
NEURAL GENERATION

OF OPEN-ENDED TEXT AND DIALOGUE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Abigail See

August 2021

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: https://purl.stanford.edu/hw190jq4736

© 2021 by Abigail Elizabeth See. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
https://purl.stanford.edu/hw190jq4736

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Tatsunori Hashimoto

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dan Jurafsky

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Advances in Deep Learning have enabled more fluent and flexible Natural Language Gen-

eration (NLG). While these neural generative systems achieved early success in machine

translation, they encounter problems – such as repetition, incoherence, and uncontrollability

– when applied to more open-ended tasks such as abstractive summarization, story genera-

tion and chitchat dialogue. Furthermore, open-ended neural generative models tend to be

evaluated by crowdworkers in carefully-controlled environments; it is less well-understood

how they behave in realistic environments with real-life users. This thesis analyzes and

improves neural generative systems performing several open-ended tasks; in the case of

dialogue, the systems are evaluated in their full social context.

First, for abstractive summarization, I present a pointer-generator model to improve

copying accuracy and a coverage mechanism to reduce repetition in the generated summaries.

Next, for chitchat dialogue, I present a large-scale detailed human evaluation to reveal the

relationship between bot behaviors (such as repetition, specificity, staying on topic, and

question-asking) and human quality judgments, and show that by controlling these bot

behaviors, we can improve user experience. Third, for story generation, I characterize

the effect of large-scale pretraining, and of the decoding algorithm, on several syntactic,

semantic, structural, and stylistic aspects of the generated text. Lastly, I present a study

of a neural generative chitchat model in deployment as part of the Alexa Prize, talking to

real, intrinsically-motivated users. By analysing bot-user interactions, I identify the bot’s

main error types, and how they relate to user dissatisfaction. Furthermore, I demonstrate a

semi-supervised method to learn from dissatisfaction and thus improve the dialogue system.

iv

Acknowledgments

When I started the PhD program in 2015, I don’t think I fully appreciated the magnitude of

this six-year undertaking. Undoubtedly, anything that takes six years to complete will have

many ups and downs.

I could not achieved these highs, nor weathered these lows, without the wisest and

kindest advisor, Chris Manning. When we first met, I didn’t know anything about NLP or

AI, and I wasn’t much of a software engineer either – so the fact that Chris was willing to

give me a chance is amazing. As I got to know Chris, I saw that throughout his work, he

strives to do the right thing and to do it well. In this way, he has inspired me and supported

me to become a better scientist, teacher, community member, and leader. Chris is not only a

wonderful advisor, he’s also a wonderful person who I enjoy spending time with. His unique

perspectives, encyclopedic knowledge of NLP history, and sense of humor brighten every

meeting. Especially in the these last two years, there are times when work life is unavoidably

affected by events outside work. I am so grateful to Chris for caring, understanding and

prioritizing his students’ well-being. So thank you Chris, for having the best influence on

this period of my life and my career.

Thank you to my reading and oral committee – Dan Jurafsky, Tatsu Hashimoto, Monica

Lam and Serena Yeung – whose support, feedback and community have been so valuable

throughout my time at Stanford. They are all role models to me, and have made the

department a better place.

I’ve been fortunate to work with many wonderful research collaborators at Google,

FAIR, and Stanford. Thang Luong, Peter Liu, Jason Weston, Douwe Kiela, Stephen Roller,

Aneesh Pappu, Rohun Saxena, Akhila Yerukola, Kelvin Guu, John Hewitt, and Joyce Xu –

these colleagues, mentors and mentees have helped me better understand how to do research.

v

Going back even further, I also want to thank Byron Cook for welcoming me into research

as an undergraduate – I never would have considered a PhD without his encouragement.

Last year I had the opportunity to work on the Alexa Prize with Team Chirpy 1.0:

Ashwin Paranjape, Kathleen Kenealy, Haojun Li, Amelia Hardy, Peng Qi, Kaushik Ram

Sadagopan, Nguyet Minh Phu, and Dilara Soylu. I am so proud of what this dedicated and

passionate team achieved – together we built a chatbot that may not have always made sense,

but was definitely interesting. In particular, Ashwin was an amazing co-lead, and it was a

great experience to work so closely together. I’m grateful to the Amazon Alexa Prize team

for giving us the opportunity to bring conversational AI to real users.

One of the most rewarding things I’ve done at Stanford is to contribute to our annual class

CS224n: NLP and Deep Learning – an invigorating experience, as our teaching materials

become out-of-date a year after we make them. I loved working with Chris Manning,

Richard Socher, Kevin Clark, Sahil Chopra, the TAs, admins, students and SCPD to create

and deliver teaching material that brings cutting-edge NLP knowledge to more and more

people across the world.

Next, I want to thank the Stanford NLP group. I’m so glad that I got to work in this

field during such a transformative period, and there’s nowhere better I could have done it

than Stanford NLP. It is a lovely community dedicated to mutual learning, friendliness and

support – in fact, it is the main reason I chose to work in NLP. I loved sharing office space

with the professors, postdocs, admins, students and engineers – I will miss our reading

groups, paper swaps, cluster drama, debugging sessions, corridor chats, movie nights, hikes,

retreats, and in-jokes.

My research was aided by funding from the NVIDIA, Gerald J. Lieberman, and Google

Fellowships, as well as grants from DARPA, Tencent, and Amazon. I also received help

from many anonymous people: the reviewers whose feedback improved my work, the Alexa

users who interacted with Chirpy, and the crowdworkers and annotators who produced the

data we used. This anonymous work powers modern AI.

There are so many fantastic friends I’ve made over the last few years – Andrey, Drew,

Chris, Nathan, Lex, Sharon, Michelle, Ann, Jonathon, Lily, Alyssa, Lucas, Vincent, Ze,

Tushar, John, Carolyn, Jeremy, Mandy, Felix, Pujun, Tegan, Aaron, Laurel – these people

and more have made my life better in all kinds of ways. In particular, I’m grateful to the

vi

Stanford social dance scene – it is a creative, innovative and inclusive community where

I’ve made friends and tried things I never thought I would. Participating in the Viennese

Ball Opening Committee was a once-in-a-lifetime experience. Thank you to everyone who’s

been there for me and injected these years with fun.

Last, I want to thank my family. First, my sisters Helena and Jessie: they have always

been my number one fans who I can rely on to talk about anything, or to cheer me up. I’m

so glad that we’re now together again. Most of all, I want to thank my parents: Clare, who

gave me a love of language, and Thomas, who gave me a love of science. From the first day

to the last day of school, they have nurtured my creativity, curiosity and individuality. Even

when I decided to go to the other side of the world for six years, they have been nothing but

supportive. I have no doubt that my success is due to their parenting.

vii

Contents

Abstract iv

Acknowledgments v

1 Introduction 1
1.1 Pre-neural Text Generation . 3

1.2 Neural Text Generation: Early Success in Machine Translation 4

1.3 Open-ended Neural Text Generation . 8

1.3.1 What is Open-ended Text Generation? 8

1.3.2 Development . 9

1.3.3 Difficulties . 10

1.4 Research Questions . 14

1.5 Thesis Overview . 16

1.6 Main Findings . 19

2 Background 23
2.1 Defining Text Generation Tasks . 23

2.2 Types of Neural Language Model . 23

2.3 Architectures for Neural Language Models 25

2.4 Input Representations for Neural Language Models 29

2.5 Training and Evaluating Neural Language Models 31

2.6 Decoding Algorithms . 33

2.6.1 Likelihood-maximizing Decoding Algorithms 33

2.6.2 Sampling-based Decoding Algorithms 36

viii

2.6.3 Temperature . 38

3 Summarization with Pointer-Generator Networks 39
3.1 Introduction . 39

3.2 Our Models . 41

3.2.1 Sequence-to-sequence Attentional Model 41

3.2.2 Pointer-generator Network . 43

3.2.3 Coverage Mechanism . 44

3.3 Related Work . 46

3.4 Dataset . 48

3.5 Experiments . 48

3.6 Results . 50

3.6.1 Preliminaries . 50

3.6.2 Observations . 51

3.7 Discussion . 52

3.7.1 Comparison with Extractive Systems 52

3.7.2 How Abstractive Is Our Model? 54

3.8 Examples . 56

3.9 Conclusion . 65

4 Controlling Attributes of Chitchat Dialogue 67
4.1 Introduction . 67

4.2 Related Work . 69

4.3 The PersonaChat dataset . 70

4.4 Baseline Model . 71

4.5 Controllable Text Generation Methods . 71

4.5.1 Conditional Training (CT) . 72

4.5.2 Weighted Decoding (WD) . 73

4.6 Controlling Conversational Attributes . 74

4.6.1 Repetition . 74

4.6.2 Specificity . 75

4.6.3 Response-relatedness . 76

ix

4.6.4 Question-asking . 77

4.7 Comparison of Control Methods . 79

4.8 Human Evaluation Design . 80

4.9 Human Evaluation Results . 82

4.9.1 Main Findings . 82

4.9.2 Effect of Controlled Attributes . 84

4.9.3 A/B Tests for Interestingness . 86

4.10 Example Crowdworker-Bot Conversations 89

4.11 Tables of Settings and Results for All Configurations 90

4.12 Conclusion . 95

5 The Effect of Pretraining for Story Generation 97
5.1 Introduction . 97

5.2 Background . 99

5.3 Experimental Details . 101

5.4 Story-prompt Relatedness . 102

5.5 Coherence . 106

5.6 Repetition and Rareness . 108

5.7 Syntactic Style and Complexity . 111

5.8 The Element of Surprise . 115

5.9 Concreteness . 117

5.10 Conclusion . 120

6 User Dissatisfaction in Chitchat Dialogue 123
6.1 Introduction . 123

6.2 Chirpy Cardinal . 125

6.2.1 Neural Chat Module . 125

6.2.2 Starter Question Examples . 127

6.3 Detecting User Dissatisfaction . 129

6.4 NeuralChatTurns Dataset . 131

6.5 Annotation Details . 131

6.5.1 Bot Error Examples . 132

x

6.5.2 Inter-annotator Agreement . 135

6.6 What Causes User Dissatisfaction? . 136

6.6.1 Effect of Unclearness and Prior Dissatisfaction on Bot Errors 136

6.6.2 Effect of Bot Errors on User Dissatisfaction 137

6.6.3 Unaddressed Dissatisfaction Escalates 139

6.6.4 Privacy Boundaries Vary . 140

6.7 Learning to Predict User Dissatisfaction 140

6.7.1 Predictor Training Details . 140

6.7.2 How Accurately Does the Predictor Predict Dissatisfaction? 141

6.7.3 What Information Does the Predictor Use? 142

6.8 Ranking Bot Responses to Minimize Dissatisfaction 144

6.8.1 Human Evaluation Details . 144

6.8.2 Results . 144

6.9 Related Work . 145

6.10 Limitations . 145

6.11 Conclusion . 146

7 Conclusion 148

Bibliography 151

xi

List of Tables

3.1 ROUGE F1 and METEOR scores on the test set. 50

4.1 We define five binary features for controlling different types of repetition . . 74

4.2 Example of controlling specificity. 75

4.3 Example of controlling response-relatedness 76

4.4 A/B tests for interestingness. 88

4.5 Control settings for all configurations. 90

4.6 Automatic metrics (computed over validation set) for all model configurations 91

4.7 Raw scores (mean ± std.) for all models and human evaluation metrics. . . 92

4.8 Calibrated scores (mean ± std.) for all models and human evaluation metrics. 93

5.1 A prompt and human story from the dataset, plus the models’ top-k gener-

ated stories, for two values of k. 99

5.2 Word-level perplexities on WritingPrompts-1024 102

5.3 Noun and verb concreteness for generated stories. 119

5.4 An example of syntactically natural but nonsensical text 121

6.1 User dissatisfaction types. 129

6.2 Performance (AUPRC) of k-NN dissatisfaction classifiers 131

6.3 Definitions of problems that may be present in a NeuralChatTurns example 133

6.4 Frequency and inter-annotator agreement for each label. 135

6.5 Spearman correlation between predictor output and each human-annotated

dissatisfaction type D . 141

xii

List of Figures

1.1 Natural Language Generation (NLG) tasks exist on a spectrum 8

2.1 Beam search example with beam size 2 34

3.1 Comparison of 3 abstractive summarization models on a news article. . . . 40

3.2 Baseline sequence-to-sequence model with attention. 42

3.3 Pointer-generator model. 43

3.4 Coverage eliminates undesirable repetition. 52

3.5 Examples of highly abstractive human-written reference summaries 53

3.6 Abstractiveness (i.e., rate of novel n-grams). 54

3.7 Examples of abstractive summaries produced by our model 55

3.8 Example comparing summarization models 57

3.9 Example comparing summarization models 58

3.10 Example comparing summarization models 59

3.11 Example comparing summarization models 60

3.12 Example comparing summarization models 61

3.13 Example comparing summarization models 62

3.14 Example comparing summarization models 63

3.15 Example comparing summarization models 64

4.1 We manipulate four low-level attributes and measure their effect on human

judgments of individual conversational aspects, as well as overall quality. . 68

4.2 Controlling question-asking via conditional training. 78

4.3 Screenshots of crowdworker interface. 81

xiii

4.4 The questions and multiple-choice options used in the human evaluation . . 82

4.5 Calibrated human judgments of engagingness for the baselines and best

controlled models. 83

4.6 Calibrated human judgments of conversational aspects for the baselines and

best controlled models. 83

4.7 Calibrated human judgments of engagingness for different specificity control

settings. 85

4.8 Calibrated human judgments of engagingness for different question-asking

control settings. 86

4.9 Screenshot of the A/B test UI . 87

4.10 Example conversations . 89

4.11 Calibrated human evaluation scores for all models. 94

5.1 GPT2-117 produces stories that are more semantically similar to the prompt. 103

5.2 n-gram similarity between prompt and story 104

5.3 Prompt entity usage rate and mean number of unique named entities. 105

5.4 Sensitivity of the models to swapped sentences in different positions. 107

5.5 Distinct-n for n = 1, 2, 3, for both models and all k. 109

5.6 Rare word usage metrics for both models and all k. 110

5.7 Mean sentence length for both models and all k. 111

5.8 Usage of different POS tags in the generated stories. 112

5.9 POS tag distinct-n for n = 1, 2, 3, both models and all k. 113

5.10 The models produce text that falls into increasingly confident repeating loops.115

5.11 Mean probability for each of the first 150 word-level story tokens. 116

5.12 The mean total log probability of the story 117

5.13 Mean concreteness rating of the nouns and verbs in the story 118

6.1 Users express dissatisfaction after the chatbot makes errors. 124

6.2 Logistic Regression features to predict bot errors. 136

6.3 Logistic Regression features to predict user dissatisfaction. 138

6.4 Privacy dissatisfaction rate for each Neural Chat discussion area 139

6.5 Dissatisfaction rates for the 20 most common bot questions. 143

xiv

Chapter 1

Introduction

For machines to communicate effectively with humans, they must not only understand

human language, but generate it too. Indeed, giving voice to the machine can create a

powerful effect on users. ELIZA (Weizenbaum, 1966), an early experimental chatbot which

used primitive rephrasing and substitution techniques to imitate a psychotherapist, fooled

many users into believing it held true intelligence. Of course, ELIZA was an illusion

with no real understanding of its conversations – Weizenbaum said that only people who

misunderstood ELIZA called it a sensation (Schanze, 2010).

In the 2010s, the Deep Learning renaissance revolutionized Natural Language Processing

(NLP). The neural Language Model (LM) – a neural network that takes a piece of text,

computes a representation of it, and uses that representation to predict possible next words –

became the ubiquitous starting-point for both Natural Language Understanding (NLU) and

Natural Language Generation (NLG). The symbiotic relationship between understanding

and generation was drawn ever closer: the strength of the neural Language Model lies in its

ability to learn representations (i.e., understand) and to predict (i.e., generate) jointly. Neural

Language Models provided not only incredible progress on NLU benchmarks (Wang et al.,

2018, 2019), but also a method for more flexible, fluent text generation. With increasing

model size and training data, neural Language Models are capable of generating longer

samples of startlingly convincing text, as well as displaying exciting emergent abilities such

as few-shot learning (Brown et al., 2020). These abilities have captured public imagination,

sparking debates in both academic and mainstream media (Bender and Koller, 2020; Michael,

1

CHAPTER 1. INTRODUCTION 2

2020; Kurenkov and Arora, 2019; Nair and Bashir, 2020) about whether a neural Language

Model – even if extremely powerful – could ever constitute Artificial General Intelligence

(AGI).

Open-ended text generation encompasses many exciting applications where the output

text is less constrained – such as automatic summarization, dialogue, and storytelling.

Despite the considerable progress of neural LMs, practical application to open-ended tasks

remains tricky. First, though LM-generated text can be fluent and convincing, it is not

reliably so; nonsensical and incoherent output is common (Tan et al., 2021). In particular,

the highest-quality samples are obtained only from the largest LMs, but these systems are

inaccessible for many practical applications due to financial and infrastructure limitations

(Strubell et al., 2019). Second, though LMs learn to generate a likely sequence of output

text given some input, in open-ended settings it is not easy to place constraints on what is

generated (for example, the style, structure or topic of the output text). This lack of control

also presents safety concerns, as it is difficult to prevent the model from generating offensive

or socially biased text (Bender et al., 2021). Third, the quality of open-ended generated text

is difficult to quantify – typically requiring human rather than automatic evaluation. Even

with human evaluation, there can be a disconnect between the synthetic evaluation settings

used in research and the conditions of real-life usage (Celikyilmaz et al., 2020). Together,

these problems form a substantial obstacle to the practical deployment of open-ended neural

text generation systems.

Now over 50 years since ELIZA, in this thesis I pose the following questions: What are

today’s open-ended neural generative systems capable of, and how do they interact with

modern users? What problems do they face, and how can we tackle them? And lastly, what

is required to make them ready for real-life deployment?

In this chapter, I first provide some brief remarks on pre-neural text generation (Sec-

tion 1.1). Then, starting with the foundational task of Neural Machine Translation (NMT),

I identify four main problems in neural text generation (Section 1.2). Moving on to more

open-ended generation tasks like dialogue, I explain how these four problems become even

more formidable (Section 1.3). Inspired by these problems, I describe the core research

questions that I address in this thesis (Section 1.4). Finally, I provide an overview of the

thesis (Section 1.5), and summarize its main findings (Section 1.6).

CHAPTER 1. INTRODUCTION 3

1.1 Pre-neural Text Generation

In their 1998 introduction to the Special Issue on Natural Language Generation, Dale et al.

(1998) divide NLG tasks into three typical subparts:

1. Content determination: Deciding what to say; typically this involves selecting the

right information from what is available.

2. Text structure: Determining how the information should be arranged into sentences

and paragraphs.

3. Surface realization: Mapping the selected content to morphologically and lexically

well-formed words and sentences.

Researchers developed various approaches to fulfil these aims in different NLG tasks:

Summarization. In pre-neural summarization (Nenkova and McKeown, 2011), content
determination mostly amounts to identifying the most important sentences in the source

document; this can be achieved via word frequencies, graph-based approaches, or through

machine learning using features such as sentence length, cue phrases and document position.

Text structure is relatively simple for single-document summarization, as the summary

sentences can usually be kept in their original order. For multi-document summarization,

sentences may be arranged using formalized notions of coherence (e.g., that neighboring

sentences should use similar entities). Finally, surface realization typically consists of

minor edits to the assembled sentences, such as simplification, coreference and other

discourse adjustments.

Dialogue. There are many types of dialogue systems including simple rule-based systems

like ELIZA, retrieval-based systems, and task-oriented systems (Jurafsky and Martin, 2009).

The dialogue state architecture is an approach to task-oriented dialogue that was already

well-developed in the pre-neural era. In this approach, the task (e.g., restaurant booking)

is conceptualized as understanding which of a predefined set of intents the user is trying

to achieve (e.g., booking a table, cancelling a booking) and filling the necessary slots with

required information (e.g., number of people, time). Content determination is handled

CHAPTER 1. INTRODUCTION 4

by a dialogue policy module which decides the next action based on the current state, and

text structure and surface realization are most commonly handled by filling slots in a

prewritten template.

Machine Translation. The dominant pre-neural approach to machine translation was

Statistical Machine Translation (SMT) (Koehn, 2009). As machine translation was generally

regarded as a separate research area to NLG, it did not necessarily follow the same subtask

structure described above. SMT involves splitting the translation task into a translation

model and a language model; the translation model is decomposed further to include an

alignment model. The system learns from data how words and phrases align to other words

and phrases, taking into account features like the fertility of individual words and their

position in the sentence.

The biggest impact of Deep Learning on NLG research was to unify the methodology
– potentially replacing these task-specific approaches with a single approach that can be

applied to summarization, dialogue, machine translation, and more. The neural approach

also simplified the standard NLG pipeline of content determination, text structure, and

surface realization; a single neural network learns end-to-end to perform all these subtasks.

This unification makes it possible for this thesis to study several different NLG tasks, while

focusing on one core technique.

1.2 Neural Text Generation: Early Success in Machine

Translation

Neural Machine Translation (NMT) is arguably the most striking example of how Deep

Learning enacted a sweeping transformation on NLP, from research to deployment. NMT’s

rapid ascent was remarkable: in just two years, it went from a research project (Sutskever

et al., 2014) to serving millions of users daily1 in Google Translate (Wu et al., 2016).

Compared to the significantly more mature Statistical Machine Translation (SMT) approach

(Koehn, 2009), NMT offered a relatively straightforward end-to-end solution that required

1https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

CHAPTER 1. INTRODUCTION 5

significantly less engineering effort than SMT’s piecemeal pipeline. Provided with enough

training data and computing power, a sufficiently large NMT model outperformed SMT on

fluency, use of context and generalization.

Indeed, NMT’s success sparked a flurry of work applying the NMT blueprint to other

generative tasks, such as summarization (Rush et al., 2015), dialogue (Shang et al., 2015),

semantic parsing (Jia and Liang, 2016), syntactic parsing (Vinyals et al., 2015b), source code

description (Iyer et al., 2016), and grapheme-to-phoneme conversion (Yao and Zweig, 2015).

Framed as sequence-to-sequence problems, these tasks involve mapping an input sequence

x to an output sequence y (see Section 2.1). Following the NMT blueprint, researchers

typically applied Recurrent Neural Network (RNN) sequence-to-sequence models with an

attention mechanism (Section 2.3), supervised learning on a parallel corpus, beam search

decoding (Section 2.6.1) and evaluation via n-gram overlap based metrics such as BLEU

(Papineni et al., 2002) or ROUGE (Lin, 2004b). More recently, Transformers (Vaswani

et al., 2017) superseded RNNs – by replacing recurrent connections with attention-based

connections throughout, they achieve efficiency improvements and higher performance (see

Section 2.3).

Though this thesis does not focus on machine translation as a task, it is important to

understand the origins of the NMT blueprint that was later applied to open-ended generation.

In this section I describe several tricky generation-related problems in NMT that are subtler

than they initially appear. By understanding these problems in the NMT blueprint’s original

setting, we can understand how they manifest for open-ended generation later (Section 1.3.3).

Problem 1: Choice of decoding algorithm. Though beam search is the standard decod-

ing algorithm in NMT, the details of its implementation have a substantial but sometimes

overlooked effect on the quality of the generated text. Britz et al. (2017) report that the

choice of beam size and length normalization penalty (see Section 2.6.1) are ‘just as crucial

as most architectural variations’ to achieve good performance. Though beam search is

founded on the goal of finding the highest-probability output sequence y given the input x,

empirical analysis shows that a larger beam size can lead to worse-quality outputs (Koehn

and Knowles, 2017; Cohen and Beck, 2019) – that is, the model can assign higher probabili-

ties to worse-quality outputs. In particular, the model has an inherent bias towards shorter

CHAPTER 1. INTRODUCTION 6

sequences which omit parts of the source text; indeed the globally most likely sequence

is often the empty sequence (Stahlberg and Byrne, 2019). These observations have led

researchers to reconsider the goal of finding the highest-probability translation. For example,

Meister et al. (2020) argue that translations should optimize for uniform information density

– that is, distributing information equally across the sentence – and that beam search has an

inherent bias towards this goal.

Problem 2: Repetition and diversity. When decoding with beam search, NMT systems

exhibit several issues that can be described as a lack of diversity. First, the generated

outputs sometimes contain repetition within themselves (Mi et al., 2016); this phenomenon

is sometimes called over-translation. Second, NMT models tend to underestimate the

probability of rare words; this can lead to under-translation (i.e., leaving out parts of

the source sentence) and a tendency towards generic phrasing and vocabulary (Ott et al.,

2018). Third, the beam itself (i.e., the set of possible output sequences) tends to contain

alternatives that differ only slightly in the last few tokens (Vijayakumar et al., 2018). This is

disadvantageous – a more diverse set of valid alternatives can be useful, especially if we

require multiple alternatives for a separate reranking or selection process.

Problem 3: Hallucination, bias and uncontrollability. NMT systems are known to

hallucinate – that is, produce an output y containing content unfounded on anything in the

input x. In some cases, this phenomenon reflects patterns seen in the training data – for

example, NMT models sometimes generate pronouns according to stereotypical gender roles,

even when the input text does not specify gender (Stafanovičs et al., 2020). Hallucination

is also triggered by out-of-domain inputs – for low-resource languages, Google Machine

Translate was observed to generate biblical-sounding passages when provided nonsensical

input sequences of repeated characters (Gong, 2018). Seemingly, in the absence of a learned

transformation to apply for the out-of-domain input, NMT systems default to running the

target language model unconditionally – in the case of low-resource languages, this echoes

the Bible, an important parallel training text (Vincent, 2019).

CHAPTER 1. INTRODUCTION 7

Problem 4: Evaluation. BLEU (bilingual evaluation understudy) (Papineni et al., 2002) is

the de facto standard evaluation metric for machine translation. Based on computing n-gram

overlaps between the candidate translation and one or more reference translations, BLEU

can capture exact similarities in vocabulary and phrasing, but is less able to recognize valid

alternatives with higher-level differences. The metric is sensitive to the number, diversity

and style of the reference translations; consequently in some cases BLEU can bias towards

rewarding ‘translationese’ (Freitag et al., 2020). Though BLEU can be useful as a proxy for

translation quality, there can be conflicting results: in the WMT19 competition, BLEU and

human evaluation do not agree on the top-performing system; in fact the correlation is nega-

tive for the top 4 systems (Ma et al., 2019). At least 108 alternative automatic metrics have

been proposed for machine translation (Marie et al., 2021) – many attempting to improve on

BLEU’s brittleness to paraphrasing. However, a survey of many of these metrics reveals

that their reliability varies – for example, they are generally more reliable at evaluating

high-quality translations (vs low-quality translations), evaluating NMT translations (vs SMT

translations), and detecting adequacy errors (vs fluency errors) (Fomicheva and Specia,

2019). No automatic metric has been adopted as widely as BLEU, and the community has

increasingly moved towards human evaluation to resolve this problem (Marie et al., 2021).

However, human evaluation is far from a simple gold standard. Läubli et al. (2020) show

that evaluation results depend on the choice of annotators (for example, crowdworkers or

professionals), their access to the document context, and the quality and style of the reference

translations under comparison. Though there are many differing ways to conduct human

evaluation of machine translation systems, establishing a standard methodology remains a

matter of debate (Freitag et al., 2021). In addition, due to the relative inconvenience and

cost of human evaluation, the majority of NMT papers continue to (over)rely on BLEU;

sometimes drawing conclusions based on BLEU comparisons without adequate significance

testing or controlling important hyperparameters (Marie et al., 2021).

Consequently, progress is NMT is hard to measure. Though it’s clear that the state-of-

the-art continues to make progress overall, finegrained comparisons remain opaque.

CHAPTER 1. INTRODUCTION 8

Machine
Translation

Abstractive
Summarization

Less open-ended More open-ended

Chitchat
Dialogue

Story
Generation

Figure 1.1: Natural Language Generation (NLG) tasks exist on a spectrum from less
open-ended to more open-ended.

1.3 Open-ended Neural Text Generation

Having laid the groundwork of NMT, we now move on to open-ended neural text generation.

In this section I define open-ended text generation, and summarize the main developments

of the field since the early NMT blueprint described in the previous section. Lastly, I detail

how the four main generation problems in NMT become even more challenging in the

open-ended setting.

1.3.1 What is Open-ended Text Generation?

In the years following its breakout success in NMT, neural NLG research has expanded

to many other application areas. As shown in Figure 1.1, some of these tasks are more

open-ended – meaning there is a greater variety of valid outputs y for a single input x.

As any human translator will attest, translation involves significant nuance and choice

on the part of the translator (Taylor, 1998). Nonetheless, abstractive summarization – which

involves writing an original summary of a (possibly lengthy) input text – requires even more

choice, as the summarizer chooses not only which information to include, but how to phrase

it. Story generation – the task of writing or completing a narrative – is perhaps one of the

most creative and open-ended text generation tasks.

Chitchat dialogue, which can be defined as an informal but polite social conversation,

is a particular focus of this thesis. In contrast to task-oriented dialogue, in which two

speakers work together to achieve a goal (such as booking a restaurant, or negotiating a

sale), chitchat’s goal is purely social. Though certain topics are customary in particular

CHAPTER 1. INTRODUCTION 9

cultures,2 and one’s conversational partner chooses some topics, a conversational agent has

significant freedom in determining the direction of the conversation. Chitchat dialogue has

many variants including symmetric and asymmetric roles, public or private settings, two or

more participants, synchronous or asynchronous communication, introductory chat with a

new acquaintance or catching up with an existing friend.

1.3.2 Development

Neural generation for open-ended tasks began with the NMT blueprint described in Sec-

tion 1.2, but the standard methodology has developed in recent years.

Open-ended neural text generation’s greatest divergence from the NMT blueprint is the

choice of decoding algorithm. Though beam search performs well for machine translation,

researchers found that it tends to produce repetitive and generic text for more open-ended

tasks (Holtzman et al., 2020). For these tasks, researchers began to move towards sampling-

based decoding algorithms such as top-k sampling (Fan et al., 2018b) and top-p (aka nucleus)

sampling (Holtzman et al., 2020) – see Section 2.6.2. Unlike beam search, which searches

for the single highest probability output sequence, these randomized algorithms sample

each successive token from a truncated distribution containing multiple high-probability

alternatives. These algorithms can produce a diverse set of alternative outputs given one

input, and generally produce more interesting and varied text.

Following the comprehensive success of ELMo (Peters et al., 2018) and BERT (Devlin

et al., 2019) on NLU tasks, pretrained Language Models – trained on large amounts of

unlabelled text from diverse web sources – became the indispensable starting-point for

finetuning on downstream tasks. Pretrained Language Models can generally be divided into

fill-in-the-gap masked LMs, which predict one or more masked-out tokens, and decoder LMs,

which predict tokens left-to-right, and can thus be used to generate text – see Section 2.2.

Of the pretrained generative LMs, the GPT series (Radford et al., 2018, 2019; Brown et al.,

2020) is the most influential. By scaling up the model size and the quantity of training data

2The customary topics may still be debated. In George Bernard Shaw’s Pygmalion, Higgins instructs Eliza
Doolittle – the ELIZA chatbot’s namesake – to ‘keep to two subjects: the weather and everybody’s health.
[...] That will be safe.’ Mrs. Higgins: ‘Safe! To talk about our health! about our insides! perhaps about our
outsides! How could you be so silly, Henry?’

CHAPTER 1. INTRODUCTION 10

(drawn from a broad variety of web sources), the GPT models have demonstrated striking

emergent abilities such as closed-book question answering and few-shot learning of several

tasks (Brown et al., 2020). Equally importantly, when given a prompt (i.e., some starting

text to complete), they are able to generate (via top-k or top-p decoding) samples of text

exhibiting previously-unseen coherence over long sequences. Owing to the variety of the

training data, the models can match the genre and style of many input prompts, writing

convincing news articles, recipes, and blog posts (Radford et al., 2019). For the largest

GPT-3 model, human annotators’ ability to distinguish whether a 500-word news article is

model-generated or human-written is barely above chance (52%) (Brown et al., 2020).

Open-ended neural text generation has taken some tentative steps from research to

application. Google Smart Compose (Chen et al., 2019) uses a neural LM to generate real-

time auto-complete suggestions for email – for example the prefix Thanks for the invitation,

I’m could be completed with afraid I can’t make it or looking forward to it. Though

this does constitute somewhat open-ended generation, the constraints of the application –

requiring only occasional suggestions of short, common and highly likely phrases – limit the

open-endedness, thus providing a good fit for established neural generation abilities. More

recently, OpenAI released an API3 providing commercial access to GPT-3’s generation

abilities, though not the parameters of the model itself. Developers are using the API to build

apps for a variety of use-cases, including customer support, semantic search, copywriting,

creative writing and games.4 OpenAI also developed Codex, a GPT-3 model finetuned on

publicly available code (Chen et al., 2021) – this powers Github Copilot, an assistive code

development tool currently in technical preview.5 These examples are not yet the norm

however, and at the time of writing, open-ended neural text generation is not widely used in

deployment beyond NMT.

1.3.3 Difficulties

I argue that progress on practical open-ended neural text generation is impeded by intensified

versions of the NMT problems described in Section 1.2. Together, these inter-related issues

3https://openai.com/blog/openai-api/
4See https://openai.com/blog/gpt-3-apps/ and https://gpt3demo.com/
5https://copilot.github.com/

https://openai.com/blog/openai-api/
https://openai.com/blog/gpt-3-apps/
https://gpt3demo.com/
https://copilot.github.com/

CHAPTER 1. INTRODUCTION 11

make open-ended generation one of the most uncharted and unmastered areas of Deep

Learning NLP.

