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Abstract

Neural Machine Translation (NMT) is a

new approach to machine translation that

has shown promising results that are com-

parable to traditional approaches. A sig-

nificant weakness in conventional NMT

systems is their inability to correctly trans-

late very rare words: end-to-end NMTs

tend to have relatively small vocabularies

with a single unk symbol that represents

every possible out-of-vocabulary (OOV)

word. In this paper, we propose and im-

plement an effective technique to address

this problem. We train an NMT system

on data that is augmented by the output

of a word alignment algorithm, allowing

the NMT system to emit, for each OOV

word in the target sentence, the position of

its corresponding word in the source sen-

tence. This information is later utilized in

a post-processing step that translates every

OOV word using a dictionary. Our exper-

iments on the WMT’14 English to French

translation task show that this method pro-

vides a substantial improvement of up to

2.8 BLEU points over an equivalent NMT

system that does not use this technique.

With 37.5 BLEU points, our NMT sys-

tem is the first to surpass the best result

achieved on a WMT’14 contest task.

1 Introduction

Neural Machine Translation (NMT) is a novel ap-

proach to MT that has achieved promising results

(Kalchbrenner and Blunsom, 2013; Sutskever et

al., 2014; Cho et al., 2014; Bahdanau et al., 2015;

Jean et al., 2015). An NMT system is a conceptu-

ally simple large neural network that reads the en-

∗Work done while the authors were in Google. † indicates
equal contribution.

tire source sentence and produces an output trans-

lation one word at a time. NMT systems are ap-

pealing because they use minimal domain knowl-

edge which makes them well-suited to any prob-

lem that can be formulated as mapping an input

sequence to an output sequence (Sutskever et al.,

2014). In addition, the natural ability of neural

networks to generalize implies that NMT systems

will also generalize to novel word phrases and sen-

tences that do not occur in the training set. In addi-

tion, NMT systems potentially remove the need to

store explicit phrase tables and language models

which are used in conventional systems. Finally,

the decoder of an NMT system is easy to imple-

ment, unlike the highly intricate decoders used by

phrase-based systems (Koehn et al., 2003).

Despite these advantages, conventional NMT

systems are incapable of translating rare words be-

cause they have a fixed modest-sized vocabulary1

which forces them to use the unk symbol to repre-

sent the large number of out-of-vocabulary (OOV)

words, as illustrated in Figure 1. Unsurpris-

ingly, both Sutskever et al. (2014) and Bahdanau

et al. (2015) have observed that sentences with

many rare words tend to be translated much more

poorly than sentences containing mainly frequent

words. Standard phrase-based systems (Koehn et

al., 2007; Chiang, 2007; Cer et al., 2010; Dyer et

al., 2010), on the other hand, do not suffer from the

rare word problem to the same extent because they

can support a much larger vocabulary, and because

their use of explicit alignments and phrase tables

allows them to memorize the translations of even

extremely rare words.

Motivated by the strengths of standard phrase-

1Due to the computationally intensive nature of the soft-
max, NMT systems often limit their vocabularies to be the
top 30K-80K most frequent words in each language. How-
ever, Jean et al. (2015) has very recently proposed an efficient
approximation to the softmax that allows for training NTMs
with very large vocabularies. As discussed in Section 2, this
technique is complementary to ours.



en: The ecotax portico in Pont-de-Buis , . . . [truncated] . . . , was taken down on Thursday morning

fr: Le portique écotaxe de Pont-de-Buis , . . . [truncated] . . . , a été démonté jeudi matin

nn: Le unk de unk à unk , . . . [truncated] . . . , a été pris le jeudi matin
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Figure 1: Example of the rare word problem – An English source sentence (en), a human translation to

French (fr), and a translation produced by one of our neural network systems (nn) before handling OOV

words. We highlight words that are unknown to our model. The token unk indicates an OOV word. We

also show a few important alignments between the pair of sentences.

based system, we propose and implement a novel

approach to address the rare word problem of

NMTs. Our approach annotates the training cor-

pus with explicit alignment information that en-

ables the NMT system to emit, for each OOV

word, a “pointer” to its corresponding word in the

source sentence. This information is later utilized

in a post-processing step that translates the OOV

words using a dictionary or with the identity trans-

lation, if no translation is found.

