
Chapter 1

Related Work

1.1 Statistical machine translation

In this section, we review different machine translation SMT models as classified in Figure 1.1.

Heuristic model: simplicity,

but arbitrary similarity function

Statistical alignment model: 

more coherent

Source-channel approach

P(E|F) ~ P(F|E) * P(E)

Log-linear approach

P(E|F) ~ ∑ λi hi (E|F)

•HMM: first-order

•Model 1: uniform

•Model 2: zero-order

•Model 3: zero-order, fertility-based

•Model 4: first-order, fertility-based

•Model 5: first-order, fertility-based, 

non-deficient

•Model 6: HMM + Model 4

•Factored model (MOSES)

Figure 1.1: SMT model classification

Machine translation first started with heuristic models with the advantage of simplicity, in

which similarity function is mainly used by capturing the co-occurrence of words. From the
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association score matrix, suitable heuristics could be applied to derive word alignment, such as

the following method in which Dice coefficient is used:

aj = argmax
i

dice(i, j)

According to (Och & Ney, 2003), one major problem of the heuristic models is the use of

similarity functions which seems to be completely arbitrary. In view of that, more coherent class

of models which is based on statistical alignment approach, is considered to be more appropriate.

The statistical approach was originated from (Brown, Pietra, Pietra, & Mercer, 1993)with their

influential paper proposing 5 IBM models. The statistical approach obtains association score by

using statistical estimation theory, and model parameters are determined to maximize the model

likelihood on the training corpus. Those 5 IBM models are designed under the unified view of

source-channel approach in which a target language (E) goes through a noisy channel, and

becomes the source langue (F), and the issue is to recover E from its distorted version, which

is F. Follow this approach, HMM model and its extensions are suggested by (Vogel, Ney, &

Tillmann, 1996) and (Och & Ney, 2003) to capture the locality property of word alignments.

Recently, there emerges a more general promising approach, called log-linear models, which

encapsulates the source-channel approach while allowing other features to be added in order

to improve system performance. The log-linear approach was suggested by (Och & Ney, 2002)

which contains the widely used source-channel approach as a special case. In (Och & Ney,

2003), a model called Model 6 is proposed which combines HMM model and IBM Model 4 in a

log-linear way which yields significantly better results than simple heuristic models. Factored

translation model (Koehn & Hoang, 2007) is recently proposed in which each word and its

addition annotations (such as lemma, POS, morphology, or word class) are considered as a

whole instead of the word alone. Together with factored translation model, a publicly-available

SMT toolkit, MOSES (Koehn, Hoang, Mayne, Callison-Burch, Federico, Bertoldi, Cowan, Shen,

Moran, Zens, Dyer, Bojar, Constantin, & Herbst, 2007b), is provided, and considered to be the

state-of-the-art SMT system currently.
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1.1.1 Source-channel approach

Source-channel approach in SMT is adopted from the analogy of Bayesian noisy channel models

used in different applications such as speech or spelling. As illustrated in figure bug figure,

when translating from a source sentence F to a target sentence E, we imagine that E has been

distorted by the noisy channel to become F, and the translation process is to decode from F the

most probable Ê. Under this approach, as translation task is described through the formula

Ê = arg max
E

Pr(F |E) . Pr(E) (1.1)

in which Pr(F | E) represents translation model and Pr(E) means language model. Pr(F | E)

tells how well a set of words in English (target) could be a translation of the French sentence

(source). Pr(E), on the other hand, constrains on how well a sequence of word could be a good

sentence in English. As such, Pr(E) helps the system on the linguistic aspects of the target

language, e.g. imposing word ordering, deciding better word choice in translation, etc., which,

in turn, relieves Pr(F | E) from many language-dependent issues to focus on finding goods set of

words as candidate translations. For each pair of sentence (fJ
1 , eI

1), the translation probability

could be expressed as the accumulated probability through different alignment possibilities aJ
1

Pr(fJ
1 |eI

1) =
∑

a

Pr(fJ
1 , aJ

1 |eI
1)