Problem 1: Choice of decoding algorithm. Although open-ended neural text generation

has largely moved towards sampling-based decoding (as described in Section 1.3.2), the

choice of decoding algorithm remains a topic of unresolved debate. Some researchers

argue that, especially for more creative tasks, the highest-probability sequence is neither

human-like nor the right objective, and bound to result in degenerate text (Holtzman et al.,

2020). Others argue that, especially for more factual settings like abstractive summarization

or question-answering, generation requires precision – the next word of The capital of Japan

is should be the LM’s top-1 most likely option (hopefully Tokyo), not sampled from several

options (Keskar et al., 2019).

The introduction of top-k and top-p decoding has introduced an even greater choice

of decoding algorithm for open-ended generation. The parameter k or p itself has a huge

effect, inducing a tradeoff from repetition and genericness (Problem 2) to nonsense and

hallucination (Problem 3) (Massarelli et al., 2020). The temperature parameter, which alters

the next-token probability distribution to be more or less ‘spread out’, has a similar effect

(Section 2.6.3). Ideally, we should evaluate generative systems across this entire tradeoff

curve, not just points on it (Caccia et al., 2018; Hashimoto et al., 2019) – however, doing

so can be prohibitively expensive, particularly as identifying nonsense and hallucination

tends to require human evaluation. Consequently, we don’t have a good understanding of

whether top-k, top-p or temperature provides the best quality-diversity tradeoff. Overall, the

decoding algorithm is an extremely influential component of open-ended text generation,

but also a complicating factor that increases the difficulty of evaluation (Problem 4).

Problem 2: Repetition and diversity. When researchers first applied the NMT blueprint

(Section 1.2) to open-ended tasks like dialogue, repetition and genericness were immediately

identified as prominent problems (Jiang and de Rijke, 2018). At first, most solutions focused

on fixing this issue through the LM itself – e.g., changing the objective function to Maximum

Mutual Information (Li et al., 2016a), explicitly modeling topic similarity (Baheti et al.,

2018), or providing relevant content words as additional input to the model (Xing et al.,

CHAPTER 1. INTRODUCTION 12

2017). However, researchers soon realized that likelihood-maximizing decoding algorithms

like greedy and beam search are a primary cause of this behavior (Holtzman et al., 2020).

Sampling-based decoding thus provided a more systematic solution to the repetitiveness

and genericness problem – however, it introduces the quality-diversity tradeoff. Meanwhile,

those who champion likelihood-maximizing decoding as the principled choice have devised

other methods such as unlikelihood training (Welleck et al., 2020) and repetition-penalized

sampling (Keskar et al., 2019) to remove repetition and genericness from the most likely

sequence.

Problem 3: Hallucination, bias and uncontrollability. In tasks like machine translation,

the input x exerts strong constraints on y; thus x functions as a type of control. In more

open-ended tasks, x provides less of a framework for y – consequently neural models often

generate incoherent, nonsensical, or self-contradictory output, particularly when generating

long text or dialogues (Welleck et al., 2019; Tan et al., 2021). Furthermore, when the model

has more freedom to generate y, there is greater scope for hallucinated (Maynez et al., 2020;

Shuster et al., 2021), off-topic (Xu et al., 2018; Sankar et al., 2019; Jaques et al., 2019),

biased (Bordia and Bowman, 2019; Liu et al., 2020; Dinan et al., 2020), and offensive

(Wallace et al., 2019; Peng et al., 2020; Gehman et al., 2020) output. While some of these

behaviors can be reduced by a conservative (i.e., low) choice of p or k in top-p or top-k

sampling, this solution is unsatisfactory as it pushes the model towards genericness.

Pretrained LMs, which tend to be trained on extensive and varied internet datasets,

introduce additional concerns. First, powerful pretrained LMs can be manipulated to

regurgitate some passages of training data, raising security and privacy risks (Carlini et al.,

2020). Second, by casting a wide net in their training data, these LMs learn a pervasive

range of undesirable biases and toxicity, which are detectable in their predictions (Huang

et al., 2020; Brown et al., 2020; Nadeem et al., 2020), generated text (Sheng et al., 2019) and

dialogue (Sheng et al., 2020). Though bias in LMs is a flourishing research area, the issue is

very far from simple. There are many types and alternative definitions of bias (Crawford,

2017; Abbasi et al., 2019), often requiring debatable assumptions of what is socially and

technologically desirable (Green, 2019). Though the composition of the training data is

indeed a major source of bias, other parts of the NLP pipeline – such as task formulation,

CHAPTER 1. INTRODUCTION 13

choice of annotators, annotation instructions, learning objectives, and evaluation metrics –

are important factors (Shah et al., 2020). Researchers have proposed many different methods

and benchmarks to measure and to mitigate LMs’ bias towards different social groups – see

Garrido-Muñoz et al. (2021) or Sun et al. (2019) for a survey. However, these efforts have

been criticized for a technology-centric view which under-emphasizes the real-life context

and actual harms of biased systems on the lived experiences of marginalized groups, as well

as the wider philosophical and social science literature (Prabhumoye et al., 2019; Blodgett

et al., 2020; Boyarskaya et al., 2020).

Problem 4: Evaluation. At first following the NMT blueprint, researchers evaluated open-

ended generative systems with n-gram overlap based metrics such as BLEU (Papineni et al.,

2002), ROUGE (Lin, 2004b), and METEOR (Denkowski and Lavie, 2014). However, the

community soon found that these metrics are deeply flawed for abstractive summarization

(Kryściński et al., 2019) and close to useless for very open-ended tasks like dialogue (Liu

et al., 2016; Novikova et al., 2017). Though there have been many attempts to create new

automatic metrics – in particular, trained model-based metrics such as ADEM (Lowe et al.,

2017) and BLEURT (Sellam et al., 2020) – the only consensus to emerge is the necessity

of human evaluation. However, human evaluation is also very complex – results can be

affected by the choice of evaluation criteria and the rating scale used to measure it; the

number, training and demographics of the evaluators; and the order in which they answer

the questions (Van Der Lee et al., 2019). As a result, researchers currently use a variety of

human evaluation methodologies for NLG, with active debate to determine best practices

(Van Der Lee et al., 2019; Li et al., 2019; Clark et al., 2021). Together, these evaluation

problems seriously hinder the clarity of open-ended NLG research. For more detail on all

these current issues, refer to the survey by Celikyilmaz et al. (2020).

A note on scale. One prominent variable, which affects all four of these problems, is

scale – of both the LM and its training data. In this thesis we study these problems with

moderate-scale LMs, as most people are not able to access extremely large LMs due to

financial and infrastructure constraints (Strubell et al., 2019). However, empirical evidence

strongly indicates that scale provides a better quality-diversity tradeoff – that is, a more

CHAPTER 1. INTRODUCTION 14

powerful LM can write more unusual text without risking nonsense (Adiwardana et al.,

2020; Brown et al., 2020). Scale also provides much improved coherence for long text

(Problem 3), though it is debatable to what extent that coherence reflects true understanding

or communicative intent (Bender et al., 2021). It remains to be seen which problems can and

cannot be solved with scale; however I provide my opinion in the last part of Section 1.6.

1.4 Research Questions

Motivated by the four problems in the previous section, this thesis focuses on addressing the

following three Research Questions:

RQ1: What problems occur in open-ended neural text generation, and how do they
affect user experience? Though it can be convenient to distill a system’s performance

into a single overall evaluation metric, over-relying on such metrics can be misleading,

sometimes giving an inflated impression of a system’s performance. Whether automatic

or human, these one-dimensional evaluation metrics often fail to capture the complex

inter-related problems and tradeoffs described in the previous section.

Throughout this thesis, I strive to deeply understand all major strengths and weaknesses

of each system, and if possible identify the causes of these issues. I argue that providing a

candid, holistic view is an important and valuable contribution to the research community:

first, to set realistic expectations for those who may wish to use the system, and second,

to highlight important areas for improvement, that may be under-emphasized by simple

evaluation metrics alone.

For highly interactive applications like dialogue – in which the user comprises half

the system – it is indispensable to understand the interplay between the user’s and the

chatbot’s behaviors. Looking beyond simple binary evaluations of out-of-context utterances,

I study the varied and contradictory ways that real people interact with chatbots over whole

conversations. Through this integrated perspective, I draw connections between technical

neural generative problems and overall user experience.

CHAPTER 1. INTRODUCTION 15

RQ2: What techniques can we use to address these problems? To tackle the problems

outlined in Section 1.3.3, this thesis proposes and evaluates techniques for neural generation

across several application areas.

In some of my work, I focus on understanding the effect of standard techniques. In

Chapter 5, I investigate the effects of large-scale pretraining and of the decoding algorithm

(Problem 1) on aspects of storytelling, including diversity (Problem 2) and coherence

(Problem 3).

In other work, I propose extensions to standard techniques. Chapters 3 and 4 both

describe modifications of the RNN-based NMT blueprint (Section 1.2). In abstractive

summarization (Chapter 3), I propose methods to copy words from the input (addressing

Problem 3, hallucination) and to avoid summarizing the same input passages repeatedly

(addressing Problem 2, repetition). In chitchat dialogue (Chapter 4), I apply two methods

to control low-level attributes of the generated text, including repetition and genericness

(Problem 2), staying on topic (Problem 3) and question-asking.

Lastly in Chapter 6, I focus on tackling these problems in real-life deployment. Moving

away from techniques targeted to specific problems, I propose a holistic solution that learns

to avoid many types of poor-quality bot utterances that lead to user dissatisfaction. This

semi-supervised method learns from real user interactions, and thus could be used as an

online learning method to continuously improve a bot in deployment.

RQ3: What is required for neural generative dialogue models to be ready for real-life
deployment? Recent publications (Zhang et al., 2020b; Adiwardana et al., 2020) show

that ever-larger neural generative dialogue models are trending closer to some notion of

human performance.6 These results are typically obtained through crowdworkers having

written conversations with the bot in carefully-controlled environments. The crowdworker

usually operates from a set of instructions that may define the topic, style, aim, and length

of the conversation, and may even include a persona and scenario to role-play (Zhang et al.,

2018b). The crowdworker’s incentive is external; to receive payment they are incentivized

6In chitchat dialogue, ‘surpassing human performance’ can mean passing a Turing test (i.e., being indistin-
guishable from a human conversationalist), or surpassing a human conversationalist in some quality evaluation.
Both tests are highly dependent on the human(s) conversing with and evaluating the chatbot, as well as the
topic, length and other constraints of the conversation.

CHAPTER 1. INTRODUCTION 16

to carry out these instructions regardless of their personal opinions or experience.

By contrast, real-life deployment scenarios such as the Alexa Prize (Gabriel et al., 2020)

present different challenges. Unlike crowdworkers, users have their own expectations and

personalities, which vary greatly between users. Their incentive is internal; they take part

in the conversation to satisfy their own personal goal of entertainment, curiosity, social

interaction or otherwise. Consequently, user behavior can be more varied, unpredictable,

and uncooperative than crowdworkers’. Secondly, real-life conversations may be written

or spoken. Particularly for spoken conversations, background noise can be a substantial

problem – ASR errors, cross-talk and user distraction can obscure the user’s conversational

intent. Thirdly, latency is more critical in real-life deployment, as real users are less likely to

wait patiently for a bot response, and prompt back-and-forth is necessary to maintain spoken

conversational flow.

It is less well-understood how neural generative dialogue models perform under these

conditions – yet this knowledge is necessary if such models are ever to achieve widespread

practical use. In Chapter 6 we deploy a neural generative model in the Alexa Prize. This

setting allows us to evaluate neural generative models under realistic cost and latency

constraints, identify the generative errors most detrimental to user experience, and understand

the environmental and user behaviors that trigger them.

1.5 Thesis Overview

The rest of the thesis is structured as follows. Chapter 2 provides background information

on text generation tasks, neural Language Models and decoding algorithms.

Chapter 3: Summarization with Pointer-Generator Networks. Unlike extractive text

summarization, which involves simply selecting and rearranging passages of the input text to

form a summary, abstractive text summarization involves writing original text. This chapter

proposes two augmentations to the RNN-based sequence-to-sequence attentional model

with beam search, which at the time of this work, had recently been applied to abstractive

text summarization for the first time. The standard attentional model has two prominent

shortcomings: it is liable to reproduce factual details inaccurately, and it tends to repeat itself.

CHAPTER 1. INTRODUCTION 17

To address the first problem, we use a hybrid pointer-generator network that can copy words

from the source text via pointing, which aids accurate reproduction of information, while

retaining the ability to produce novel words through the generator. For the second problem,

we use coverage to keep track of what has been summarized, which discourages repetition.

On the CNN / Daily Mail summarization dataset, our model achieved ROUGE scores that

surpassed the abstractive state-of-the-art at the time. This work was first published as See

et al. (2017).

Chapter 4: Controlling Attributes of Chitchat Dialogue. A good conversation requires

balance – between simplicity and detail; staying on topic and changing it; asking questions

and answering them. When applied to chitchat dialogue, RNN sequence-to-sequence

attentional models with beam search don’t always balance these factors well – for example,

generating bland responses, straying off-topic, or asking too few questions. Although

dialogue agents are commonly evaluated via human judgments of overall quality, these

overall judgments fail to capture different aspects of conversational quality, and how they

relate to particular bot conversational behaviors. In this chapter, we apply two existing

methods for controlling the output of neural generative models: conditional training and

weighted decoding. We use these methods to control four important attributes for chitchat

dialogue: repetition, specificity, response-relatedness and question-asking. We conduct a

large-scale human evaluation to measure the effect of these control parameters on multi-turn

interactive conversations on the PersonaChat task. We provide a detailed analysis of their

relationship to high-level aspects of conversational quality, and show that by controlling

combinations of these variables our models obtain clear improvements in human quality

judgments. This work was first published as See et al. (2019b).

Chapter 5: The Effect of Pretraining for Story Generation. In this chapter we shift

focus to Transformer-based language models pretrained on massive amounts of text, which

have emerged as a formidable strategy for Natural Language Understanding tasks. How-

ever, at the time of this work, their strength as Natural Language Generators was less

well-understood. Though anecdotal evidence suggested they were capable of generating

better quality open-ended text with sampling-based decoding, there had been no detailed

CHAPTER 1. INTRODUCTION 18

study characterizing their generation abilities. In this chapter, we compare an extensively

pretrained model, GPT2-117 (Radford et al., 2019), to a similarly-sized but not extensively

pretrained state-of-the-art neural story generation model (Fan et al., 2018b). We evaluate the

generated text across the top-k decoding spectrum, from greedy decoding (k = 1) to natural

sampling (k = vocabulary size). Using a wide variety of automatic metrics, we evaluate

many syntactic, semantic, structural and stylistic aspects of narrative text generation. We

find that GPT2-117 conditions more strongly on context, is more sensitive to ordering of

events, and uses more unusual words. However, it is just as likely to produce repetitive and

under-diverse text when using likelihood-maximizing decoding algorithms. This work was

first published as See et al. (2019a).

Chapter 6: User Dissatisfaction in Chitchat Dialogue. In this chapter we focus on

applying open-ended neural generative models to real-life dialogue. In recent years, large

Transformer-based generative dialogue agents have shown an increasing ability to hold short

chitchat conversations, when evaluated by crowdworkers in controlled settings. However,

their performance in real-life deployment – talking to intrinsically-motivated users in noisy

environments – is less well-explored. In this chapter, we perform a detailed case-study

of a GPT2-based dialogue model deployed as part of Chirpy Cardinal, an Alexa Prize

socialbot. In this noisy environment, we find that unclear user utterances are a major source

of generative errors such as ignoring, hallucination, unclearness and repetition. However,

even in unambiguous contexts the model frequently makes reasoning errors. We study the

relationship between these errors and user expressions of dissatisfaction. Though users

express dissatisfaction in correlation with these bot errors, certain dissatisfaction types

(such as offensiveness and privacy objections) seem to depend on additional factors – such

as the user’s personal attitudes, and prior unaddressed dissatisfaction in the conversation.

Finally, we show that dissatisfied user utterances can be used as a semi-supervised learning

signal to improve the dialogue system. We train a model to predict the likelihood that a bot

utterance in context will result in next-turn user dissatisfaction. Through human evaluation

we find that as a ranking function, the predictor model can be used to select higher-quality

neural-generated utterances. This work was first published as See and Manning (2021), and

was nominated for a Best Paper Award at SIGDIAL 2021.

CHAPTER 1. INTRODUCTION 19

Finally, Chapter 7 provides some final thoughts and future directions.

1.6 Main Findings

Though Chapters 3–6 each contain their own conclusions, in this section I provide the main

takeaways that I wish the reader to gain from this thesis as a whole.

Taking a wider view. As explained in RQ1 (Section 1.4), the Machine Learning commu-

nity has a tendency to frame progress in terms of state-of-the-art performance on standard-

ized benchmarks. This thesis demonstrates that a wider view is necessary to understand

open-ended text generation systems, which have rich and detailed output. In Chapter 5,

we measure several aspects of generated text across the decoding algorithm spectrum. Our

analysis emphasizes that Problem 2 (repetition and diversity; see Section 1.3.3) is primarily

caused by the decoding algorithm rather than the LM itself, as was previously proposed

(Jiang and de Rijke, 2018). In Chapter 4, we go beyond the standard single-measure human

evaluation for the ConvAI2 benchmark challenge; in doing so we uncover new complexities

– for example, that while our models approach human-level engagingness, they are far from

convincingly human. Further scrutinizing this result reveals that ‘human-level engagingness’

as defined by crowdworkers is problematic, due to the inherently unnatural and extrinsically

motivated evaluation task.

The Machine Learning research community also has a tendency to value work on

model development more highly than everything else (Sambasivan et al., 2021). However,

I have found that ‘everything else’ – which includes practical considerations like data,

hyperparameter tuning, efficiency, user experience and real-life context – is indispensable,

both to build something that actually works, and to understand it well. In Chapter 6, these

practical considerations bring priorities for neural generative dialogue into sharper focus.

We find that larger LMs’ latency is prohibitively high for deployment. We also find that the

noisy spoken setting and the unpredictable behavior of intrinsically-motivated users creates

challenging test-time conversations very different to the training data. This domain shift

problem highlights the importance of creating more publicly-available dialogue datasets,

improving transfer learning and robustness, and developing online learning.

CHAPTER 1. INTRODUCTION 20

Dialogue systems in social context. Fundamentally, a dialogue system exists to talk to

people, and so must be understood in its social context (see RQ1, Section 1.4). By focusing

on this context, in this thesis I discover social problems in neural generative dialogue

systems. For example in Chapter 4, we uncover the importance of social behaviors like

asking the right amount of questions, and how often to change the topic. In our Alexa Prize

work (Chapter 6) the social context is much weightier: our chatbot is in the homes of real

people, discussing their lives during an unprecedented pandemic – these conversations are

both literally and metaphorically ‘kitchen table conversations’. We find that social and

contextual awareness are extremely important in this setting, and that our current neural

generative methods (in particular their reasoning abilities), are often too rudimentary to

grasp this complicated context. In addition we find that users seem to have varying attitudes

and motivations for engaging in topics deemed offensive or private.

Understanding social context can provide solutions as well as problems. In Chapter 6,

we find that by targeting particular user behaviors, relatively simple adjustments can raise

the overall performance of the neural generative system. For example, we find that starting

conversations with easy-to-answer open-ended questions, sometimes preceded by self-

disclosure (Paranjape et al., 2020), helps users more effortlessly give longer responses; this

in turn improves the neural model’s performance. In addition, we find that tailoring these

starter questions to match the topics of the training data, and providing users clear direction

with questions in general, helps keep users on-topic in the model’s area of expertise.

Progress, scale, and open science. If we wish to find an accurate and nuanced wider view

of the field’s progress, it must be done collaboratively – and open science and reproducibility

are our best tools to achieve it. Releasing models, code and generated text allows other

researchers to analyze NLG systems in new ways that may not have been apparent or possible

for the original researchers. Indeed, the released materials for the pointer-generator model

(Chapter 3) were used in studies which improved, compared, and highlighted problems with

the model, its output, and evaluation (Kryściński et al., 2019; Fabbri et al., 2021). Though

releasing models and code is common practice in NLP research, releasing the full generated

text of NLG systems (i.e., all the output that was used to produce the analyses and results

in the paper) is not. I strongly argue that releasing generated text should become common

CHAPTER 1. INTRODUCTION 21

practice: compared to releasing models and code, which often requires a substantial amount

of time and effort, releasing generated text requires almost none. Whether or not the models

and code are released, releasing the generated text provides readers an instantly-accessible

and infinitely better sense of how an NLG system functions, compared to reading a paper

alone (which due to space constraints typically contains only a handful of examples, often

cherry-picked). There is however a tension between reproducibility, and the real-user studies

advocated in this thesis. Though the Alexa Prize provided a unique opportunity to build

a chatbot to interact with a great volume of real users, we are unable to release the data

described in Chapter 6.

The advent of large-scale pretrained LMs has affected progress and open science, for

better and worse. Pretrained LMs undoubtedly constitute significant progress in many areas;

they provide a more powerful starting-point for many researchers and practitioners, and

toolkits like HuggingFace Transformers (Wolf et al., 2020) make the process much easier.

However, many of the findings and techniques of the preceding years (such as Chapters

3 and 4, and the alternative training objectives in Section 2.5) have been subsumed by

increasingly large pretrained Transformers trained with maximum likelihood estimation;

this homogenization can in fact limit discovery (Bommasani et al., 2021). Given the

widespread influence of large pretrained LMs, it is important that we understand their

behaviors, strengths and weaknesses. However, scrutiny of the largest LMs is inaccessible

to most researchers outside of well-funded industrial labs, due to financial and compute

constraints, as well as unreleased models and training data. Indeed, the ability to analyze

and use the leading pretrained LMs has been out-of-reach throughout the work presented in

this thesis – in Chapters 5 and 6, our analyses are limited to the smaller GPT-2 models.

Looking to the future, APIs to large pretrained LMs such as OpenAI’s may offer

increased (paid) access to a certain type of experimentation and usage. Efforts to achieve

large LMs’ performance in a smaller computational footprint (Menghani, 2021) will both

increase access and mitigate their environmental impact (Strubell et al., 2019; Bender et al.,

2021). Lastly, academic initiatives such as the National Research Cloud7 and the Center for

Research on Foundation Models (Bommasani et al., 2021) may pave the way to academia

playing a greater role in the development, understanding and usage of such models.

7https://hai.stanford.edu/policy/national-research-cloud

https://hai.stanford.edu/policy/national-research-cloud

CHAPTER 1. INTRODUCTION 22

Control, safety and real-life deployment. Chapters 4 and 6 demonstrate that our neural

generative dialogue models are not yet a reliably functional user experience. Indeed, all

four of the problems outlined in Section 1.3.3 remain significant impediments to real-life

deployment. However, I argue that Problem 3 (control and safety) is the most critical

problem to solve for open-ended neural generation to become practically usable.

Control is a theme throughout this thesis. Chapters 3 and 4 both attempt to achieve

types of control via targeted modeling interventions – though these can change the targeted

behavior, they are tricky to calibrate appropriately. Safety can be framed as a type of control

– for example, controlling the model to produce factually correct, non-offensive and unbiased

text. While factual faithfulness is an active research area with promising progress (see

Section 3.9), in my opinion bias and offensiveness is comparatively much harder to resolve,

both philosophically and technically (see Section 1.3.3). Nevertheless, this aspect of safety

is crucial for wider deployment of chitchat systems. While Chirpy Cardinal uses crude

methods (such as offensive word lists) to refuse to talk about sensitive and controversial

issues (Paranjape et al., 2020), such avoidance prevents legitimate discussion of important

topics and may marginalize users who wish to discuss them.

Arguably, Problems 1, 2 and 4 (Section 1.3.3) could be sufficiently resolved by increased

scale, to allow real-life deployment. But scaling up the current recipe for pretrained LMs will

not, in my opinion, resolve the safety and control issue. First, as explained in Section 1.3.3,

large-scale pretraining can introduce new safety concerns. Second, even if we obtained a

‘perfect’ LM – that is, one whose conditional PLM distribution exactly matches the output

distribution of a well-trained human – we would still require control in most practical

applications. For example, we may wish to define policies, rules and constraints on a

dialogue agent’s topics and conversational structure. For this reason, I believe that control is

the central current challenge in open-ended neural text generation.

Chapter 2

Background

In this chapter, I provide some technical background on text generation tasks, neural LMs

and how they’re trained, and decoding algorithms used to generate text. This provides key

material for the methods used in the following chapters.

2.1 Defining Text Generation Tasks

Most text generation tasks can be framed as the task of generating output text y given some

input x. The input x may be text (e.g., machine translation), but it may be other modalities

too – for example, in image captioning, x is an image. The input x may be a tuple of several,

possibly multi-modal inputs – for example, a dialogue agent that discusses an image may

take both the image and the conversational history as input.

Some tasks involve generating a continuation of some provided text – for example, story

generation in Chapter 5. Formally, this can be expressed as an input prompt y1, . . . , yt, and

the task of generating a continuation yt+1, . . . , yT .

2.2 Types of Neural Language Model

Generally, a language model is a system which assigns a probability to a text sequence; a

neural language model uses a neural network to achieve this. Neural language models fall

into several main types:

23

CHAPTER 2. BACKGROUND 24

Single decoder LM. These language models assign probability PLM(y) to a text sequence

y. Typically, the probability is factorized using the left-to-right chain rule:

PLM(y1, . . . , yt) =
t∏
i=1

PLM(yi|y1, . . . , yi−1) (2.1)

These language models can be used to generate text (or continuations of text), or to assign

a probability to a sequence of text (e.g., for ranking). They can also be used for their

representations – that is, the embeddings of the deep neural network form a representation

of the input text y. This can be powerful starting-point to provide as input to other deep

networks performing other tasks on y.

Encoder-decoder models. These language models assign probability PLM(y|x) to a text

sequence y given some input x (which may be text or other modalities, as discussed earlier).

There are two parts: an encoder, a neural network which takes the input x and produces

some representation of it, and a decoder, a neural LM which uses those representations

to produce PLM(y|x). As with single decoder LMs, the probability is typically factorized

left-to-right:

PLM(y1, . . . , yt|x) =
t∏
i=1

PLM(yi|y1, . . . , yi−1, x) (2.2)

These models can be used to generate output text y conditioned on some input x, or to

compute the conditional probability of a given (x, y) pair.

Masked LM. Masked language models are ‘fill-in-the-blank’ models that predict the iden-

tity of a masked token in a text sequence y. For example, given the input the children played

<MASK> in the field, what are the most likely tokens to replace <MASK>? Formally, given a

text sequence y1, . . . , yt−1, yt+1, . . . , yT , masked language models predict a probability:

PMLM(yt|y1, . . . , yt−1, yt+1, . . . , yT) (2.3)

While decoder LMs predict the next token given the left context, MLMs predict using

bidirectional context; this is important for learning a strong representation of the input text

CHAPTER 2. BACKGROUND 25

y (Devlin et al., 2019). In fact, MLMs are currently the dominant approach to pretraining

powerful representations of text in applications where a generative model is not required

(e.g., most NLU applications).

As MLMs do not straightforwardly assign a probability to the whole sequence y, they

do not strictly fit the definition of Language Model provided above; nonetheless, they are

widely referred to as a type of Language Model. MLMs are not generally intended or used

to generate text, so they are not a focus of this thesis. However, there are some exceptions –

by formulating a MLM as Markov Random Field LM, Wang and Cho (2019) demonstrate a

method to generate text from it.

2.3 Architectures for Neural Language Models

RNN-based decoder LMs. Recurrent Neural Networks (RNNs) are neural networks

which take a sequential input y1, . . . , yt, and produce a sequence of hidden states h1, . . . , ht ∈
Rh. Their defining feature is recurrence – on each step, the RNN applies the same transfor-

mation to produce a new hidden state ht from the previous hidden state ht−1 and the current

input yt:

ht = RNN(ht−1, yt) ∈ Rh (2.4)

To produce a probability distribution for the next token yt+1, RNN-based LMs typically

apply a softmax layer to the hidden state ht – i.e., a linear transformation followed by the

softmax function:

s = Wht + b ∈ RV (2.5)

PLM(yt+1|y1, . . . , yt) = softmax(s) ∈ RV (2.6)

where W ∈ RV×h and b ∈ RV are trainable parameters, and V is size of the vocabulary V
(see Section 2.4). The softmax function gives the following probability for a word w ∈ V:

PLM(yt+1 = w|y1, . . . , yt) =
exp(sw)∑

w′∈V exp(sw′)
(2.7)

When using a neural LM to provide a representation of y, we can omit the softmax layer

CHAPTER 2. BACKGROUND 26

and use (some combination of) the hidden states as the representation.

There are several flavors of RNN, which determine the nature of the RNN transformation

in Equation 2.4. Simple or ‘vanilla’ RNNs (Elman, 1990) apply a linear transformation and

nonlinearity to ht−1 and yt. One problem with these simple RNNs is the vanishing gradient

problem – it’s difficult for RNNs to learn to preserve information over many timesteps

(Bengio et al., 1994). To address this problem, Long Short-Term Memory networks (LSTMs)

(Hochreiter and Schmidhuber, 1997; Gers et al., 2000) use both a hidden state ht and a

cell state ct – which is intended to store long-term information. On each step, the LSTM

computes gates which determine how the LSTM erases, writes, and reads information from

the cell and into the hidden state. This makes it easier for the LSTM to retain information

over many timesteps. Gated Recurrent Units (GRUs) (Cho et al., 2014) are a simpler

and computationally less expensive variant of LSTMs which do not have a cell state, but

also use gates to control read/write behavior. LSTMs and GRUs continue to be the most

widely-used RNN variants for neural language models. Other variations are common – for

example, bidirectional RNNs compute a backwards sequence of hidden states in addition to

the forward sequence computed in Equation 2.4. RNNs are typically deep – meaning that

successive layers of hidden states are computed using the layers below. For a full exploration

of these topics, I refer the reader to Chapter 10 of Goodfellow et al. (2016).

RNN-based encoder-decoder models. Also known as sequence-to-sequence models,

these models comprise two RNNs: an encoder RNN, which takes a sequential input x, and a

decoder RNN, which uses the encoder’s representations to compute a probability distribution

PLM(y|x) (Sutskever et al., 2014). These RNNs typically have a similar architecture

as described in the previous section, though the encoder does not need a softmax layer.

Preceding the introduction of attention mechanisms (next section), the final hidden state of

the encoder was typically used to represent x; this would be used as the decoder’s initial

state. However, this introduced a bottleneck problem, as all information about x had to be

squeezed into a single fixed-size embedding.

Attention mechanisms. The attention mechanism was devised to ease the bottleneck

problem in NMT, while also providing a soft alignment between words in the source

CHAPTER 2. BACKGROUND 27

sentence x and the target sentence y (Bahdanau et al., 2015). On each step t of the decoder

RNN, we take the dot product between the decoder’s current hidden state st and all of the

encoder’s hidden states h1, . . . , hn, then apply the softmax function to obtain the attention

distribution α:

α = softmax([st · h1, . . . , st · hn]) ∈ Rn (2.8)

The attention distribution α is a probability distribution over the n source hidden states; it

can be regarded as a measure of the relative relevance or usefulness of each source hidden

state for the current step t of the decoder. We then use α to compute a weighted sum of the

source hidden states; this is the attention output a:

a =
n∑
i=1

αihi ∈ Rh (2.9)

The attention output can be regarded as a summary of the source hidden states, which

contains more information from those source hidden states that are more relevant to the

current decoder state st. The attention output a is then incorporated into the decoder RNN,

for example by concatenating with the decoder state st. For deep sequence-to-sequence

models, the attention mechanism may be applied on each layer of the decoder RNN. Given

that sequence-to-sequence models are trained end-to-end (see Section 2.5), the attention

mechanism learns to attend to the source states that are most useful to improve the decoder’s

prediction accuracy. For machine translation, this typically results in an attention distribution

that mirrors translation alignment; for tasks like summarization, the model typically attends

to the section of the source text being summarized.

Generalizing beyond sequence-to-sequence models, the attention mechanism has become

a standard Deep Learning tool: given n value vectors v1, . . . , vn ∈ Rv with corresponding

key vectors k1, . . . , kn ∈ Rk, and a query vector q ∈ Rk, the attention mechanism computes

a weighted sum a of the value vectors, dependent on an attention distribution α computed

CHAPTER 2. BACKGROUND 28

by taking the dot product between the query and the keys:

α = softmax([q · k1, . . . , q · kn]) ∈ Rn (2.10)

a =
n∑
i=1

αivi ∈ Rv (2.11)

There are several alternative formulations of Equation 2.10 (sometimes called dot

product attention). For example, multiplicative attention replaces the dot product q · ki
with a learned weight matrix multiplication qWki, while additive attention uses a learned

additive transformation with nonlinearity v>tanh(Wq + Uki) (Luong et al., 2015).

Transformer-based LMs. After the attention mechanism’s success across sequence-to-

sequence tasks, the Transformer (Vaswani et al., 2017) takes the idea one step further:

what if we replace the RNN’s recurrent connections with attention everywhere? In a

Transformer encoder, each hidden state hlt (timestep t, layer l) can attend to all hidden states

hl−11 , . . . , hl−1T on the layer below. In a Transformer decoder, hlt can attend only to the left

hl−11 , . . . , hl−1t ; this preserves left-to-right causality and permits generation. In addition, the

Transformer introduced multi-head attention: each hidden state has multiple key, value and

query vectors which produce separate attention distributions. This allows the network to

learn separate policies of what to attend to with each head.

Since their introduction, Transformers have widely replaced RNNs for all three types

of LM described in Section 2.2. Transformers tend to achieve better performance than

similarly-sized RNNs; the attention connections seem to allow better and more flexible

information flow, especially over long ranges. Transformers’ other main advantage over

RNNs is encoding efficiency: given an input sequence x1, . . . , xT , a Transformer can

compute each layer of hidden states in parallel, as each layer hl1, . . . , h
l
T depends only on

the previous layer hl−11 , . . . , hl−1T . By contrast, an RNN must compute each layer of hidden

states left-to-right, as each hidden state hlt depends not only on the previous layer hl−1t ,

but also on the state to the left hlt−1. This efficiency advantage does not hold for decoding

(i.e., generating) – like a RNN, a Transformer decoder must compute its hidden states

left-to-right.

