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Abstract—Parallel Model Combination (PMC) is widely used
as a technique to compensate Gaussian parameters of a clean
speech model for noisy speech recognition. The basic principle of
PMC uses a log normal approximation to transform statistics of
the data distribution between the cepstral domain and the linear
spectral domain. Typically, further approximations are needed
to compensate the dynamic parameters separately. In this paper,
Trajectory PMC (TPMC) is proposed to compensate both the
static and dynamic parameters. TPMC uses the explicit relation-
ships between the static and dynamic features to transform the
static and dynamic parameters into a sequence (trajectory) of
static parameters, so that the log normal approximation can be
applied. Experimental results on WSJCAM0 database corrupted
with additive babble noise reveals that the proposed TPMC
method gives promising improvements over PMC and VTS.

I. INTRODUCTION

Hidden Markov Model (HMM) [1] is widely used as a
statistical model of the acoustic patterns for speech recogni-
tion. Typically, Gaussian Mixture Models (GMMs) are used
to represent the distribution of the acoustic features for each
HMM state. Mel Frequency Cepstral Coefficient (MFCC) [2]
is commonly used as acoustic features, with which acoustic
models are trained. Therefore, the mean vector and the co-
variance matrix of each Gaussian component correspond to
the statistics of the distribution of the acoustic features in the
cepstral domain.

In order to achieve good performance with statistical mod-
els, such as the HMMs, it is important to have a matched
condition between the acoustic data used to estimate the
model parameters and the acoustic data to be observed during
recognition. Any mismatch in acoustic conditions will lead to
performance degradation, the severity of which depends on
the degree of mismatch. One of the most common sources
of acoustic mismatch is the presence of environmental noise.
In practice, the type of noise present during recognition is
not known a priori. Therefore, it is not practical to train an
acoustic model for each noise condition. Existing methods
for improving the performance of noisy speech recognition
include Parallel Model Combination (PMC) [3] and Vector
Taylor Series (VTS) [4].

Standard PMC technique uses log normal approximation to

transform the statistics between the cepstral and linear spectral
domains, such that the statistics of the clean speech model and
the noise model can be combined easily in the linear spectral
domain. However, log normal approximation cannot be applied
directly to dynamic parameters without further approximations
(e.g. continuous-time approximation [3] and data-driven ap-
proximation [5]). This paper proposes an extension to standard
PMC which offers a unified compensation scheme for both
the static and dynamic parameters. The proposed method is
referred to as Trajectory PMC (TPMC). TPMC uses the ex-
plicit relationships between the static and dynamic features to
transform the distribution in the observed (static and dynamic)
space into an equivalent distribution in the cepstral trajectory
domain. Since the statistics in the cepstral trajectory domain
involves only the static parameters (including the temporal
correlations), log normal approximation can be applied directly
to compensate both the static and dynamic parameters in a
unified manner.

The remaining of this paper is organised as follows. Sec-
tion II introduces the related work, including PMC and VTS.
Section III describes the trajectory HMM formulation. Sec-
tion IV presents the formulation for the proposed TPMC
method. Section V discusses the properties of TPMC. Finally,
experimental results are given in Section VI.

II. RELATED WORK

Model compensation techniques are widely used to adapt
acoustic models trained on clean data to a new acoustic envi-
ronment. Two state-of-the-art model-based noise compensation
methods will be described in the following, using MFCC as
the acoustic features.

A. Parallel Model Combination (PMC)

Parallel Model Combination (PMC) [3] uses the log normal
approximation to transform the statistics of the speech data
between the cepstral and linear spectral domains such that
the statistics of the clean model and the noise model can be
easily combined to yield the noisy speech model. Let C and
C−1 be the DCT and inverse DCT matrices respectively. The



conversion formula from cepstral to linear spectral domains
for the mean and covariance statistics are given by [6]:

µ = exp

(
C−1µ(c) +

1

2
diag−1

(
C−1Σ(c)C−>

))
(1)

Σ = M
(

exp
(
C−1Σ(c)C−>

)
− 1
)
M (2)

where diag−1(·) denotes the operation of extracting the diag-
onal elements of a matrix as a column vector and M is a di-
agonal matrix such that µ = diag−1(M). The corresponding
conversion formula from linear spectral to cepstral domains
are given by:

µ(c) = C

(
log(µ)− 1

2
log
(
diag−1(V ) + 1

))
(3)

Σ(c) = C (log (V + 1))C> (4)

where V = M−1ΣM−1. Based on the assumption that
speech and noise are independent and addictive in the linear
spectral domain, the corrupted-speech parameters in the same
domain are:

µ̂ = g · µ+ µ̃ and Σ̂ = g2 ·Σ + Σ̃

where g is a gain matching term introduced to account for
level differences between the clean and the noisy speeches1.
Unfortunately, the above log normal approximation cannot
be directly applied to dynamic parameters without further
approximations such as continuous-time approximation [3]
and Data-driven PMC (DPMC) [5].

B. Vector Taylor Series (VTS)
Vector Taylor Series (VTS) [4] is another model-based

noise compensation technique widely used for noisy speech
recognition. This method uses Taylor series expansion to
approximate the nonlinear function describing the cepstral
features of the noisy data, ĉ, given the cepstral features of
the clean data, c, and the noise data, c̃:

ĉ = c+C log

(
g + e

(
C−1

(c̃−c)
))

(5)

The VTS formulae for compensating both the static and
dynamic parameters are given in [4], using the first-order
approximation.

III. TRAJECTORY HMM FORMULATION

Trajectory HMM reformulates the standard HMM by impos-
ing the explicit relationships between the static and dynamic
parameters [7]. Trajectory HMM has been widely used to
generate speech parameters for HMM-based speech synthe-
sis [8]. In the standard HMM formulation, the likelihood of
the HMM model, with parameters Λ, observing an observation
sequence, o = [o>1 , . . . ,o

>
T ]> given the state sequence,

q = {q1, q2, . . . , qT }, is given by:

P (o|q,Λ) =

T∏
t=1

N (ot|µqt ,Σqt) = N (o|µ(o)
q ,Σ(o)

q ) (6)

1Parameters of the noise model and the noise-corrupted speech model are
capped with˜andˆrespectively

where µqt and Σqt are the 3M × 1 mean vector and the
3M × 3M covariance matrix associated with state qt and

µ(o)
q = [µ>q1 , . . . ,µ

>
qT ]>, Σ(o)

q = diag[Σq1 , . . . ,ΣqT ]

(µ
(o)
q ,Σ(o)

q ) represents the statistics in the observation trajec-
tory domain2. However, the observation parameters are related
to the static cepstral coefficients as ot = [c>t ,∆c

>
t ,∆

2c>t ]>.
The explicit relationships between the static and dynamic
parameters can be conveniently expressed in the following
matrix notation:

o = Wc (7)

where c = [c>1 , . . . , c
>
N ]> is the sequence of static coefficients

andW is a window matrix of size 3MT×MN . Here, T is the
number of vectors in the observation trajectory space; while
N is the number of vectors in the cepstral trajectory space3.
We should note that in [7], N is constrained to be equal to
T ; whereas, in our approach, they could be flexibly chosen to
satisfy certain properties, which we will detail in Section V.

By imposing the constraint in Eq. (7), Eq. (6) could be
rewritten as a function of c:

P (W c|q,Λ) = N (o|µ(o)
q ,Σ(o)

q ) = Kq · N (c|µ(c)
q ,Σ(c)

q )

Kq is a normalisation constant independent of c; whereas µ(c)
q

and Σ(c)
q are a mean vector, and a covariance matrix in the

cepstral trajectory domain:

µ(c)
q = Σ(c)

q W
>Σ(o)

q

−1
µ(o)

q (8)

Σ(c)
q =

(
W>Σ(o)

q

−1
W
)−1

(9)

Eq. (8) and Eq. (9) form the basis for the conversion of
the statistics from the observation trajectory domain to the
cepstral trajectory domain. This transform plays a crucial part
in the formulation of the proposed Trajectory PMC method,
which will be described in detail in the following section.