Our experiments confirm that this approach is

effective. On the English to French WMT’14

translation task, this approach provides an im-

provement of up to 2.8 (if the vocabulary is rel-

atively small) BLEU points over an equivalent

NMT system that does not use this technique.

Moreover, our system is the first NMT that out-

performs the winner of a WMT’14 task.

2 Neural Machine Translation

A neural machine translation system is any neural

network that maps a source sentence, s1, . . . , sn,

to a target sentence, t1, . . . , tm, where all sen-

tences are assumed to terminate with a special

“end-of-sentence” token <eos>. More con-

cretely, an NMT system uses a neural network to

parameterize the conditional distributions

p(tj |t<j, s≤n) (1)

for 1 ≤ j ≤ m. By doing so, it becomes pos-

sible to compute and therefore maximize the log

probability of the target sentence given the source

sentence

log p(t|s) =
m∑

j=1

log p (tj|t<j , s≤n) (2)

There are many ways to parameterize these con-

ditional distributions. For example, Kalchbrenner

and Blunsom (2013) used a combination of a con-

volutional neural network and a recurrent neural

network, Sutskever et al. (2014) used a deep Long

Short-Term Memory (LSTM) model, Cho et al.

(2014) used an architecture similar to the LSTM,

and Bahdanau et al. (2015) used a more elabo-

rate neural network architecture that uses an atten-

tional mechanism over the input sequence, similar

to Graves (2013) and Graves et al. (2014).

In this work, we use the model of Sutskever et

al. (2014), which uses a deep LSTM to encode the

input sequence and a separate deep LSTM to out-

put the translation. The encoder reads the source

sentence, one word at a time, and produces a large

vector that represents the entire source sentence.

The decoder is initialized with this vector and gen-

erates a translation, one word at a time, until it

emits the end-of-sentence symbol <eos>.

None the early work in neural machine transla-

tion systems has addressed the rare word problem,

but the recent work of Jean et al. (2015) has tack-

led it with an efficient approximation to the soft-

max to accommodate for a very large vocabulary

(500K words). However, even with a large vocab-

ulary, the problem with rare words, e.g., names,

numbers, etc., still persists, and Jean et al. (2015)

found that using techniques similar to ours are

beneficial and complementary to their approach.

3 Rare Word Models

Despite the relatively large amount of work done

on pure neural machine translation systems, there

has been no work addressing the OOV problem in

NMT systems, with the notable exception of Jean

et al. (2015)’s work mentioned earlier.

We propose to address the rare word problem

by training the NMT system to track the origins

of the unknown words in the target sentences. If

we knew the source word responsible for each un-



en: The unk1 portico in unk2 . . .

fr: Le unk∅ unk1 de unk2 . . .

Figure 2: Copyable Model – an annotated exam-

ple with two types of unknown tokens: “copyable”

unkn and null unk∅.

known target word, we could introduce a post-

processing step that would replace each unk in

the system’s output with a translation of its source

word, using either a dictionary or the identity

translation. For example, in Figure 1, if the

model knows that the second unknown token in

the NMT (line nn) originates from the source word

ecotax, it can perform a word dictionary lookup

to replace that unknown token by écotaxe. Sim-

ilarly, an identity translation of the source word

Pont-de-Buis can be applied to the third un-

known token.

We present three annotation strategies that can

easily be applied to any NMT system (Kalchbren-

ner and Blunsom, 2013; Sutskever et al., 2014;

Cho et al., 2014). We treat the NMT system as

a black box and train it on a corpus annotated by

one of the models below. First, the alignments are

produced with an unsupervised aligner. Next, we

use the alignment links to construct a word dictio-

nary that will be used for the word translations in

the post-processing step.2 If a word does not ap-

pear in our dictionary, then we apply the identity

translation.

The first few words of the sentence pair in Fig-

ure 1 (lines en and fr) illustrate our models.