SMT models are generally different in representing Pr(fJ
1 , aJ

1 |eI
1), which in this section, we

will highlight key differences among them as illustrated in Figure 1.1. We refer interested reader

to other comprehensive surveys on SMT systems available in the literature such as (Och &

Ney, 2003), or (Jurafsky & Martin, 2007). With respect to the aforementioned formula, the

translation probabilities in HMM model, IBM Model 1 and Model 2 are abstractly defined as

Pr(fJ
1 , aJ

1 |eI
1) = length prob * alignment prob * lexicon prob

where length prob tells how likely the translated sentence will have a particular length, align-

ment prob worries about the occurrence position of each translated word, and finally, lexi-

con prob deals with the actual content of a translation, i.e. what should be translated from a
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source word 1. IBM Model 1 and Model 2 are considered zero-order dependencies (Och & Ney,

2003) where the alignment prob of the target word jth p(aj |j, I, J) does not depend on that

of any preceding word. More specifically, IBM Model 1 uses an uniform distribution to assign

p(aj |j, I, J) = 1/(I +1). HMM model, on the other hand, is first-order dependency in which the

alignment prob is expressed as p(aj |aj−1, I). HMM model was designed to capture the strong

localization effect that words are not distributed arbitrary over sentence positions, but tend to

form cluster (Vogel et al., 1996).

a1
9 = 1 3 4 4 4 0 5 7 6 (HMM, Model 1, 2)

0 1 2 3 4 5 6 7

Source

Target Maria no daba una botefada a la bruja verde

1 2 3 4 5 6 7 8 9

Figure 1.2: Alignment representation in HMM model, IBM Model 1, and 2

B0
7 = {6} {1} {} {2} {3, 4, 5} {7} {9} {8}  (Model 3, 4, 5)

1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7

NULL Mary did not slap the green witchSource

Target

Figure 1.3: Alignment representation in IBM Model 3, 4, and 5

For IBM Model 3, Model 4, and Model 5, the representation is markedly different from the

previous representation, and much more complicated due to the introduction of the fertility

notions. Fertility of a source word is introduced to explicitly capture the number of target

words that will be a translation for that source word, e.g. when slap is translated into ”daba

1In the context of Pr(fJ

1 , aJ

1 |eI

1), we refer to eI

1 as source words, and fJ

1 as target words
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una botefada”, we say that the fertility φ(slap) = 3. With the notion of fertility, the perspective

of an alignment is reversed. Instead of asking what position aj in the source sentence corresponds

to the target word fj, we would like to know the set of target positions Bi that the source word

ei will translate to (see Figure 1.2 and 1.3). According to (Och & Ney, 2003), the translation

probability for IBM Model 3, 4, and 5 Pr(fJ
1 , aJ

1 |eI
1), or equivalently Pr(fJ

1 , BI
0 |eI

1), could be

expressed as

Pr(fJ
1 , aJ

1 |eI
1) = spurious prob * alignment prob * lexicon prob

in which alignment prob denotes the probability of deciding Bi of each source word ei, spu-

rious prob takes care of translating positions for the NULL source word B0, and lexicon prob

concerns about translating to fj given ei. The 3 models differ at how they define alignment prob.

In IBM Model 3, the dependence of Bi on its predecessor Bi−1 is ignored, i.e. zero-order de-

pendency, while IBM Model 4 has first-order dependency. Both IBM Model 3 and 4 suffer

from what is defined in (Brown et al., 1993) as deficiency, in which no constraint is imposed on

alignment positions in Bi, for example, the positions may overlap. IBM Model 5 overcomes that

weaknesses by only allow word ei to choose vacant positions remained after words ei−1
1 have

decided their translating positions. We end this section by providing Knight’s nice illustration

(Knight, 1999) on the generative process of IBM Model 3 in Figure 1.4. The process consists of

five stages: input, choose fertilities, choose number of spurious words, choose translation, and

choose target positions.