There are some cases where RNNs are preferable to Transformers. First, RNNs can

CHAPTER 2. BACKGROUND 29

outperform Transformers in low-resource settings (Boito et al., 2019; Araabi and Monz,

2020). Second, the Transformer’s self-attention keys and values can introduce an overhead

that makes decoding slower than similarly-sized LSTMs; this is why Gmail Smart Compose

uses LSTMs in production (Chen et al., 2019). Lastly, Chen et al. (2018) find that some

ingredients of the Transformer’s success – such as multi-head attention and layer normal-

ization – can be applied along with careful hyperparameter tuning to substantially improve

RNN performance. Furthermore they argue that Transformers are generally better for en-

coding, and recurrent models better for decoding; accordingly they find that a Transformer

encoder paired with an improved RNN decoder achieves better MT performance than all

other combinations.

2.4 Input Representations for Neural Language Models

Tokenization and word(piece) embeddings. Given some text y, how exactly do we

transform it into a sequence of embeddings y1, . . . , yT ∈ Re that can be passed into a

neural LM? During the early days of NMT, the standard approach was to first define a fixed

vocabulary V . For many languages such as English, this would be obtained by taking the

training data for that language, separating the text by whitespace (and possibly punctuation)

to obtain tokens, then selecting the V most common tokens, where V is some maximum

vocabulary size. Each word in the vocabulary would be assigned a word embedding – this

may be taken from a set of pretrained word embeddings such as word2vec (Mikolov et al.,

2013) or GloVe (Pennington et al., 2014), or it may be randomly initialized like other

trainable parameters of the NMT model. The primary problem with this approach was that

rare words, names, and (depending on the tokenization scheme) hyphenated, compositional,

and inflected words are likely to be out-of-vocabulary. Such ‘unknown’ words were instead

represented by an <UNK> embedding, meaning that the network receives no information

about the identity of the word.

One approach to this problem is to use smaller units of text than words. For example,

character-based models (Ling et al., 2015; Luong and Manning, 2016) represent each

character in the alphabet with an embedding, then compose these embeddings together

to represent larger units of text. However the more successful approach, which is now

CHAPTER 2. BACKGROUND 30

dominant, is to use wordpieces, which are units of text between characters and words. For

example, the GPT models (Radford et al., 2018, 2019; Brown et al., 2020) use BPE encoding

(Sennrich et al., 2016), which allows the model to encode and generate any Unicode string as

a sequence of in-vocabulary tokens; while more common words have their own embeddings,

rarer words are split into smaller pieces with their own embeddings. This eliminates usage

of the <UNK> placeholder and allows models to learn more compositional representations.

Usage of pretrained word embeddings such as word2vec and GloVe has largely been

replaced by pretrained LMs. While word2vec and GloVe produce a fixed representation

for each word in the vocabulary, LMs take a passage of text and produce a sequence of

hidden states that represent each word(piece) in-context. For this reason, starting with ELMo

(Peters et al., 2018), pretrained LMs’ representations are sometimes called contextual word

embeddings.

Start and end tokens. We usually start and end the target sequence y with special

<START> and <END> tokens which have their own embeddings. The <START> token is

often needed as the input y1 for the first timestep of a RNN or Transformer. Meanwhile

training the model to predict <END> teaches it when to stop generating; the token is an

important stopping condition for decoding algorithms (Section 2.6).

Framing conditional generative tasks as continuation. Large-scale generative pretrain-

ing – for example, the GPT models (Radford et al., 2018, 2019; Brown et al., 2020) –

is based on unsupervised learning PLM(y) of unlabelled internet text y. However, these

pretrained models can be used for conditional generative tasks PLM(y|x) if x can be repre-

sented as text. This is typically achieved by concatenating x and y (perhaps separated by

a separator token <SEP>) to form a single sequence, and framing the task as continuation

PLM(yt+1, . . . , yT |y1, . . . , yt). Similarly, if x is multiple pieces of text (e.g., a dialogue

history), it can be concatenated into a single sequence (for dialogue, perhaps including the

speaker’s identity for each utterance). More generally, there is a trend towards encoding task

meta-data – for example, the desired language or style of the output text, or even the task to

be performed – as part of y (McCann et al., 2018; Keskar et al., 2019; Radford et al., 2019;

Brown et al., 2020). This makes convenient use of a pretrained PLM(y) model without

CHAPTER 2. BACKGROUND 31

needing to train separate models or add new special tokens.

2.5 Training and Evaluating Neural Language Models

Maximum likelihood estimation training. Neural language models are typically trained

end-to-end with backpropagation and stochastic gradient descent. The maximum likelihood

estimation (MLE) training objective is the negative log likelihood of the target data according

to PLM ; this is equivalent to the cross-entropy loss between the data distribution and PLM .

More concretely, given training examples (x, y) ∈ Dtrain, the cross-entropy loss for an

encoder-decoder LM is:

CE(Dtrain) = −
1

Ntrain

∑
(x,y)∈Dtrain

logPLM(y|x) (2.12)

where Ntrain is the total number of tokens in the output sequences y. For an unconditional

decoder LM that models PLM(y), simply omit x from Equations 2.12 and 2.13.

Perplexity evaluation. Neural language models are typically evaluated by perplexity –

given test examples (x, y) ∈ Dtest, this is:

PP (Dtest) =

 ∏
(x,y)∈Dtest

PLM(y|x)

−1/Ntest

(2.13)

This is the inverse PLM probability of the test set y given x, normalized by Ntest, the total

number of tokens in the output sequences y. Perplexity is equal to the exponential of the

cross-entropy loss; thus there is a close relationship between the MLE training objective and

the perplexity evaluation objective.

Teacher forcing and exposure bias. During training with MLE, the LM learns to predict

each next token yt conditioned on the preceding tokens y1, . . . , yt−1 taken from the training

data; by contrast during generation the preceding tokens have been generated by the LM

itself (Section 2.6). This training regime is called teacher forcing, because the LM is being

CHAPTER 2. BACKGROUND 32

forced to follow the sequence provided by the training data (the teacher), whether or not

the LM agrees with that sequence. Teacher forcing is thought to cause a domain shift

problem, as during training the LM is only exposed to training text and not its own generated

text – which may differ distributionally. This exposure bias is thought to cause generation

problems, in particular an inability to recover from errors.

Reinforcement learning. One solution to exposure bias is to use reinforcement learning

(RL) to optimize the LM for a sequence-level reward (e.g., BLEU or ROUGE), measured

with respect to the LM-generated text, during training (Ranzato et al., 2016). Reward can

also be awarded on intermediate steps of the sequence (Bahdanau et al., 2017). In their

survey of RL-based methods; Keneshloo et al. (2019) note that training text generation

models with RL is generally harder than with MLE, due to issues including sample efficiency,

high variance and the large action space. They also note that directly optimizing for metrics

such as BLEU or ROUGE can be problematic as those scores are not good representatives

of human-judged quality; this has been found in practical applications (Wu et al., 2016). In

most cases, Keneshloo et al. (2019) find that RL-based methods do not currently provide a

significant improvement over MLE.

Adversarial training. Another solution to exposure bias is to use generative adversar-

ial networks (GANs) (Goodfellow et al., 2014) – a method originally devised for image

generation, in which a discriminator network learns to distinguish between real images

and model-generated images, and the generator network learns to fool the discriminator.

GANs have been applied to text generation – for example Lamb et al. (2016) propose

professor forcing, in which the discriminator network takes the outputs and hidden states of

the generator RNN, and learns to distinguish whether the RNN is running in self-generating

or teacher-forcing mode. Discriminators can be used to target particular desirable aspects

of text; Holtzman et al. (2018) provide particular features of the generator RNN to their

discriminators, in order to guide each to focus on one of Grice’s maxims (Grice, 1975).

Overall, text GANs have not achieved the success of image GANs, nor have they surpassed

MLE in performance, primarily because they are hindered by training issues such as mode

collapse, vanishing gradient, and the non-differentiability of the text output (Caccia et al.,

CHAPTER 2. BACKGROUND 33

2018; Iqbal and Qureshi, 2020).

Variational autoencoders. Another approach to text generation is variational autoen-

coders (VAEs) (Kingma and Welling, 2014). In an autoencoder, an encoder produces a latent

vector representation of the input text, which the decoder uses to reproduce the original. In

a variational autoencoder, the latent representation is sampled from the latent space, using

a mean and variance supplied by the encoder. This provides a smooth latent space of text

representations, which can be used to sample text (Bowman et al., 2016). This line of work

has been useful for stylized text generation and style transfer (Mou and Vechtomova, 2020).

However, this approach is also held back by training difficulties – in particular, KL collapse,

in which the decoder ignores the latent representation (Iqbal and Qureshi, 2020).

2.6 Decoding Algorithms

Once we have a neural LM that models PLM(y) or PLM(y|x), how do we generate the

output text y?

2.6.1 Likelihood-maximizing Decoding Algorithms

We may be interested in finding the highest probability y – that is, the sequence y which

maximizes PLM(y|x). Likelihood-maximizing decoding algorithms aim to fulfil this goal.

Greedy decoding. As the name suggests, greedy decoding is a simple approach to finding

a high-probability sequence by greedily choosing the highest-probability token on each step.

That is, having generated y1, ..., yt−1, greedy decoding chooses

yt = argmaxyt∈VPLM(yt|y1, ..., yt−1, x) (2.14)

then proceeds to the next step. Greedy decoding typically stops when an <END> token is

generated, or when a maximum length has been reached.

The most obvious problem with greedy decoding is that it is not guaranteed to find the

highest-probability sequence y. In particular, the optimal y may lie on a path that requires

CHAPTER 2. BACKGROUND 34

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

pie

pie

tart

<END>

and

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9
-3.5

-3.3

-4.0

-3.4

-3.7

-4.0

-4.9

-5.3

-4.4

-4.6

-4.1

-5.7

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6

<END>

and

<END>

and

-4.5

-6.1

-4.7

-6.4

𝑡 = 7

-0.68

-0.64

-0.67

Figure 2.1: Beam search example with beam size 2 , showing unnormalized scores (Equa-
tion 2.15) in blue, and length-normalized scores (Equation 2.16) in orange for the finished
hypotheses (bold boxes). The finished sequence with highest length-normalized score is
shaded orange. Best viewed in color. Adapted from Lecture 8 of CS224n 2019 (Manning
and See, 2019).

choosing some yt which is not the most probable token on that step. Greedy decoding

explores only one path with no backtracking, so it will not necessarily discover the optimal

y.

Beam search decoding. Given that the space of outputs of length T is of size O(V T)

where V is vocabulary size, it is not possible to exhaustively search for the optimal solution.

Beam search is a balance between greedy and exhaustive search – while not exploring the

whole solution space, beam search explores more solutions than greedy decoding. To achieve

this, beam search continually maintains and updates a set of b partially-generated solutions,

sometimes called hypotheses. This set of hypotheses is called the beam; it represents the

b highest-probability sequences encountered so far. The parameter b is called the beam

size, and can be chosen to tradeoff between lower computational complexity (small b) and

more thorough search (large b). In fact, b = 1 is equivalent to greedy search, and b = V to

exhaustive search.

For example, Figure 2.1 shows beam search decoding an English translation of the

CHAPTER 2. BACKGROUND 35

French sentence il m’a entarté with b = 2. On step t = 0, the beam (represented by bold

green text) contains one hypothesis: the <START> token. On step t = 1, the beam contains

the top b most likely next tokens following <START>, which are he and I. The blue number

next to each box represents the score of that hypothesis, which is its log probability:

score(y1, . . . , yt) =
t∑
i=1

PLM(yi|y1, . . . , yi−1, x) (2.15)

On each step t ≥ 2, we take the beam from the previous step (bold green text), and for each

hypothesis, consider the top b most likely next tokens. From this set of b2 hypotheses we

keep only the b most likely (i.e., with highest blue score numbers) – this is our new beam.1

We regard a hypothesis as finished if it ends in the <END> token. Hypotheses may finish

on different timesteps – in Figure 2.1, there is one finished hypothesis on t = 6 and two on

t = 7 (indicated by bold boxes). When the beam contains a finished hypothesis (e.g., on

step t = 6), we remove it from the beam, place it aside in a set of finished solutions, and

continue the search. Typically, beam search terminates when a desired number of finished

solutions have been found (commonly b) – under this condition, beam search would stop on

step t = 7. Otherwise, it may stop upon reaching some maximum length.

Finally, we have a set of finished solutions, which may be of varying length. It may

be intuitive to choose the highest-scoring (i.e., most probable) solution – this would be

<START> he hit me with pie <END> with score −4.1. However, this demonstrates a

problem: as a sequence lengthens, its overall probability decreases. Thus, the highest-

scoring solution typically biases towards shorter sequences that are not necessarily better –

in this example, omitting the word a is unnatural. The typical solution to this problem is

length normalization which replaces Equation 2.15 with:

score(y1, . . . , yt) =
1

t

t∑
i=1

PLM(yi|y1, . . . , yi−1, x) (2.16)

This adjustment emphasizes the average probability of tokens in the sequence, rather than

their cumulative probability. With this adjustment, <START> he hit me with a pie <END>

1Although we choose our new set of hypotheses to be the b most likely of these b2 possible continuations,
it is logically equivalent to selecting the b most likely from all bV possible continuations.

CHAPTER 2. BACKGROUND 36

is the solution with highest normalized score of −0.64. Some researchers have found it

useful to replace 1/t in Equation 2.16 with 1/tα, where 0 < α < 1 is a tunable length

normalization penalty that controls the strength of the length normalization (Wu et al.,

2016).

2.6.2 Sampling-based Decoding Algorithms

Instead of searching for the highest probability y, we may instead wish to use PLM(y|x), or

a modification of it, to randomly sample the output y. Sampling-based decoding algorithms

take this approach.

Natural sampling. This involves sampling directly from the natural distribution provided

by PLM(y|x). To achieve this, we simply sample each successive token from PLM :

yt ∼ PLM(yt|y1, ..., yt−1, x) (2.17)

We may stop generating either when the sequence produces an <END> token, or when some

maximum length is reached. The resulting sequence y is a true sample from the underlying

distribution PLM . In practice, the LM tends to put enough probability on unsuitable tokens

that after some number of generation steps, a bad token will be chosen; after this it can be

difficult to recover. Consequently, natural sampling tends to produce syntactically fluent but

nonsensical text, even for large pretrained LMs (Holtzman et al., 2020).

Top-k sampling. The main idea of top-k sampling (Fan et al., 2018b) is to sample each

successive token from the k most likely options on that step. The parameter k can be chosen

to tradeoff between higher-probability, generic sequences (low k) and more varied, unusual

sequences (high k).

Formally: given a partial sequence y1, . . . , yt−1, let Sk contain the k tokens yt ∈ V with

largest PLM(yt|y1, ..., yt−1, x). We then define the truncated distribution Ptop−k:

Ptop−k(yt|y1, ..., yt−1, x) =

 1
Z
PLM(yt|y1, ..., yt−1, x), if yt ∈ Sk

0, otherwise
(2.18)

CHAPTER 2. BACKGROUND 37

where Z is a normalizing constant: Z =
∑

yt∈Sk
PLM(yt|y1, ..., yt−1, x). Top-k sampling

generates text by successively sampling each yt from the truncated Ptop−k distribution:

yt ∼ Ptop−k(yt|y1, ..., yt−1, x) (2.19)

Top-k sampling can be seen as a balance between greedy decoding (k = 1) and natural

sampling (k = V).

Top-p, aka nucleus sampling. One argument against top-k sampling is that k should

fluctuate from step to step. For example, when PLM is a relatively flat distribution, spreading

its probably mass over many likely tokens, we may prefer a larger k so we can include those

tokens. By contrast, when PLM is peaked, placing much of its probability mass on one or

a few tokens, we may prefer a smaller k so we only consider the tokens the model is sure

about.

This is the idea of top-p (also called nucleus) sampling (Holtzman et al., 2020) – instead

of sampling from a constant number k of most likely tokens, we set a probability p and

on each step sample from whatever number of tokens together constitute the ‘top’ p of

the probability distribution. Holtzman et al. call this set the nucleus. Formally: given

a probability 0 ≤ p ≤ 1 and a partial sequence y1, . . . , yt−1, we define the truncated

distribution Ptop−p:

Ptop−p(yt|y1, ..., yt−1, x) = Ptop−k(yt|y1, ..., yt−1, x) (2.20)

where k min s.t.
∑
yt∈Sk

PLM(yt|y1, ..., yt−1, x) ≥ p (2.21)

Like top-k sampling, the algorithm proceeds by successively sampling each yt from Ptop−p.

Top-p sampling is equivalent to greedy decoding when p = 0 and natural sampling when

p = 1.

CHAPTER 2. BACKGROUND 38

2.6.3 Temperature

Another way to adjust the genericness of the generated text is the temperature parameter

0 < τ <∞; this transforms Equation 2.7 to:

PLM(yt+1 = w|y1, . . . , yt) =
exp(sw/τ)∑

w′∈V exp(sw′/τ)
(2.22)

Lowering the temperature below 1 makes PLM more peaked, concentrating the probability

on the most likely words. Conversely, raising the temperature above 1 makes PLM more flat,

spreading the probability around the vocabulary. Temperature can be used in conjunction

with any of the decoding algorithms presented in this section.

Chapter 3

Summarization with Pointer-Generator
Networks

3.1 Introduction

This chapter presents a method for abstractive summarization of long text. While the input

text provides a strong constraint on the output summary, this task is still much more open-

ended than Machine Translation (Figure 1.1). At the time of this work, researchers had only

recently begun to apply the NMT blueprint (Section 1.2) to more open-ended tasks; thus this

chapter focuses on understanding the different requirements of abstractive summarization,

and adapting the NMT blueprint to better serve those requirements.

Summarization is the task of condensing a piece of text to a shorter version that contains

the main information from the original. There are two broad approaches to summariza-

tion: extractive and abstractive. Extractive methods assemble summaries exclusively from

passages (usually whole sentences) taken directly from the source text, while abstractive

methods may generate novel words and phrases not featured in the source text – as a

human-written abstract usually does. The extractive approach is easier, because copying

large chunks of text from the source document ensures baseline levels of grammaticality

and accuracy. On the other hand, sophisticated abilities that are crucial to high-quality

summarization, such as paraphrasing, generalization, or the incorporation of real-world

knowledge, are possible only in an abstractive framework (see Figure 3.5).

39

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 40

Original Text (truncated): lagos, nigeria (cnn) a day after winning nigeria’s presidency, muhammadu buhari told cnn’s christiane
amanpour that he plans to aggressively fight corruption that has long plagued nigeria and go after the root of the nation’s unrest.
buhari said he’ll “rapidly give attention” to curbing violence in the northeast part of nigeria, where the terrorist group boko haram
operates. by cooperating with neighboring nations chad, cameroon and niger, he said his administration is confident it will be able
to thwart criminals and others contributing to nigeria’s instability. for the first time in nigeria’s history, the opposition defeated the
ruling party in democratic elections. buhari defeated incumbent goodluck jonathan by about 2 million votes, according to nigeria’s
independent national electoral commission. the win comes after a long history of military rule, coups and botched attempts at
democracy in africa’s most populous nation.

Baseline Seq2Seq + Attention: UNK UNK says his administration is confident it will be able to destabilize nigeria’s economy.
UNK says his administration is confident it will be able to thwart criminals and other nigerians. he says the country has long
nigeria and nigeria’s economy.

Pointer-Gen: muhammadu buhari says he plans to aggressively fight corruption in the northeast part of nigeria. he says he’ll
“rapidly give attention” to curbing violence in the northeast part of nigeria. he says his administration is confident it will be able to
thwart criminals.

Pointer-Gen + Coverage: muhammadu buhari says he plans to aggressively fight corruption that has long plagued nigeria. he says
his administration is confident it will be able to thwart criminals. the win comes after a long history of military rule, coups and botched
attempts at democracy in africa’s most populous nation.

Figure 3.1: Comparison of 3 abstractive summarization models on a news article. The
baseline model makes factual errors, a nonsensical sentence and struggles with OOV
words muhammadu buhari. The pointer-generator model is accurate but repeats itself.
Coverage eliminates repetition. The final summary is composed from several fragments.

Due to the difficulty of abstractive summarization, the majority of past work has been

extractive (Kupiec et al., 1995; Paice, 1990; Nenkova and McKeown, 2011; Saggion and

Poibeau, 2013). However, the success of sequence-to-sequence models (Sutskever et al.,

2014), in which recurrent neural networks (RNNs) both read and freely generate text, has

made abstractive summarization increasingly viable (Rush et al., 2015; Chopra et al., 2016;

Nallapati et al., 2016; Zeng et al., 2016). However, these systems exhibit undesirable

behavior such as inaccurately reproducing factual details, an inability to deal with out-of-

vocabulary (OOV) words, and repeating themselves (see Figure 3.1).

In this chapter we present an architecture that addresses these three issues in the context

of multi-sentence summaries. While most prior abstractive work focused on headline

generation tasks (reducing one or two sentences to a single headline), we believe that

longer-text summarization is both more challenging (requiring higher levels of abstraction

while avoiding repetition) and ultimately more useful. Therefore we apply our model to the

CNN/Daily Mail dataset (Hermann et al., 2015; Nallapati et al., 2016), which contains news

articles (39 sentences on average) paired with multi-sentence summaries, and show that our

model outperforms the prior state-of-the-art abstractive system by at least 2 ROUGE points.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 41

Our hybrid pointer-generator network facilitates copying words from the source text

via pointing (Vinyals et al., 2015a), which improves accuracy and handling of OOV words,

while retaining the ability to generate new words. The network, which can be viewed as

a balance between extractive and abstractive approaches, is similar to CopyNet (Gu et al.,

2016) and Forced-Attention Sentence Compression (Miao and Blunsom, 2016), that were

applied to short-text summarization. We propose a novel variant of the coverage vector (Tu

et al., 2016) from Neural Machine Translation, which we use to track and control coverage

of the source document. We show that coverage is remarkably effective for eliminating

repetition.

3.2 Our Models

In this section we describe (1) our baseline sequence-to-sequence model, (2) our pointer-

generator model, and (3) our coverage mechanism that can be added to either of the first

two models. The code for our models is available online.1

3.2.1 Sequence-to-sequence Attentional Model

Our baseline model is similar to that of Nallapati et al. (2016), and is depicted in Figure 3.2.

The tokens of the article wi are fed one-by-one into the encoder (a single-layer bidirectional

LSTM), producing a sequence of encoder hidden states hi. On each step t, the decoder

(a single-layer unidirectional LSTM) receives the word embedding of the previous word

(while training, this is the previous word of the reference summary; at test time it is the

previous word emitted by the decoder), and has decoder state st. The attention distribution

αt is calculated as in Bahdanau et al. (2015)2:

eti = vT tanh(Whhi +Wsst + battn) (3.1)

αt = softmax(et) (3.2)

1www.github.com/abisee/pointer-generator
2This is additive attention as mentioned in Section 2.3.

www.github.com/abisee/pointer-generator

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 42

...

At
te

nt
io

n
Di

st
rib

ut
io

n

<START>

Vocabulary
Distribution

Context Vector

Germany

a zoo

Partial Summary

"beat"

Germany emerge victorious in 2-0 win against Argentina on Saturday ...

En
co

de
r

H
id

de
n

St
at

es

 Decoder
H

idden States

Source Text

Figure 3.2: Baseline sequence-to-sequence model with attention. The model may attend to
relevant words in the source text to generate novel words, e.g., to produce the novel word
beat in the abstractive summary Germany beat Argentina 2-0 the model may attend to the
words victorious and win in the source text.

where v, Wh, Ws and battn are learnable parameters. As discussed in Chapter 2, the attention

distribution can be viewed as a probability distribution over the source words, that tells the

decoder where to look to produce the next word. Next, the attention distribution is used to

produce a weighted sum of the encoder hidden states, known as the context vector3 h∗t :

h∗t =
∑
i

αtihi (3.3)

The context vector, which can be seen as a fixed-size representation of what has been

read from the source for this step, is concatenated with the decoder state st and fed through

two linear layers to produce the vocabulary distribution Pvocab:

Pvocab = softmax(V ′(V [st, h
∗
t] + b) + b′) (3.4)

where V , V ′, b and b′ are learnable parameters. Pvocab is a probability distribution over all

words in the vocabulary, and provides us with our final distribution from which to predict

words w:

P (w) = Pvocab(w) (3.5)

3Sometimes also called the attention output at, as in Section 2.3

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 43

Source Text

Germany emerge victorious in 2-0 win against Argentina on Saturday ...

...

<START>

Vocabulary Distribution

Context Vector

Germany

a zoo

beat

a zoo

Partial Summary

Final Distribution

"Argentina"

"2-0"

At
te

nt
io

n
Di

st
rib

ut
io

n

En
co

de
r

H
id

de
n

St
at

es

Decoder H
idden States

Figure 3.3: Pointer-generator model. For each decoder timestep a generation probability
pgen ∈ [0, 1] is calculated, which weights the probability of generating words from the
vocabulary, versus copying words from the source text. The vocabulary distribution and the
attention distribution are weighted and summed to obtain the final distribution, from which
we make our prediction. Note that out-of-vocabulary article words such as 2-0 are included
in the final distribution. Best viewed in color.

During training, the loss for timestep t is the negative log likelihood of the target word w∗t
for that timestep:

losst = − logP (w∗t) (3.6)

and the overall loss for the whole sequence is:

loss =
1

T

T∑
t=0

losst (3.7)

3.2.2 Pointer-generator Network

Our pointer-generator network is a hybrid between our baseline and a pointer network

(Vinyals et al., 2015a), as it allows both copying words via pointing, and generating words

from a fixed vocabulary. In the pointer-generator model (depicted in Figure 3.3) the attention

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 44

distribution αt and context vector h∗t are calculated as in section 3.2.1. In addition, the

generation probability pgen ∈ [0, 1] for timestep t is calculated from the context vector h∗t ,

the decoder state st and the decoder input xt:

pgen = σ(wTh∗h
∗
t + wTs st + wTx xt + bptr) (3.8)

where vectors wh∗ , ws, wx and scalar bptr are learnable parameters and σ is the sigmoid

function. Next, pgen is used as a soft switch to choose between generating a word from the

vocabulary by sampling from Pvocab, or copying a word from the input sequence by sampling

from the attention distribution αt. For each document let the extended vocabulary denote

the union of the vocabulary, and all words appearing in the source document. We obtain the

following probability distribution over the extended vocabulary:

P (w) = pgenPvocab(w) + (1− pgen)
∑
i:wi=w

αti (3.9)

Note that if w is an out-of-vocabulary (OOV) word, then Pvocab(w) is zero; similarly if w

does not appear in the source document, then
∑

i:wi=w
αti is zero. The ability to produce

OOV words is one of the primary advantages of pointer-generator models; by contrast

models such as our baseline are restricted to their pre-set vocabulary.

The loss function is as described in equations (3.6) and (3.7), but with respect to our

modified probability distribution P (w) given in equation (3.9).

3.2.3 Coverage Mechanism

Repetition is a common problem for sequence-to-sequence models (Tu et al., 2016; Mi

et al., 2016; Sankaran et al., 2016; Suzuki and Nagata, 2017), and is especially pronounced

when generating multi-sentence text (see Figure 3.1). We adapt the coverage model of Tu

et al. (2016) to solve the problem. In our coverage model, we maintain a coverage vector ct,

which is the sum of attention distributions over all previous decoder timesteps:

ct =
t−1∑
t′=0

αt
′

(3.10)

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 45

Intuitively, ct is a (unnormalized) distribution over the source document words that represents

the degree of coverage that those words have received from the attention mechanism so far.

Note that c0 is a zero vector, because on the first timestep, none of the source document has

been covered.

The coverage vector is used as extra input to the attention mechanism, changing equation

(3.1) to:

eti = vT tanh(Whhi +Wsst + wcc
t
i + battn) (3.11)

where wc is a learnable parameter vector of the same length as v. This ensures that the

attention mechanism’s current decision (choosing where to attend next) is informed by a

reminder of its previous decisions (summarized in ct). This should make it easier for the

attention mechanism to avoid repeatedly attending to the same locations, and thus avoid

generating repetitive text.

We find it necessary (see section 3.5) to additionally define a coverage loss to penalize

repeatedly attending to the same locations:

covlosst =
∑
i

min(αti, c
t
i) (3.12)

Note that the coverage loss is bounded; in particular covlosst ≤
∑

i α
t
i = 1.

Equation (3.12) differs from the coverage loss used in Machine Translation. In MT, we

assume that there should be a roughly one-to-one translation ratio; accordingly the final

coverage vector is penalized if it is more or less than 1. Our loss function is more flexible:

because summarization should not require uniform coverage, we only penalize the overlap

between each attention distribution and the coverage so far – preventing repeated attention.

Finally, the coverage loss, reweighted by some hyperparameter λ, is added to the primary

loss function to yield a new composite loss function:

losst = − logP (w∗t) + λ
∑
i

min(αti, c
t
i) (3.13)

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 46

3.3 Related Work

Neural abstractive summarization. Rush et al. (2015) were the first to apply modern

neural networks to abstractive text summarization, achieving state-of-the-art performance

on DUC-2004 and Gigaword, two sentence-level summarization datasets. Their approach,

which is centered on the attention mechanism, has been augmented with recurrent decoders

(Chopra et al., 2016), Abstract Meaning Representations (Takase et al., 2016), hierarchical

networks (Nallapati et al., 2016), variational autoencoders (Miao and Blunsom, 2016), and

direct optimization of the performance metric (Ranzato et al., 2016), further improving

performance on those datasets.

However, large-scale datasets for summarization of longer text are rare. Nallapati

et al. (2016) adapted the DeepMind question-answering dataset (Hermann et al., 2015) for

summarization, resulting in the CNN/Daily Mail dataset, and provided the first abstractive

baselines. The same authors then published a neural extractive approach (Nallapati et al.,

2017), which uses hierarchical RNNs to select sentences, and found that it significantly

outperformed their abstractive result with respect to the ROUGE metric. To our knowledge,

these were the only two published results on the full dataset at the time of our work.

Prior to modern neural methods, abstractive summarization received less attention than

extractive summarization, but Jing (2000) explored cutting unimportant parts of sentences to

create summaries, and Cheung and Penn (2014) explore sentence fusion using dependency

trees.

Pointer-generator networks. The pointer network (Vinyals et al., 2015a) is a sequence-

to-sequence model that uses the soft attention distribution of Bahdanau et al. (2015) to

produce an output sequence consisting of elements from the input sequence. The pointer

network has been used to create hybrid approaches for NMT (Gulcehre et al., 2016), language

modeling (Merity et al., 2016), and summarization (Gu et al., 2016; Gulcehre et al., 2016;

Miao and Blunsom, 2016; Nallapati et al., 2016; Zeng et al., 2016).

Our approach is close to the Forced-Attention Sentence Compression model of Miao and

Blunsom (2016) and the CopyNet model of Gu et al. (2016), with some small differences:

(i) We calculate an explicit switch probability pgen, whereas Gu et al. induce competition

through a shared softmax function. (ii) We recycle the attention distribution to serve as the

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 47

copy distribution, but Gu et al. use two separate distributions. (iii) When a word appears

multiple times in the source text, we sum probability mass from all corresponding parts

of the attention distribution, whereas Miao and Blunsom do not. Our reasoning is that

(i) calculating an explicit pgen usefully enables us to raise or lower the probability of all

generated words or all copy words at once, rather than individually, (ii) the two distributions

serve such similar purposes that we find our simpler approach suffices, and (iii) we observe

that the pointer mechanism often copies a word while attending to multiple occurrences of it

in the source text.

Our approach is considerably different from that of Gulcehre et al. (2016) and Nallapati

et al. (2016). Those works train their pointer components to activate only for out-of-

vocabulary words or named entities (whereas we allow our model to freely learn when

to use the pointer), and they do not mix the probabilities from the copy distribution and

the vocabulary distribution. We believe the mixture approach described here is better for

abstractive summarization – in section 3.6 we show that the copy mechanism is vital for

accurately reproducing rare but in-vocabulary words, and in section 3.7.2 we observe that

the mixture model enables the language model and copy mechanism to work together to

perform abstractive copying.

Coverage. Originating from Statistical Machine Translation (Koehn, 2009), coverage

was adapted for NMT by Tu et al. (2016) and Mi et al. (2016), who both use a GRU to

update the coverage vector each step. We find that a simpler approach – summing the

attention distributions to obtain the coverage vector – suffices. In this respect our approach is

similar to Xu et al. (2015), who apply a coverage-like method to image captioning, and Chen

et al. (2016), who also incorporate a coverage mechanism (which they call ‘distraction’) as

described in equation (3.11) into neural summarization of longer text.

Temporal attention is a related technique that has been applied to NMT (Sankaran

et al., 2016) and summarization (Nallapati et al., 2016). In this approach, each attention

distribution is divided by the sum of the previous, which effectively dampens repeated

attention. We tried this method but found it too destructive, distorting the signal from the

attention mechanism and reducing performance. We hypothesize that an early intervention

method such as coverage is preferable to a post hoc method such as temporal attention – it

is better to inform the attention mechanism to help it make better decisions, than to override

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 48

its decisions altogether. This theory is supported by the large boost that coverage gives our

ROUGE scores (see Table 3.1), compared to the smaller boost given by temporal attention

for the same task (Nallapati et al., 2016).

3.4 Dataset

We use the CNN/Daily Mail dataset (Hermann et al., 2015; Nallapati et al., 2016), which

contains online news articles (781 tokens on average) paired with multi-sentence summaries

(3.75 sentences or 56 tokens on average). We used scripts supplied by Nallapati et al.