3.1 Copyable Model

In this approach, we introduce multiple tokens

to represent the various unknown words in the

source and in the target language, as opposed to

using only one unk token. We annotate the OOV

words in the source sentence with unk1, unk2,

unk3, in that order, while assigning repeating un-

known words identical tokens. The annotation

of the unknown words in the target language is

slightly more elaborate: (a) each unknown target

word that is aligned to an unknown source word

is assigned the same unknown token (hence, the

2When a source word has multiple translations, we use
the translation with the highest probability. These translation
probabilities are estimated from the unsupervised alignment
links. When constructing the dictionary from these alignment
links, we add a word pair to the dictionary only if its align-
ment count exceeds 100.

en: The unk portico in unk . . .

fr: Le p0 unk p−1 unk p1 de p∅ unk p−1 . . .

Figure 3: Positional All Model – an example of

the PosAll model. Each word is followed by the

relative positional tokens pd or the null token p∅.

“copy” model) and (b) an unknown target word

that has no alignment or that is aligned with a

known word uses the special null token unk∅. See

Figure 2 for an example. This annotation enables

us to translate every non-null unknown token.

3.2 Positional All Model (PosAll)

The copyable model is limited by its inability to

translate unknown target words that are aligned

to known words in the source sentence, such as

the pair of words, “portico” and “portique”, in our

running example. The former word is known on

the source sentence; whereas latter is not, so it

is labelled with unk∅. This happens often since

the source vocabularies of our models tend to be

much larger than the target vocabulary since a

large source vocabulary is cheap. This limita-

tion motivated us to develop an annotation model

that includes the complete alignments between the

source and the target sentences, which is straight-

forward to obtain since the complete alignments

are available at training time.

Specifically, we return to using only a single

universal unk token. However, on the target

side, we insert a positional token pd after ev-

ery word. Here, d indicates a relative position

(d = −7, . . . ,−1, 0, 1, . . . , 7) to denote that a tar-

get word at position j is aligned to a source word

at position i = j − d. Aligned words that are too

far apart are considered unaligned, and unaligned

words rae annotated with a null token pn. Our an-

notation is illustrated in Figure 3.

3.3 Positional Unknown Model (PosUnk)

The main weakness of the PosAll model is that

it doubles the length of the target sentence. This

makes learning more difficult and slows the speed

of parameter updates by a factor of two. How-

ever, given that our post-processing step is con-

cerned only with the alignments of the unknown

words, so it is more sensible to only annotate the

unknown words. This motivates our positional un-

known model which uses unkposd tokens (for d

in −7, . . . , 7 or ∅) to simultaneously denote (a)



the fact that a word is unknown and (b) its rela-

tive position d with respect to its aligned source

word. Like the PosAll model, we use the symbol

unkpos∅ for unknown target words that do not

have an alignment. We use the universal unk for

all unknown tokens in the source language. See

Figure 4 for an annotated example.

en: The unk portico in unk . . .

fr: Le unkpos1 unkpos−1 de unkpos1 . . .

Figure 4: Positional Unknown Model – an exam-

ple of the PosUnk model: only aligned unknown

words are annotated with the unkposd tokens.

It is possible that despite its slower speed, the

PosAll model will learn better alignments because

it is trained on many more examples of words and

their alignments. However, we show that this is

not the case (see §5.2).

4 Experiments

We evaluate the effectiveness of our OOV mod-

els on the WMT’14 English-to-French translation

task. Translation quality is measured with the

BLEU metric (Papineni et al., 2002) on the new-

stest2014 test set (which has 3003 sentences).

4.1 Training Data

To be comparable with the results reported by pre-

vious work on neural machine translation systems

(Sutskever et al., 2014; Cho et al., 2014; Bahdanau

et al., 2015), we train our models on the same

training data of 12M parallel sentences (348M

French and 304M English words), obtained from

(Schwenk, 2014). The 12M subset was selected

from the full WMT’14 parallel corpora using the

method proposed in Axelrod et al. (2011).

Due to the computationally intensive nature of

the naive softmax, we limit the French vocabulary

(the target language) to the either the 40K or the

80K most frequent French words. On the source

side, we can afford a much larger vocabulary, so

we use the 200K most frequent English words.