Mary did not slap the green witch (input)

Mary not slap slap slap the green witch (choose fertilities, e.g. )

Mary not slap slap slap NULL the green witch (choose number of spurious words)

Maria no daba una botefada a la verde bruja (choose translations)

Maria no daba una botefada a la bruja verde (choose target positions)

3)( =slapφ

Figure 1.4: String-rewriting illustration for the generative process of IBM Model 3 (Knight,

1999)
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1.1.2 Log-linear approach

In previous section, we have discussed about the source-channel approach, which indirectly solve

the translation problem from source to target languages by considering the target language model

as well as the translation model from target to source languages. An alternative to this approach

is to model the posterior probability Pr(E|F ) directly (Och & Ney, 2002), and is referred as the

log-linear approach. The linearity of the approach comes from the ability to combine M feature

functions hm(E,F ),m = 1 . . . M , contributing linearly to the posterior probability as

Pr(E|F ) =
exp

∑
M

m=1
λmhm(E,F )

normalizing factor
(1.2)

By taking the log on both side, our translation problem could be compactly represented as

Ê = arg max
E

M∑

m=1

λmhm(E,F )

The interesting characteristic of the log-linear approach is that it encapsulates our previous

source-channel approach. Specifically, when we have two feature functions h1 = logPr(F |E)

and h2 = logPr(E), equation (1.2) is essentially equivalent to the equation (1.1), which means

log-linear approach is a more general model. Besides the two common features in source-channel

approach, i.e. language model and translation model, other possible features as suggested by

(Och & Ney, 2002) are sentence length feature, additional language models (class-based five-

gram language model), lexicon co-occurrence, lexical feature, and grammar feature.

As summarized in Figure 1.1, the two current models adopting this approach are Model 6

(Och & Ney, 2003), and factored translation model (Koehn & Hoang, 2007). In (Och & Ney,

2003) work, they realize that HMM model makes well use the locality in the source language,

where as IBM Model 4 makes use of locality in the target language. As such, they have come

up with this Model 6 by combining HMM and Model 4 in a log-linear way, and claimed to yield

better results than the HMM model as well as the 5 IBM models. In Model 6, the authors

also propose an efficient greedy search algorithm as suggested by (Brown et al., 1993), called

pseudo-Viterbi alignment, which is simple-model Viterbi plus improving iterations. The fac-

tored translation model was recently proposed with the ambition to consider different aspects

of translations at different levels such as morphological, syntactic, or semantic levels. Together
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with the open-source MOSES systems (Koehn, Federico, Shen, Bertoldi, Bojar, Callison-Burch,

Cowan, Dyer, Hoang, Zens, Constantin, Moran, & Herbst, 2007a), MOSES provides the flexi-

bility to incorporate different features, which they call factors, in a log-linear manner. A work

in their system is now not only a token, but a vector of different factors such as surface for,

lemma, part-of-speech, or morphological features. They have showed that the factored transla-

tion model achieves better translation performance, both in terms of automatic scores, as well

as grammatical coherence.

In log-linear systems, the weights λi are estimated using MERT (Minimum Error Rate

Training) method(Och, 2003).

λ∗ = argmin
λ

Err(cand(λ), ref)

(MERT to be further explained)

1.1.3 State-of-the-art SMT systems

Sentence-aligned parallel corpus

{ (fs , es) | s = 1..S}

Training (EM, GIZA++)

Decoding (beam-search, Pharaoh)

∧

θ

∏∑
=

∧

=
S

i a

s

J

s
J

eafp
1

1

1

)|,(argmax θ
θ

θ

)|,(argmax 1111

1

IJJ

a

J eafpâ
J

θ=

Alignment

Evalua!ng (BLEU)

Word-aligned parallel corpus

Phrase-based tables

symmetrizing

Scoring functions, parameters 
∧

θ

Viterbi alignmentLanguage model 

(SRILM, or IRSTLM)

Figure 1.5: A sample SMT system with suggested publicly-available tools and methods

Evaluation
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Good automatic scoring: Word Error Rate (WER), Position Independence Word Error Rate

(PER), 100-BLEU score, NIST-score

BLEU (BiLingual Evaluation Understudy): measure the matches of short phrases between

translated and reference text, as well as the difference in length of the reference and output.