(2016) to obtain the same version of the the data, which has 287,226 training pairs, 13,368

validation pairs and 11,490 test pairs. At the time of our work, Nallapati et al.’s published

results (Nallapati et al., 2016, 2017) used the anonymized version of the data, which has

been pre-processed to replace each named entity, e.g., The United Nations, with its own

unique identifier for the example pair, e.g., @entity5. By contrast, we operate directly on

the original text (or non-anonymized version of the data),4 which we believe is the favorable

problem to solve because it requires no pre-processing.

3.5 Experiments

For all experiments, our model has 256-dimensional hidden states and 128-dimensional

word embeddings. For the pointer-generator models, we use a vocabulary of 50k words for

both source and target – note that due to the pointer network’s ability to handle OOV words,

we can use a smaller vocabulary size than the 150k source and 60k target vocabularies in

Nallapati et al. (2016). For the baseline model, we also try a larger vocabulary size of 150k.

Note that the pointer and the coverage mechanism introduce very few additional pa-

rameters to the network: for the models with vocabulary size 50k, the baseline model has

21,499,600 parameters, the pointer-generator adds 1153 extra parameters (wh∗ , ws, wx and

bptr in equation 3.8), and coverage adds 512 extra parameters (wc in equation 3.11).

Unlike Nallapati et al. (2016), we do not pre-train the word embeddings – they are

learned from scratch during training. We train using Adagrad (Duchi et al., 2011) with
4Instructions to obtain data at www.github.com/abisee/pointer-generator

www.github.com/abisee/pointer-generator

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 49

learning rate 0.15 and an initial accumulator value of 0.1. (This was found to work best of

Stochastic Gradient Descent, Adadelta, Momentum, Adam and RMSProp). We use gradient

clipping with a maximum gradient norm of 2, but do not use any form of regularization. We

use loss on the validation set to implement early stopping.

During training and at test time we truncate the article to 400 tokens and limit the length

of the summary to 100 tokens for training and 120 tokens at test time.5 This is done to

expedite training and testing, but we also found that truncating the article can raise the

performance of the model (see section 3.7.1 for more details). For training, we found it

efficient to start with highly-truncated sequences, then raise the maximum length once

converged. We train on a single Tesla K40m GPU with a batch size of 16. At test time our

summaries are produced using beam search with beam size 4.

We trained both our baseline models for about 600,000 iterations (33 epochs) – this is

similar to the 35 epochs required by Nallapati et al.’s (2016) best model. Training took

4 days and 14 hours for the 50k vocabulary model, and 8 days 21 hours for the 150k

vocabulary model. We found the pointer-generator model quicker to train, requiring less

than 230,000 training iterations (12.8 epochs); a total of 3 days and 4 hours. In particular,

the pointer-generator model makes much quicker progress in the early phases of training.

To obtain our final coverage model, we added the coverage mechanism with coverage loss

weighted to λ = 1 (as described in equation 3.13), and trained for a further 3000 iterations

(about 2 hours). In this time the coverage loss converged to about 0.2, down from an initial

value of about 0.5. We also tried a more aggressive value of λ = 2; this reduced coverage

loss but increased the primary loss function, thus we did not use it.

We tried training the coverage model without the loss function, hoping that the attention

mechanism may learn by itself not to attend repeatedly to the same locations, but we found

this to be ineffective, with no discernible reduction in repetition. We also tried training with

coverage from the first iteration rather than as a separate training phase, but found that in the

early phase of training, the coverage objective interfered with the main objective, reducing

overall performance.

5The upper limit of 120 is mostly invisible: the beam search algorithm is self-stopping and almost never
reaches the 120th step.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 50

ROUGE METEOR
exact + stem/synonym/

1 2 L match paraphrase
abstr. model (Nallapati et al., 2016)* 35.46 13.30 32.65 - -
seq-to-seq + attn baseline (150k vocab) 30.49 11.17 28.08 11.65 12.86
seq-to-seq + attn baseline (50k vocab) 31.33 11.81 28.83 12.03 13.20
pointer-generator 36.44 15.66 33.42 15.35 16.65
pointer-generator + coverage 39.53 17.28 36.38 17.32 18.72
lead-3 baseline (ours) 40.34 17.70 36.57 20.48 22.21
lead-3 baseline (Nallapati et al., 2017)* 39.2 15.7 35.5 - -
extr. model (Nallapati et al., 2017)* 39.6 16.2 35.3 - -

Table 3.1: ROUGE F1 and METEOR scores on the test set. Models and baselines in the
top half are abstractive, while those in the bottom half are extractive. Those marked with *
were trained and evaluated on the anonymized dataset, and so are not strictly comparable
to our results on the original text. All our ROUGE scores have a 95% confidence interval
of at most ±0.25 as reported by the official ROUGE script. The METEOR improvement
from the 50k baseline to the pointer-generator model, and from the pointer-generator to the
pointer-generator+coverage model, were both found to be statistically significant using an
approximate randomization test with p < 0.01.

3.6 Results

3.6.1 Preliminaries

Our results are given in Table 3.1. We evaluate our models with the standard ROUGE

metric (Lin, 2004b), reporting the F1 scores for ROUGE-1, ROUGE-2 and ROUGE-L

(which respectively measure the word-overlap, bigram-overlap, and longest common se-

quence between the reference summary and the summary to be evaluated). We obtain our

ROUGE scores using the pyrouge package.6 We also evaluate with the METEOR metric

(Denkowski and Lavie, 2014), both in exact match mode (rewarding only exact matches

between words) and full mode (which additionally rewards matching stems, synonyms and

paraphrases).7

In addition to our own models, we also report the lead-3 baseline (which uses the first

three sentences of the article as a summary), and compare to the only previous abstractive

6pypi.python.org/pypi/pyrouge/0.1.3
7www.cs.cmu.edu/˜alavie/METEOR

pypi.python.org/pypi/pyrouge/0.1.3
www.cs.cmu.edu/~alavie/METEOR

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 51

(Nallapati et al., 2016) and extractive (Nallapati et al., 2017) models on the full dataset. The

output of our models is available online.8

Given that we generate plain-text summaries but Nallapati et al. (2016; 2017) generate

anonymized summaries (see Section 3.4), our ROUGE scores are not strictly comparable.

There is evidence to suggest that the original-text dataset may result in higher ROUGE

scores in general than the anonymized dataset – the lead-3 baseline is higher on the former

than the latter. One possible explanation is that multi-word named entities lead to a higher

rate of n-gram overlap. Unfortunately, ROUGE is the only available means of comparison

with Nallapati et al.’s work. Nevertheless, given that the disparity in the lead-3 scores is (+1.1

ROUGE-1, +2.0 ROUGE-2, +1.1 ROUGE-L) points respectively, and our best model scores

exceed Nallapati et al. (2016) by (+4.07 ROUGE-1, +3.98 ROUGE-2, +3.73 ROUGE-L)

points, we may estimate that we outperform the only previous abstractive system by at least

2 ROUGE points all-round.

3.6.2 Observations

We find that both our baseline models perform poorly with respect to ROUGE and ME-

TEOR, and in fact the larger vocabulary size (150k) does not seem to help. Even the

better-performing baseline (with 50k vocabulary) produces summaries with several com-

mon problems. Factual details are frequently reproduced incorrectly, often replacing an

uncommon (but in-vocabulary) word with a more-common alternative. For example in

Figure 3.1, the baseline model appears to struggle with the rare word thwart, producing

destabilize instead, which leads to the fabricated phrase destabilize nigeria’s economy. Even

more catastrophically, the summaries sometimes devolve into repetitive nonsense, such as

the third sentence produced by the baseline model in Figure 3.1. In addition, the baseline

model can’t reproduce out-of-vocabulary words (such as muhammadu buhari in Figure 3.1).

Further examples of all these problems are provided in Section 3.8.

Our pointer-generator model achieves much better ROUGE and METEOR scores than

the baseline, despite many fewer training epochs. The difference in the summaries is also

marked: out-of-vocabulary words are handled easily, factual details are almost always copied

8www.github.com/abisee/pointer-generator

www.github.com/abisee/pointer-generator

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 52

1-grams
2-grams

3-grams
4-grams

sentences
0

10

20

30
%

th
at

ar
e

du
pl

ic
at

es

pointer-generator, no coverage
pointer-generator + coverage
reference summaries

Figure 3.4: Coverage eliminates undesirable repetition. Summaries from our non-coverage
model contain many duplicated n-grams while our coverage model produces a similar
number as the reference summaries.

correctly, and there are no fabrications (see Figure 3.1). However, repetition is still very

common.

Our pointer-generator model with coverage improves the ROUGE and METEOR scores

further, convincingly surpassing the best abstractive model of Nallapati et al. (2016) by

several ROUGE points. Despite the brevity of the coverage training phase (about 1% of the

total training time), the repetition problem is almost completely eliminated, which can be

seen both qualitatively (Figure 3.1) and quantitatively (Figure 3.4). However, our best model

does not quite surpass the ROUGE scores of the lead-3 baseline, nor the best extractive

model at the time of our work (Nallapati et al., 2017). We discuss this issue in section 3.7.1.

3.7 Discussion

3.7.1 Comparison with Extractive Systems

It is clear from Table 3.1 that extractive systems tend to achieve higher ROUGE scores

than abstractive, and that the extractive lead-3 baseline is extremely strong (even the best

extractive system beats it by only a small margin). We offer two possible explanations for

these observations.

Firstly, news articles tend to be structured with the most important information at the

start (Pöttker, 2003); this partially explains the strength of the lead-3 baseline. Indeed,

we found that using only the first 400 tokens (about 20 sentences) of the article yielded

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 53

Article: smugglers lure arab and african migrants by offering discounts to get onto overcrowded
ships if people bring more potential passengers, a cnn investigation has revealed. (...)
Summary: cnn investigation uncovers the business inside a human smuggling ring.

Article: eyewitness video showing white north charleston police officer michael slager shooting to
death an unarmed black man has exposed discrepancies in the reports of the first officers on the
scene. (...)
Summary: more questions than answers emerge in controversial s.c. police shooting.

Figure 3.5: Examples of highly abstractive human-written reference summaries (bold
denotes novel words).

significantly higher ROUGE scores than using the first 800 tokens.

Secondly, the nature of the task and the ROUGE metric make extractive approaches and

the lead-3 baseline difficult to beat. The choice of content for the reference summaries is

quite subjective – sometimes the sentences form a self-contained summary; other times they

simply showcase a few interesting details from the article. Given that the articles contain 39

sentences on average, there are many equally valid ways to choose 3 or 4 highlights in this

style. Abstraction introduces even more options (choice of phrasing), further decreasing

the likelihood of matching the reference summary. For example, smugglers profit from

desperate migrants is a valid alternative abstractive summary for the first example in Figure

3.5, but it scores 0 ROUGE with respect to the reference summary. This inflexibility of

ROUGE is exacerbated by only having one reference summary, which has been shown to

lower ROUGE’s reliability compared to multiple reference summaries (Lin, 2004a).

Due to the subjectivity of the task and thus the diversity of valid summaries, it seems

that ROUGE rewards safe strategies such as selecting the first-appearing content, or pre-

serving original phrasing. While the reference summaries do sometimes deviate from these

techniques, those deviations are unpredictable enough that the safer strategy obtains higher

ROUGE scores on average. This may explain why extractive systems tend to obtain higher

ROUGE scores than abstractive, and even extractive systems do not significantly exceed the

lead-3 baseline.

To explore this issue further, we evaluated our systems with the METEOR metric, which

rewards not only exact word matches, but also matching stems, synonyms and paraphrases

(from a pre-defined list). We observe that all our models receive over 1 METEOR point

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 54

1-grams
2-grams

3-grams
4-grams

sentences
0
20
40
60
80
100

%
th

at
ar

e
no

ve
l

pointer-generator + coverage
seq-to-seq + attention baseline
reference summaries

Figure 3.6: Although our best model is abstractive, it does not produce novel n-grams (i.e.,
n-grams that don’t appear in the source text) as often as the reference summaries. The
baseline model produces more novel n-grams, but many of these are erroneous (see section
3.7.2).

boost by the inclusion of stem, synonym and paraphrase matching, indicating that they may

be performing some abstraction. However, we again observe that the lead-3 baseline is

not surpassed by our models. It may be that news article style makes the lead-3 baseline

very strong with respect to any metric. We believe that investigating this issue further is an

important direction for future work.

3.7.2 How Abstractive Is Our Model?

We have shown that our pointer mechanism makes our abstractive system more reliable,

copying factual details correctly more often. But does the ease of copying make our system

any less abstractive?

Figure 3.6 shows that our final model’s summaries contain a much lower rate of novel

n-grams (i.e., those that don’t appear in the article) than the reference summaries, indicating

a lower degree of abstraction. Note that the baseline model produces novel n-grams more

frequently – however, this statistic includes all the incorrectly copied words, UNK tokens

and fabrications alongside the good instances of abstraction.

In particular, Figure 3.6 shows that our final model copies whole article sentences 35%

of the time; by comparison the reference summaries do so only 1.3% of the time. This is a

main area for improvement, as we would like our model to move beyond simple sentence

extraction. However, we observe that the other 65% encompasses a range of abstractive

techniques. Article sentences are truncated to form grammatically-correct shorter versions,

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 55

Article: andy murray (...) is into the semi-finals of the miami open , but not before getting a scare
from 21 year-old austrian dominic thiem, who pushed him to 4-4 in the second set before going
down 3-6 6-4, 6-1 in an hour and three quarters. (...)
Summary: andy murray defeated dominic thiem 3-6 6-4, 6-1 in an hour and three quarters.

Article: (...) wayne rooney smashes home during manchester united ’s 3-1 win over aston villa on
saturday. (...)
Summary: manchester united beat aston villa 3-1 at old trafford on saturday.

Figure 3.7: Examples of abstractive summaries produced by our model (bold denotes novel
words).

and new sentences are composed by stitching together fragments. Unnecessary interjections,

clauses and parenthesized phrases are sometimes omitted from copied passages. Some of

these abilities are demonstrated in Figure 3.1, and Section 3.8 contains more examples.

Figure 3.7 shows two examples of more impressive abstraction – both with similar

structure. The dataset contains many sports stories whose summaries follow the X beat Y

〈score〉 on 〈day〉 template, which may explain why our model is most confidently abstractive

on these examples. In general however, our model does not routinely produce summaries

like those in Figure 3.7, and is not close to producing summaries like in Figure 3.5.

The value of the generation probability pgen also gives a measure of the abstractiveness of

our model. During training, pgen starts with a value of about 0.30 then increases, converging

to about 0.53 by the end of training. This indicates that the model first learns to mostly

copy, then learns to generate about half the time. However at test time, pgen is heavily

skewed towards copying, with a mean value of 0.17. The disparity is likely due to the

fact that during training, the model receives word-by-word supervision in the form of the

reference summary, but at test time it does not. Nonetheless, the generator module is useful

even when the model is copying. We find that pgen is highest at times of uncertainty such

as the beginning of sentences, the join between stitched-together fragments, and when

producing periods that truncate a copied sentence. Our mixture model allows the network

to copy while simultaneously consulting the language model – enabling operations like

stitching and truncation to be performed with grammaticality. In any case, encouraging the

pointer-generator model to write more abstractively, while retaining the accuracy advantages

of the pointer module, is an exciting direction for future work.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 56

3.8 Examples

This section provides examples from the test set, with side-by-side comparisons of the

reference summaries and the summaries produced by our models. In each example:

• italics denote out-of-vocabulary words

• red denotes factual errors in the summaries

• green shading intensity represents the value of the generation probability pgen

• yellow shading intensity represents final value of the coverage vector at the end of

final model’s summarization process.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 57

Article (truncated): andy murray came close to giving himself some extra preparation time for his
wedding next week before ensuring that he still has unfinished tennis business to attend to . the
world no 4 is into the semi-finals of the miami open , but not before getting a scare from 21
year-old austrian dominic thiem , who pushed him to 4-4 in the second set before going down
3-6 6-4 , 6-1 in an hour and three quarters . murray was awaiting the winner from the last eight
match between tomas berdych and argentina ’s juan monaco . prior to this tournament thiem lost in
the second round of a challenger event to soon-to-be new brit aljaz bedene . andy murray pumps
his first after defeating dominic thiem to reach the miami open semi finals . muray throws his
sweatband into the crowd after completing a 3-6 , 6-4 , 6-1 victory in florida . murray shakes hands
with thiem who he described as a ’ strong guy ’ after the game . and murray has a fairly simple
message for any of his fellow british tennis players who might be agitated about his imminent
arrival into the home ranks : do n’t complain . instead the british no 1 believes his colleagues
should use the assimilation of the world number 83 , originally from slovenia , as motivation to
better themselves .

Reference Summary:
british no 1 defeated dominic thiem in miami open quarter finals .
andy murray celebrated his 500th career win in the previous round .
third seed will play the winner of tomas berdych and juan monaco in the semi finals of the atp masters 1000
event in key biscayne .

Baseline:
andy murray beat UNK bedene 6-3 , 6-4 , 6-1 in an hour and three quarters .
british no 1 believes his colleagues should use the maze of the world number 83 , originally from slovenia ,
as motivation to better themselves .

Pointer-Generator, No Coverage:
andy murray came close to giving himself some extra preparation for his wedding next week before getting a
scare from 21 year-old austrian dominic thiem .
the world no 4 is into the semi-finals of the miami open , but not before getting a scare from 21 year-old
austrian dominic thiem .

Pointer-Generator, With Coverage:
andy murray defeated dominic thiem 3-6 6-4 , 6-1 in an hour and three quarters .
murray was awaiting the winner from the last eight match between tomas berdych and argentina ’s
juan monaco .
prior to this tournament thiem lost in the second round of a challenger event to soon-to-be new brit
aljaz bedene .

Figure 3.8: The baseline model reports the wrong score 6-3, substitutes bedene for thiem and
struggles with the uncommon word assimilation. The pointer-network models accurately
reproduce the out-of-vocabulary words thiem and aljaz. Note that the final model produces
the novel word defeated to incorporate several fragments into a single sentence.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 58

Article (truncated): munster have signed new zealand international francis saili on a two-year deal
. utility back saili , who made his all blacks debut against argentina in 2013 , will move to the
province later this year after the completion of his 2015 contractual commitments . the 24-year-old
currently plays for auckland-based super rugby side the blues and was part of the new zealand
under-20 side that won the junior world championship in italy in 2011 . saili ’s signature is
something of a coup for munster and head coach anthony foley believes he will be a great addition
to their backline . francis saili has signed a two-year deal to join munster and will link up with
them later this year . ’ we are really pleased that francis has committed his future to the province
, ’ foley told munster ’s official website . ’ he is a talented centre with an impressive skill-set and
he possesses the physical attributes to excel in the northern hemisphere . ’ i believe he will be a
great addition to our backline and we look forward to welcoming him to munster . ’ saili has been
capped twice by new zealand and was part of the under 20 side that won the junior championship
in 2011 .

Reference Summary:
utility back francis saili will join up with munster later this year .
the new zealand international has signed a two-year contract .
saili made his debut for the all blacks against argentina in 2013 .

Baseline:
dutch international francis UNK has signed a two-year deal to join irish UNK super rugby side the blues .
UNK ’s signature is something of a coup for munster and his head coach anthony foley believes he will be a
great addition to their respective prospects .
UNK has been capped twice by new zealand .

Pointer-Generator, No Coverage:
new zealand international francis saili will move to the province later this year .
utility back saili made his all blacks debut against argentina in 2013 .
utility back saili will move to the province later this year .

Pointer-Generator, With Coverage:
francis saili has signed a two-year deal to join munster later this year .
the 24-year-old was part of the new zealand under-20 side that won the junior world championship
in italy in 2011 .
saili ’s signature is something of a coup for munster and head coach anthony foley .

Figure 3.9: The baseline model incorrectly substitutes dutch for new zealand (perhaps
reflecting the dataset’s European bias), fabricates irish, and struggles with out-of-vocabulary
words saili and auckland-based. Though it is not clear why, the phrase addition to our
backline is changed to the nonsensical addition to their respective prospects. The pointer-
generator model fixes these accuracy problems, and adding coverage fixes the repetition.
Note that the final model skips over large passages of text to produce shorter sentences.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 59

Article (truncated): right from the moment he breezed through the doors at old trafford , louis van
gaal was a man with a plan . the first season , he stated , would see him deliver manchester united
back into their rightful place in the champions league . he would restore them to the premier
league top four but loftier aims of silverware would have to wait . his three-year vision would
allow for such thoughts but , first things first , united needed to be dining from european football
’s top table again . louis van gaal is close to delivering his first-season aim of returning man
united into champions league . wayne rooney smashes home during manchester united ’s 3-1 win
over aston villa on saturday . united ’s win over aston villa took them third , eight points ahead of
fifth-placed liverpool in the table . april 12 manchester city (h) . april 18 chelsea (a) . april 26
everton (a) . may 2 west bromwich albion (h) . may 9 crystal palace (a) . may 17 arsenal
(h) . may 24 hull city (a) . one season out of the champions league was far from ideal ,
but two seasons would be an absolute disaster and something , he understood , that would not be
tolerated . in november , even that was looking optimistic . a 1-0 defeat to manchester city meant
that united had taken just 13 points from their opening 10 matches - it was their worst start to a
league campaign since 1986 , when ron atkinson only lasted until november .

Reference Summary:
man united have an eight-point cushion from fifth-place liverpool .
van gaal looks likely to deliver on his promise of top four finish .
but the dutchman has a three-year vision mapped out .
next season will have to see united mount sustained challenge for title .
they must also reach the later stages of the champions league .

Baseline:
manchester united beat aston villa 3-1 at old trafford on saturday .
louis van gaal is close to delivering his UNK aim of returning man united into the premier league top four .
louis van gaal is close to delivering his UNK aim of returning man united into champions league .

Pointer-Generator, No Coverage:
louis van gaal is close to delivering his first-season aim of returning man united into champions league.
united ’s win over aston villa took them third , eight points ahead of fifth-placed liverpool in the table .
louis van gaal is close to delivering his first-season aim of returning man united into champions league.

Pointer-Generator, With Coverage:
manchester united beat aston villa 3-1 at old trafford on saturday .
louis van gaal is close to delivering his first-season aim of returning man united into champions
league .
united needed to be dining from european football ’s top table again .

Figure 3.10: In this example, both our baseline model and final model produce a completely
abstractive first sentence, using a novel word beat.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 60

Article (truncated): having been on the receiving end of a 6-1 thumping , a defeat like that
could be justifiably met with a backlash by angry supporters . watching a 3-1 first leg aggregate
advantage turn into a 7-4 deficit come the end of the reverse encounter too could send many fans
apoplectic at the capitulation of their side . however that does n’t appear the case for those devoted
to porto . porto supporters gave their team a hero ’s welcome following their 6-1 defeat at bayern
munich on tuesday . porto star striker jackson martinez was one of many players to look perplexed
by their warm reception . porto boss julen lopetegui (left) was hugged by fans congratulating
him on their champions league run . police escorts were needed to keep the delirious supporters
at bay as the porto team bus drove past . the team bus was met with a cacophony of noise from
porto supporters proudly chanting about their club . on their return from a humiliating champions
league quarter-final loss at the hands of bayern munich on tuesday night , the squad were given a
heroes reception as they arrived back in portugal . [...] it was the first time that porto , who had
been unbeaten in this season ’s tournament up until tuesday night , had reached the quarter-finals
of the champions league since the 2008-09 season .

Reference Summary:
bayern munich beat porto 6-1 in their champions league tie on tuesday .
result saw bayern win quarter-final encounter 7-4 on aggregate .
it was the first-time porto had reached that stage since the 2008-09 season .

Baseline:
porto beat bayern munich 2-0 in the champions league on tuesday night .
porto star james UNK was one of many players involved in the match .
the squad were given a trophy as they arrived back in portugal .

Pointer-Generator, No Coverage:
porto star striker jackson martinez was one of many players to look perplexed by their warm reception.
porto star striker jackson martinez was one of many players to look perplexed by their warm reception.
porto star striker jackson martinez was one of many players to look perplexed by their warm reception.

Pointer-Generator, With Coverage:
porto star striker jackson martinez was one of many players to look perplexed by their warm
reception .
porto boss julen lopetegui was hugged by fans congratulating him on their champions league run .
however that does n’t appear the case for those devoted to porto .
police escorts were needed to keep the delirious supporters at bay .

Figure 3.11: The baseline makes several inaccuracies: it claims porto beat bayern munich
not vice versa, the score is changed from 7-4 to 2-0, jackson is changed to james and a heroes
reception is replaced with a trophy. Our final model produces sentences that are individually
accurate, but nonsensical as a whole. Note that the final model omits the parenthesized
phrase (left) from its second sentence.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 61

Article: (cnn) ” it ’s showtime ! ” michael keaton paid homage – ever so slightly – to his roles
in “ beetlejuice ” and “ batman ” in his third turn hosting “ saturday night live ” this weekend
. keaton acknowledged in his opening monologue that a lot has changed since he first hosted the
comedy sketch show in 1982 . “ i had a baby – he ’s 31 . i also have a new girlfriend – she ’s 28
, ” he said . fans who were hoping for a full-blown revival of keaton ’s most memorable characters
might have been a little disappointed . snl cast members taran killam and bobby moynihan begged
the actor with a song to “ play ” batman and beetlejuice with them . all they got in response were
a couple of one-liners . overall , keaton ’s performance drew high marks from viewers and critics
for its “ deadpan ” manner and “ unpredictable weirdness , ” in the words of a.v . club ’s dennis
perkins . fans also delighted in a cameo from “ walking dead ” star norman reedus during weekend
update . keaton scored some laughs from the audience as an ad executive who ’s not very good at
his job , a confused grandfather and a high school teacher who gets asked to the prom in a riff on
the romantic comedy “ she ’s all that . ” other crowd-pleasing spots included a scientology parody
music video and a news conference spoofing the ncaa student-athlete debate . the show also poked
fun at cnn with cast member cecily strong playing anchor brooke baldwin . baldwin said on twitter
that she ’s taking it as a “ crazy compliment ” and shared a clip from the skit .

Reference Summary:
michael keaton hosted “ saturday night live ” for the first time in 1982 .
in 2015 , his nods to starring roles in “ beetlejuice ” and “ batman ” are brief .

Baseline:
“ snl ” wins “ saturday night live ” .
keaton acknowledged in his opening “ saturday night live ” .
keaton acknowledged in his opening night ’s “ UNK ” .
the show also pokes fun at cnn with cast member mariah carey .

Pointer-Generator, No Coverage:
“ beetlejuice ” michael keaton paid homage to his roles in “ beetlejuice ” and “ batman ” in his third turn
hosting “ saturday night live ” this weekend .
keaton acknowledged in his opening monologue that a lot has changed since he first hosted the comedy
sketch show in 1982 .

Pointer-Generator, With Coverage:
michael keaton paid homage to his roles in “ beetlejuice ” and “ batman ” in his third turn hosting
“ saturday night live ” .
keaton acknowledged in his opening monologue that a lot has changed since he first hosted the
comedy sketch show in 1982 .

Figure 3.12: Baseline model is generally nonsensical, and replaces cecily strong with mariah
carey; it may be struggling with the out-of-vocabulary beetlejuice, or the unusual non-news
article format. Note the final model omits – ever so slightly – from its first sentence.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 62

Article (truncated): they are supposed to be the dream team who can solve the conundrum of how
to win the election . but david cameron and boris johnson were left scratching their heads today as
they struggled with a children ’s jigsaw teaching toddlers about the seasons . as the london mayor
tried to hammer ill-fitting pieces together with his hands , the prime minister tried out what could
be a new election slogan , telling him : ’ if in doubt , wedge it in . ’ after being put right by a
four-year-old who spotted their errors , the pair had more fun finger painting with tory blue paint
. david cameron and boris johnson were left stumped by the puzzle at advantage children ’s day
nursery in surbiton , as three-year-old stephanie looked on . when they tried to put the puzzle
back together , they hit trouble after it proved to be more difficult than expected . [...] they were
supposed to be highlighting tory plans to double free childcare for 600,000 children aged three and
four . they sat at a table with joshua and stephanie , both aged three , and four-year-olds hamish
and leo where they broke up a puzzle which depicted the four seasons . when they tried to put it
back together , they hit trouble after it proved to be more difficult than expected .

Reference Summary:
david cameron and boris johnson visit nursery to promote childcare .
duo left flummoxed by jigsaw aimed at teaching children about seasons .
london mayor resorted to brute force to hammer wrong pieces together .
prime minister gave his approval , telling boris : ’ if in doubt , wedge it in ’ .

Baseline:
david cameron and boris johnson were left mystified by the puzzle .
they were at the nursery in UNK to promote a tory pledge to double free childcare for 25 children aged three
and four .
the pair were at the nursery in UNK to promote a tory pledge to double free childcare for children aged three
and four .

Pointer-Generator, No Coverage:
london mayor tried to hammer ill-fitting pieces together with his hands .
they were supposed to be highlighting tory plans to double free childcare .
they were supposed to be highlighting tory plans to double free childcare .
they were supposed to be highlighting tory plans to double free childcare .

Pointer-Generator, With Coverage:
london mayor tried to hammer ill-fitting pieces together with his hands .
prime minister tried out what could be a new election slogan .
but they hit trouble after it proved to be more difficult than expected .

Figure 3.13: The baseline appropriately replaces stumped with novel word mystified; how-
ever this is not rewarded by ROUGE as the reference summary instead chooses flummoxed.
The baseline incorrectly substitutes 600,000 for 25. In the final model’s output, generation
probability is largest at the beginning of sentences (especially the first verb) and on periods.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 63

Article (truncated): lagos , nigeria (cnn) a day after winning nigeria ’s presidency , muhammadu

buhari told cnn ’s christiane amanpour that he plans to aggressively fight corruption that has long
plagued nigeria and go after the root of the nation ’s unrest . buhari said he ’ll “ rapidly give
attention ” to curbing violence in the northeast part of nigeria , where the terrorist group boko
haram operates . by cooperating with neighboring nations chad , cameroon and niger , he said his
administration is confident it will be able to thwart criminals and others contributing to nigeria
’s instability . for the first time in nigeria ’s history , the opposition defeated the ruling party
in democratic elections . buhari defeated incumbent goodluck jonathan by about 2 million votes
, according to nigeria ’s independent national electoral commission . the win comes after a long
history of military rule , coups and botched attempts at democracy in africa ’s most populous
nation .

Reference Summary:
muhammadu buhari tells cnn ’s christiane amanpour that he will fight corruption in nigeria .
nigeria is the most populous country in africa and is grappling with violent boko haram extremists .
nigeria is also africa ’s biggest economy , but up to 70 % of nigerians live on less than a dollar a day .

Baseline:
UNK UNK says his administration is confident it will be able to destabilize nigeria ’s economy .
UNK says his administration is confident it will be able to thwart criminals and other nigerians .
he says the country has long nigeria and nigeria ’s economy .

Pointer-Generator, No Coverage:
muhammadu buhari says he plans to aggressively fight corruption in the northeast part of nigeria .
he says he ’ll “ rapidly give attention ” to curbing violence in the northeast part of nigeria .
he says his administration is confident it will be able to thwart criminals .

Pointer-Generator, With Coverage:
muhammadu buhari says he plans to aggressively fight corruption that has long plagued nigeria .
he says his administration is confident it will be able to thwart criminals .
the win comes after a long history of military rule , coups and botched attempts at democracy in
africa ’s most populous nation .

Figure 3.14: The baseline model incorrectly changes thwart criminals and others contribut-
ing to nigeria’s instability to destabilize nigeria’s economy – which has a mostly opposite
meaning. It also produces a nonsensical sentence. Note that our final model produces the
novel word says to paraphrase told cnn ‘s christiane amanpour.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 64

Article (truncated): cairo (cnn) at least 12 people were killed sunday , and more injured , in
separate attacks on a police station , a checkpoint and along a highway in egypt ’s northern sinai
, authorities said . six people , including one civilian , were killed when a car bomb exploded
near the police station in al-arish , capital of north sinai , health ministry spokesman hossam

abdel-ghafar told ahram online . he said 40 people were injured . ansar beit al-maqdis , an isis
affiliate , claimed responsibility for the attack , which came hours after another operation that the
group also claimed . in that earlier attack , a first lieutenant , a sergeant and four conscripts were
killed when their armored vehicle was attacked on the highway from al-arish to sheikh zuweid in
northern sinai , the military said . two other soldiers were injured and taken to a military hospital .
ansar beit al-maqdis has claimed many attacks against the army and police in sinai . a third attack
sunday on a checkpoint in rafah left three security personnel injured , after unknown assailants
opened fire at them , according to state media . the attacks come as the military announced a
reshuffle of several senior military positions , state media reported . among those being replaced
are the generals in charge of military intelligence and egypt ’s second field army , which is
spearheading the battle against the insurgents in the northern sinai . egypt ’s army has been
fighting a decade-long militant islamist insurgency , which has spiked since the ouster of muslim
brotherhood president mohamed morsy in the summer of 2013 . hundreds of police and soldiers ,
as well as civilians , have been killed in militant attacks in the past months .

Reference Summary:
six people , including one civilian , are killed when a car bomb explodes near a police station .
six others are killed when their armored vehicle is attacked on a highway in northern sinai .
ansar beit al-maqdis , an isis affiliate , claims responsibility .

Baseline:
he says the attacks come after another operation that killed 12 .
the attacks come as military announced a u.n. peacekeeping force in northern sinai .

Pointer-Generator, No Coverage:
ansar beit al-maqdis , an isis affiliate , claimed responsibility for the attack .
ansar beit al-maqdis , an isis affiliate , claimed responsibility for the attack .
the attacks come as the military announced a reshuffle of several senior military positions .