IV. TRAJECTORY PMC

Trajectory PMC (TPMC) is proposed as an extension to
PMC so that both the static and dynamic parameters can be
compensated using the log normal approximation in a unified
manner. TPMC eliminates the need to deal with dynamic
parameters explicitly by transforming the observation statistics
into the cepstral trajectory statistics. As such, the dynamic
feature information is implicitly encoded within the cepstral
trajectory space. The overall TPMC compensation algorithm
is depicted in Fig. 1. There are three major steps involved: 1)
transformation of statistics from the observation space to the
cepstral trajectory space (forward trajectory); 2) combination
of clean and noise statistics in the cepstral trajectory domain;
and 3) transformation of statistics from the cepstral trajectory
space to the observation space (backward trajectory). These
steps will be described in the following sections.

2Subscript q is used to indicate a trajectory domain, which represents a
concatenation of a sequence of vectors.

3We will use the superscript (o) to represent features in the observation
space as opposed to those in the trajectory space indicated by (c).
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Fig. 1. A schematic diagram illustrating the Trajectory PMC process.

A. Forward Trajectory

The forward trajectory step transforms the observation
statistics, (µ(o),Σ(o)), into the cepstral trajectory statistics,
(µ

(c)
q ,Σ(c)

q ). First, the statistics in the observation trajectory
space, (µ

(o)
q ,Σ(o)

q ), are needed. Since TPMC is applied per
Gaussian components, these statistics are obtained by assum-
ing a constant statistics within each component, leading to
duplicating the observation statistics T times:

µ(o)
q = Sqµ

(o), Σ(o)
q =

[
diag

(
Sqφ

(o)
)]−1

(10)

where φ(o) is the diagonal vector of the matrix Σ(o)−1 and

Sq = [ 1 . . . 1︸ ︷︷ ︸
T times

]> ⊗ I3M (11)

where ⊗ denotes the Kronecker product operator.
Next, Eq. (8) and (9) can be applied to obtain the required

statistics in the cepstral trajectory domain, (µ
(c)
q ,Σ(c)

q ):

µ(c)
q = Σ(c)

q W
> diag

(
Sqφ

(o)
)
Sqµ

(o) (12)

Σ(c)
q =

(
W> diag

(
Sqφ

(o)
)
W
)−1

(13)

Note that the process of generating the cepstral trajectory
mean, µ(c)

q , from the observation parameters is the same as
synthesising a sequence of cepstral parameters for speech
synthesis [8]. Also, synthesising data using trajectory HMM
formulation for noise speech recognition has been applied to
Support Vector Machines for noisy robust speech recogni-
tion [9]. However, TPMC uses the trajectory HMM formu-
lation for statistic transformation in a rather different way.

B. Parallel Model Combination in Trajectory Domain

Applying the forward trajectory step over the two modalities
– speech and noise – yields two sets of statistics in the cepstral
trajectory domain: (µ

(c)
q ,Σ(c)

q ) and (µ̃(c)
q , Σ̃

(c)

q ). Since these
statistics correspond to only the static cepstral features, the
log normal approximation approach employed in the standard
PMC method, as described in Section II-A, can be applied to
combine these cepstral trajectory statistics. Eq. (2) through (4)
still hold for trajectory-based PMC, except that all the statistics

in those equations correspond to the trajectory space (i.e. with
subscript q) and the transformation matrices between the cep-
stral and log-spectral domains, C and C−1, are replaced by Q
and Q−1, respectively to account for the trajectory expansion.
The trajectory version of the transformation matrices are given
by:

Q = IN ⊗ C and Q−1 = IN ⊗ C−1

C. Backward Trajectory

After going through the forward trajectory and PMC pro-
cesses, we obtain the corrupted-speech model (µ̂(c)

q , Σ̂
(c)

q ) in
the cepstral trajectory space. However, statistics in the obser-
vation domain, (µ̂(o), Σ̂

(o)
), are needed in order to construct

the noisy speech model. This imposes a constant statistics
constraint in the observation trajectory domain, which is an
intermediate space between the cepstral trajectory and observa-
tion domains (see Fig. 1). Should there be no such constraint,
given the linear relationship of Eq. (7), (µ̂(o)

q , Σ̂
(o)

q ) can be
obtained easily as:

µ̂(o)
q = Wµ̂(c)

q , Σ̂
(o)

q = W Σ̂
(c)

q W
> (14)

However, due to the constant statistics constraint in the obser-
vation space (c.f. Eq. (10)), it may not be possible to obtain
an estimate of (µ̂(o), Σ̂

(o)
) that exactly represent (µ̂(c)

q , Σ̂
(c)

q )

or (µ̂(o)
q , Σ̂

(o)

q ). Therefore, (µ̂(o), Σ̂
(o)

) are estimated such
that applying the forward trajectory to them yields the closest
approximation to the distribution in the trajectory domains. In
this work, the Kullback-Leibler (KL) divergence is employed
to measure the distance between two distributions. The KL
divergence between the “target” distribution (µt,Σt) and the
“estimated” one (µe,Σe) is given by:

DKL(t, e) =
1

2

[
Tr
(
Σ−1e Σt

)
+ log

|Σe|
|Σt|

−N+

+ (µe − µt)
>Σ−1e (µe − µt)

]
(15)

Depending on the domain in which the optimisation takes
place, we have the corresponding methods detailed below.

1) Observation Trajectory Space KL (OT-KL): The target
statistics, (µ̂(o)

q , Σ̂
(o)

q ), can be obtained by applying Eq. (14)

to (µ̂(c)
q , Σ̂

(c)

q ). The constrained statistics to be estimated in
the observation trajectory space, (µ̄

(o)
q , Σ̄

(o)
q ), can be obtained

using Eq. (10):

µ̄(o)
q = Sqµ̂

(o), Σ̄
(o)
q =

(
diag

(
Sqφ̂

(o)
))−1

Hence, substituting Eq. (10), and Eq. (14) into Eq. (15) yields
the KL divergence fOT -KL as a function of µ̂(o) and φ̂

(o)
. Its

partial derivatives are given by:

∂fOT -KL

∂µ̂(o)
= S>q diag

(
Sqφ̂

(o)
)(
Sqµ̂

(o) −Wµ̂(c)
q

)
∂fOT -KL

∂φ̂
(o)

=
1

2
S>qdiag−1

(
W Σ̂

(c)

q W
>+vvT

)
− T

2
ω(o)



where v =
(
Sqµ̂

(o) −Wµ̂(c)
q

)
, and ω̂(o) = diag−1

(
Σ̂

(o)
)

.

Hence, minimising fOT -KL with respect to µ̂(o) gives:

µ̂(o) =
1

T
S>q µ̂

(o)
q (16)

ω̂(o) =
1

T
S>qdiag−1

(
Σ̂

(o)

q + vv>
)

(17)

Note that the optimum estimation of the mean, µ̂(o), is in
fact the average of the T mean vectors in the observation
trajectory space. Also, in practice, v ≈ 0. Hence, the optimum
solution for ω̂(o) is similarly the average of the variances in
the observation trajectory space4.

One main issues with the above estimation is that the
resulting backward trajectory does not exactly reverse the
forward trajectory step when W is not invertible (more
details in Section V). This is mainly because the OT-KL
ignores the temporal correlations between observation vectors
in the observation trajectory space. In an attempt to suppress
the irreversibility issue, an alternative estimation method is
proposed. Suppose the covariance matrix Σ̂

(o)

q is decomposed

into T×T sub-blocks, {Σ̂
(o)

ij }Ti,j=1, where Σ̂
(o)

ij is a sub-block
matrix of size 3M × 3M at position (i, j). The optimal ω(o)

given by Eq. (17) is essentially equal to 1
T

∑T
i diag−1(Σ̂

(o)

ii ).
Since this computation of ω(o) only involves the diagonal sub-
block matrices of Σ̂

(o)

q , we refer to as the OT-KL-Diag method.
While the above computation is theoretically justified as

minimising the KL divergence, it discards the temporal infor-
mation, i.e. off-diagonal sub-block matrices of the covariance
matrix Σ̂

(o)

q . To overcome that, we suggest an alternative, OT-

KL-Full, which considers all sub-block matrices of Σ̂
(o)

q , in

computing ω(o)= 1
T

∑T
i,j diag−1(Σ̂

(o)

ij ). We argue empirically
in Section V that such approximation yields better perfor-
mance.