The model treats all other words as unknowns.3

We annotate our training data using the three

schemes described in the previous section. The

alignment is computed with the Berkeley aligner

(Liang et al., 2006) using its default settings. We

3When the French vocabulary has 40K words, there are
on average 1.33 unknown words per sentence on the target
side of the test set.

discard sentence pairs in which the source or the

target sentence exceed 100 tokens.

4.2 Training Details

Our training procedure and hyperparameter

choices are similar to those used by Sutskever et

al. (2014). In more details, we train multi-layer

deep LSTMs, each of which has 1000 cells, with

1000 dimensional embeddings. Like Sutskever et

al. (2014), we reverse the words in the source sen-

tences which has been shown to improve LSTM

memory utilization and results in better transla-

tions of long sentences. Our hyperparameters can

be summarized as follows: (a) the parameters are

initialized uniformly in [-0.08, 0.08] for 4-layer

models and [-0.06, 0.06] for 6-layer models, (b)

SGD has a fixed learning rate of 0.7, (c) we train

for 8 epochs (after 5 epochs, we begin to halve

the learning rate every 0.5 epoch), (d) the size

of the mini-batch is 128, and (e) we rescale the

normalized gradient to ensure that its norm does

not exceed 5 (Pascanu et al., 2012).

We also follow the GPU parallelization scheme

proposed in (Sutskever et al., 2014), allowing us

to reach a training speed of 5.4K words per sec-

ond to train a depth-6 model with 200K source

and 80K target vocabularies ; whereas Sutskever

et al. (2014) achieved 6.3K words per second for

a depth-4 models with 80K source and target vo-

cabularies. Training takes about 10-14 days on an

8-GPU machine.

4.3 A note on BLEU scores

We report BLEU scores based on both: (a) detok-

enized translations, i.e., WMT’14 style, to be com-

parable with results reported on the WMT web-

site4 and (b) tokenized translations, so as to be

consistent with previous work (Cho et al., 2014;

Bahdanau et al., 2015; Schwenk, 2014; Sutskever

et al., 2014; Jean et al., 2015).5

The existing WMT’14 state-of-the-art system

(Durrani et al., 2014) achieves a detokenized

BLEU score of 35.8 on the newstest2014 test set

for English to French language pair (see Table 2).

In terms of the tokenized BLEU, its performance

is 37.0 points (see Table 1).

4http://matrix.statmt.org/matrix
5The tokenizer.perl and multi-bleu.pl

scripts are used to tokenize and score translations.



System Vocab Corpus BLEU

State of the art in WMT’14 (Durrani et al., 2014) All 36M 37.0

Standard MT + neural components

Schwenk (2014) – neural language model All 12M 33.3

Cho et al. (2014)– phrase table neural features All 12M 34.5

Sutskever et al. (2014) – 5 LSTMs, reranking 1000-best lists All 12M 36.5

Existing end-to-end NMT systems

Bahdanau et al. (2015) – single gated RNN with search 30K 12M 28.5

Sutskever et al. (2014) – 5 LSTMs 80K 12M 34.8

Jean et al. (2015) – 8 gated RNNs with search + UNK replacement 500K 12M 37.2

Our end-to-end NMT systems

Single LSTM with 4 layers 40K 12M 29.5

Single LSTM with 4 layers + PosUnk 40K 12M 31.8 (+2.3)

Single LSTM with 6 layers 40K 12M 30.4

Single LSTM with 6 layers + PosUnk 40K 12M 32.7 (+2.3)

Ensemble of 8 LSTMs 40K 12M 34.1

Ensemble of 8 LSTMs + PosUnk 40K 12M 36.9 (+2.8)

Single LSTM with 6 layers 80K 36M 31.5

Single LSTM with 6 layers + PosUnk 80K 36M 33.1 (+1.6)

Ensemble of 8 LSTMs 80K 36M 35.6

Ensemble of 8 LSTMs + PosUnk 80K 36M 37.5 (+1.9)

Table 1: Tokenized BLEU on newstest2014 – Translation results of various systems which differ in

terms of: (a) the architecture, (b) the size of the vocabulary used, and (c) the training corpus, either

using the full WMT’14 corpus of 36M sentence pairs or a subset of it with 12M pairs. We highlight

the performance of our best system in bolded text and state the improvements obtained by our technique

of handling rare words (namely, the PosUnk model). Notice that, for a given vocabulary size, the more

accurate systems achieve a greater improvement from the post-processing step. This is the case because

the more accurate models are able to pin-point the origin of an unknown word with greater accuracy,

making the post-processing more useful.