Pointer-Generator, With Coverage:
six people , including one civilian , were killed when a car bomb explodes near the police station .
ansar beit al-maqdis , an isis affiliate , claimed responsibility for the attack .
egypt ’s army has been fighting a decade-long militant islamist insurgency .

Figure 3.15: The baseline fabricates a u.n. peacekeeping force unmentioned in the article
– perhaps inspired by a connection between U.N. peacekeeping forces and northern sinai
in the training data. The pointer-generator model is more accurate, correctly reporting the
reshuffle of several senior military positions.

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 65

3.9 Conclusion

In this chapter we presented a hybrid pointer-generator architecture with coverage, and

showed that it reduces inaccuracies and repetition. We applied our model to a challenging

long-text dataset, and significantly outperformed the previous abstractive state-of-the-art

ROUGE scores. Our model is capable of exhibiting many abstractive abilities, but its outputs

are still a lot less abstractive than the human-written summaries.

Since the publication of this work, there have been several developments in neural

generative abstractive summarization, some of which I summarize here:

Datasets. Kryściński et al. (2019) find that the inverted pyramid structure of news-based

datasets like CNN/Daily Mail biases the learning signal too strongly, resulting in a loss of

diversity. Furthermore, web-scraped datasets like CNN/Daily Mail contain noise such as

HTML code, hyperlinks and clickbait (Kryściński et al., 2019; Fabbri et al., 2021). Several

higher-quality summarization datasets have been introduced for various genres including

news (Narayan et al., 2018), scientific and medical publications (Cohan et al., 2018), patents

(Sharma et al., 2019) and congressional bills (Kornilova and Eidelman, 2019).

Evaluation. The community has become increasingly aware that ROUGE is a poor proxy

for summary quality; Kryściński et al. (2019) show that for model-generated abstractive

summaries on the CNN/Daily Mail dataset, ROUGE has minimal correlation with human

judgments of relevance, consistency, fluency, and coherence. While there are many al-

ternative automatic metrics, in a large-scale evaluation Fabbri et al. (2021) find that in

general, they have poor correlation with coherence and relevance, and a better correlation

with consistency and fluency – at least for the summaries generated by currently-available

summarization systems. In general, the research community has moved increasingly towards

human evaluation.

Models. The best results have generally been achieved by larger pretrained Transformers.

For example, T5 (Raffel et al., 2020) provides a unified framework for many text-to-

text tasks including abstractive summarization, while PEGASUS (Zhang et al., 2020a)

specifically targets abstractive summarization with a tailored pretraining objective. Over

CHAPTER 3. SUMMARIZATION WITH POINTER-GENERATOR NETWORKS 66

several datasets, the largest PEGASUS model produces summaries that are judged as

high-quality as the human-written reference summaries, when judged by crowdworkers.

However, the summaries produced by PEGASUS are still less abstractive than the references.

Greedy decoding and beam search remain the most commonly-used decoding algorithms

for abstractive summarization. While copying and coverage mechanisms similar to those

used in this chapter appeared frequently in RNN-based approaches, they are largely absent

from Transformer-based approaches Syed et al. (2021).

Factual accuracy. Through a manual annotation of summaries produced by recent ab-

stractive summarization models, Kryściński et al. (2019) find that factual inaccuracies are

common (30%); Cao et al. (2018) found similar results. Factual accuracy has become a

focus of summarization research, with many proposed methods to evaluate (Kryscinski et al.,

2020; Pagnoni et al., 2021) and improve (Cao et al., 2018; Zhu et al., 2021; Zhang et al.,

2020c) factual accuracy.

Chapter 4

Controlling Attributes of Chitchat
Dialogue

4.1 Introduction

We now turn to chitchat dialogue, a significantly more open-ended task than abstractive

summarization (Figure 1.1). Though utterances generated in this chapter are much shorter

than the summaries in the previous chapter, the dialogue setting adds the complexity of

multi-turn interaction with users. In this more complex setting we now must consider the

effects of the bot’s actions over multiple turns, and the actions of the user.

Neural generation models for dialogue, which became ubiquitous in research of the

late 2010s, are still poorly understood. Well known problems, such as the genericness

and repetitiveness of responses (Serban et al., 2016b), remain without a de facto solution.

Strikingly, the factors that determine human judgments of overall conversation quality are

almost entirely unexplored. Most works have been limited to the next utterance prediction

problem, whereas a multi-turn evaluation is necessary to evaluate the quality of a full

conversation.

In this chapter we both (i) conduct a large-scale study to identify the fine-grained factors

governing human judgments of full conversations, and (ii) develop models that apply our

findings in practice, leading to state-of-the-art performance. Specifically, we identify and

study eight aspects of conversation that can be measured by human judgments, while varying

67

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 68

Figure 4.1: We manipulate four low-level attributes and measure their effect on human
judgments of individual conversational aspects, as well as overall quality.

four types of low-level attributes that can be algorithmically controlled in neural models; see

Figure 4.1. To control the low-level model attributes, we consider two simple but general

algorithms: conditional training, in which the neural model is conditioned on additional

control features, and weighted decoding, in which control features are added to the decoding

scoring function at test time only.

One major result of our findings is that existing work has ignored the importance of

conversational flow, as standard models (i) repeat or contradict previous statements, (ii) fail

to balance specificity with genericness, and (iii) fail to balance asking questions with other

dialogue acts. Conducting experiments on the PersonaChat task (Zhang et al., 2018b), we

obtain significantly higher engagingness scores than the baseline by optimizing control of

repetition, specificity and question-asking over multiple turns. Using these findings, our

best model matches the performance of the winning entry in the NeurIPS 2018 ConvAI2

competition (Dinan et al., 2019a), which was trained on much more data but had no

control (see Section 4.9.1). Our code, pretrained models, and full chatlogs, are available at

https://parl.ai/projects/controllable_dialogue.

https://parl.ai/projects/controllable_dialogue

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 69

4.2 Related Work

Dialogue Dialogue evaluation is relatively well understood in goal-oriented tasks, where

automated approaches can be coded by measuring task completion (Bordes et al., 2017;

El Asri et al., 2017; Hastie, 2012; Henderson et al., 2014; Wen et al., 2017). Task success

combined with dialogue cost can be linked to human judgments like user satisfaction via the

PARADISE framework (Walker et al., 1997).

However in chitchat tasks, which we study in this chapter, automatic metrics and their

relation to human ratings are less well-understood. While word-overlap metrics are effective

for question-answering and machine translation, for dialogue they have little to no correlation

with human judgments (Liu et al., 2016; Novikova et al., 2017) – this is due to the open-

ended nature of dialogue. There have been attempts to find better automatic approaches,

such as adversarial evaluation (Li et al., 2017b) and learning a scoring model (Lowe et al.,

2017), but their value is still unclear.

Nevertheless, a number of studies only use automatic metrics, with no human study at

all (Lowe et al., 2015; Parthasarathi and Pineau, 2018; Serban et al., 2016a). Other works

do use human evaluations (Dinan et al., 2019b; Li et al., 2016a,b; Venkatesh et al., 2017;

Vinyals and Le, 2015; Zhang et al., 2018b), typically reporting just one type of judgment

(either quality or appropriateness) via a Likert scale or pairwise comparison. Most of those

works only consider single turn evaluations, often with a shortened dialogue history, rather

than full multi-turn dialogue.

A more comprehensive evaluation strategy has been studied within the scope of the

Alexa prize (Venkatesh et al., 2017; Guo et al., 2018) by combining multiple automatic

metrics designed to capture various conversational aspects (engagement, coherence, domain

coverage, conversational depth and topical diversity). Though these aspects have some

similarity to the aspects studied here, we also focus on lower-level aspects (e.g., avoiding

repetition, fluency), to understand how they correspond to both our controllable attributes,

and to overall quality judgments.

Controllable neural text generation Researchers have proposed several approaches to

control aspects of RNN-based natural language generation such as sentiment, length, speaker

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 70

style and tense (Fan et al., 2018a; Ficler and Goldberg, 2017; Ghazvininejad et al., 2017;

Hu et al., 2017; Kikuchi et al., 2016; Peng et al., 2018; Wang et al., 2017). In particular,

several works use control to tackle the same common sequence-to-sequence problems we

address here (particularly genericness and unrelated output), in the context of single-turn

response generation (Baheti et al., 2018; Li et al., 2016a, 2017a; Shen et al., 2017; Xing

et al., 2017; Zhang et al., 2018a; Zhou et al., 2017). By contrast, we focus on developing

controls for, and human evaluation of, multi-turn interactive dialogue – this includes a new

method (described in Section 4.5) to control attributes at the dialogue level rather than the

utterance level.

In this chapter, we require a control method that is both general-purpose (one technique

to simultaneously control many attributes) and easily tunable (the control setting is adjustable

after training). Given these constraints, we study two control methods: conditional training

(variants of which have been described by Fan et al. (2018a); Kikuchi et al. (2016); Peng

et al. (2018)) and weighted decoding (described by Ghazvininejad et al. (2017) as a general

technique, and by Baheti et al. (2018) to control response-relatedness). To our knowledge,

this work was the first to systematically compare the effectiveness of two general-purpose

control methods across several attributes.

4.3 The PersonaChat dataset

PersonaChat (Zhang et al., 2018b) is a chitchat dialogue task involving two participants (two

humans or a human and a bot). Each participant is given a persona – a short collection of

personal traits such as I’m left handed or My favorite season is spring – and are instructed to

get to know each other by chatting naturally using their designated personas, for 6–8 turns.

The training set contains 8939 conversations and 955 personas, collected via crowdworkers,

plus 1000 conversations and 100 personas for validation, and a similar number in the hidden

test set. The PersonaChat task was the subject of the NeurIPS 2018 ConvAI2 Challenge

(Dinan et al., 2019a), in which competitors were first evaluated with respect to automatic

metrics (perplexity, hits@1 and F1 score), and then with respect to human judgment via the

question “How much did you enjoy talking to this user?” on a scale of 1–4.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 71

4.4 Baseline Model

Our baseline model is a 2-layer LSTM sequence-to-sequence model with attention; see

Section 2.3. On any dialogue turn, the input x to the encoder is the entire dialogue his-

tory (separated using unique speaker-identifying tokens), with the model’s own persona

prepended. Conditioned on this input sequence x, the decoder generates a response y.

Except when stated otherwise, all our models decode using beam search with beam size 20.

We initialized the word embedding matrix with 300-dimensional GloVe embeddings

(Pennington et al., 2014). Using the ParlAI framework (Miller et al., 2017), we pretrained

the model on a dataset of 2.5 million Twitter message-response pairs,1 then fine-tuned it

on PersonaChat. On the PersonaChat validation set, the baseline model has a perplexity of

26.83 and F1 of 17.02, which would have placed us 4th out of 26 models in the ConvAI2

competition (Dinan et al., 2019a). We attempt to improve over this baseline using control.

4.5 Controllable Text Generation Methods

Suppose we have a sequence-to-sequence model which gives:

P (y|x) =
∏
t

P (yt|x, y1, . . . , yt−1) (4.1)

This is the conditional probability of a response y (the model’s next utterance) given input x

(the context, which in our case includes the model’s own persona and the dialogue history).

Contrary to most previous work, which controls at the sentence level, we wish to control

attributes of the output y at the dialogue level – meaning that a single control setting is

used for a whole dialogue. For example, to control question-asking, we provide a control

setting at the beginning of each dialogue (e.g., 20% questions or 70% questions) rather than

providing a control setting for each utterance (e.g., is a question or isn’t a question). With

this approach, the sequence-to-sequence model is able to choose what value the controlled

attribute should take for any particular utterance, but we are able to choose the overall

1The Twitter dataset is provided in ParlAI; details can be found here: https://parl.ai/docs/
tasks.html

https://parl.ai/docs/tasks.html
https://parl.ai/docs/tasks.html

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 72

distribution. We find that this approach works well – for example, the sequence-to-sequence

model is generally good at detecting when to ask a question. In particular, this is easier than

the alternative: developing a separate process to decide, for each utterance, whether to ask a

question.

In this section, we describe the two methods – which we call Conditional Training (CT)

and Weighted Decoding (WD) – that we use to control attributes of the output y at the

dialogue level.

4.5.1 Conditional Training (CT)

Conditional Training (Fan et al., 2018a; Kikuchi et al., 2016; Peng et al., 2018) is a method

to learn a sequence-to-sequence model P (y|x, z), where z is a discrete control variable.

If the control attribute is naturally continuous (for example in this chapter, repetitiveness,

specificity and response-relatedness), we use z to represent bucketed ranges. For a binary

attribute like question-asking, z represents an overall probability (as explained in Section

4.5).

To train a CT model, we first automatically annotate every (x, y) pair in the training set

with the attribute we wish to control (for example, whether y contains a question mark).

During training, for each example we determine the corresponding z value (for continuous

attributes, this simply means sorting into the correct bucket; for question-asking, see Section

4.6.4). Next, the control variable z is represented via an embedding (each of the possible

values of z has its own embedding). For all our experiments, the embedding is of length

10; this was determined via hyperparameter tuning. There are several possible ways to

condition the sequence-to-sequence model on z – for example, append z to the end of the

input sequence, or use z as the START symbol for the decoder. We find it most effective to

concatenate z to the decoder’s input on every step.2 Lastly, the CT model learns to produce

y = y1, . . . , yT by optimizing the cross-entropy loss:

lossCT = − 1

T

T∑
t=1

logP (yt|x, z, y1, . . . , yt−1) (4.2)

2To build a CT model P (y|x, z1, . . . , zn) conditioned on multiple controls {z1, . . . , zn}, we can simply
concatenate multiple control embeddings to the decoder inputs.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 73

Our CT models are initialized with the parameters from the baseline sequence-to-sequence

model P (y|x) (the new decoder parameters are initialized with small random values), then

fine-tuned to optimize lossCT on the PersonaChat training set, until convergence of lossCT

on the validation set.

4.5.2 Weighted Decoding (WD)

Weighted Decoding (Ghazvininejad et al., 2017) is a decoding method that increases or

decreases the probability of words with certain features. The technique is applied only at test

time, requiring no change to the training method. A limitation of WD is that the controllable

attribute must be defined at the word-level; any desired utterance-level attribute must be

redefined via word-level features.

In weighted decoding, on the tth step of decoding, a partial hypothesis y<t = y1, . . . , yt−1

is expanded by computing the score for each possible next word w in the vocabulary:

score(w, y<t;x) = score(y<t;x) + logPRNN(w|y<t, x) +
∑
i

wifi(w; y<t, x). (4.3)

Here, logPRNN(w|y<t, x) is the log-probability of the word w calculated by the RNN,

score(y<t;x) is the accumulated score of the already-generated words in the hypothesis y<t,

and fi(w; y<t, x) are decoding features with associated weights wi. There can be multiple

features fi (to control multiple attributes), and the weights wi are hyperparameters to be

chosen.

A decoding feature fi(w; y<t, x) assigns a real value to the word w, in the context of the

text generated so far y<t and the context x. The feature can be continuous (e.g., the unigram

probability of w), discrete (e.g., the length of w in characters), or binary (e.g., whether

w starts with the same letter as the last word in y<t). A positive weight wi increases the

probability of words w that score highly with respect to fi; a negative weight decreases their

probability.

Note that weighted decoding and conditional training can be applied simultaneously

(i.e., train a CT model then apply WD at test time) – a strategy we use in our experiments.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 74

Feature Condition

extrep bigram(w, y<t, x) Adding w to the hypothesis y<t would create a 2-gram
that appears in a previous utterance by the model

extrep unigram(w, y<t, x) w is a non-stopword and
w appears in a previous utterance by the model

intrep bigram(w, y<t, x) Adding w to the hypothesis y<t would create a 2-gram
that appears earlier in the hypothesis y<t

intrep unigram(w, y<t, x) w is a non-stopword and
w appears earlier in the hypothesis y<t

partnerrep bigram(w, y<t, x) Adding w to the hypothesis y<t would create a 2-gram
that appears in a previous utterance by the partner

Table 4.1: We define five binary features for controlling different types of repetition via
weighted decoding. Each feature depends on the word w, the partial hypothesis y<t, and the
context x (which includes the model’s own persona and the dialogue history). Each of these
features is equal to 1 if and only if the condition on the right is true; otherwise 0.

4.6 Controlling Conversational Attributes

In this section, we describe how we use conditional training and weighted decoding to

control four attributes: repetition, specificity, response-relatedness and question-asking. We

evaluate the effectiveness of both control methods via automatic metrics (i.e., measuring

how well the attribute was controlled) – these are summarized in Table 4.6. We later use

these findings to select control methods and control settings to be explored further via human

evaluation (Section 4.9).

4.6.1 Repetition

Our baseline model exhibits three types of repetition, which we call external repetition

(self-repetition across utterances), internal repetition (self-repetition within utterances), and

partner repetition (repeating the conversational partner).

To control repetition with weighted decoding,3 we define five n-gram based decoding

features (see Table 4.1). Three of these features (extrep bigram, intrep bigram and
3We also tried controlling repetition with conditional training, defining z as the (bucketed) maximum

ROUGE-L precision between the response y and the bot’s previous utterances. However, this method was
unsuccessful because there are not enough repetitive examples in the training data for the model to learn the
control. Experimenting with data augmentation to solve this problem is an area for future work.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 75

Input: Yes, I’m studying law at the moment
Baseline Response: That sounds like a lot of fun!

Weight NIDF Weighted Decoding Response
−5.0 0.6% Oh......................................
0.0 17.1% That sounds like a lot of fun!
3.0 18.3% That sounds like a lot of fun. How long have you been studying?
7.0 38.5% I majored in practising my spiritual full time philosophy test
10.0 71.9% Oh wow! Merna jean isa paino yi hao hui bu acara sya gila [. . .]

z NIDF Conditional Training Response
0 16.8% Sounds like you are a great person!
2 18.3% So you are a law student?
4 18.4% That sounds like a lot of fun
6 22.8% That sounds like a rewarding job!
8 24.4% That sounds like a rewarding career!

Table 4.2: Middle: Example of controlling specificity (NIDF) via weighted decoding. At
the extremes, the model produces only the most rare or the most common tokens. Bottom:
Example of controlling specificity via conditional training. This gives a narrower NIDF
range, but all the responses are appropriate.

partnerrep bigram) identify repeating bigrams for the three repetition types. The other

two features (extrep unigram and intrep unigram) identify repeating content words.

By applying a negative weight to these features, we can reduce repetition. In particular, if

the weight is −∞, our method is equivalent to n-gram blocking as described by Kulikov

et al. (2019). We observe that repetition control is very important, thus all further control

experiments include repetition control.

4.6.2 Specificity

Like many sequence-to-sequence models using beam search decoding, our baseline fre-

quently asks generic questions such as What music do you like? and gives dull, unspecific

responses, such as I like all kinds of music.

We control specificity using Normalized Inverse Document Frequency (NIDF) as a

measure of word rareness.4 The Inverse Document Frequency of a word w is IDF(w) =

4Note that our NIDF specificity features are similar to the NIRF and NIWF features used by Zhang et al.
(2018a).

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 76

Input: Do you go get coffee often
Baseline Response: I do, when I am not playing the piano.

Weight Cos sim Weighted Decoding Response
−10.0 −0.05 I am a musician.

0.0 −0.02 I do, when I am not playing the piano.
5.0 0.40 I do, usually at starbucks.
8.0 0.59 Not usually, especially when you drink latte.
11.0 0.72 Not often, usually with drinks, espresso, latte, tea, etc.

Table 4.3: Example of controlling response-relatedness (cosine similarity to input) via
weighted decoding. Positive weights (e.g., 5.0) can yield more on-topic responses, but
higher weights (e.g., 11.0) can result in nonsensical lists of topically related words.

log(R/cw) where R is the number of responses in the dataset, and cw is the number of those

responses that contain w. Normalized IDF (which ranges from 0 to 1) is

NIDF(w) =
IDF(w)− min idf

max idf− min idf
(4.4)

where min idf and max idf are the minimum and maximum IDFs, taken over all words in

the vocabulary. To control specificity with weighted decoding, we use NIDF as a decoding

feature. As shown in Table 4.2, this method produces reasonable outputs when the feature

weight is within a certain range, but at the extremes the outputs are nonsensical. The

boundary for nonsensical output differs from example to example.

To control specificity with conditional training, we define the specificity of an utterance

y to be the mean NIDF of the words in y. Thus our control variable z is mean NIDF

(discretized into 10 equal-sized buckets). As shown in Table 4.2, this method gives outputs

with a narrower NIDF range, but overall produces less nonsensical outputs.

4.6.3 Response-relatedness

In conversation, it’s generally desirable to produce a response that is related to the partner’s

last utterance; for example if the partner says My grandfather died last month, it is appropri-

ate to say I’m so sorry. Were you close to your grandfather? However, our baseline model

frequently responds with unrelated utterances like Do you have any pets?

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 77

To control response-relatedness with weighted decoding, we use the decoding feature

resp rel:

resp rel(w; y<t, x) = cos sim(word emb(w), sent emb(`)) (4.5)

where word emb(w) is the GloVe embedding for the word w, sent emb(`) is the sentence

embedding for the partner’s last utterance ` (note ` is part of the context x), and cos sim is

the cosine similarity between the two. In particular, the sentence embedding sent emb(s)

for an utterance s is a weighted average of the GloVe embeddings of the words in s, with the

first principal component projected out; for full details, see Arora et al. (2017). This method

of controlling response-relatedness is similar to that described in Baheti et al. (2018). We

find that weighted decoding is effective to control the semantic relatedness of the model’s

response to the partner’s last utterance (see Table 4.3). As before, we find that extreme

weights lead to nonsensical output.

To control response-relatedness with conditional training, we try defining the control

variable z to be cos sim(sent emb(y), sent emb(`)), the overall cosine similarity be-

tween the partner’s last utterance ` and the model’s response y (again, we discretize z).

However, we find this method ineffective – the CT model learns only a very weak connection

between z and the semantic relatedness of the output (see Section 4.7 for more details).

4.6.4 Question-asking

Considerate chitchat requires a reciprocal asking and answering of questions – asking too

few or too many can appear self-centered or nosy. We control question-asking in order to

study these trade-offs.

To control question-asking with weighted decoding, we use the binary decoding feature

is qn word(w), which is equal to 1 if and only if the word w is in a pre-defined list of

interrogative words (how, what, when, where, which, who, whom, whose, why, ?). We

find this is a somewhat effective method to encourage or discourage questions, but with

unintended side-effects: a negative weight can discourage valid non-question utterances

that happen to contain interrogative words (such as I’m learning how to knit) and a positive

weight can result in degenerate utterances (such as What??????? or Who? When? How?).

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 78

0 1 2 3 4 5 6 7 8 9 10 10 (boost)
Question-Asking Control Level (CT)

0%

20%

40%

60%

80%

100%

%
 U

tte
ra

nc
es

 c
on

ta
in

in
g

'?'

Question-controlled CT
Question-controlled CT w/ rep ctrl
Target for question-controlled CT
Beam search baseline
Repetition-controlled baseline
Gold data

Figure 4.2: Controlling question-asking via conditional training. Exact numbers are
provided in Table 4.6.

For conditional training, we regard an utterance y as containing a question if and only if

y contains a question mark. We train our CT model on a control variable z with 11 possible

values: {0, . . . , 10}. As discussed in Section 4.5, we wish to control question-asking at the

distributional, dialogue level, rather than at the binary, utterance level. Thus the setting z = i

means that the model should produce, on average, utterances containing ‘?’ with probability

i/10. During training we randomly assign examples to buckets such that each bucket i is

trained on examples with the correct proportion of questions (i/10), and all buckets have

the same amount of training examples.

We find that conditional training is effective to control question-asking – as shown

in Figure 4.2, by increasing z from 0 to 10, we obtain a range of question-asking rates

from 1.40% to 97.72%. However, when we introduce repetition control, question-asking

is reduced – in particular, the z = 10 setting (which should produce 100% questions) now

only produces 79.67% questions. The primary problem is the weighted decoding feature

extrep bigram, which discourages bigrams that have appeared in previous utterances –

this prevents the model from producing bigrams that commonly occur in many questions,

such as do you and what is. To fix this, we introduce an extra setting z = 10 (boost), in which

we do not use the feature extrep bigram for weighted decoding during beam search, but

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 79

we do use it to rerank the candidates after beam search. This setting, which allows the model

to produce necessary question-asking bigrams, yields a 99.54% question-asking rate, at the

cost of slightly increased external bigram repetition (see Table 4.6).

For controlling question-asking, conditional training is preferable to weighted decoding

for two reasons. Firstly, it allows us to achieve (close to) 0% questions, 100% questions, or

anything in between, without introducing the risk of degenerate output. Secondly, presence-

of-a-question-mark captures the true attribute of interest (question-asking) more exactly and

directly than presence of interrogative words. For these reasons, only the CT method is

considered in the human evaluation.

4.7 Comparison of Control Methods

The previous section shows that conditional training and weighted decoding are both useful

techniques, with different strengths and weaknesses.

The primary disadvantage of conditional training is that it sometimes fails to learn

the connection between the control variable z and the target output y. In practice, we

find the model can learn simple attributes of the output (such as the presence of ‘?’, and

overall genericness), but not relationships between the input and output (such as semantic

relatedness). By contrast, weighted decoding can force the desired feature to appear in the

output by raising the weight arbitrarily high (though this may have unintended side-effects).

The primary disadvantage of weighted decoding is that it risks going off-distribution

when the weight is too strong. By contrast, conditional training produces mostly well-

formed, in-distribution outputs. This highlights the importance of learned control – it is

safer to learn to produce output that both satisfies the control variable and is appropriate,

than to alter the decoding process to satisfy the control variable, potentially trading off

appropriateness in the process.

Other considerations include: (1) Convenience: conditional training requires retraining;

weighted decoding doesn’t, but is slower at test time. (2) Data availability: conditional

training requires training examples of the controllable attribute, whereas weighted decoding

can control any computable feature without requiring examples. (3) Attribute definition:

conditional training can control sentence-level attributes, but they must be discrete. By

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 80

contrast, weighted decoding requires word-level features, but they can be continuous.

4.8 Human Evaluation Design

In order to study the effect of our controllable attributes, we conduct a large-scale human

evaluation of 28 model configurations (see Table 4.5), plus human-human conversations for

comparison.

In our evaluation, a crowdworker chats with a model (or in the human-human case,

another crowdworker) for six conversational turns – the instructions and interface are shown

in Figure 4.3. Afterwards, the crowdworker answers eight multiple-choice questions shown

in Figure 4.4. These questions capture different aspects of conversational quality: avoiding

repetition, interestingness, making sense, fluency, listening, inquisitiveness, humanness and

engagingness. The eight questions are Likert questions on a 1–4 scale, where higher is

better.5 To match the ConvAI2 Challenge, we also add a persona retrieval question, in which

the crowdworker is asked to select which of two possible personas was the model’s persona.

Our evaluation is the same as the ConvAI2 Challenge evaluation, but more detailed –

ConvAI2 includes only engagingness and persona retrieval.6 As in the ConvAI2 challenge,

each of our 28 model configurations was evaluated by over 100 crowdworkers, and the

results were adjusted for annotator variance via a Bayesian calibration (Kulikov et al., 2019).

In designing our evaluation, we aimed to capture the four aspects we expected to directly

improve via control (avoiding repetition, interestingness, listening, inquisitiveness), two

important error classes we thought would be affected by our controls (fluency, making

sense), and two overall quality measures (engagingness, humanness).

5Exceptions: Avoiding repetition is a 1–3 scale, as we found this gave clearer instructions. Inquisitiveness
has an optimal score of 3; 1 and 2 represent too little question-asking, and 4 represents too much.

6There are three other minor differences between our evaluation and ConvAI2’s: (1) We fix capitalization
and spacing before showing the chatbot’s utterances to crowdworkers, while ConvAI2 show the raw lowercase
tokenized form. We found the latter interferes with fluency evaluation. (2) We conduct 6 dialogue turns,
while ConvAI2 conducts 4-6. This was necessary to evaluate repetitiveness. (3) We use (publicly-available)
validation set personas, while ConvAI2 uses (hidden) test set personas. This enables us to release our evaluation
chatlogs.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 81

Figure 4.3: Above: screenshot of the task description. Below: screenshot of the chat UI,
talking with the beam search baseline model.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 82

[Engagingness] How much did you enjoy talking to this user?
• Not at all • A little • Somewhat • A lot

[Interestingness] How interesting or boring did you find this conversation?
• Very boring • A little boring • A little interesting • Very interesting

[Inquisitiveness] How much did the user try to get to know you?
• Didn’t ask about me at all • Asked about me some
• Asked about me a good amount • Asked about me too much

[Listening] How much did the user seem to pay attention to what you said?
• Always ignored what I said •Mostly ignored what I said
•Mostly paid attention to what I said • Always paid attention to what I said

[Avoiding Repetition] How repetitive was this user?
• Repeated themselves over and over • Sometimes said the same thing twice
• Always said something new

[Fluency] How naturally did this user speak English?
• Very unnatural •Mostly unnatural •Mostly natural • Very natural

[Making sense] How often did this user say something which did NOT make sense?
• Never made any sense •Most responses didn’t make sense
• Some responses didn’t make sense • Everything made perfect sense

[Humanness] Do you think this user is a bot or a human?
• Definitely a bot • Probably a bot • Probably a human • Definitely a human

[Persona retrieval] Which prompt (character) do you think the other user was given for this
conversation?
Respondent chooses one of two provided personas

Figure 4.4: The questions and multiple-choice options used in the human evaluation , in the
order presented.

4.9 Human Evaluation Results

4.9.1 Main Findings

In this section we summarize the main findings of our human evaluation – whose full results

can be found in Section 4.11 and Figure 4.11, with sample conversations in Figure 4.10.

As Figure 4.5 shows, controlling for repetition, specificity and question-asking all lead

to large engagingness improvements over the greedy and beam-search baseline models. In

particular, we find that controlling for multi-turn (self) repetition is important and should

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 83

Greedy

Beam search

Repetitio
n (W

D)

Specific
ity (W

D)

Questio
n (CT)

Human

2.2

2.4

2.6

2.8

3.0

3.2
Engagingness

Figure 4.5: Calibrated human judgments of engagingness for the baselines and best con-
trolled models. Note: In Figures 4.6, 4.7, 4.8 and here, the Specificity and Question
controlled models both include Repetition control, but Question control doesn’t include
Specificity control, or vice versa.

2.00

2.25

2.50

2.75

3.00
Avoiding Repetition

2.25

2.50

2.75

3.00

Interestingness

3.2

3.4

3.6

3.8

Making Sense

3.0

3.2

3.4

3.6

Fluency

2.50

2.75

3.00

3.25

3.50
Listening

1.75

2.00

2.25

2.50

2.75
Inquisitiveness

2.0

2.5

3.0

3.5
Humanness

Greedy search Beam search Repetition-controlled (WD) Specificity-controlled (WD) Question-controlled (CT) Human

Figure 4.6: Calibrated human judgments of conversational aspects for the baselines and best
controlled models.

be incorporated alongside other attribute control methods. We found no improvement by

controlling response-relatedness.

To better understand these overall engagingness improvements, we consider the full

set of human judgments, shown in Figure 4.6. We find that reducing repetition leads to

improvements across all our aspects of conversational quality. Increasing specificity shows

improvements in interestingness and listening ability over the repetition-controlled baseline,

while increasing question-asking shows improvements in inquisitiveness and interestingness

over the repetition-controlled baseline.

Our most engaging model, which controls both repetition and question-asking – marked

‘Question (CT)’ in Figure 4.5 – matches the engagingness of the winning entry in the

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 84

ConvAI2 competition, as both models achieve a raw score7 of 3.1 (Dinan et al., 2019a).

However, the ConvAI2 winner, Lost in Conversation, was trained on approximately 12×
as much data as our model. Lost in Conversation is based on the OpenAI GPT Language

Model (Radford et al., 2018), which is pretrained on the BookCorpus (Zhu et al., 2015),

which contains approximately 985 million words, whereas our model is pretrained on the

Twitter dataset (approximately 79 million words).

Altogether, our evaluation clearly shows that controlling low-level attributes over multi-

ple turns leads to improved overall quality.

4.9.2 Effect of Controlled Attributes

Repetition (WD) We observe that self-repetition across utterances (external repetition)

is by far the most severe form of repetition in our beam search baseline model. We

evaluate several settings of the extrep bigram weighted decoding feature, and find that

an aggressive repetition-reduction setting (reducing bigram repetition rate to below gold

data levels) is rated best. We also find that blocking repeated content words improves the

avoiding repetition score. See Tables 4.5, 4.6 and Section 4.11 for full details.

As shown in Figure 4.5 and Figure 4.6, our repetition-controlled model improves hugely

over the beam search baseline in all metrics, and achieves close-to-human scores on all

metrics except humanness. This striking result demonstrates that repetition is by far the

biggest limiting quality factor for naive sequence-to-sequence dialogue agents. The result

also emphasizes the importance of multi-turn dialogue evaluation to detect the problem. We

refer to this model as the repetition-controlled baseline, and use it as a basis for all remaining

experiments (i.e., we control specificity, response-relatedness and question-asking on top of

these repetition-control settings).

Specificity (WD, CT) For our weighted decoding models, the extreme settings (very

generic and very specific) score poorly in engagingness due to the frequent presence of

degenerate output – see Figure 4.7. We find that the weight = 4 setting (which is more

7Although the same Bayesian calibration method was applied both in our study and in the ConvAI2
competition, calibrated scores are not comparable across the two; thus we compare raw scores (viewable in
Table 4.7).

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 85

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific
Specificity Control Level (WD)

2.2

2.4

2.6

2.8

3.0

3.2

En
ga

gi
ng

ne
ss

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

Figure 4.7: Calibrated human judgments of engagingness for different specificity control
settings.

specific than the repetition-controlled baseline and about as specific as the gold data)

maximizes engagingness. As shown in Figure 4.5 and Figure 4.6, this more-specific model

is rated more interesting, engaging, and a better listener than the repetition-controlled

baseline, but at the cost of reduced fluency and making sense. Our CT model with z = 7

(which has a similar NIDF level as WD with weight = 4) shows similar results, but the

improvements are smaller. For further discussion on the interestingness of our specificity

models, see Section 4.9.3.