2) Cepstral Trajectory Space KL (CT-KL): Minimising the
KL divergence in the observation trajectory space ignores
the explicit relationships between the static and dynamic
parameters. An alternative solution obtains (µ̂(o), Σ̂

(o)
) by

minimising fCT -KL, the KL divergence in the cepstral tra-
jectory space. The constrained statistics to be estimated in the
cepstral trajectory space, (µ̄

(c)
q , Σ̄

(c)
q ), can be obtained using

the forward trajectory transformation given in Eq. (12) and
(13). The resulting KL divergence function is given as:

fCT -KL =
1

2
Tr
(
Σ̄

(c)
q )−1Σ̂

(c)

q

)
− f

(
µ̂(o), φ̂

(o)
)

(18)

where f(µ̂(o), φ̂
(o)

) differs by only a constant from the
log-likehood function log p(c|q,Λ) in [7] (Eq. 44) with
(c, cq,P q,µq) being substituted by (µ̂(c)

q , µ̄
(c)
q , Σ̄

(c)
q , µ̂(o)).

Hence, the partial derivatives of fCT -KL are as follows:

∂fCT -KL

∂µ̂(o)
= S>q diag

(
Sqφ̂

(o)
)
W
(
µ̂(c)

q − µ̄(c)
q

)
(19)

4We use Σ̂
(o)

, φ̂
(o)

, and ω̂(o) interchangeably.

∂fCT -KL

φ̂
(o)

=
1

2
S>q diag−1

[
2µ̂(o)(µ̂(c)

q − µ̄(c)
q )>W>

+2W Σ̂
(c)

q W
>+W

(
µ̄(c)

q µ̄
(c)
q

>
−µ̂(c)

q µ̂
(c)
q

>
)
W>

]
(20)

Equating Eq. (19) to 0 results in linear equations, which
yields closed-form solutions for µ̂(o) when φ̂

(o)
is known:

S>q W Σ̄
(c)
q W

>SqΣ̂
(o)−1

µ̂(o) = S>q Wµ̂(c)
q (21)

As fCT -KL is not a quadratic function of φ̂
(o)

, the optimal
value is found by using a gradient method with the partial
derivative from Eq. (20) given a fixed µ̂(o).

V. PROPERTIES OF TRAJECTORY PMC

In this section, several properties of the TPMC method will
be discussed. First, the matrix W , which encodes the explicit
relationships between the static and dynamic parameters, will
be examined. As previously mentioned, the size of the matrix
W is 3MT × MN , where T and N denote the lengths
of the trajectory in the observation and cepstral domains,
respectively. In the original work of trajectory HMM [7],
the trajectory length in the observation and cepstral domains
are chosen to be the same (N=T ) where the first and last
2δ columns5 of W are truncated. In this work, we consider
N=(T + 4δ). This allows for the flexibility of making W a
square matrix (and invertible) when T = 2δ, which simplifies
the forward trajectory formulae (Eq. (13) and (12)) as:

µ(c)
q = W−1Sqµ

(o) (22)

Σ(c)
q =

[
W> diag

(
Sqφ

(o)
)
W
]−1

(23)

When W is square, a reversible backward trajectory that
optimises the KL divergence in both the observation and
cepstral trajectory domains leads to the solution given by
Eq. (16) and Eq. (17)6. Another interesting property of
TPMC when W is square is that the compensation of the
static parameters is identical to that of the standard PMC.
However, when N is larger than T + 4δ, OT-KL estimation
does not yield a reversible statistic transformation. Fig. 2 (left)
shows the average KL divergence between the original and
compensated models with no noise. A zero KL divergence
indicates reversibility. It was found that for OT-KL-Diag
estimation, the compensated model quickly diverges from the
original model as N increases, most notably for the static
and delta parameters. On the other hand, OT-KL-Full yields
perfect reconstruction of the static parameters for different N .
The divergence is smaller for the delta parameters but much
larger than OT-KL-Diag for the delta-delta parameters. The
non-reversibility property of OT-KL estimation is attributed to
the fact that features in the observation space are assumed to
be uncorrelated. On the other hand, the CT-KL estimation uses
the trajectory HMM estimation approach [7], which imposes

5δ is the window length on each side of the current frame when computing
dynamic parameters. We use δ=1 for both delta and delta-delta computation.