Using unigrams, bigrams, trigrams, and 4-grams as well as penalty for too-short sentences

to judge the precision of the system with respect to reference translations.

WER (Word Error Rate): measure the number of matching output and reference words

with word order preserving, and maximum attainable number of single-word matches.

Minimum edit distance from the candidate translation to the reference translation. For

mWER (multireference WER), multiple reference translations are used.

PER (Position Independence Word Error Rate): compare words in the two sentences, ig-

noring word order.

Smoothing

To overcome the problem of overfitting on the training data, and to enable the models to

cope better with rare words, smooth the alignment and fertility probabilities.

Alignment probabilities are interpolated with uniform distribution p(i | j, I) = 1/I

Fertility probabilities are smoothed so that for rare words, the length of the words are taken

into account.

The state-of-the-art smoothing technique is modified Kneser-Ney interpolation (Chen &

Goodman, 1996)

Efficient method for growing and pruning Kneser-Ney smoothed models are presented in

(Siivola, Hirsimaki, & Virpioja, 2007)

Training:

Parameters θ varies according to the system model, e.g, θ in model 4 consists of lexicon,

alignment, and fertility parameters

EM algorithm: hidden variable is alignment. Use EM iteratively to estimate the model

parameters, compute alignments from the estimated parameters, and use the alignments to

re-estimate the parameters.
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Viterbi alignment:

** Model 1 & 2: O(I.J)

** HMM: O(I2, J)

** Model 3, 4, 5, 6: NP-complete

1.2 Morphological analysis in statistical machine translation

Low-inflected highly-inflected

Figure 1.6: Language classification on morphological influence (Dyer, 2007a)

We begin this section with the classification of languages based on morphological influence

adopted from (Dyer, 2007a) (see Figure 1.6). As we could observer languages vary in mor-

phological degree from isolating (low-inflected) languages in which each word generally has one

morpheme, like Vietnamese or Chinese, to polysynthetic (highly-inflected) languages where a

single word could have many morphemes, like Siberian Yupik (“Eskimo”) or Navaho. One

of the biggest challenges for SMT systems in the morphology perspective is the problem of

sparse data when dealing with highly-inflected languages. As for highly-synthetic languages,

more and more morphemes could be added to a word to form a new word with more enriching

the meaning, so many words tends to have frequency of one in the training corpus, or even

does not appear at all, causing troubles for many SMT systems. Moreover, when translat-

ing from a low-inflected language to a highly-inflected language and vice versa, the problem

of non-correspondence between words in two languages become more severe as a word in the

low-inflected might corresponding to a suffix or prefix morpheme, or no correspondence at all.
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These challenges suggest why there is a need to incorporate morphological knowledge in SMT

systems.

Morphological analysis in SMT

•Lee (2004):  Arabic-English. 

Keep/delete/merge Arabic 

morpheme aligned to English 

tag.

•Zollmann et. al, 2006: Arabic-

English. Morph analyzer + 

contextual relationship.

• Yang & Kirchhoff, 2006: 

Finish-English. Phrased-based 

backoff models

similarly-inflected 

languages

•NieBen & Ney, 2000, 2001, 

2004: German-English. Morpho-

syntactic SMT.

•Corston-Oliver & Gamon, 2004: 

German-English. Normalize 

inflectional morphology.

•Goldwater & McClosky, 2005: 

Czech-English. Lemmatization + 

morpheme tags.

Dyer (2007): Czech-English. 

Modelling ‘noisier channel’ + 

Confusion network.

•Virpioja, et. al, 2007: Danish-

Finish-Swedish. morphology-

aware SMT.

Low to highly –inflected 

languages

highly – low inflected 

languages

•Oflazer and Kahlout, 

2007: English-Turkish. 

