect whether an edge is at the boundary of an object or not by considering

the properties of its neighboring blocks.

Step 3: Detecting direction In this step, we try to detect the direction of the important

edges in step 1 and 2. People can argue that detecting the direction of all the blocks

in the images is a better choice. However, we find that if the image background is very

complex, a detection of all blocks’ directions will affect adversely directions of the main

object. Moreover, in most of the cases, the directions along the boundary of an object is

sufficient for representing the direction of the whole object. For this step, we have tried

two methods, one is from the paper (Eom & Choe, 2005), the other is our new approach:

• Approach from paper In this approach, the authors made use the properties of DCT

cells AC0,1 and AC1,0 to approximate the direction of a whole block. According

to the paper, the coefficient AC0,1 denotes the edge strength in vertical direction

and AC1,0 denotes the edge strength in vertical direction. Hence, using the ratio

|AC0,1|/|AC1,0|, we can approximates the direction of the whole block. For example,

if the ratio is near 0, the vertical direction is dominating the block. From the ratio,

we categorized the direction into 4 types: horizontal, vertical, 45- and 135-degree.

• Our new approach After trying the approach from the paper, we find that the result

is not very good, so we decided to develop our own approach. In this approach,

we consider those remaining edges from step 1 and 2, which are at the boundary

of some objects. For each edge[i][j], we detect its direction by considering its 8

nearby blocks divided into 4 groups as below. For each direction group, we count

the number of its blocks that contain an edge, and take the direction of group with

maximum count to be the direction of block[i][j]. We break the tie by considering

the first direction that satisfies.

3

– Vertical direction group: B[i-1][j] and B[i+1][j]

– Horizontal direction group: B[i][j-1] and B[i][j+1]

– 135-degree direction group: B[i-1][j-1] and B[i+1][j+1]

– 45-degree direction group: B[i-1][j+1] and B[i+1][j-1]

Step 4: Constructing edge-direction histogram We divide the images into

4*4=16 subimages. For each subimage, we calculate the number of edges in 4 direc-

tions. Hence, together, we have 4*4*4 = 64 bins for the edge histogram. The final step

is to normalize the histogram so that its sum is equal to 1.

3.2. Edge histogram similarity

After applying FSED for two images A and B, we have 2 edge histogram Ha and Hb.

This section is about how to obtain a similarity value from Ha and Hb. We have tried 3

different ways to measure this similarity value:

Uniform approach: sim = max(1 −
∑63

i=0 |Ha[i] − Hb[i]|, 0)

Central approach: give more weight to the center of the images

sim = max(1 − (
∑

i:centralpart

α ∗ |Ha[i] − Hb[i]| +
∑

i:boundarypart

β ∗ |Ha[i] − Hb[i]|), 0)

In the formula, a>b to represent the importance of the central part.

• Uniform approach: sim = max(1 −
∑63

i=0 |Ha[i] − Hb[i]|, 0)

• Central approach: give more weight to the center of the images. In the formula, we

set α > β to represent the importance of the central part.

sim = max(1 − (
∑

i:centralpart

α ∗ |Ha[i] − Hb[i]| +
∑

i:boundarypart

β ∗ |Ha[i] − Hb[i]|), 0)

• Clustering approach: try to match sub-images with high edge density together and

sub-images with low edge density together. The idea is because high edge density

subimages have higher chance to represent the important object:

sim = max(1 −
16

∑

i=1

∑

j:direction

|Ba[i][j] − Bb[i][j]|, 0)

where B is a [16][4] array sorted by the density of edge in block.

After trying 3 approaches, we found that uniform approach works slightly better than

the other two. The reason is that in the given dataset, many objects do not stay close

4

to the center of the image, and many objects expand the whole image, so the clustering

approach and the central approach won’t work well. Therefore, we will use the uniform

approach in our final evaluation. To support the uniform approach, we also calculate

some other parameters such as edge or direction percentage in the image.

3.3. Edge coherence and entropy

Besides direction histogram, we have tried edge coherence. This techniques is applied

after the first 3 steps of FSED. The idea of edge coherence is that the longer an edge

is, the more important it is. For example, in building, there are many edges in vertical

direction. These edges form a long vertical boundary of the building. In mountain, there

are a many edges in the diagonal direction forming a long diagonally line. Therefore, if

an image has some long diagonal lines, it may matches up with another having the same

property. In our implementation, we counted the total edge length in each direction,

giving more weight to long boundary, creating a 4-bin edge-length histogram for each

image and match them with each other.

In addition, we also made use of edge entropy in the image. The edge entropy is the

measurement of how edges ’scatter’ in the image. The more scattering the edges are, the

larger is the entropy. The entropy is used together with edge coherence in our system.