6In this case, v = 0 in Eq. (17).
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the explicit relationships between the static and dynamic
parameters. Hence, the optimum CT-KL estimates will yield a
reversible compensation when there is no noise. Fig. 2 (right)
shows the convergence of the overall KL divergence between
the original and compensated models for N=7, 8, 9, 10 with
increasing optimisation iterations for the CT-KL estimation.
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Fig. 3. KL divergences of different compensated single-component models
w.r.t “reference” noisy speech methods for different SNRs and feature parts.

When noise is present, as the signal-to-noise ratios (SNRs)
decrease, reversibility might not be as crucial as for high
SNRs. To verify that, we compare in Fig. 3 the performance of
different compensation methods (VTS and DPMC are added
for completeness) across different settings. As anticipated, OT-
KL with N=8 rivals the CT-KL when SNRs are low, e.g. 0dB
and 10dB; whereas, CT-KL only yields superior performance
with SNR= 20dB. When N = 6, the OT-KL method fails to
compensate the delta-delta parameters, which we believe is
partly due to the short trajectory length in the observation
domain, i.e. T =2. VTS method, while demonstrates very good
performance for static features, does not compensate very well
for other feature parts, especially when SNRs are low. DPMC,
on the other hand, yields good performance at low SNRs, but
fail to perform consistently across different feature parts.

VI. EXPERIMENTS

Experiments were conducted using the WSJCAM0 [10]
corpus. The training data consists of 9889 utterances giving a
total of 18.3 hours of data. The evaluation set is made up of
the combination of the si_dt5a and si_dt5b development
datasets. There are a total of 1.4 hours of test data. Both the
training and test data were artificially corrupted by additive
babble noise from the NOISEX database [11] to generate noisy
speech data at signal-to-noise (SNR) ratios of 20dB, 10dB and
0dB. The noise data used to corrupt the training data were
also used to estimate the noise model, which in this work, is
a single Gaussian distribution.

All the acoustic models used in the subsequent experiments
were decision-tree state clustered triphone HMM models,
with approximately 4000 distinct states. These models were
trained on 39-dimensional features comprising 13 static MFCC
coefficients (including the C0 term) together with the first
and second order dynamic parameters. Firstly, clean speech
models were trained on the original speech data provided
by the WSJCAM0 corpus. In addition, noisy speech mod-
els were also trained on the artificially corrupted speech
data at various SNRs to obtain a set of “reference” noisy
speech models and assess the “upper bound” performance.
The noisy speech models were trained by first performing
Single Pass Retraining (SPR) [12] so that the initial state
alignments were obtained using a clean model on speech
speech data. These models were subsequently trained with
three additional Baum-Welch iterations. The Word Error Rate

TABLE I
WER (%) PERFORMANCE OF BASELINE MODELS

No. of Model WER (%)
Components Clean 20dB 10dB 0dB

1
Clean 17.21 27.30 57.40 95.28

Noisy (SPR) – 19.32 29.64 55.83
Noisy (BW) – 17.83 27.77 54.06

16
Clean 8.49 17.84 50.59 93.65

Noisy (SPR) – 9.48 17.59 44.11
Noisy (BW) – 9.47 16.67 44.12

(WER) performance of various models under different SNR
conditions are summarised in Table I. Two sets of models
with 1 and 16 Gaussian components per state were evaluated.
In general, the WER performance degrades as SNR decreases.
The relative WER reduction achieved by the SPR-trained noisy
speech models over the clean speech models were 29.2%–
48.4% for 1-component systems and 46.9%–65.2% for 16-
component systems. With additional Baum-Welch retraining,
further relative WER reduction of 5.2%–7.7% were observed
except for the 16-component systems at SNR of 20dB and
0dB where the performance difference is very small.