Morpheme-function word 

relation + open class 

content words.

•Minkov et. al, 2007: 

English-Arabic, English-

Russian. Post-processing: 

inflection form prediction.

Figure 1.7: Morphological analysis in SMT

We analyze current morphological SMT systems based on their choices of languages either

from morphologically poor language to morphologically rich language, vice versa, or from and to

languages of similar morphological degree. We classify a pair of languages as similarly-inflected

when they are less than two columns apart in the classification by Dyer (see Figure 1.6). In our

figure 1.7 which summarizes different works on morphological SMT, readers could notice that

many SMT systems have been constructed for those similarly-inflected language pairs such as

German-English, or Czech-English. In (Nießen & Ney, 2000), (Nießen & Ney, 2001), (Nießen &

Ney, 2004), morphological analysis is used to address the issue of restructuring in SMT, such as
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question inversion or separated verb prefixes, which helps improving the translation performance

from German to English. The authors have also suggested using hierarchical lexicon models

to deal with the problem of data sparseness, resulting similar level of alignment quality with

smaller corpora. In (Corston-Oliver & Gamon, 2004), normalization of inflectional morphology

is experimented on different scenarios (e.g. stemming on verb, or noun phrase etc.). Even

though shown to improve the perplexity of the models as well as reduces alignment errors when

translating German-English, the system only translate into the base form, and not being able

to decide the contextually appropriate word form. (Goldwater & McClosky, 2005) investigates

in how morphological analysis alone could help MT system, and try to make Czech input

date more English-like by suppressing unnecessary morphological distinctions and expressing

necessary distinctions in ways that are similar to English. (Dyer, 2007b) suggests the use

of morphological transformation under the view of a ’noisier channel’, which extend the usual

noisy channel by adding a morphological component to the channel pipeline. The morphological

component allow the system to deal with ambiguous input in the form of Confusion Network.

Based on a hierarchical phrase-based decoder, the system claims to obtain a significant BLEU

score improvement when translating from Czech to English. Recently, the work (Virpioja,

Vyrynen, Creutz, & Sadeniemi, 2007) has attempted to translate among highly-inflected Nordic

languages (Danish, Finish, and Swedish) at morpheme level. Danish and Swedish are very close

to each other in terms of grammar and vocabulary. Finish, on the other hand, is considerably

different from Danish and Swedish, famous for its extremely rich morphology, and the most

difficult language to translate from and to among those languages available in the Europarl

corpus (Koehn, 2005). Even though their system did not obtain higher BLEU scores compared

to the word-based approach, they have presented a promising unsupervised, language-dependent

approach with the use of the unsupervised morphological analysis algorithm Morfessor (Creutz &

Lagus, 2005), and variable n-gram model VariKN (Siivola et al., 2007).

The second class of works focus on translating from synthetic languages to isolating lan-

guages, which is considered a harder task than translating among similarly-inflected languages.

This is due to the morphological complexity of the source language that is markedly different
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from the target language, resulting in the un-correspondence problem in grammar and vocab-

ulary, e.g. a word in Arabic may correspond to multiple words in English. Moreover, scarce

resource is often a challenge when working with synthetic languages as not many languages have

large training corpora. Even if corpora are available for a highly-inflected language, they may

not be large enough to cover the majority of distinct words in the language due to its morphol-

ogy abundance, which results in large vocabulary. We present here several recent works on the

aforementioned direction. In (Lee, 2004), the authors presents a technique to induce a morpho-

logical and syntactic symmetry between Arabic and English, which presupposes a POS-tagged

parallel corpus as well as pre-segmentation of Arabic words into prefix(es)-stem-suffix(es) form.

By considering the consistency of an aligned English POS tag and an Arabic morpheme, the

system determines whether that morpheme is to be kept, merged back to the original stem, or

discarded. In (Zollmann, Venugopal, & Vogel, 2006), the task of translating Arabic to English

is assisted by using Buckwalter Arabic Morphological Analyzer (BAMA)(Buckwalter, 2004).