4. DYNAMIC-CONFIDENCE MERGING

To combine the strengths of both color and edge features, we introduce confidence values

when combining the results of the two features. The intuition comes from several of

our observations during experiments; for example, images whose histograms centralize

on a few major colors will be better matched than images where histograms span across

many unimportant colors. On edge feature side, we notice that images with moderate

percentage of edges will be retrieved better. As such, we compute the color confidence

value based on the number of important colors, i.e. colors whose frequency values are

greater than freq thres. On the other hand, edge confidence value is given high value when

the edge percentage is within [low thres, high thres]. Below is the combined similarity:

combined sim =
color conf ∗ color sim + edge conf ∗ edge sim

color conf + edge conf

5. EVALUATION & DISCUSSION

We carries our experiments on the dataset of 100 images consisting of 10 categories

such as bird, road, or desert. Each category contains 10 images, so we evaluates based

on the 11 standard recall levels (Baeza-Yates & Ribeiro-Neto, 1999). We have three

main comparisons: among color-feature techniques, among texture-feature techniques,

and among different combined color-texture techniques.

5

As described in subsection 2.1, we concluded that the retrieval performance is much

better when sim per is considered independently with sim exact. Table 1 shows the statis-

tics to support that conclusion at the last column sim per is considered independently

with sim exact f(sim exact, sim per) = w ∗ sim exact + (1 − w) ∗ sim per. We have the

best average precision 0.4099 compared to others.

Recall level Sim exact Depend. sim per Depend. sim per Indep. sim per
10% 1.0000 1.0000 1.0000 1.0000
20% 0.6124 0.6091 0.6139 0.6315
30% 0.4589 0.4533 0.4604 0.4744
40% 0.3910 0.3819 0.3859 0.3882
50% 0.3298 0.3314 0.3314 0.3341
60% 0.3056 0.3026 0.3029 0.3123
70% 0.2827 0.2818 0.2820 0.2845
80% 0.2523 0.2530 0.2531 0.2522
90% 0.2306 0.2302 0.2312 0.2304
100% 0.1902 0.1898 0.1911 0.1916
Average 0.4054 0.4033 0.4052 0.4099

Table 1. Color feature comparison among: exact similarity, dependent perceptually with w=0.9, depen-

dent perceptually with t color = 0.2, and independent perceptually similarity w = 0.9.

For the second evaluation, we perform comparison over edge/direction techniques,

which are FSED, and edge coherence, and across normal queries as well as object queries.

Object queries consisting of bird, building, penguin and sculpture category and are re-

trieved much better than the others (Table 2) due to clearer boundary edge. This suggests

a way to further improve the system by asking users about the presence of object, and

give a higher weight for FSED.

Another observation is that edge coherence and entropy’s performance is not as good

as FSED. We believe that it is because when implementing edge coherence, we only

consider global feature. If we can divide the image into sub-images, and consider edge

coherence value for each sub-images, the result for edge-coherence may significantly be

improved.

Lastly, we compare the performance with our final retrieval systems in which we have

combined color and edge features with/without the participation of confidence values.

Table 3 has shown that our combined system with confidence values outperforms all

other systems. We perform better than the baseline system at almost all recall levels, and

obtain an improvement of 2.01% from the baseline system, which we believe significant

after trying out many experiments where improvements are normally less than 0.1%.

6

Recall level FSED - normal FSED - object Edge coher. Edge coher. - object
10% 1.0000 1.0000 1.0000 1.0000
20% 0.5681 0.6797 0.3738 0.4229
30% 0.4125 0.5540 0.2125 0.2352
40% 0.2929 0.3721 0.1747 0.1793
50% 0.2295 0.2886 0.1398 0.1463
60% 0.2009 0.2572 0.1309 0.1373
70% 0.1723 0.2227 0.1230 0.1277
80% 0.1560 0.1939 0.1201 0.1232
90% 0.1475 0.1817 0.1161 0.1220
100% 0.1369 0.1597 0.1140 0.1161
Average 0.3312 0.3909 0.2500 0.2610

Table 2. Texture feature comparison among: FSED - normal queries, FSED - object queries, edge

coherence, and edge coherence - object queries.

Recall level Baseline Color Edge Non-confidence Confidence
10% 1.0000 1.0000 1.0000 1.0000 1.0000
20% 0.6124 0.6315 0.5681 0.6302 0.6721
30% 0.4589 0.4744 0.4125 0.4860 0.4970
40% 0.3910 0.3882 0.2929 0.4143 0.4316
50% 0.3298 0.3341 0.2295 0.3579 0.3589
60% 0.3056 0.3123 0.2009 0.3316 0.3238
70% 0.2827 0.2845 0.1723 0.2989 0.2940
80% 0.2523 0.2522 0.1560 0.2667 0.2651
90% 0.2306 0.2304 0.1475 0.2330 0.2252
100% 0.1902 0.1916 0.1369 0.2016 0.1870
Average 0.4054 0.4099 0.3312 0.4220 0.4255

Table 3. Final retrieval comparison among: baseline, color feature, edge feature, combined system, and

combined system with confidence values

6. REFERENCES

[1] Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Addison

Wesley.

[2] Eom, M., & Choe, Y. (2005). Fast extraction of edge histogram in dct domain based

on mpeg7. Proceedings of world academy of science, engineering and technology, 9 ,

2005, 209–212.

7