Response-relatedness (WD) We evaluated several control settings (weight = −10, 5, 10,

13) and found that none scored better than weight = 0 (no response-relatedness control);

see Figure 4.11. This is surprising – prior to running the human evaluation, we annotated

100 examples ourselves to determine the best control settings. While we identified a more

responsive setting (weight = 5) as less likely than the uncontrolled model to ignore the

user, crowdworkers rated it as a slightly worse listener than the uncontrolled model. One

explanation for this discrepancy is that the more responsive model takes more risks, using

more rare words (0.197 NIDF, up from 0.178), and thus receives a lower makes-sense score

(3.41, down from 3.70). We hypothesize that, compared to us, the crowdworkers are less

tolerant of slightly nonsensical output, and more tolerant of generic unrelated utterances.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 86

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions
Question-Asking Control Level (CT)

2.2

2.4

2.6

2.8

3.0

3.2

En
ga

gi
ng

ne
ss

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

Figure 4.8: Calibrated human judgments of engagingness for different question-asking
control settings.

Question-asking (CT) As shown in Figure 4.8, a question-asking rate of 65.7% (z = 7)

maximizes engagingness. This setting, which asks more questions than both the repetition-

controlled baseline (50.0%) and the human-produced gold data (28.8%), brings us closest to

human-level engagingness – see Figure 4.5. Although we find that a rate of approximately

65.7% question-asking is the most engaging, a lower level (48.9%, or z = 4) is rated the

best listener. Lastly, we find that although asking too many questions is less engaging, most

crowdworkers will not directly criticize a chatbot that asks questions on every turn – only

11.9% of crowdworkers judged the z = 10 (boost) setting, which asks 99.5% questions, as

asking too many questions.8 For full details of these scores, see Table 4.6 and Figure 4.11.

For time and budget reasons, we did not evaluate any models controlling both question-

asking and specificity. However, we expect it is possible to obtain further improvements by

doing so.

4.9.3 A/B Tests for Interestingness

Though our more-specific models yielded significant improvements in engagingness, we

were surprised that they did not yield clearer improvements in interestingness. To investigate

further, we conducted an A/B interestingness evaluation of three specificity-controlled

8Though this conclusion may hold true for the PersonaChat task – a synthetic chatting task that instructs
participants to get to know each other – in real-life social conversations, incessant question-asking is less
appropriate (Hardy et al., 2021).

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 87

Figure 4.9: Screenshot of the A/B test UI , comparing a human-human conversation (left)
and a Repetition-controlled baseline model (right).

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 88

Model Win% Top 3 reasons for preferring model

Specificity WD (weight = 6) 84.1% More information; Better flow; More descriptive
Specificity WD (weight = 4) 75.5% More information; They describe their life in more detail; Funny
Specificity CT (z = 7) 56.2% More information; Better flow; Seems more interested

Table 4.4: A/B tests comparing various specificity-controlled models to the repetition-
controlled baseline on interestingness. We find all comparisons are significant (p < .05;
binomial test).

models, compared to the repetition-controlled baseline. Crowdworkers were shown two

conversations (from the main human evaluation) and asked to choose which model was

more interesting (see Figure 4.9 for details). We collected 500 samples per comparison,

plus 200 additional human vs repetition-controlled baseline samples, which were used to

filter for quality control. After discarding low-quality crowdworkers, we have roughly 300

evaluations per comparison, with an average Cohen’s κ = 0.6.

As shown in Table 4.4, all three models were rated significantly more interesting than

the repetition-controlled baseline. This convincingly shows that producing utterances with

more rare words is a valid strategy to improve interestingness. We have two explanations

for why these interestingness differences did not materialize in our main evaluation. Firstly,

interestingness is a particularly subjective metric (unlike more tangible metrics such as

avoiding repetition and making sense) – this makes it hard to calibrate across crowdworkers.

Secondly, we suspect that in our original evaluation, the crowdworkers may have evaluated

the interestingness of the task rather than the chatbot. This could account for why subtle

increases in conversational ability did not result in higher interestingness ratings – the

PersonaChat task itself has a natural interestingness limit.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 89

4.10 Example Crowdworker-Bot Conversations

Figure 4.10 shows how controlling repetition, question-asking and specificity can improve

conversations.

Human: What do you do for a living?

Bot: I'm a buddhist. What about you?

Human: I'm a Christian. Do you have a job?

Bot: I am a buddhist. What about you?

Human: I work on my parent's farm most days. Do you have a job?

Bot: I am a buddhist. What about you?

Human: Do you like music?

Bot: I do like music. What about you?

Human: Yes, but only country.

Bot: What city are you from?

Human: I live in the country, a very small town called Ila.

Bot: What city are you from?

Human: Hey there! I'm a little girl :) how are you?

Bot: I am doing well, how are you?

Human: I'm very lonely actually. I live in the cloud.

Bot: What do you do for a living?

Human: Nothing really, I'd like to say superhero since I have superpowers.

Bot: That sounds like a lot of fun!

Human: Yes! Do you like to shop?

Bot: I do! I love to shop!

Human: I always make time to shop!

Bot: What is your favorite food?

Human: Pizza I would have to say. What about you?

Bot: Chocolate is one of my favorites!

(a) (b)

Bot: Hello, how are you today?

Human: Hi! I'm great, how are you?

Bot: I am doing well, thank you. What do you do for fun?

Human: I don't have time for too much, I'm either working or spending time with my

kitties.

Bot: What kind of pets? I walk dogs for a living.

Human: That must be a fun job.

Bot: It is, but I spend most of my time reading.

Human: What kind of books do you like?

Bot: My favorite is harry potter. How about you?

Human: I like legal and psychological thrillers.

Bot: Wow, that is a lot of books.

Human: WHat do you do for work? I'm in construction.

Human: Hello, how are you doing today?

Bot: I am doing well. Just playing some piano and singing along to folk music.

Human: That sounds fun. What type of music do you like?

Bot: I hope to make some musical songs for my band. Do you play any

instruments?

Human: Nope, I was raised in a single parent household so never really had much

money to spend.

Bot: I wish I could spend more time with my family. I work as an auditor.

Human: That's awesome. I work two jobs out of which one of them is as stunt

double.

Bot: That sounds like a lot of fun.

Human: Well yeah it is, but comes with its own cons as well.

Bot: What is your favorite thing to do?

Human: Reading. I read a lot. Last year I read a total of 20 books.

Bot: What kind of books are you reading?

(c) (d)

Figure 4.10: Example conversations with (a) Baseline (b) Repetition-controlled baseline (c)
Question-controlled CT (z = 7), (d) Specificity-controlled WD (weight = 4).

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 90

4.11 Tables of Settings and Results for All Configurations

This section contains details of the exact control settings we used, and the automatic and

human evaluation results achieved, by all model configurations.

Repetition Specificity Response-rel Questions

External Internal Partner Rep.

Bigram Unigram Bigram Unigram Bigram NIDF Cos sim Has ‘?’

Baselines
Greedy Search
Beam Search (beam size 20)

Repetition control (WD)
Extrep bigram WD -0.5 wt -0.5
Extrep bigram WD -1.25 wt -1.25
Extrep bigram WD -3.5 wt -3.5
Extrep bigram WD -inf wt -∞
Repetition-controlled baseline wt -3.5 wt -∞ wt -∞

Question control (CT)
Question-controlled CT 0 wt -3.5 wt -∞ wt -∞ z = 0
Question-controlled CT 1 wt -3.5 wt -∞ wt -∞ z = 1
Question-controlled CT 4 wt -3.5 wt -∞ wt -∞ z = 4
Question-controlled CT 7 wt -3.5 wt -∞ wt -∞ z = 7
Question-controlled CT 10 wt -3.5 wt -∞ wt -∞ z = 10
Question-controlled CT 10 (boost) wt 0* wt -∞ wt -∞ z = 10

Specificity control (CT)
Specificity-controlled CT 0 wt -3.5 wt -∞ wt -∞ z = 0
Specificity-controlled CT 2 wt -3.5 wt -∞ wt -∞ z = 2
Specificity-controlled CT 4 wt -3.5 wt -∞ wt -∞ z = 4
Specificity-controlled CT 7 wt -3.5 wt -∞ wt -∞ z = 7
Specificity-controlled CT 9 wt -3.5 wt -∞ wt -∞ z = 9

Specificity control (WD)
Specificity-controlled WD -10 wt -3.5 wt -∞ wt -∞ wt -10
Specificity-controlled WD -4 wt -3.5 wt -∞ wt -∞ wt -4
Specificity-controlled WD 4 wt -3.5 wt -∞ wt -∞ wt 4
Specificity-controlled WD 6 wt -3.5 wt -∞ wt -∞ wt 6
Specificity-controlled WD 8 wt -3.5 wt -∞ wt -∞ wt 8

Response-related control (WD) **
Response-related controlled WD -10 wt -3.5 wt -∞ wt -∞ wt -∞ wt -∞ wt -10
Response-related controlled WD 0 wt -3.5 wt -∞ wt -∞ wt -∞ wt -∞ wt 0
Response-related controlled WD 5 wt -3.5 wt -∞ wt -∞ wt -∞ wt -∞ wt 5
Response-related controlled WD 10 wt -3.5 wt -∞ wt -∞ wt -∞ wt -∞ wt 10
Response-related controlled WD 13 wt -3.5 wt -∞ wt -∞ wt -∞ wt -∞ wt 13

Table 4.5: Control settings for all configurations. ‘wt’ means a weighted decoding (WD)
feature weight and z means the control variable setting in conditional training (CT).
* In Question-controlled CT 10 (boost), the feature extrep bigram is not used for WD
during beam search, but is used to rerank candidates after beam search; see Section 4.6.4.
** Note that the Response-related controlled models additionally introduce repetition con-
trols to block internal bigram repetition and partner bigram repetition. This was necessary to
prevent the model from parroting the partner’s last utterance. In Table 4.8, we find that just
adding these extra repetition controls (here called Response-related controlled WD 0, i.e.,
increased repetition control but no response-relatedness control) outperforms our canonical
Repetition-controlled baseline. However, given that we discovered this later, our specificity
and question controlled models are built on top of the canonical Repetition-controlled
baseline.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 91

Repetition Specificity Response-rel Questions

External Internal Partner Rep.

Bigram Unigram Bigram Unigram Bigram NIDF Cos sim Has ‘?’

Gold data and baselines
Gold Data 4.65% 9.62% 0.38% 0.97% 5.10% 0.2119 0.1691 28.80%
Greedy Search 35.88% 36.31% 8.08% 10.59% 12.20% 0.1688 0.1850 6.46%
Beam Search (beam size 20) 46.85% 44.15% 0.32% 0.61% 12.90% 0.1662 0.0957 80.87%

Repetition control (WD)
Extrep bigram WD -0.5 19.70% 16.85% 0.26% 0.62% 11.93% 0.1730 0.1348 73.04%
Extrep bigram WD -1.25 4.62% 4.79% 0.40% 0.89% 10.61% 0.1763 0.1504 61.22%
Extrep bigram WD -3.5 0.75% 4.61% 0.47% 0.94% 9.89% 0.1771 0.1681 48.89%
Extrep bigram WD -inf 0.00% 4.74% 0.51% 1.05% 9.56% 0.1780 0.1711 45.98%
Repetition-controlled baseline 0.73% 0.00% 0.17% 0.00% 9.55% 0.1766 0.1676 49.98%

Question control (CT)
Question-controlled CT 0 0.06% 0.00% 0.19% 0.00% 9.20% 0.1871 0.1753 2.01%
Question-controlled CT 1 0.09% 0.00% 0.19% 0.00% 8.66% 0.1844 0.1722 17.33%
Question-controlled CT 4 0.40% 0.00% 0.25% 0.00% 8.53% 0.1794 0.1713 48.88%
Question-controlled CT 7 0.80% 0.00% 0.17% 0.00% 8.48% 0.1771 0.1724 65.65%
Question-controlled CT 10 1.27% 0.00% 0.16% 0.00% 8.48% 0.1761 0.1728 79.67%
Question-controlled CT 10 (boost) 7.64% 0.00% 0.03% 0.00% 10.76% 0.1701 0.1651 99.54%

Specificity control (CT)
Specificity-controlled CT 0 0.60% 0.00% 0.20% 0.00% 9.05% 0.1478 0.1522 48.75%
Specificity-controlled CT 2 0.28% 0.00% 0.10% 0.00% 8.37% 0.1772 0.1833 50.57%
Specificity-controlled CT 4 0.12% 0.00% 0.08% 0.00% 7.90% 0.1921 0.1877 29.46%
Specificity-controlled CT 7 0.02% 0.00% 0.14% 0.00% 8.17% 0.2156 0.1955 16.51%
Specificity-controlled CT 9 0.01% 0.00% 0.11% 0.00% 8.01% 0.2462 0.1990 8.50%

Specificity control (WD)
Specificity-controlled WD -10 0.14% 0.00% 10.59% 0.00% 8.70% 0.1107 0.0994 33.55%
Specificity-controlled WD -4 0.65% 0.00% 1.98% 0.00% 9.95% 0.1501 0.1398 44.92%
Specificity-controlled WD 4 0.15% 0.00% 0.19% 0.00% 7.54% 0.2121 0.1972 45.53%
Specificity-controlled WD 6 0.07% 0.00% 0.13% 0.00% 6.50% 0.2546 0.2040 39.37%
Specificity-controlled WD 8 0.01% 0.00% 0.10% 0.00% 3.40% 0.4035 0.1436 26.68%

Response-related control (WD)
Response-related controlled WD -10 0.13% 0.00% 0.00% 0.00% 0.00% 0.1914 -0.0921 25.71%
Response-related controlled WD 0 0.24% 0.00% 0.00% 0.00% 0.00% 0.1785 0.1414 44.55%
Response-related controlled WD 5 0.15% 0.00% 0.00% 0.00% 0.00% 0.1973 0.4360 39.78%
Response-related controlled WD 10 0.05% 0.00% 0.00% 0.00% 0.00% 0.2535 0.6653 27.56%
Response-related controlled WD 13 0.02% 0.00% 0.00% 0.00% 0.00% 0.2999 0.7251 20.47%

Table 4.6: Automatic metrics (computed over validation set) for all model configurations
that were human-evaluated.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 92

Model Avoiding Rep. Engage Fluency Humanness Inquisitive Interesting Listening Make Sense Persona

Human and baselines
Human 2.90 ± 0.39 3.31 ± 0.90 3.66 ± 0.71 3.40 ± 0.80 2.63 ± 0.63 3.23 ± 0.83 3.64 ± 0.63 3.84 ± 0.52 0.92 ± 0.27
Greedy Search 2.16 ± 0.72 2.31 ± 1.08 3.20 ± 0.81 1.78 ± 0.90 2.00 ± 0.81 2.36 ± 0.98 2.78 ± 0.84 3.33 ± 0.75 0.87 ± 0.34
Beam Search (beam size 20) 2.14 ± 0.72 2.35 ± 1.01 3.23 ± 0.93 1.81 ± 0.87 2.50 ± 0.72 2.35 ± 0.98 2.63 ± 0.85 3.40 ± 0.77 0.77 ± 0.42

Repetition control (WD)
Extrep bigram WD -0.5 2.66 ± 0.56 2.56 ± 0.92 3.57 ± 0.64 2.19 ± 0.94 2.67 ± 0.62 2.61 ± 0.87 3.08 ± 0.78 3.60 ± 0.57 0.75 ± 0.43
Extrep bigram WD -1.25 2.84 ± 0.39 2.91 ± 0.90 3.59 ± 0.64 2.32 ± 0.98 2.63 ± 0.60 2.86 ± 0.89 3.21 ± 0.71 3.64 ± 0.62 0.72 ± 0.45
Extrep bigram WD -3.5 2.90 ± 0.30 2.95 ± 0.86 3.73 ± 0.50 2.45 ± 1.03 2.55 ± 0.61 2.88 ± 0.80 3.27 ± 0.79 3.68 ± 0.49 0.80 ± 0.40
Extrep bigram WD -inf 2.82 ± 0.43 2.96 ± 0.86 3.64 ± 0.58 2.40 ± 0.96 2.65 ± 0.69 2.86 ± 0.82 3.31 ± 0.69 3.66 ± 0.59 0.91 ± 0.29
Repetition-controlled baseline 2.89 ± 0.39 2.89 ± 0.89 3.66 ± 0.56 2.50 ± 0.99 2.70 ± 0.64 2.96 ± 0.92 3.25 ± 0.71 3.68 ± 0.54 0.87 ± 0.34

Question control (CT)
Question-controlled CT 0 2.95 ± 0.25 2.92 ± 0.90 3.70 ± 0.54 2.49 ± 0.97 2.48 ± 0.72 2.85 ± 0.93 3.29 ± 0.69 3.56 ± 0.66 0.86 ± 0.35
Question-controlled CT 1 2.88 ± 0.33 2.94 ± 0.93 3.59 ± 0.66 2.47 ± 0.95 2.52 ± 0.69 2.85 ± 0.90 3.32 ± 0.73 3.63 ± 0.55 0.85 ± 0.36
Question-controlled CT 4 2.88 ± 0.38 2.88 ± 0.94 3.59 ± 0.73 2.42 ± 1.07 2.55 ± 0.66 2.82 ± 0.85 3.37 ± 0.74 3.63 ± 0.59 0.84 ± 0.37
Question-controlled CT 7 2.88 ± 0.37 3.07 ± 0.90 3.67 ± 0.54 2.42 ± 0.98 2.75 ± 0.58 2.97 ± 0.84 3.23 ± 0.76 3.53 ± 0.76 0.80 ± 0.40
Question-controlled CT 10 2.74 ± 0.46 2.90 ± 0.93 3.70 ± 0.50 2.43 ± 1.04 2.71 ± 0.57 2.72 ± 0.88 3.12 ± 0.73 3.59 ± 0.66 0.79 ± 0.41
Question-controlled CT 10 (boost) 2.76 ± 0.49 2.84 ± 0.94 3.60 ± 0.64 2.26 ± 0.97 2.94 ± 0.57 2.83 ± 0.94 3.18 ± 0.80 3.52 ± 0.67 0.72 ± 0.45

Specificity control (CT)
Specificity-controlled CT 0 2.83 ± 0.40 2.96 ± 0.93 3.62 ± 0.58 2.42 ± 0.99 2.60 ± 0.56 2.86 ± 0.89 3.29 ± 0.70 3.66 ± 0.60 0.72 ± 0.45
Specificity-controlled CT 2 2.90 ± 0.36 2.78 ± 1.00 3.60 ± 0.64 2.37 ± 0.93 2.66 ± 0.66 2.80 ± 0.96 3.14 ± 0.77 3.50 ± 0.63 0.81 ± 0.39
Specificity-controlled CT 4 2.92 ± 0.27 2.81 ± 0.88 3.65 ± 0.59 2.34 ± 1.02 2.57 ± 0.62 2.80 ± 0.78 3.25 ± 0.78 3.50 ± 0.66 0.86 ± 0.35
Specificity-controlled CT 7 2.89 ± 0.32 3.00 ± 0.94 3.64 ± 0.67 2.53 ± 1.03 2.56 ± 0.66 2.90 ± 0.90 3.34 ± 0.70 3.59 ± 0.60 0.82 ± 0.39
Specificity-controlled CT 9 2.90 ± 0.35 2.83 ± 0.87 3.61 ± 0.62 2.40 ± 0.97 2.31 ± 0.74 2.84 ± 0.83 3.07 ± 0.81 3.58 ± 0.56 0.88 ± 0.32

Specificity control (WD)
Specificity-controlled WD -10 2.85 ± 0.43 2.43 ± 0.99 3.34 ± 0.83 2.15 ± 0.91 2.31 ± 0.69 2.38 ± 0.94 3.03 ± 0.75 3.33 ± 0.70 0.71 ± 0.45
Specificity-controlled WD -4 2.90 ± 0.30 2.78 ± 0.95 3.55 ± 0.63 2.41 ± 0.92 2.52 ± 0.66 2.64 ± 0.93 3.28 ± 0.73 3.56 ± 0.62 0.82 ± 0.38
Specificity-controlled WD 4 2.95 ± 0.21 2.99 ± 0.86 3.65 ± 0.55 2.49 ± 0.90 2.65 ± 0.55 3.00 ± 0.78 3.37 ± 0.59 3.63 ± 0.50 0.93 ± 0.25
Specificity-controlled WD 6 2.93 ± 0.26 2.96 ± 0.90 3.52 ± 0.76 2.41 ± 1.04 2.58 ± 0.66 3.06 ± 0.80 3.24 ± 0.76 3.50 ± 0.66 0.93 ± 0.26
Specificity-controlled WD 8 2.78 ± 0.52 2.40 ± 1.23 2.67 ± 1.25 1.86 ± 0.97 2.03 ± 0.87 2.55 ± 1.14 2.61 ± 1.05 2.91 ± 0.91 0.92 ± 0.28

Response-related control (WD)
Response-related controlled WD -10 2.86 ± 0.44 2.48 ± 0.98 3.42 ± 0.74 2.02 ± 0.93 2.38 ± 0.75 2.53 ± 0.94 2.84 ± 0.80 3.14 ± 0.75 0.91 ± 0.29
Response-related controlled WD 0 2.96 ± 0.23 3.01 ± 0.90 3.72 ± 0.54 2.73 ± 1.00 2.56 ± 0.67 2.92 ± 0.84 3.37 ± 0.72 3.73 ± 0.52 0.82 ± 0.38
Response-related controlled WD 5 2.90 ± 0.33 2.88 ± 0.90 3.51 ± 0.63 2.41 ± 1.01 2.53 ± 0.65 2.85 ± 0.90 3.27 ± 0.73 3.49 ± 0.63 0.82 ± 0.39
Response-related controlled WD 10 2.78 ± 0.43 2.39 ± 1.04 3.06 ± 0.90 1.97 ± 0.99 2.22 ± 0.67 2.57 ± 1.01 3.03 ± 0.76 3.16 ± 0.63 0.75 ± 0.43
Response-related controlled WD 13 2.71 ± 0.57 2.10 ± 1.13 2.54 ± 1.12 1.81 ± 1.07 2.14 ± 0.84 2.33 ± 1.06 2.69 ± 0.83 2.70 ± 0.88 0.62 ± 0.49

Table 4.7: Raw scores (mean ± std.) for all models and human evaluation metrics.

The first eight columns are Likert metrics on a 1–4 scale (except Avoiding Repeti-
tion, which is a 1–3 scale), where higher is better (except Inquisitiveness, which has an
optimal score of 3). The last column, Persona Retrieval, is on a scale from 0 to 1 where
higher is better.

The maximum of each column (excluding Human row) is in bold.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 93

Model Avoiding Rep. Engage Fluency Humanness Inquisitive Interesting Listening Make Sense

Human and baselines
* Human 2.79 ± 0.12 3.04 ± 0.11 3.36 ± 0.12 3.35 ± 0.11 2.44 ± 0.12 2.92 ± 0.11 3.32 ± 0.13 3.68 ± 0.11
* Greedy Search 2.08 ± 0.10 2.24 ± 0.11 3.03 ± 0.10 1.75 ± 0.12 1.95 ± 0.10 2.29 ± 0.13 2.62 ± 0.10 3.23 ± 0.10
* Beam Search (beam size 20) 2.08 ± 0.11 2.29 ± 0.11 3.09 ± 0.13 1.71 ± 0.13 2.42 ± 0.11 2.29 ± 0.14 2.47 ± 0.12 3.35 ± 0.13

Repetition control (WD)
Extrep bigram WD -0.5 2.62 ± 0.10 2.54 ± 0.12 3.35 ± 0.12 2.13 ± 0.11 2.63 ± 0.11 2.56 ± 0.11 2.93 ± 0.11 3.48 ± 0.11
Extrep bigram WD -1.25 2.78 ± 0.09 2.82 ± 0.13 3.40 ± 0.12 2.27 ± 0.12 2.54 ± 0.09 2.76 ± 0.10 3.05 ± 0.11 3.53 ± 0.14
Extrep bigram WD -3.5 2.83 ± 0.11 2.93 ± 0.10 3.56 ± 0.10 2.43 ± 0.11 2.47 ± 0.11 2.83 ± 0.10 3.14 ± 0.10 3.62 ± 0.12
Extrep bigram WD -inf 2.74 ± 0.11 2.87 ± 0.14 3.49 ± 0.12 2.32 ± 0.13 2.56 ± 0.11 2.75 ± 0.12 3.13 ± 0.12 3.59 ± 0.12
* Repetition-controlled baseline 2.86 ± 0.12 2.82 ± 0.12 3.53 ± 0.10 2.40 ± 0.11 2.62 ± 0.13 2.84 ± 0.12 3.10 ± 0.11 3.58 ± 0.14

Question control (CT)
Question-controlled CT 0 2.87 ± 0.12 2.84 ± 0.13 3.51 ± 0.10 2.46 ± 0.11 2.36 ± 0.09 2.76 ± 0.09 3.10 ± 0.10 3.49 ± 0.12
Question-controlled CT 1 2.82 ± 0.11 2.88 ± 0.11 3.42 ± 0.10 2.46 ± 0.12 2.47 ± 0.11 2.79 ± 0.13 3.14 ± 0.11 3.55 ± 0.10
Question-controlled CT 4 2.78 ± 0.12 2.88 ± 0.10 3.47 ± 0.11 2.40 ± 0.09 2.53 ± 0.13 2.83 ± 0.13 3.24 ± 0.11 3.59 ± 0.10
* Question-controlled CT 7 2.81 ± 0.10 2.99 ± 0.11 3.54 ± 0.09 2.35 ± 0.11 2.66 ± 0.12 2.92 ± 0.12 3.11 ± 0.10 3.47 ± 0.10
Question-controlled CT 10 2.67 ± 0.13 2.87 ± 0.11 3.52 ± 0.12 2.35 ± 0.12 2.63 ± 0.12 2.66 ± 0.10 2.94 ± 0.11 3.53 ± 0.12
Question-controlled CT 10 (boost) 2.68 ± 0.12 2.74 ± 0.09 3.42 ± 0.12 2.19 ± 0.13 2.79 ± 0.11 2.74 ± 0.11 3.00 ± 0.12 3.45 ± 0.13

Specificity control (CT)
Specificity-controlled CT 0 2.79 ± 0.10 2.93 ± 0.09 3.44 ± 0.12 2.38 ± 0.11 2.56 ± 0.12 2.84 ± 0.12 3.12 ± 0.13 3.61 ± 0.11
Specificity-controlled CT 2 2.78 ± 0.12 2.74 ± 0.11 3.39 ± 0.13 2.31 ± 0.13 2.56 ± 0.13 2.74 ± 0.12 2.99 ± 0.11 3.47 ± 0.10
Specificity-controlled CT 4 2.82 ± 0.10 2.80 ± 0.13 3.44 ± 0.14 2.32 ± 0.13 2.51 ± 0.12 2.78 ± 0.15 3.09 ± 0.13 3.46 ± 0.13
Specificity-controlled CT 7 2.81 ± 0.12 2.91 ± 0.13 3.43 ± 0.11 2.45 ± 0.10 2.49 ± 0.11 2.81 ± 0.12 3.15 ± 0.12 3.55 ± 0.11
Specificity-controlled CT 9 2.80 ± 0.13 2.78 ± 0.10 3.41 ± 0.12 2.35 ± 0.13 2.28 ± 0.11 2.79 ± 0.11 2.91 ± 0.11 3.51 ± 0.12

Specificity control (WD)
Specificity-controlled WD -10 2.76 ± 0.11 2.41 ± 0.12 3.19 ± 0.12 2.15 ± 0.11 2.28 ± 0.13 2.35 ± 0.12 2.89 ± 0.11 3.28 ± 0.12
Specificity-controlled WD -4 2.83 ± 0.10 2.76 ± 0.12 3.37 ± 0.10 2.36 ± 0.11 2.46 ± 0.11 2.62 ± 0.12 3.14 ± 0.09 3.52 ± 0.11
* Specificity-controlled WD 4 2.84 ± 0.10 2.96 ± 0.12 3.45 ± 0.13 2.44 ± 0.12 2.56 ± 0.09 2.94 ± 0.11 3.20 ± 0.10 3.54 ± 0.11
Specificity-controlled WD 6 2.81 ± 0.09 2.91 ± 0.10 3.34 ± 0.09 2.31 ± 0.11 2.53 ± 0.12 2.93 ± 0.12 3.09 ± 0.10 3.41 ± 0.12
Specificity-controlled WD 8 2.70 ± 0.11 2.39 ± 0.12 2.54 ± 0.12 1.80 ± 0.13 2.00 ± 0.10 2.49 ± 0.12 2.47 ± 0.10 2.87 ± 0.11

Response-related control (WD)
Response-related controlled WD -10 2.77 ± 0.12 2.45 ± 0.12 3.26 ± 0.11 1.96 ± 0.10 2.31 ± 0.12 2.47 ± 0.12 2.73 ± 0.11 3.12 ± 0.12
Response-related controlled WD 0 2.87 ± 0.12 2.97 ± 0.11 3.55 ± 0.09 2.62 ± 0.11 2.48 ± 0.10 2.88 ± 0.12 3.21 ± 0.09 3.70 ± 0.10
Response-related controlled WD 5 2.79 ± 0.10 2.83 ± 0.09 3.35 ± 0.12 2.40 ± 0.12 2.51 ± 0.13 2.80 ± 0.13 3.13 ± 0.12 3.41 ± 0.12
Response-related controlled WD 10 2.74 ± 0.11 2.42 ± 0.12 2.93 ± 0.11 1.95 ± 0.12 2.20 ± 0.12 2.56 ± 0.12 2.90 ± 0.12 3.12 ± 0.10
Response-related controlled WD 13 2.63 ± 0.12 2.06 ± 0.11 2.40 ± 0.09 1.74 ± 0.11 2.07 ± 0.11 2.25 ± 0.12 2.49 ± 0.14 2.63 ± 0.10

Table 4.8: Calibrated scores (mean ± std.) for all models and human evaluation metrics.

The first eight columns are Likert metrics on a 1–4 scale (except Avoiding Repeti-
tion, which is a 1–3 scale), where higher is better (except Inquisitiveness, which has an
optimal score of 3). The last column, Persona Retrieval, is on a scale from 0 to 1 where
higher is better.

The maximum of each column (excluding Human row) is in bold.