System BLEU

Existing SOTA (Durrani et al., 2014) 35.8

Ensemble of 8 LSTMs + PosUnk 36.6

Table 2: Detokenized BLEU on newstest2014 –

translation results of the existing state-of-the-art

system and our best system.

4.4 Main Results

We compare our systems to others, including the

current state-of-the-art MT system (Durrani et

al., 2014), recent end-to-end neural systems, as

well as phrase-based baselines with neural com-

ponents.

The results shown in Table 1 demonstrate that

our unknown word translation technique (in par-

ticular, the PosUnk model) significantly improves

the translation quality for both the individual (non-

ensemble) LSTM models and the ensemble mod-

els.6 For 40K-word vocabularies, the performance

gains are in the range of 2.3-2.8 BLEU points.

With larger vocabularies (80K), the performance

gains are diminished, but our technique can still

provide a nontrivial gains of 1.6-1.9 BLEU points.

It is interesting to observe that our approach is

more useful for ensemble models as compared to

the individual ones. This is because the useful-

ness of the PosUnk model directly depends on the

ability of the NMT to correctly locate, for a given

OOV target word, its corresponding word in the

source sentence. An ensemble of large models

identifies these source words with greater accu-

racy. This is why for the same vocabulary size,

better models obtain a greater performance gain

6For the 40K-vocabulary ensemble, we combine 5 mod-
els with 4 layers and 3 models with 6 layers. For the 80K-
vocabulary ensemble, we combine 3 models with 4 layers and
5 models with 6 layers. Two of the depth-6 models are reg-
ularized with dropout, similar to Zaremba et al. (2015) with
the dropout probability set to 0.2.



our post-processing step. e Except for the very re-

cent work of Jean et al. (2015) that employs a sim-

ilar unknown treatment strategy7 as ours, our best

result of 37.5 BLEU outperforms all other NMT

systems by a arge margin, and more importanly,

our system has established a new record on the

WMT’14 English to French translation.

5 Analysis

We analyze and quantify the improvement ob-

tained by our rare word translation approach and

provide a detailed comparison of the different

rare word techniques proposed in Section 3. We

also examine the effect of depth on the LSTM

architectures and demonstrate a strong correla-

tion between perplexities and BLEU scores. We

also highlight a few translation examples where

our models succeed in correctly translating OOV

words, and present several failures.

5.1 Rare Word Analysis

To analyze the effect of rare words on translation

quality, we follow Sutskever et al. (Sutskever et al.,

2014) and sort sentences in newstest2014 by the

average inverse frequency of their words. We split

the test sentences into groups where the sentences

within each group have a comparable number of

rare words and evaluate each group independently.

We evaluate our systems before and after translat-

ing the OOV words and compare with the stan-

dard MT systems – we use the best system from

the WMT’14 contest (Durrani et al., 2014), and

neural MT systems – we use the ensemble systems

described in (Sutskever et al., 2014) and Section 4.

Rare word translation is challenging for neural

machine translation systems as shown in Figure 5.

Specifically, the translation quality of our model

before applying the postprocessing step is shown

by the green curve, and the current best NMT sys-

tem (Sutskever et al., 2014) is the purple curve.