Based on the contextual relationship, e.g. word occurrences, in the target language the system

determines the most appropriate segmentation of an Arabic word from those possible segmen-

tations generated by BAMA tool. In (Yang & Kirchhoff, 2006), a phrase-based backoff model

which performs morphological analysis is used to handle unseen word form in the source lan-

guages when translating from German to English, and Finish to English. Specifically, stemming

and compound splitting operations are interleaved to hierarchically handle an unseen word. For

stemming, the system makes uses of TreeTagger (Schmid, 1994) for German and the Snowball

stemmer 2 for Finish. Compound splitting is accomplished by a simple technique of considering

all possible segmenting ways and constraining on the lengths of each subpart.

So far, only related works on the two directions (among similarly-inflected languages, and

low to highly-inflected languages) are mentioned, how about the last directions? In fact, very

limited works on translating from isolating to synthetic language are available in the literature.

Translating from information-poor into an information-rich language is inherently more difficult

than the reverse direction as supported by Koehn in his comprehensive analysis on 110 SMT

2http://snowball.tartarus.org/
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systems (Koehn, 2005). According to him, researchers have made a similar observation that

Chinese-English SMT systems perform worse than Arabic-English SMT systems. In our belief,

one of the main reason is that reducing redundancy in the morphologically rich source language

before translating is easier than introducing additional information or combining words in the

morphologically poor source language. By the time of this review, only two works on this

direction are available, and have shown promising results. The first work (Oflazer & Durgar

El-Kahlout, 2007) explores the translation task from English to Turkish based on an observation

that a complete English phrase needs to be used to align with a Turkish word, and might be dis-

continuous on the English side. The main idea is to get open-class words in English aligned with

stems in Turkish open-class words by separating additional “noise” from morphemes and other

function words. TreeTagger (Schmid, 1994) is used to provide lemma and part-of-speech for each

English word. For Turkish, their own morphological analyzers output several lexical morpheme

segmentations for each word, which are then disambiguated by a external statistical disambigua-

tor specially designed for Turkish. Additional data containing only open-class English words

and Turkish open-class stems is augmented to the normal training corpus, which results good

BLEU points for the system. The system uses morpheme-based language model, and rescore the

outputs with word-based language model. In (Minkov, Toutanova, & Suzuki, 2007), the authors

work on translation task from English to Arabic and Russian in which they have presented an

interesting approach in predicting the inflected word forms of the target morphologically rich

languages. The system preassumes available lexicons for both source and target languages that

provides morphological information for words in source and target languages. The system aims

at taking an output sentence from an MT, convert into stemmed-version sentence, and predict

the correct inflected-version sentence by employing all information from lexical. That aim is

accomplished by using a second-order probabilistic model decomposing overall probability to

individual word predictions, as well as categorizing different features for probability prediction

such as monolingual for target language, or bilingual for both languages.

Conclusion: to be done.
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Chapter 2

Proposed systems

src (surface form)

Lemma extractor

Morphological analyzer 

(Morfessor)

src (morpheme-level)

src (lemma)  

Lemma SMT

src (prefix + suffix)  

dst (lemma)  

Morpheme recovery

Morpheme SMT

dst (prefix + suffix)  

dst (surface form)

Figure 2.1: Translating from src to dst languages of similar inflection levels (low-low, high-high)
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src

src (open-class 

words)

Tagger

dst

Morpheme segmenta!on

dst (stem)

dst (open-class 

words)

Open-class word SMT

Figure 2.2: Training for src (lowly inflected) and dst (highly inflected)

Tagger

src

src (open-class 

words)  

Open-class word SMT

src (close-class 

words)  

dst (stem open-class 

words)  

Morpheme recovery

Morpheme SMT

dst (prefix + suffix + stem 

close-class word)  

dst (surface form)

Figure 2.3: Translating from src (lowly inflected) to dst (highly inflected)
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