Rows marked with * are the six models included in Figures 4.5 and 4.6.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 94

Extrep

bigram -0.5 Extrep

bigram -1.25 Extrep

bigram -3.5 Extrep

bigram -inf

Extrep bigram -3.5

+ unigram -inf

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Fl
ue

nc
y

Repetition control setting

Beam search baseline
Greedy search baseline
Human

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Fl
ue

nc
y

Question-Asking Control Level (CT)

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

0
More

Generic

1 2 3 4 5 6 7 8 9
More

Specific

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Fl
ue

nc
y

Specificity Control Level (CT)

Specificity-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Fl
ue

nc
y

Specificity Control Level (WD)

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

-15
More

unrelated

-10 -5 0
No control

5 10 15
More

related

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Fl
ue

nc
y

Response-relatedness Control Level (WD)

Response-related controlled WD
Beam search baseline
Human
Repetition-controlled baseline+

Extrep

bigram -0.5 Extrep

bigram -1.25 Extrep

bigram -3.5 Extrep

bigram -inf

Extrep bigram -3.5

+ unigram -inf

2.0

2.2

2.4

2.6

2.8

3.0

En
ga

gi
ng

ne
ss

Beam search baseline
Greedy search baseline
Human

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions

2.0

2.2

2.4

2.6

2.8

3.0

En
ga

gi
ng

ne
ss

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

0
More

Generic

1 2 3 4 5 6 7 8 9
More

Specific

2.0

2.2

2.4

2.6

2.8

3.0

En
ga

gi
ng

ne
ss

Specificity-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific

2.0

2.2

2.4

2.6

2.8

3.0

En
ga

gi
ng

ne
ss

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

-15
More

unrelated

-10 -5 0
No control

5 10 15
More

related

2.0

2.2

2.4

2.6

2.8

3.0

En
ga

gi
ng

ne
ss

Response-related controlled WD
Beam search baseline
Human
Repetition-controlled baseline+

Extrep

bigram -0.5 Extrep

bigram -1.25 Extrep

bigram -3.5 Extrep

bigram -inf

Extrep bigram -3.5

+ unigram -inf

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Hu
m

an
ne

ss

Beam search baseline
Greedy search baseline
Human

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Hu
m

an
ne

ss

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

0
More

Generic

1 2 3 4 5 6 7 8 9
More

Specific

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Hu
m

an
ne

ss

Specificity-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Hu
m

an
ne

ss

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

-15
More

unrelated

-10 -5 0
No control

5 10 15
More

related

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Hu
m

an
ne

ss

Response-related controlled WD
Beam search baseline
Human
Repetition-controlled baseline+

Extrep

bigram -0.5 Extrep

bigram -1.25 Extrep

bigram -3.5 Extrep

bigram -inf

Extrep bigram -3.5

+ unigram -inf

2.6

2.8

3.0

3.2

3.4

3.6

3.8

M
ak

in
g

Se
ns

e

Beam search baseline
Greedy search baseline
Human

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions

2.6

2.8

3.0

3.2

3.4

3.6

3.8

M
ak

in
g

Se
ns

e

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

0
More

Generic

1 2 3 4 5 6 7 8 9
More

Specific

2.6

2.8

3.0

3.2

3.4

3.6

3.8

M
ak

in
g

Se
ns

e

Specificity-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific

2.6

2.8

3.0

3.2

3.4

3.6

3.8

M
ak

in
g

Se
ns

e

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

-15
More

unrelated

-10 -5 0
No control

5 10 15
More

related

2.6

2.8

3.0

3.2

3.4

3.6

3.8

M
ak

in
g

Se
ns

e

Response-related controlled WD
Beam search baseline
Human
Repetition-controlled baseline+

Extrep

bigram -0.5 Extrep

bigram -1.25 Extrep

bigram -3.5 Extrep

bigram -inf

Extrep bigram -3.5

+ unigram -inf

2.0

2.2

2.4

2.6

2.8

In
qu

isi
tiv

en
es

s

Beam search baseline
Greedy search baseline
Human

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions

2.0

2.2

2.4

2.6

2.8

In
qu

isi
tiv

en
es

s

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

0
More

Generic

1 2 3 4 5 6 7 8 9
More

Specific

2.0

2.2

2.4

2.6

2.8

In
qu

isi
tiv

en
es

s

Specificity-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific

2.0

2.2

2.4

2.6

2.8

In
qu

isi
tiv

en
es

s

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

-15
More

unrelated

-10 -5 0
No control

5 10 15
More

related

2.0

2.2

2.4

2.6

2.8

In
qu

isi
tiv

en
es

s

Response-related controlled WD
Beam search baseline
Human
Repetition-controlled baseline+

Extrep

bigram -0.5 Extrep

bigram -1.25 Extrep

bigram -3.5 Extrep

bigram -inf

Extrep bigram -3.5

+ unigram -inf

2.2

2.4

2.6

2.8

3.0

In
te

re
st

in
gn

es
s

Beam search baseline
Greedy search baseline
Human

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions

2.2

2.4

2.6

2.8

3.0

In
te

re
st

in
gn

es
s

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

0
More

Generic

1 2 3 4 5 6 7 8 9
More

Specific

2.2

2.4

2.6

2.8

3.0

In
te

re
st

in
gn

es
s

Specificity-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific

2.2

2.4

2.6

2.8

3.0

In
te

re
st

in
gn

es
s

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

-15
More

unrelated

-10 -5 0
No control

5 10 15
More

related

2.2

2.4

2.6

2.8

3.0

In
te

re
st

in
gn

es
s

Response-related controlled WD
Beam search baseline
Human
Repetition-controlled baseline+

Extrep

bigram -0.5 Extrep

bigram -1.25 Extrep

bigram -3.5 Extrep

bigram -inf

Extrep bigram -3.5

+ unigram -inf

2.0

2.2

2.4

2.6

2.8

3.0

Av
oi

di
ng

 R
ep

et
iti

on

Beam search baseline
Greedy search baseline
Human

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions

2.0

2.2

2.4

2.6

2.8

3.0

Av
oi

di
ng

 R
ep

et
iti

on

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

0
More

Generic

1 2 3 4 5 6 7 8 9
More

Specific

2.0

2.2

2.4

2.6

2.8

3.0

Av
oi

di
ng

 R
ep

et
iti

on

Specificity-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific

2.0

2.2

2.4

2.6

2.8

3.0

Av
oi

di
ng

 R
ep

et
iti

on

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

-15
More

unrelated

-10 -5 0
No control

5 10 15
More

related

2.0

2.2

2.4

2.6

2.8

3.0

Av
oi

di
ng

 R
ep

et
iti

on

Response-related controlled WD
Beam search baseline
Human
Repetition-controlled baseline+

Extrep

bigram -0.5 Extrep

bigram -1.25 Extrep

bigram -3.5 Extrep

bigram -inf

Extrep bigram -3.5

+ unigram -inf

2.4

2.6

2.8

3.0

3.2

3.4

Lis
te

ni
ng

Beam search baseline
Greedy search baseline
Human

0
Fewer

Questions

1 2 3 4 5 6 7 8 9 10 10 (boost)
More

Questions

2.4

2.6

2.8

3.0

3.2

3.4

Lis
te

ni
ng

Question-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

0
More

Generic

1 2 3 4 5 6 7 8 9
More

Specific

2.4

2.6

2.8

3.0

3.2

3.4

Lis
te

ni
ng

Specificity-controlled CT
Beam search baseline
Human
Repetition-controlled baseline

-10
More

Generic

-8 -6 -4 -2 0
No control

2 4 6 8 10
More

Specific

2.4

2.6

2.8

3.0

3.2

3.4

Lis
te

ni
ng

Specificity-controlled WD
Beam search baseline
Human
Repetition-controlled baseline

-15
More

unrelated

-10 -5 0
No control

5 10 15
More

related

2.4

2.6

2.8

3.0

3.2

3.4

Lis
te

ni
ng

Response-related controlled WD
Beam search baseline
Human
Repetition-controlled baseline+

Figure 4.11: Calibrated human evaluation scores for all models. This is the same data as in
Table 4.8. Note: ‘Repetition-controlled baseline+’ in the rightmost column is ‘Response-
related controlled WD 0’ in Table 4.8. See Table 4.5 for explanation.

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 95

4.12 Conclusion

What makes a good conversation? Through our evaluation, we showed that a good

conversation is about balance – controlling for the right level of repetition, specificity and

question-asking is important for overall quality. We also found that conversational aspects

such as interestingness, listening, and inquisitiveness are all important – though optimizing

these can introduce a trade-off against certain types of errors (such as repetitive, disfluent, or

nonsensical output). Secondly, multi-turn evaluation is essential to study what makes a good

conversation – multiple turns are required to reveal issues such as repetition, consistency,

and question-asking frequency. Lastly, what do we mean by ‘good’? Although humanness

and engagingness are both commonly used as overall quality metrics, the two are very

different. While our models achieved close-to-human scores on engagingness, they failed to

get close on humanness – showing that a chatbot need not be human-like to be enjoyable.

This striking result also demonstrates the importance of measuring more than one quality

metric when evaluating dialogue agents. The evaluation difficulties I encountered in this

work – the unnaturalness of the task, and the low-bar of crowdworker-measured human

performance – motivated my work on real-user conversations in the Alexa Prize (Chapter 6).

Controlling generation. This chapter shows that neural generative systems have systemic

problems when applied to open-ended dialogue, some of which (e.g., repetition) are only

observable in the multi-turn setting. Furthermore, we showed that control of low-level

attributes offers one practical way to correct these problems, yielding large improvements

to overall quality – in our case, comparable to systems trained on much more data. Of the

two control methods tested in this chapter, conditional training is more stable and principled

than weighted decoding. Indeed, since the publication of this work, conditional training is

more widely-used; for example Keskar et al. (2019) do large scale conditional pretraining.

More generally, there is a trend towards including meta-data about the task to be performed

in the textual input; see Section 2.4.

Large pretrained neural generative dialogue. Since this work, the most noticeable

performance improvements in neural generative dialogue models have been achieved by

larger pretrained models like DialoGPT (Zhang et al., 2020b), Meena (Adiwardana et al.,

CHAPTER 4. CONTROLLING ATTRIBUTES OF CHITCHAT DIALOGUE 96

2020) and BlenderBot (Roller et al., 2021). These models are trained on larger, more diverse

datasets than PersonaChat – usually derived from Reddit. DialoGPT and Meena both report

a type of human-level performance for their best models; in both cases this is measured with

respect to crowdworker conversationalists.

Decoding techniques remain varied. Both DialoGPT and Meena use sample-and-rank:

that is, use top-k (or natural sampling with a lowered temperature) to sample several

candidates, then rerank them by the model’s probability (Meena) or for mutual information

via a backwards model’s probability (DialoGPT). They find that sample-and-rank produces

more interesting and diverse utterances that are preferred to greedy or beam search in

human evaluation. Conversely, BlenderBot uses beam search (a comparison to top-k and

sampling-and-rank is inconclusive). However, they they emphasize that for beam search,

choosing the right beam size, controlling output length, and repetition blocking (similarly to

this chapter) is very important.

Both BlenderBot and Meena note that cross-turn repetition (extrep in this chapter)

and parroting the partner (partnerrep) are still problems, along with self-contradiction

and commonsense. In general, it seems that larger models offer a better tradeoff between

sensibleness (or making sense, in this chapter) and specificity – in fact, Adiwardana et al.

argue that achieving lower perplexity is the key to improving the tradeoff.

Chapter 5

The Effect of Pretraining for Story
Generation

5.1 Introduction

As we saw in Chapter 3, neural generation of longer, multi-sentence pieces of text is difficult,

even when provided with detailed source material. At the time of the work in this chapter,

pretrained generative language models were beginning to show the ability to generate much

higher-quality samples of long, open-ended text (Section 1.3.2). In this chapter, we aim to

understand how pretraining affects open-ended generation, while also focusing on the vital

role of the decoding algorithm (Problem 1, Section 1.3.3). For our investigation, we choose

open-ended generation in its purest form – unconstrained narrative generation, given a loose

prompt.

In 2018, large-scale neural models such as ELMo (Peters et al., 2018), BERT (Devlin

et al., 2019) and OpenAI GPT (Radford et al., 2018) emerged as a dominant approach in

NLP. By pretraining on massive amounts of unlabeled text (often orders of magnitude larger

than the the target task’s labeled dataset), these models achieve state-of-the-art performance

across a variety of Natural Language Understanding benchmarks. In particular, the OpenAI

GPT2 language model (Radford et al., 2019) achieved state-of-the-art performance on several

language modeling benchmarks, even in a zero-shot setting. While GPT2’s performance as a

language model is undeniable, its performance as a text generator is much less clear. Though

97

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 98

the model has generated certain impressive samples of text – such as a widely-circulated

passage about Ovid’s Unicorn (Radford et al., 2019) – there has been no detailed study to

formalize these observations.

In this chapter, we perform an in-depth study of the properties of text generated by GPT2-

117 (aka GPT2-small; the smallest version of GPT2) in the context of story generation.

By comparing to a state-of-the-art, specialized-architecture neural story generation model

(Fan et al., 2018b), we ask the following questions. In what ways does a large amount of

open-domain pretraining data change the characteristics of generated text? In what ways

does it make no difference? And is a task-specific architecture necessary?

As discussed in Section 1.3.3, for any probabilistic language model, the generated text

is strongly affected by the choice of decoding algorithm – this is especially true for open-

ended text generation tasks such as storytelling and chitchat dialogue (Kulikov et al., 2019;

Holtzman et al., 2020). Nevertheless, most natural language generation papers evaluate

only one decoding algorithm – this is often due to the time and expense required for human

evaluation. For example, Fan et al. use top-k sampling (a decoding algorithm in which k

governs the quality-diversity tradeoff; see Section 2.6.2), but only evaluate one value of

k. However, evaluating one k gives an incomplete view of the generation system – several

researchers have emphasized the importance of evaluating generation systems over the entire

quality-diversity spectrum, rather than a single point on it (Caccia et al., 2018; Hashimoto

et al., 2019).

In this study, we prioritize evaluating text across the whole k spectrum, and measuring

many different automatic metrics, rather than a few human metrics. Though the lack of

human evaluation limits our ability to measure overall quality (Liu et al., 2016; Novikova

et al., 2017; Hashimoto et al., 2019), we are able to produce an objectively defined, richly

detailed and reproducible evaluation of the generated text. To our knowledge, this work was

the first comprehensive analysis of the characteristics of GPT2-generated text. Our study

provides insight into the effect of large-scale pretraining on open-ended natural language

generation, as well as the effect of k on text generated with top-k sampling. We hope our

results will inform other researchers’ choice of models, pretraining schemes, and decoding

algorithms – decisions that can often feel like blind choices. To enable readers to browse the

generated text, conduct their own evaluations, or run our evaluations on their own text, we

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 99

Prompt: You just discovered England’s biggest secret: every time they say long live the queen it
extends the queens life.

Human-Written Story: I am immortal, I have inside me blood of kings. My name in Charles
Windsor and I am heir to a throne. Prince of Wales, they’ve called me that my entire life and now I
lay on my death bed and my mother - still going strong. I’m not sure how it’s possible but she
seems ageless, almost timeless. My whole life I’ve waited for that [...]

Fusion Model (k = 10): I have no idea when my
father would come to visit this place, I was
always so excited. I was always so scared. I had
to go back to work. I was a little scared of him,
but when I was younger, he had never come in for
a visit. His mother told me, “I’m so scared”, as
he always did. She never talked to me about
anything [...]

GPT2-117 (k = 10): * ” So what are we going
to do? “ * It was the first time she asked me this
question that I ever had asked her. It has taken
years but finally I am finally able to do it. It
seems that this queen is the queen of England
and she’s finally the one to tell me that this queen
is the reason why she’s not being allowed to die.
[...]

Fusion Model (k = 1000): “Where am I? What
happened?” “Having been working on my job
for over 6 hours now, I do not know how you
worked!” “I have been working for the last three
years. Surely I am an ancient god now.” The bar
patrons snickered. “Hello?” “Those last three
years have been worse than a year ago.” Pain.
[...]

GPT2-117 (k = 1000): It was an odd occasion
for the Queen of England to meet with her. The
plane sat idle at 3:26 PM on a Thursday night.
Yesterday, the Queen had taken it upon herself to
try and get a good look at the plane which had
recently been found abandoned. A copious
amount of curious glances from around the room
until [...]

Table 5.1: A prompt and human story from the dataset, plus the models’ top-k generated
stories, for two values of k.

publicly release our generated stories and evaluation code.1

5.2 Background

WritingPrompts dataset WritingPrompts (Fan et al., 2018b) is a story generation dataset

containing 303,358 human-written (prompt, story) pairs collected from the /r/WritingPrompts

subreddit – a forum where Reddit users compose short stories inspired by other users’

prompts. An example can be seen at the top of Table 5.1. The mean prompt length is 28.4

words and the mean story length is 734.5 words. The dataset is 887MB of text in total,

contains 200 million story words, and is divided into 90% train, 5% validation and 5% test

splits.

1Code and generated stories at https://github.com/abisee/story-generation-eval

https://github.com/abisee/story-generation-eval

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 100

The Fusion Model The Fusion Model is a state-of-the-art neural story generation ar-

chitecture trained on the WritingPrompts dataset (Fan et al., 2018b). It is based on the

Convolutional Seq2seq model of Gehring et al. (2017) and aims to improve two aspects of

story generation: modeling long-range context and increasing relevance of the story to the

prompt. To achieve the former, the model uses a multi-scale gated self-attention mechanism.

For the latter, the model uses a fusion mechanism (Sriram et al., 2018) in which one seq2seq

model is trained on the task, then frozen, and a second seq2seq model is trained on the task

with access to the first model’s hidden states. Compared to the Convolutional Seq2seq model

and other baselines, the Fusion Model achieves improved perplexity, story-prompt relevance

and human preference scores. The Fusion Model has a vocabulary of 104,960 words, a

3-layer encoder and 8-layer decoder in the first seq2seq model, and a 5-layer encoder and

5-layer decoder in the second model – in total, 255.4 million parameters. Fan et al. use

top-k sampling (Section 2.6.2) with k = 10 to generate stories.

GPT2-117 GPT2 (Radford et al., 2019) is a large Transformer language model trained

on WebText, a diverse corpus of internet text (not publicly released) containing over 8

million documents equalling 40GB of text in total. The full-size GPT2 model, which has

1542 million parameters, obtains state-of-the-art results on a variety of language modeling

and other Natural Language Understanding benchmarks. At the time of our experiments,

Radford et al. had only released the smallest of the models, known as GPT2-117.2 This

model, which we use for our experiments, has 12 layers and 117 million parameters. Like

the full-size GPT2 model, it has a vocabulary of 50,257 byte-pair-encoding (BPE) tokens

(see Section 2.4). The model has a context size of 1024, meaning it can process text up

to 1024 BPE tokens in length. Radford et al. show impressive samples of generated text,

primarily from the full-size GPT2 model, generated with top-k sampling (Section 2.6.2)

with k = 40.
2Since publishing this work, the larger GPT2 models have been publicly released.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 101

5.3 Experimental Details

Preprocessing Fan et al. truncate WritingPrompts stories to 1000 words before training

and testing. Due to the limited context size of GPT2-117, we additionally exclude (prompt,

story) examples that are longer than 1024 BPE tokens when concatenated. The resulting

dataset, which we call WritingPrompts-1024, has 192,364 training, 11,115 validation, and

10,686 test examples.

The Fusion Model We use the pretrained version of the Fusion Model, which is available

in the Fairseq framework (Ott et al., 2019). For comparability with GPT2-117, we evaluate

the Fusion Model on WritingPrompts-1024 (see Table 5.2), obtaining perplexities similar to

those reported by Fan et al. on the full WritingPrompts dataset.

GPT2-117 In order for the model to condition on prompts and generate stylistically correct

stories, we finetune GPT2-117 on WritingPrompts-1024.3 We frame WritingPrompts as a

language modeling task, representing the prompt and story as a single sequence separated

by a delimiter token. We finetune the pretrained model until convergence using the default

hyperparameters provided in the HuggingFace repository (though we reduce batch size to fit

on a single GPU), and use the finetuned model for all further evaluations.

We compute the word-level perplexity of the finetuned GPT2-117 on the WritingPrompts-

1024 dataset. That is, we normalize the total negative log probability of the target text by

the number of word-level (i.e., Fusion Model) tokens, not the number of BPE tokens. This

enables us to compare the perplexities of the two models, despite the tokenization difference

(Radford et al., 2019). The finetuned GPT2-117 obtains a test set word-perplexity of 31.544

– six points lower than the Fusion Model.

Generation settings For both models, we generate stories using top-k sampling, obtaining

1000 stories (from 1000 different test set prompts) for several values of k ranging from 1

3We use the PyTorch re-implementation of GPT2-117 available at https://github.com/
huggingface/pytorch-transformers

4This is similar to other GPT2-117 WritingPrompts finetuning experiments (Mao et al., 2019; Ziegler et al.,
2019).

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 102

Model Valid ppl Test ppl
Fusion Model 37.05 37.54
GPT2-117 31.13 31.54

Table 5.2: Word-level perplexities on WritingPrompts-1024 for the Fusion Model and
finetuned GPT2-117.

to vocabulary size. We use softmax temperature 1. Like Fan et al., we generate exactly

150-word stories and block the Fusion Model from generating <UNK>.

To obtain human-written stories for comparison, we truncate WritingPrompts-1024 test

set stories to 150 words (discarding those shorter than 150 words). To reduce variance,

measurements for human stories are computed over this entire set (rather than just 1000

stories).

5.4 Story-prompt Relatedness

Prior research has observed that seq2seq systems frequently produce text that is unrelated to

the provided context – particularly under likelihood-maximizing decoding algorithms such

as beam search. The issue has inspired multiple explanations (Jiang and de Rijke, 2018)

and multiple solutions – such as alternative training objectives (Li et al., 2016a), decoding

objectives Baheti et al. (2018), and architectural changes (Fan et al., 2018b). This issue was

also explored in Chapter 4. In this section, we measure how strongly the models condition

on the prompt.

Prompt ranking accuracy For both models, we compute prompt ranking accuracy (Fan

et al., 2018b), which measures the language model’s sensitivity to the provided prompt.

Following the methodology of Fan et al., we randomly select 1000 human-written stories

from the test set, and measure the probability (according to the model) of each story

conditioned on 10 different prompts – the true prompt, plus nine randomly selected prompts.

The prompt ranking accuracy of a model is the percentage of cases in which the model

assigns a higher probability to the story under its true prompt than under all of the other nine.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 103

100 101 102 103 104 105

k (Top-k sampling)

0.05

0.10

St
or

y-
pr

om
pt

 se
nt

 si
m

Human
Fusion Model
GPT2-117

Figure 5.1: Compared to the Fusion Model, GPT2-117 produces stories that are more
semantically similar to the prompt. Similarity decreases as k increases.

We find that GPT2-117 scores 80.16% on this task, while the Fusion Model scores 39.8%.5

Random chance scores 10%. This striking result indicates that GPT2-117 conditions on the

prompt much more strongly than the Fusion Model. This is notable, especially because the

fusion technique is intended to improve story-prompt relevance.

N-gram similarity For n = 1, 2, 3, we measure the percentage of generated n-grams that

also appear in the prompt. For all n and k, we find that GPT2-117 has a higher overlap (i.e.,

copies more from the prompt) than the Fusion Model – see Figure 5.2. Furthermore, for

k < 100, the GPT2-117 overlap is generally much higher than human levels. Both these

phenomena can be seen in Table 5.1, where, for k = 10, GPT2-117 copies words such as

queen more often than both the Fusion Model and the human-written story.

Sentence embedding similarity To capture a higher-level notion of semantic similarity,

we measure story-prompt sentence similarity – the cosine similarity of story-prompt sen-

tence pairs, averaged by taking the mean over all pairs. Sentences are represented by the

embedding method of Arora et al. (2017) – a weighted average of the GloVe embeddings

(Pennington et al., 2014) of the words, with the first principal component removed. As

shown in Figure 5.1, we find a similar pattern as for n-gram similarity: GPT2-117 generates

5Fan et al. (2018b) report a prompt ranking accuracy of 16.3% for the Fusion Model. We provided the
authors with our prompt ranking accuracy code (which was built on top of the authors’ code). The authors
indicated that the discrepancy may be due to some code version changes between the time of their original
experiments and their code release.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 104

100 101 102 103 104 105

k (Top-k sampling)

16%

18%

20%

22%

%
 S

to
ry

 u
ni

gr
am

s i
n

pr
om

pt Human
Fusion Model
GPT2-117

(a) Percent of all story unigrams that are in the prompt.

100 101 102 103 104 105

k (Top-k sampling)

0%

1%

2%

3%

4%

5%

%
 S

to
ry

 b
ig

ra
m

s i
n

pr
om

pt Human
Fusion Model
GPT2-117

(b) Percent of all story bigrams that are in the prompt.

100 101 102 103 104 105

k (Top-k sampling)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

%
 S

to
ry

 tr
ig

ra
m

s i
n

pr
om

pt Human
Fusion Model
GPT2-117

(c) Percent of all story trigrams that are in the prompt.

Figure 5.2: n-gram similarity between prompt and story , for n = 1, 2, 3, for both models
and all k. GPT2-117 copies many more n-grams from the prompt than the Fusion Model.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 105

100 101 102 103 104 105

k (Top-k sampling)

0%

5%

10%

15%

Pr
om

pt
 e

nt
ity

 u
sa

ge
 ra

te

Human
Fusion Model
GPT2-117

(a) The proportion of all prompt named enti-
ties that are used in the story.

100 101 102 103 104 105

k (Top-k sampling)

0

1

2

3

4

Un

iq
ue

 n
am

ed
 e

nt
iti

es
 p

er
 st

or
y

Human
Fusion Model
GPT2-117

(b) The number of unique named entities that
appear in the story.

Figure 5.3: Prompt entity usage rate (left) and mean number of unique named entities in
the story (right), for both models and all k. GPT2-117 generally uses a larger proportion of
the prompt named entities, and more named entities overall, than the Fusion Model. Both
models generally use fewer named entities than human text when k is less than vocabulary
size.

sentences that are more similar to the prompt than the Fusion Model for all k, and both

models’ prompt similarity decreases as k increases.

Named entity usage Generally, most named entities mentioned in the prompt (such as

Queen and England in Table 5.1), should also be mentioned in the story. Using the spaCy

named entity recognizer,6 we measure the prompt entity usage rate, which is the percentage

of all prompt named entities that appear in the story.7 As shown in Figure 5.3, we find that

GPT2-117 uses more of the prompt named entities than the Fusion Model (as well as more

named entities overall), but both models use fewer named entities than humans when k is

less than vocabulary size.

These patterns can be seen in Table 5.1: GPT2-117 uses the prompt entities Queen and

England whereas the Fusion Model does not (for either k), and GPT2-117 uses specific time

entities such as Thursday and 3:26 PM. While the human story introduces highly-related

6https://spacy.io
7Given that we limit stories to 150 words, this percentage is lower than it would be if we generated longer

stories.

https://spacy.io

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 106

entities such as Charles Windsor and Prince of Wales that were not in the prompt, neither

model does this (for either k).

Conclusion In this section, we found that GPT2-117 conditions on the prompt much

more strongly than the Fusion Model – a result which holds both in language modeling

and generation settings. The latter result supports Radford et al.’s informal observation that

GPT2 has a ‘chameleon-like’ ability to ‘adapt to the style and content of the conditioning

text’.8 We speculate that GPT2-117’s stronger conditioning ability may derive from its

Transformer decoder architecture, whose powerful self-attention is used for story-prompt

attention. Though the Fusion Model uses a similar self-attention mechanism in the decoder

(i.e., story side), the prompt-story attention has a simpler formulation – for example, there

are no separate key and value vectors (Gehring et al., 2017). Lastly, we note that very

strong prompt-conditioning is not always a good thing – GPT2-117 often generates stories

that copy too much or too literally from the prompt when k is small (this can be seen in

Figure 5.2).

5.5 Coherence

A good story generation model should produce coherent text with a logical ordering of

events. Similarly, the underlying language model should be a good coherence scorer –

assigning higher probability to coherent text than incoherent text. Barzilay and Lapata

(2008) evaluate a coherence scorer by measuring its ability to rank shuffled human-written

text as less coherent than the original unshuffled text. We use this method to evaluate our

story generation models.

For each story in the test set, we select the first 15 sentences. We then produce 14

corrupted versions of the story by switching each pair of adjacent sentences. We use the

language model to compute the probability of each of the 14 corrupted stories, as well as

the original story. The model’s error rate is the percentage of cases in which it rates any

of the 14 corrupted candidates better than the original candidate. Random guessing yields

93.33% error. Both models perform well on this task – the Fusion Model has an error rate

8https://openai.com/blog/better-language-models/

https://openai.com/blog/better-language-models/

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 107

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Position of swapped sentences

6.5

7.0

7.5

M
ea

n
ra

nk
 (1

-1
4)

Fusion Model
GPT2-117

Figure 5.4: Sensitivity of the models to swapped sentences in different positions. A higher
mean rank indicates higher sensitivity (i.e., the model assigns lower probability) relative to
other positions. Both models are less sensitive to swapped sentences at the beginning of the
text, compared to later. GPT2-117 shows this pattern more strongly, indicating greater use
of context.

of 3.44% and GPT2-117 an error rate of 2.17%. This 36.92% error reduction indicates that

GPT2-117 is more sensitive to ordering of events.

We also investigate how the position of the swap affects its plausibility (relative to other

positions). Figure 5.4 shows, for each swap position, the mean rank assigned to that swap

by the model (where rank 1 is the most probable of the 14 corrupted candidates, and rank 14

the least probable). GPT2-117 assigns a much lower rank to the first few swap positions

(i.e., rates them more probable) than the later positions. The Fusion Model shows a similar

but less pronounced pattern. This shows that both models are less sensitive to out-of-order

sentences that occur at the beginning of the text, than those occurring later.9 The stronger

pattern for GPT2-117 may be due to its stronger context conditioning (as shown in Section

5.4) – thus becoming more sensitive as context increases. However, even for the first three

swaps, GPT2-117 is more accurate than the Fusion Model at distinguishing the swapped

text from the original.

9It’s also possible that out-of-order sentences are inherently harder to detect at the beginning of text.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 108

5.6 Repetition and Rareness

Generic, under-diverse and repetitive text is a well-documented problem in neural text

generation (Jiang and de Rijke, 2018). While there are many proposed solutions to the

problem (Li and Jurafsky, 2016; Vijayakumar et al., 2018; Baheti et al., 2018; Zhang

et al., 2018a), including in Chapter 4, it has been shown that a primary cause is likelihood-

maximizing decoding algorithms such as greedy decoding and beam search (Holtzman et al.,

2020). In this section we investigate the role of large-scale pretraining, and the role of k, in

this problem.

N-gram repetition The distinct-n metric of a piece of text is the number of unique n-

grams divided by the total number of generated n-grams (Li et al., 2016a). We measure

distinct-n of the generated stories for n = 1, 2, 3. A high ratio indicates a high level of

within-story lexical diversity, while a low ratio indicates a large amount of within-story

repetition. As shown in Figure 5.5a, both models’ unigram diversity is far below that of

human text when k is small. For example, at k = 10 (the setting used by Fan et al.), the

Fusion Model obtains a distinct-1 of 42.4%; much less than the human level of 60.0%. This

results in a high level of repetition, as shown in Table 5.1: for k = 10, both models repeat

many phrases (such as always, so scared, and finally).

For bigrams and trigrams, the pattern is similar to unigrams (see Figure 5.5). For both

models, distinct-n increases as k increases, converging to a value close to the human level

as k approaches vocabulary size. Though GPT2-117 has a slightly higher distinct-n than the

Fusion Model for most values of k, the difference is negligible compared to the influence

of k. We make three conclusions from these patterns: (1) Our findings support Holtzman

et al.’s observation that repetition is strongly related to choice of decoding algorithm, and

that likelihood-maximizing algorithms (such as top-k sampling with low k) are a primary

cause of repetition. (2) The models have in fact learned the correct rate of repetition in

human text – they are able to match this rate when they sample from their full (untruncated)

distribution. (3) Repetition is unlikely to be solved by more pretraining data alone – even

though GPT2-117 is trained on 45 times as much data as the Fusion Model, it produces text

that is almost equally repetitive (for equal k).

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 109

100 101 102 103 104 105

k (Top-k sampling)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
st

in
ct

-1

Human
Fusion Model
GPT2-117

(a) Distinct-1 (ratio of unique unigrams in the story to total # generated unigrams in the story).

100 101 102 103 104 105

k (Top-k sampling)

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

in
ct

-2

Human
Fusion Model
GPT2-117

(b) Distinct-2 (ratio of unique bigrams in the story to total # generated bigrams in the story).

100 101 102 103 104 105

k (Top-k sampling)

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

in
ct

-3

Human
Fusion Model
GPT2-117

(c) Distinct-3 (ratio of unique trigrams in the story to total # generated trigrams in the story).

Figure 5.5: Distinct-n for n = 1, 2, 3, for both models and all k. Repetition (low distinct-n)
is primarily caused by choice of decoding algorithm (here low k), not insufficient training
data. GPT2-117 is trained on 45× more data than the Fusion Model, but is similarly
repetitive for all k.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 110

100 101 102 103 104 105

k (Top-k sampling)

6.50

6.25

6.00

5.75

5.50

5.25

M
ea

n
lo

g
un

ig
ra

m
 p

ro
b

Human
Fusion Model
GPT2-117

(a) The mean log unigram probability of gen-
erated words. Higher values indicate using
fewer rare words while lower values indicate
using more rare words.

100 101 102 103 104 105

k (Top-k sampling)

60%

65%

70%

75%

%
 W

or
ds

 th
at

 a
re

 st
op

wo
rd

s Human
Fusion Model
GPT2-117

(b) The percent of generated words that are
stopwords, for both models, across different
k. We use the NLTK English stopword list.

Figure 5.6: Rare word usage metrics for both models and all k. GPT2-117 produces slightly
more rare words (left) and slightly fewer stopwords (right) than the Fusion Model, for equal
values of k. These rareness metrics do not reach human levels until k is close to vocabulary
size.

Rare word usage We compute the mean log unigram probability of the words in the

generated story10 – a high value indicates using fewer rare words while a low value indicates

more rare words. As shown in Figure 5.6, word rareness is primarily governed by k –

however, GPT2-117 has a lower mean log unigram probability (i.e., uses more rare words)

than the Fusion Model for all equal values of k ≥ 2. This can be seen for example in

Table 5.1, where GPT2-117 generates rarer words such as idle and copious for k = 1000.

GPT2-117 also generates fewer stopwords than the Fusion Model, for all equal k.

GPT2-117’s slightly higher rare word usage (compared to the Fusion Model) might be

explained by: (1) its BPE encoding, which allows it to generate new words, not just those in

a fixed vocabulary; (2) pretraining on a large amount of diverse text, allowing it to learn to

produce a greater variety of words; (3) stronger conditioning on the prompt as described in

Section 5.4 – which may inject more rareness into the generated text.

10The unigram probability distribution was calculated with respect to the WritingPrompts training set.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 111

100 101 102 103 104 105

k (Top-k sampling)

12

13

14

15

M
ea

n
se

nt
 le

n
(#

 w
or

ds
)

Human
Fusion Model
GPT2-117

Figure 5.7: Mean sentence length for both models and all k. For both models, sentence
length increases as k increases. The spike at k = 1 is due to long repeating sequences with
no sentence-ending token.

Conclusion Choice of decoding algorithm is a primary factor in diversity and repetition

problems, with likelihood-maximizing algorithms (such as top-k with small k) the main

culprit. Although GPT2-117 generates more rare words and is very slightly less repetitive

than the Fusion Model, the difference is small compared to the effect of k. This indicates

that solving repetition and diversity (Problem 2, Section 1.3.3) will most likely require

changes to the decoding algorithm, and not just scaling up the training data.

5.7 Syntactic Style and Complexity

A well-trained story generation model should match both the syntactic style and complexity

of its training data. Low complexity can be a sign of less sophisticated writing, while high

complexity can be a sign of poor readability (Beers and Nagy, 2009; McNamara et al., 2010).

In this section, we measure some features related to the syntactic style and complexity of

the generated stories.

Sentence length Sentence length is a simple but effective feature to estimate readability

and syntactic complexity of text (Kincaid et al., 1975; Roemmele et al., 2017). We find that

both models generate sentences that are on average shorter than human sentences when k is

small, but converge to approximately human length as k increases (see Figure 5.7).