First, the effect of the trajectory length of the cepstral
trajectory domain, N , was investigated. Table II shows the
WER performance comparison for TPMC models with N
ranging from 6 to 10. As previously mentioned in Section V,
the OT-KL estimation method for TPMC is reversible only
when W is invertible (i.e. when N=6). Therefore, TPMC with



TABLE II
WER (%) PERFORMANCE OF 1-COMPONENT TPMC MODELS USING

OT-KL-FULL ESTIMATION WITH DIFFERENT TRAJECTORY LENGTH, N

SNR (dB) WER (%)
6 7 8 9 10

20 21.61 22.14 23.83 26.38 29.60
10 39.67 37.71 37.51 40.45 45.01
0 71.57 68.67 66.70 67.75 71.17

TABLE III
WER (%) PERFORMANCE OF 1-COMPONENT TPMC MODELS USING

DIFFERENT BACKWARD TRAJECTORY ESTIMATION METHODS

N Method WER (%)
20dB 10dB 0dB

8 OT-KL-Full 23.83 37.51 66.70
CT-KL 22.27 36.86 66.44

10 OT-KL-Full 29.60 45.01 71.17
CT-KL 23.55 36.58 64.93

smaller N gave better performance in low noise conditions.
With lower SNRs, N=8 was found to yield the best WER
performance. Next, the parameter estimation methods for the
TPMC reverse process are compared in Table III. In general,
CT-KL estimation method outperforms OT-KL-Full since the
relationships between the static and dynamic parameters are
properly imposed, but at the expense of higher computational
costs due to the gradient optimisation for the variance parame-
ters. Furthermore, using the OT-KL-Full estimation with N=8
gave only marginally inferior performance compared to the
best performing systems. Therefore, subsequent analyses will
be based on this model.

TABLE IV
WER (%) PERFORMANCE COMPARISON OF 16-COMPONENT SYSTEMS

USING VARIOUS NOISE COMPENSATION SCHEMES

Model WER (%)
20dB 10dB 0dB

PMC 11.76 29.53 73.25
VTS 11.26 20.25 51.57

DPMC 17.32 28.42 58.90
(10.68) (19.10) (49.86)

TPMC 10.84 19.68 50.20

Finally, Table IV compares the WER performance of the
proposed TPMC method with VTS, PMC and DPMC. Only
the static parameters were compensated for PMC. DPMC
models were trained by simulating an average of 500 noisy
data samples per Gaussian component. In general, VTS out-
performs PMC across different SNR conditions. The perfor-
mance gain increases as SNR value drops because dynamic
parameters were not compensated for PMC. Two sets of results
were reported for DPMC. The top row refers to the results
where DPMC models were estimated with fixed component
alignments, i.e. data were simulated per Gaussian components.
In this case, DPMC performed significantly worse than the
other methods. However, if the data were simulated at the
state level, allowing component alignments to be optimised,
DPMC achieved the lowest WER (shown in parentheses).
The proposed TPMC approach consistently outperformed both

PMC and VTS across various SNR conditions. The perfor-
mance of TPMC is also very competitive (only slightly worse)
when compared to DPMC with component realignment. Nev-
ertheless, it is worth pointing out that the proposed TPMC
method is more efficient than DPMC since it does not involve
synthesising noisy data and reestimation. Furthermore, TPMC
is applied to each individual Gaussian components indepen-
dently. Hence, there was no compensation for the component
weights. Therefore, one possible extension for TPMC as a
future work is to incorporate the compensation for Gaussian
weight parameters.

VII. CONCLUSIONS

This paper has presented an extension to the standard
Parallel Model Combination (PMC) technique that offers a
solution to compensate both the static and dynamic parameters
in a unified manner. The proposed method is called Trajectory
PMC (TPMC) as it is motivated by the trajectory HMM
formulation. The explicit relationships between the static and
dynamic features are used to derive the statistics in the cepstral
trajectory domain such that log normal approximation can
be applied. The proposed TPMC method was found to yield
consistently better performance compared to the standard PMC
and VTS methods, both in terms of the Kullback-Leibler
divergence and word error rate evaluations.
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