While (Sutskever et al., 2014) produces better

translations for sentences with frequent words (the

left part of the graph), they are worse than best

7Their unknown replacement method and ours both track
the locations of target unknown words and use a word dictio-
nary to post-process the translation. However, the mechanism
used to achieve the “tracking” behavior is different. Jean et al.
(2015)’s uses the attentional mechanism to track the origins
of all target words, not just the unknown ones. In contrast,
we only focus on tracking unknown words using unsuper-
vised alignments. Our method can be easily applied to any
sequence-to-sequence models since we treat any model as a
blackbox and manipulate only at the input and output levels.
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Figure 5: Rare word translation – On the x-axis,

we order newstest2014 sentences by their aver-

age frequency rank and divide the sentences into

groups of sentences with a comparable prevalence

of rare words. We compute the BLEU score of

each group independently.

system (red curve) on sentences with many rare

words (the right side of the graph). When applying

our unknown word translation technique (purple

curve), we significantly improve the translation

quality of our NMT: for the last group of 500 sen-

tences which have the greatest proportion of OOV

words in the test set, we increase the BLEU score

of our system by 4.8 BLEU points. Overall, our

rare word translation model interpolates between

the SOTA system and the system of Sutskever et

al. (2014), which allows us to outperform the win-

ning entry of WMT’14 on sentences that consist

predominantly of frequent words and approach its

performance on sentences with many OOV words.

5.2 Rare Word Models

We examine the effect of the different rare word

models presented in Section 3, namely: (a) Copy-

able – which aligns the unknown words on both

the input and the target side by learning to copy in-

dices, (b) the Positional All (PosAll) – which pre-

dicts the aligned source positions for every target

word, and (c) the Positional Unknown (PosUnk)

– which predicts the aligned source positions for

only the unknown target words.8 It is also interest-

8In this section and in section 5.3, all models are trained
on the unreversed sentences, and we use the following hyper-
parameters: we initialize the parameters uniformly in [-0.1,
0.1], the learning rate is 1, the maximal gradient norm is 1,
with a source vocabulary of 90k words, and a target vocab-
ulary of 40k (see Section 4.2 for more details). While these
LSTMs do not achieve the best possible performance, it is
still useful to analyze them.
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Figure 6: Rare word models – translation perfor-

mance of 6-layer LSTMs: a model that uses no

alignment (NoAlign) and the other rare word mod-

els (Copyable, PosAll, PosUnk). For each model,

we show results before (left) and after (right) the

rare word translation as well as the perplexity (in

parentheses). For PosAll, we report the perplexi-

ties of predicting the words and the positions.

ing to measure the improvement obtained when no

alignment information is used during training. As

such, we include a baseline model with no align-

ment knowledge (NoAlign) in which we simply as-

sume that the ith unknown word on the target sen-

tence is aligned to the ith unknown word in the

source sentence.

From the results in Figure 6, a simple mono-

tone alignment assumption for the NoAlign model

yields a modest gain of 0.8 BLEU points. If we

train the model to predict the alignment, then the

Copyable model offers a slightly better gain of 1.0

BLEU. Note, however, that English and French

have similar word order structure, so it would

be interesting to experiment with other language

pairs, such as English and Chinese, in which the

word order is not as monotonic. These harder lan-

guage pairs potentially imply a smaller gain for the

NoAlign model and a larger gain for the Copyable

model. We leave it for future work.

The positional models (PosAll and PosUnk) im-

prove translation performance by more than 2

BLEU points. This proves that the limitation of the

copyable model, which forces it to align each un-

known output word with an unknown input word,

is considerable. In contrast, the positional mod-

els can align the unknown target words with any

source word, and as a result, post-processing has a

much stronger effect. The PosUnk model achieves

better translation results than the PosAll model

which suggests that it is easier to train the LSTM
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Figure 7: Effect of depths – BLEU scores

achieved by PosUnk models of various depths (3,

4, and 6) before and after the rare word transla-

tion. Notice that the PosUnk model is more useful

on more accurate models.

on shorter sequences.

5.3 Other Effects

Deep LSTM architecture – We compare PosUnk

models trained with different number of layers (3,

4, and 6). We observe that the gain obtained by

the PosUnk model increases in tandem with the

overall accuracy of the model, which is consistent

with the idea that larger models can point to the ap-

propriate source word more accurately. Addition-

ally, we observe that on average, each extra LSTM

layer provides roughly 1.0 BLEU point improve-

ment as demonstrated in Figure 7.
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Figure 8: Perplexity vs. BLEU – we show the

correlation by evaluating an LSTM model with 4

layers at various stages of training.

Perplexity and BLEU – Lastly, we find it inter-

esting to observe a strong correlation between the

perplexity (our training objective) and the transla-

tion quality as measured by BLEU. Figure 8 shows

the performance of a 4-layer LSTM, in which we

compute both perplexity and BLEU scores at dif-

ferent points during training. We find that on aver-

age, a reduction of 0.5 perplexity gives us roughly

1.0 BLEU point improvement.



Sentences

src An additional 2600 operations including orthopedic and cataract surgery will

help clear a backlog .

trans En outre , unkpos1 opérations supplémentaires , dont la chirurgie unkpos5
et la unkpos6 , permettront de résorber l’ arriéré .

+unk En outre , 2600 opérations supplémentaires , dont la chirurgie orthopédiques

et la cataracte , permettront de résorber l’ arriéré .

tgt 2600 opérations supplémentaires , notamment dans le domaine de la chirurgie

orthopédique et de la cataracte , aideront à rattraper le retard .

src This trader , Richard Usher , left RBS in 2010 and is understand to have be

given leave from his current position as European head of forex spot trading at

JPMorgan .

trans Ce unkpos0 , Richard unkpos0 , a quitté unkpos1 en 2010 et a compris qu’

il est autorisé à quitter son poste actuel en tant que leader européen du marché

des points de vente au unkpos5 .

+unk Ce négociateur , Richard Usher , a quitté RBS en 2010 et a compris qu’ il est

autorisé à quitter son poste actuel en tant que leader européen du marché des

points de vente au JPMorgan .

tgt Ce trader , Richard Usher , a quitté RBS en 2010 et aurait été mis suspendu

de son poste de responsable européen du trading au comptant pour les devises

chez JPMorgan

src But concerns have grown after Mr Mazanga was quoted as saying Renamo was

abandoning the 1992 peace accord .

trans Mais les inquiétudes se sont accrues après que M. unkpos3 a déclaré que la

unkpos3 unkpos3 l’ accord de paix de 1992 .

+unk Mais les inquiétudes se sont accrues après que M. Mazanga a déclaré que la

Renamo était l’ accord de paix de 1992 .

tgt Mais l’ inquiétude a grandi après que M. Mazanga a déclaré que la Renamo

abandonnait l’ accord de paix de 1992 .

Table 3: Sample translations – the table shows the source (src) and the translations of our best model

before (trans) and after (+unk) unknown word translations. We also show the human translations (tgt)

and italicize words that are involved in the unknown word translation process.

5.4 Sample Translations

We present three sample translations of our best

system (with 37.5 BLEU) in Table 3. In our

first example, the model translates all the un-

known words correctly: 2600, orthopédiques, and

cataracte. It is interesting to observe that the

model can accurately predict an alignment of dis-

tances of 5 and 6 words. The second example

highlights the fact that our model can translate

long sentences reasonably well and that it was able

to correctly translate the unknown word for JP-

Morgan at the very far end of the source sentence.

Lastly, our examples also reveal several penalties

incurred by our model: (a) incorrect entries in the

word dictionary, as with négociateur vs. trader in

the second example, and (b) incorrect alignment

prediction, such as when unkpos3 is incorrectly

aligned with the source word was and not with

abandoning, which resulted in an incorrect trans-

lation in the third sentence.

6 Conclusion

We have shown that a simple alignment-based

technique can mitigate and even overcome one

of the main weaknesses of current NMT systems,

which is their inability to translate words that are

not in their vocabulary. A key advantage of our

technique is the fact that it is applicable to any

NMT system and not only to the deep LSTM

model of Sutskever et al. (2014). A technique like

ours is likely necessary if an NMT system is to

achieve state-of-the-art performance on machine

translation.

We have demonstrated empirically that on the



WMT’14 English-French translation task, our

technique yields a consistent and substantial im-

provement of up to 2.8 BLEU points over various

NMT systems of different architectures. Most im-

portantly, with 37.5 BLEU points, we have estab-

lished the first NMT system that outperformed the

best MT system on a WMT’14 contest dataset.
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