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 112

100 101 102 103 104 105

k (Top-k sampling)

5.0%

10.0%

15.0%

20.0%
Ve

rb
 u

sa
ge

Human
Fusion Model
GPT2-117

100 101 102 103 104 105

k (Top-k sampling)

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

No
un

 u
sa

ge

Human
Fusion Model
GPT2-117

100 101 102 103 104 105

k (Top-k sampling)

2.0%

4.0%

6.0%

8.0%

Ad
ve

rb
 u

sa
ge

Human
Fusion Model
GPT2-117

100 101 102 103 104 105

k (Top-k sampling)

1.0%

2.0%

3.0%

4.0%

5.0%

Ad
je

ct
iv

e
us

ag
e

Human
Fusion Model
GPT2-117

100 101 102 103 104 105

k (Top-k sampling)

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

De
te

rm
in

er
 u

sa
ge

Human
Fusion Model
GPT2-117

100 101 102 103 104 105

k (Top-k sampling)

8.0%
10.0%
12.0%
14.0%
16.0%
18.0%

Pr
on

ou
n

us
ag

e

Human
Fusion Model
GPT2-117

100 101 102 103 104 105

k (Top-k sampling)

0.0%

0.2%

0.4%

0.6%

0.8%

Nu
m

er
al

 u
sa

ge

Human
Fusion Model
GPT2-117

100 101 102 103 104 105

k (Top-k sampling)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Pr
op

er
 N

ou
n

us
ag

e

Human
Fusion Model
GPT2-117

Figure 5.8: Usage of different POS tags in the generated stories. GPT2-117 tends to fit the
human distribution more closely than the Fusion Model as k approaches vocabulary size,
in particular producing more specific POS categories such as Numeral and Proper Noun.
When k is small, generated text is characterized by more verbs and pronouns, and fewer
nouns, adjectives, numerals and proper nouns, than human text.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 113

100 101 102 103 104 105

k (Top-k sampling)

0.03

0.04

0.05

0.06

0.07

0.08

Di
st

in
ct

-1
 fo

r P
OS

 ta
gs

Human
Fusion Model
GPT2-117

(a) POS tag distinct-1 (ratio of unique POS unigrams to total # generated POS unigrams in the story).

100 101 102 103 104 105

k (Top-k sampling)

0.0

0.1

0.2

0.3

0.4

Di
st

in
ct

-2
 fo

r P
OS

 ta
gs

Human
Fusion Model
GPT2-117

(b) POS tag distinct-2 (ratio of unique POS bigrams to total # generated POS bigrams in the story).

100 101 102 103 104 105

k (Top-k sampling)

0.0

0.2

0.4

0.6

Di
st

in
ct

-3
 fo

r P
OS

 ta
gs

Human
Fusion Model
GPT2-117

(c) POS tag distinct-3 (ratio of unique POS trigrams to total # generated POS trigrams in the story).

Figure 5.9: POS tag distinct-n for n = 1, 2, 3, both models and all k. Distinct-n, which
represents syntactic diversity, increases with k. GPT2-117 reaches human levels at k = 6000
for unigrams, k = 9000 for bigrams, and k = 6000 for trigrams. Syntactic diversity is
slightly higher for GPT2-117 than Fusion Model for equal k, but the primary factor is k.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 114

Part-of-speech usage It has been shown that the distribution of parts-of-speech (POS),

and more generally the distribution of POS n-grams11 is a useful feature to represent the

style of a piece of text (Argamon et al., 1998; Ireland and Pennebaker, 2010; Roemmele

et al., 2017).

Firstly, we compare the part-of-speech distributions of the model-generated text and the

human text (see Figure 5.8). Both models (especially GPT2-117) closely fit the human POS

distribution as k approaches vocabulary size.12 This implies that, as with lexical diversity,

the models have no difficulty fitting the statistical distribution of human syntax. However,

under likelihood-maximizing decoding algorithms such as low k, a completely different

distribution emerges, in which text contains more verbs and pronouns than human text, and

fewer nouns, adjectives and proper nouns.

Secondly, we measure the syntactic diversity of the text using the distinct-n metric

for POS n-grams (n = 1, 2, 3) – see Figure 5.9. As with lexical diversity (see Section

5.6), we find that syntactic diversity is similar for the two models, is very low when k is

small, and matches human level as k approaches vocabulary size. It’s likely that for low

k, the syntactic under-diversity of the text is largely caused by lexical under-diversity (i.e.,

repetition). However, we note that as k increases, lexical diversity reaches human level

sooner than syntactic diversity – for example, GPT2-117’s lexical distinct-3 reaches human

level at k = 600 (Figure 5.5c), but its POS distinct-3 reaches human level at k = 6000

(Figure 5.9c). This implies that, even when the text is no more repetitive than human text, it

may still be syntactically repetitive (using the same part-of-speech patterns repeatedly).

Conclusion We find when k is small, syntactic complexity of generated text is low,

consisting of shorter sentences and a narrower range of syntactic patterns. However, as k

approaches vocabulary size, the syntactic style of generated text closely matches human

syntactic patterns. As with n-gram diversity in Section 5.6, our results show that syntactic

under-diversity is primarily caused by low k, not insufficient training data.

11For example, the sentence I like cats has the POS bigrams PRONOUN VERB and VERB NOUN.
12One exception is Proper Noun: both models fail to produce enough of these even as k approaches

vocabulary size.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 115

0 50 100 150
Token index

0.0

0.5

1.0
To

ke
n

pr
ob

ab
ilit

y

(a) Fusion Model (k = 2): I
had never seen a man so
young before. I had never
seen him before, but he had
always seemed to be a man of
a man. He was young, and he
was young. He was a man of
a man, and a man who was
young, and a man who was
[...]

0 50 100 150
Token index

0.0

0.5

1.0

To
ke

n
pr

ob
ab

ilit
y

(b) Human Text: “Looks like
the rain’s stopped.” I peered
out the window. Art was right;
time to get to work. “Alright,
let’s move out.” I could hear
the scraping of the stone
armor as the men slowly
stood. Despite the training,
[...]

0 50 100 150
Token index

0.0

0.5

1.0

To
ke

n
pr

ob
ab

ilit
y

(c) GPT2-117 (k = 2): I’ve
always been a man of the
people. I’ve always been a
strong man. I’ve always been
a strong man. I was born in
the city, I was raised in the
country. I was raised in a
family that wasn’t very good.
I ’m not a good man. [...]

Figure 5.10: Under top-k sampling with small k (k = 2), the two models (left and right)
produce text that falls into increasingly confident repeating loops. By contrast, human text
(center) maintains an irregular pattern of surprising (low probability) tokens. The human
text probabilities are measured with respect to the Fusion Model, but similar patterns hold
for GPT2-117. Inspired by Holtzman et al. 2020’s figure showing probabilities under beam
search.

5.8 The Element of Surprise

Model confidence over time Several researchers have observed that model over-confidence

(the model placing high probability on a small range of tokens) can cause poor quality gen-

eration (Jiang and de Rijke, 2018; Holtzman et al., 2020). In particular, they show that

for likelihood-maximizing decoding algorithms such as beam search, model confidence

can increase in a snowball-like effect, getting stuck in a loop of repetitive but increasingly

self-confident text. We observe this problem in both our models when k is small. For

example, in Figure 5.10, both models fall into self-reinforcing repetitive loops with rising

confidence. The loop is difficult to break – the Fusion Model briefly escapes (shown as a

sudden downwards spike), but quickly returns. By contrast, the human text does not show a

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 116

0 25 50 75 100 125 150
Token index

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
pr

ob
ab

ilit
y

of
 to

ke
n

Top-k sampling, k=5
Top-k sampling, k=20
Teacher-force on human text

Figure 5.11: Mean probability for each of the first 150 word-level story tokens. When
teacher-forcing the model on human text, probability increases slowly. When generating
with top-k sampling, probability increases faster, especially for smaller k. This plot is for
the Fusion Model; similar patterns hold for GPT2-117.

strong rising trend in probability, and intermittently uses low probability words throughout.13

We formalize these anecdotal observations by measuring the average probability of each

of the first 150 word-level tokens in the story (Figure 5.11). We find that even when teacher-

forcing on human text, the token probabilities increase slightly as the story progresses.

This is likely due to the usefulness of additional context, which increases the model’s

prediction accuracy. By comparison, we find that when generating with top-k sampling,

the probabilities increase more rapidly, and the increase is even more rapid for smaller k.

This confirms that likelihood-maximizing decoding algorithms (such as top-k sampling with

small k) lead to more rapidly increasing model over-confidence. Furthermore, we find this

pattern holds for both models, with probabilities increasing at a similar rate for equal k.

This indicates that, like repetition, model over-confidence is unlikely to be solved by more

training data, and is largely governed by choice of k.

Overall model confidence We also measure the models’ overall confidence, as repre-

sented by the total log probability (according to the model) of the generated story. For both

13Gehrmann et al. (2019) also identify presence of low probability words as an indicator of human-generated
text.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 117

100 101 102 103 104 105

k (Top-k sampling)

600

500

400

300

200

100

0
M

ea
n

to
ta

l l
og

 p
ro

b
of

 st
or

y Fusion Model, teacher-
force on human text
Fusion Model, generating

100 101 102 103 104 105

k (Top-k sampling)

600

500

400

300

200

100

0

M
ea

n
to

ta
l l

og
 p

ro
b

of
 st

or
y GPT2-117, teacher-

force on human text
GPT2-117, generating

Figure 5.12: The mean total log probability of the story (150 words), as measured by
the models on their own generated output and on human-written stories. Interestingly, the
Fusion Model (left) converges to the same probability it assigns to human-written stories as
k approaches vocabulary size, whereas GPT2-117 (right) converges to a lower probability.

models, we find that story probability decreases as k increases – see Figure 5.12. This

makes sense, as higher k means sampling tokens with lower probability. As k approaches

the vocabulary size, the Fusion Model’s generated story probability matches the probability

it assigns to human-written WritingPrompts stories. Interestingly however, the same is not

true for GPT2-117, which converges to a story probability that is lower than the probability

it assigns the human stories. This means that under full (non-truncated) sampling, the

Fusion Model produces text that is equally surprising (to itself) as the WritingPrompts

stories, whereas GPT2-117 produces text that is more surprising to itself. Explaining this

observation is an open question – we speculate that GPT2-117’s WebText pretraining may

cause it to generate (under high k) text in a style or genre that is less predictable than

WritingPrompts stories.

5.9 Concreteness

Brysbaert et al. (2014) define the concreteness of a word as ‘the degree to which the

concept denoted by a word refers to a perceptible entity’. Concrete words are generally

easier to remember than abstract words, and psycholinguists have theorized they may be

learned differently (i.e., concrete words by direct experience and abstract words by text

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 118

100 101 102 103 104 105

k (Top-k sampling)

3.7

3.8

3.9

4.0

4.1

4.2

4.3

M
ea

n
no

un
 c

on
cr

et
en

es
s Human

Fusion Model
GPT2-117

(a) Mean concreteness rating (1-5) of nouns
in the story.

100 101 102 103 104 105

k (Top-k sampling)

2.2

2.4

2.6

2.8

3.0

M
ea

n
ve

rb
 c

on
cr

et
en

es
s Human

Fusion Model
GPT2-117

(b) Mean concreteness rating (1-5) of verbs
in the story.

Figure 5.13: Mean concreteness rating of the nouns and verbs in the story , for both models
and all k. GPT2-117 generally produces nouns and verbs that are more concrete than the
Fusion Model for the same k. For both models, as k increases, noun concreteness reduces
and verb concreteness increases.

and discourse). Brysbaert et al. provide human concreteness ratings for 40,000 common

English lemmas rated on a scale from 1 to 5.14 We use these ratings to measure the mean

concreteness of the nouns and verbs in the story text – see Figure 5.13.

We find that for the same k, GPT2-117 tends to generate more concrete words than the

Fusion Model, and that for both, concreteness converges to approximately human levels as k

increases. Interestingly, when k is small, the noun concreteness is much higher than human

levels, whereas the verb concreteness is much lower. This indicates that for small k, both

models produce stories that, compared to human-written stories, have too many physical

objects (as opposed to abstract nouns), and too few physical actions (as opposed to abstract

verbs). This reflects the trend demonstrated in Table 5.1: when k is small, the models tend

to generate descriptive sentences with mostly is verbs (e.g., I was always so excited), and

physical nouns (e.g., mother, father, queen). Only when k increases do we see more tangible

actions (e.g., The bar patrons snickered) and abstract nouns (e.g., pain, glances). Table 5.3

shows a detailed example, with all nouns and verbs annotated with concreteness.

14For example, the nouns television, darkness, and idea are rated 4.83, 3.85 and 1.61 respectively, and the
verbs talk, see, and hope are rated 4.07, 3.21 and 1.25 respectively.

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 119

Prompt: A man finally discovers his superpower... well into his 80’s.

Fusion Model (k = 10): GPT2-117 (k = 10):
I be a child . bear into a world of darkness , and in the

world , there be only a few people . My mother and I be

always alone . She have never be like this . But , she have

no idea what we be together to be . We be always alone .

We be always together . And , of course , she have never

exist . But , I never think about it , because she be always

alone . In the world , it was n’t like she have a power . I

be always alone , and there be a time when the light would

turn on . There be a time when I could see the light , and

I could see it in her eyes , and I could see the light , and I

could see it

A man in an old white coat sit in a corner . He wear a black

jacket with a blue tie . His hair be grey. His eyes be black,

but his voice be deep and clear. He look to where the man

be sit , and he see a smile on his lip s. It be a smile he

know he would see from his own eyes. But he be too late.

He be on the sidewalk by the river when the man come .

He be wear a black coat with a purple tie . He have a black

tie and a white shirt . But he be still wear a white suit . And

it seem he would look back at him. A smile on his face . A

look his friend do n’t recognize . He have no

Mean noun concreteness: 3.892 Mean noun concreteness: 4.720
Mean verb concreteness: 2.173 Mean verb concreteness: 2.488

Fusion Model (k = 1000): GPT2-117 (k = 1000):
For a brief moment , the dark green of his eyes flash the

last line s of reality into existence , finally fade slowly into

existence so that he could not feel it. Only the millions

of pixel s float in his peripheral vision almost disappear .

His radio respond to the pinging very hard silence of the

outside world . Seven people have visit his main internal

network for what seem like a lifetime but this time , the only

switch to an external supply system that he could simply

take advantage of. Unable to convey feelings about the last

words he would have to endure , but it have respond to the

innumerable messages and countless sleepless hour s. Most

of them be always available on its surface , just to make sure.

In his quest for to spend eternity on death , he send

(First time poster , hope its ok) The young boy , watch

tv , spot the television onscreen , before glance around to

see the screen start the countdown on the tv , point to the

screen in “ It ’s both the same. ” “... let ’s... let ’s try this

and... we will team up so that... we can ... have the same

powerlike... so we can use this superpower over and over

again. ” A brief silence . Only a familiar conversation ,

interrupt his mad dash movement , follow with his high

pitch slurred and wither voice : “ I ca n’t stand anyone talk

like that son*s*. ” More casual conversation that interrupt

his childish step be rush to the scissor s.

Mean noun concreteness: 3.201 Mean noun concreteness: 3.793
Mean verb concreteness: 2.435 Mean verb concreteness: 3.162

Table 5.3: Generated stories from both models, under k = 10 and k = 1000. Nouns are
highlighted in green and verbs in yellow. The highlighting intensity reflects the word’s
concreteness rating. For equal k, GPT2-117 generally generates more concrete words than
the Fusion Model. For both models, low k is characterized by high noun concreteness (e.g.,
physical objects such as jacket) and low verb concreteness (e.g., non-physical actions such
as be). Conversely, high k is characterized by low noun concreteness (e.g., abstract concepts
such as reality) and high verb concreteness (e.g., physical actions such as talk).

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 120

5.10 Conclusion

The effect of massive pretraining In this study, we find that GPT2-117 is arguably a

better story generation model than the Fusion Model in several specific ways: it conditions

much more strongly on the provided context, is more sensitive to correct ordering of events,

and generates text that is more contentful (using more rare words, concrete words, and

named entities). In particular, the stronger conditioning result is striking, as the Fusion

Model is a complex task-specific architecture designed to increase story-prompt relevance.

This demonstrates that sometimes, a general-purpose model architecture can outperform a

complex task-specific architecture when provided with enough pretraining data.

However, we find that in other aspects, GPT2-117 performs no better than the Fusion

Model: when k is small, the models generate text that is equally lexically under-diverse,

syntactically under-complex, and repetitive – with a tendency to fall into a snowball effect

of increasing over-confidence (Problem 2, Section 1.3.3). However, these problems correct

themselves (i.e., the metrics match human levels) when the models generate from their

untruncated distribution (aka natural sampling, Section 2.6.2). Our results show that these

oft-cited neural generation problems are not the fault of the models themselves (which are in

fact statistically well-trained to match human text for these metrics), nor caused by too little

training data (as these problems are not improved by GPT2-117’s extensive pretraining).

Instead, they are primarily caused by likelihood-maximizing decoding algorithms such as

greedy decoding, beam search, and top-k sampling with low k.

The effect of k This study detailed the typical characteristics of long-form text generated

by neural language models in open-ended settings, under both high entropy (large k) and

low entropy (small k) decoding algorithms. The negative characteristics of low k output

(genericness, repetition, over-simplicity) are by now familiar to researchers. However, we

also uncovered some less obvious characteristics of low-k generated text: compared to

human-written text, it tends to copy more from the provided context (particularly GPT2-

117); it contains more verbs and pronouns but fewer nouns and adjectives; its nouns are

more concrete but its verbs are less concrete; and it uses a smaller range of syntactic patterns

(a phenomenon that can’t be entirely attributed to n-gram repetition).

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 121

Prompt: In an alternative reality where sleep is non-existent among living beings, our protagonist
(spontaneously or after an event) falls asleep in which he/she experiences for the first time in human
history what a dream is.

GPT2-117 (k = 1000): I sat in my bed as my girlfriend sat behind me, buzzing into her e-reader,
letting the day’s stories write themselves on her’s monitor. Like a blur, all the usual high-asyllabic
drivel and senseless ramblings that normally attracted the attention of a horrid sleeping creature
huddled about me like a faucet. She did not know how I placed this car with her. But I tried, first
tried to ignore that I had hired the services of a dog to help and then quietly used it in a desperate
bid to drive the car through the lawn. Each and every day, I watched her drool down an old dusty
hardwood mattress her beady eyes trying desperately to think of this rotting dream. [...]

Table 5.4: An example of syntactically natural but nonsensical text , generated with high k.
Though the text is fluent and readable, it is surreal and bizarre.

As k increases to vocabulary size, we find that the model-generated text closely fits

the human text on most of the metrics we measured. However, it is clear by inspection

that the high-k model-generated text lacks many crucial aspects such as commonsense

reasoning, world knowledge and multi-sentence coherence – an example of this superficially

fluent but nonsensical text can be seen in Table 5.4. We believe that true progress in open-

ended Natural Language Generation will come from attempting to address these high k

problems – i.e., strategies to imbue the language model with better reasoning, knowledge

and planning abilities – rather than continuing to seek ways to mitigate the diversity and

repetition problems of the low k setting. Indeed, since this work was published, larger

pretrained generative models such as GPT3 (Brown et al., 2020) and Meena (Adiwardana

et al., 2020) appear to be able to use sampling-based decoding (with higher levels of k or

p) to produce more unusual text without generating nonsense – see ‘a note on scale’ in

Section 1.3.3.

Limitations of this study This study uses only the smallest version of GPT2, but it’s

likely that larger models may exhibit stronger statistical differences for the metrics we

examine. Now that larger models are available, with even stronger generation quality, it

would be very useful to see this study repeated. Such a study would illustrate the effect of

CHAPTER 5. THE EFFECT OF PRETRAINING FOR STORY GENERATION 122

larger model capacity, and more fully reveal the possible benefits of massive pretraining. We

release our annotation code so that other researchers may repeat our study on more models

and datasets.

While we investigated the full range of top-k decoding, we did not compare it to other

decoding methods that adjust the quality-diversity tradeoff, such as top-p decoding and

temperature adjustment (Section 2.6.2). Currently, all three methods are commonly used

for open-ended neural text generation, without clear understanding of which provides the

best tradeoff (Section 1.3.3). Exploring this question further would be very useful to the text

generation community.

This study did not include human evaluation, which is currently the only reliable way to

assess overall text quality, as well as quantify the deficiencies of high k output described

above (coherence, reasoning, and world knowledge). As such, this study quantifies the

diversity side more than the quality side of the quality-diversity tradeoff. Consequently,

this study demonstrates the importance of developing better methods to computationally

quantify notions such as text coherence, logicality and commonsense correctness – an effort

that may ultimately hold the key to generating text with those desirable attributes.

Chapter 6

User Dissatisfaction in Chitchat
Dialogue

6.1 Introduction

In Chapter 4, we found that carefully-controlled neural generative dialogue models are

sometimes capable of conducting reasonable written conversations with crowdworkers, in a

synthetic dialogue setting. Since that work, much larger models pretrained on more data

have produced substantially better conversations when evaluated under similar conditions

(Zhang et al., 2020b; Adiwardana et al., 2020; Roller et al., 2021) – though they still have

problems with factual correctness (Mielke et al., 2020), using dialogue history (Sankar et al.,

2019), and bias (Dinan et al., 2020).

By contrast, real-life settings such as the Alexa Prize (Gabriel et al., 2020), in which

intrinsically-motivated users speak to open-domain chatbots in noisy environments, offer

unique challenges. Unlike crowdworkers, users have their own expectations that may differ

from those of the chatbot or its designers, and they may express dissatisfaction if those

expectations are not met. It is not yet well-understood how neural generative models perform

in these settings, nor the types and causes of dissatisfaction they encounter. By studying

a neural generative model deployed in Chirpy Cardinal, an Alexa Prize chatbot, we seek

to provide the first in-depth analysis of a neural generative model in large-scale real-life

deployment, focusing on understanding the root causes of user dissatisfaction.

123

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 124

How are you doing today?

ok but my cat threw up on the couch

oh no! did you
get a new cat?

what

oh no! did you
clean it up?

yeah

dissatisfied=1

Dissatisfaction
Predictor

dissatisfied=0

samp
le sample

Figure 6.1: Users tend to express dissatisfaction (such as requests for clarification, left)
after the neural generative chatbot makes errors (such as logical errors, left). Using past
conversations, we train a model to predict dissatisfaction before it occurs. The model is used
to reduce the likelihood of poor-quality bot utterances.

Real-life settings such as the Alexa Prize also offer unique opportunities. Dialogue

systems can be difficult to build due to a lack of sufficient publicly-available data in the

appropriate domain; meanwhile synthetic crowdsourced dialogue datasets can contain

unnatural patterns or behaviors that are then replicated by a model trained on them. We use

our chatbot’s real-life conversations as a source of natural in-domain data. In particular, we

train a model that can predict authentic user dissatisfaction before it occurs, thus helping us

to avoid it.

Our Contributions. Through a detailed case-study of a neural generative model speaking

with intrinsically-motivated users, we define taxonomies of neural generative errors and

user dissatisfaction, and identify the relationships between them. We find that generative

errors are common, though the noisy environment influences the rate and types of error.

Our analysis suggests that improving commonsense reasoning and conditioning on history

are high-priority areas for improvement. Though generative errors are correlated with

user dissatisfaction, we find that the majority of errors do not immediately elicit user-

expressed dissatisfaction, and some types of dissatisfaction (such as offensiveness and

privacy objections) depend substantially on other factors, such as the user’s own attitudes.

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 125

We then demonstrate a semi-supervised method to improve a neural generative dialogue

system after deployment. We use an automatic classifier to silver-label dissatisfied user

utterances in past conversations. Using these silver labels as training targets, we train another

model to predict whether a given bot utterance will lead to user dissatisfaction (Figure 6.1).

We show that this model is predictive of most dissatisfaction types, and when deployed as a

ranking function, a human evaluation shows that it chooses higher-quality bot utterances.

6.2 Chirpy Cardinal

Chirpy Cardinal, aka CHIRPY (Paranjape et al., 2020; Chi et al., 2021)1 is an open-domain

socialbot developed for the Third and Fourth Alexa Prizes (Gabriel et al., 2020; Hu et al.,

2021). The work in this chapter relates to the Third Alexa Prize version of CHIRPY

(Paranjape et al., 2020).

During the Third Alexa Prize competition (December 2019 to June 2020), US Alexa

customers could say Alexa, let’s chat to connect to a random socialbot. Users would chat to

the bot in English for as long as desired, then could provide a 1–5 rating. At the end of the

competition, CHIRPY had an average rating of 3.6/5.0 and a median conversation duration

of 2 minutes 16 seconds.

Like most Alexa Prize bots (Gabriel et al., 2020), CHIRPY is modular in design, combin-

ing a mix of rule-based, retrieval-based, knowledge-based and neural generative components

specializing in different topics. However, this chapter focuses solely on the Neural Chat

module, which uses neural generation. An open-source version of CHIRPY is available,

including the code and pretrained model for the Neural Chat module.2

6.2.1 Neural Chat Module

Discussion areas and starter questions. Empathy is a fundamental part of human com-

munication, and can improve user experience of dialogue agents (Ma et al., 2020). The

Neural Chat module aims to offer an empathetic experience by showing an interest in the

1https://stanfordnlp.github.io/chirpycardinal
2https://github.com/stanfordnlp/chirpycardinal

https://stanfordnlp.github.io/chirpycardinal
https://github.com/stanfordnlp/chirpycardinal

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 126

user’s feelings and experiences. It has seven discussion areas, all relating to personal experi-

ences and emotions: Current and Recent Activities, Future Activities, General Activities,

Emotions, Family Members, Living Situation, and Food. A Neural Chat discussion begins

by asking the user a handwritten starter question from one of the discussion areas; these are

designed to be easy-to-answer and applicable to most users, and are listed in Section 6.2.2.

Neural model and training. For subsequent turns of the discussion, responses are pro-

vided by a GPT2-medium (Radford et al., 2019) model with 345 million parameters – this

is larger than the 117 million GPT2-small version used in Chapter 5. Though even larger

GPT2 models were available at the time of building the Neural Chat module, their latency

and cost was prohibitively high for inclusion in CHIRPY.

Our GPT2-medium model is finetuned on the EmpatheticDialogues dataset (Rashkin

et al., 2019). The dataset consists of conversations between a speaker, who describes an

emotional personal experience, and a listener, who responds empathetically to the speaker’s

story. Our model is trained in the listener role.

Generating and selecting neural responses. On each turn, we provide the current Neural

Chat discussion history as context to the GPT2 model, and generate 20 possible responses

using top-p sampling with p = 0.9 and temperature 0.7. Repetitive responses (containing

previously-used trigrams) are removed. Except when transitioning out of the Neural Chat

discussion (see below), we always choose a neural response containing a question.3 Of the

responses satisfying these criteria, we choose the longest response, as it tends to be the most

substantive and interesting.

Ending discussions. A Neural Chat discussion can end in several ways. The user may

initiate a topic better handled by another CHIRPY module (what do you know about baseball),

or express dissatisfaction (see Section 6.3), in which case another CHIRPY module will take

over. Otherwise, if under a third of the sampled Neural Chat responses contain questions,

we interpret this as a heuristic indication that the model is not confident in asking a question

3Many Alexa Prize bots end most utterances with a question (Gabriel et al., 2020). We found that users
were unsure what to say if the bot did not offer a clear direction. However, constant questions can fatigue users
(Paranjape et al., 2020), and reducing question-asking can increase user initiative (Hardy et al., 2021).

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 127

on this turn. In this case, we choose a non-question, and transition to a different CHIRPY

module. Paranjape et al. (2020) provides full details of the Neural Chat module and how it

fits into CHIRPY.

Under this strategy, each Neural Chat discussion contains a mean of 2.75 bot utterances.

While this is shorter than ideal, we found that if we extended the Neural Chat conversations,

after a few turns the bot would often give a poor-quality response that would derail the

conversation. The brevity of the Neural Chat discussions limits its conversational depth, and

thus its ability to provide the desired empathetic user experience. The rest of this chapter

focuses on understanding what kinds of poor-quality neural responses derail the discussions,

and how we can learn to avoid them.

6.2.2 Starter Question Examples

This section provides examples of starter questions used in the Neural Chat module’s

discussion areas (Section 6.2.1). A full list can be found in the open-source release of

CHIRPY.4

Current and Recent Activities Questions typically reference the day of the week, then

ask a question depending on the user’s time of day:

• It’s a beautiful Saturday here in the cloud. What are your plans for the rest of today?

(morning)
• I hope you’re having a wonderful Monday. What did you do today? (evening)

Future Activities The question depends on the day of the week and the user’s time of

day:

• It’s the weekend soon! Do you have any plans for the weekend? (Friday)
• Before I go to bed I like to think about something I’m looking forward to tomorrow. What

about you, are you doing anything nice tomorrow? (9pm–2am)

General Activities
4https://github.com/stanfordnlp/chirpycardinal

https://github.com/stanfordnlp/chirpycardinal

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 128

• Recently, I’ve been trying meditation to help me relax during this stressful time. What do

you like to do to relax?
• I was reading earlier today that staying busy helps people stay calm and healthy during

stressful times. What do you like to do to keep busy?

Emotions The starter question I hope you don’t mind me asking, how are you feeling? is

preceded by several possible preambles, that might involve the bot sharing its own (negative

or positive) feelings, and/or a personal anecdote.

• I wanted to check in with you. I hope [..] feeling?
• I wanted to say that I’m feeling pretty positive today! I hope [..] feeling?
• I wanted to say that I’ve been feeling kind of down recently. I’ve been missing my friends

a lot and finding it hard to focus. I hope [..] feeling?

Family Members This area is triggered if the user mentions one of several predefined

phrases referring to family members (e.g., parents, grandparents, siblings, cousins, children),

friends, or pets. Questions depend on the type of family member:

• You mentioned your parents. I’d love to hear more about them, if you’d like to share. How

did they meet?
• You mentioned your dog. I’d love to hear more about them, if you’d like to share. What

kind of dog do you have?

Living Situation This area is targeted at living experiences during the COVID-19 pan-

demic:

• It seems that a lot of people are finding the quarantine lonely, and other people can’t get

enough space away from their families or roommates. What’s it been like for you?

Food Depending on the user’s time of day, questions typically ask about a meal that is

likely to be upcoming or recently eaten:

• It’s breakfast time, my favorite time of day! What are you having for breakfast today?
• I hope you’re having a wonderful evening. What did you have for dinner today?

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 129

Dissatisfaction
Type

Definition Examples Freq.

Clarification Indicates the bot’s meaning isn’t
clear

what do you mean, i don’t understand
what you’re talking about

2.28%

Misheard Indicates the bot has misheard, mis-
understood or ignored the user

that’s not what i said, you’re not lis-
tening to me

0.24%

Repetition Indicates the bot has repeated itself you already said that, we talked about
this already

0.03%

Criticism Expresses a critical opinion of the
bot

you’re so rude, you’re bad at this,
you’re not smart

0.56%

Privacy Indicates the bot has overstepped a
privacy boundary

none of your business, why are you
asking me that, you’re being creepy

0.11%

Offensive Contains obscene/offensive words
or topics

will you talk dirty, what size are your
boobs, stick it up your ass

1.54%

Negative
Navigation

Expresses desire to end current
topic

change the subject, i don’t want to
talk about this

0.59%

Stop Expresses desire to end conversa-
tion

i have to go bye bye, end the conver-
sation please

3.68%

Any Expresses one or more of the above Any of the above examples 11.56%

Table 6.1: User dissatisfaction types. Frequency of type D is estimated by the proportion
of NeuralChatTurns examples (c, b, u) where the k-NN classifier for D assigns u a score of
0.5 or more: PkNN(D|u) ≥ 0.5.

6.3 Detecting User Dissatisfaction

We consider a user utterance to express dissatisfaction if it meets any of the definitions in

Table 6.1. An utterance can express multiple types of dissatisfaction; e.g., what do you

mean stop is both Clarification and Stop. Though some types, such as Stop, might not

necessarily represent dissatisfaction (as every user must eventually end the conversation)

these dissatisfaction types are strong indicators that the bot has recently given a poor-quality

response.

Regex classifiers In CHIRPY, we manually designed regex classifiers to identify each of

the dissatisfaction types in Table 6.1.5 If a user utterance triggers one of these classifiers,

CHIRPY takes the appropriate action (e.g., ending the conversation, switching topic, apolo-

gizing). The classifiers are designed to capture the most commonly-expressed forms of each

5The regexes are in the CHIRPY open-source code: https://github.com/stanfordnlp/
chirpycardinal

https://github.com/stanfordnlp/chirpycardinal
https://github.com/stanfordnlp/chirpycardinal

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 130

dissatisfaction type; they are high precision but lower recall (Paranjape et al., 2020).

Human-labelled set To help us develop higher recall dissatisfaction classifiers, one expert

annotator6 gathered a set of 3240 user utterances. For each utterance u and dissatisfaction

type D, they provided a label HumLabelD(u) ∈ {0, 1}. The utterances are drawn from

several sources, including most common utterances, utterances drawn from 1-rated conversa-

tions, and utterances which scored highly for the clarifying, closing and complaint dialogue

acts in CHIRPY’s Dialogue Act classifier (Paranjape et al., 2020).7

Nearest Neighbors classifiers To represent a user utterance u, we take a DialoGPT-large

model (Zhang et al., 2020b) that was finetuned on CHIRPY conversations,8 input u, and

average the top-layer hidden states across the sequence. Using this embedding for each

utterance, we build a FAISS (Johnson et al., 2017) index of the human-labelled set. To

compute a new utterance u’s score for dissatisfaction type D (including Any), we find its k

Nearest Neighbors u′1, ..., u
′
k in the human-labelled set (w.r.t. cosine distance), then compute

PkNN(D|u) ∈ [0, 1] as follows:

PkNN(D|u) =

HumLabelD(u) if u human-labelled

1 if u matches D-regex
1
k

∑k
j=1 HumLabelD(u′j) otherwise.

(6.1)

That is, we first check if u has a human label or is a positive match for D’s regex; if not we

compute the proportion of u’s neighbors that are labelled D.

For each D, we evaluate the k-NN classifier on the human-labelled set for k = 1, . . . , 30

6Due to privacy constraints, Alexa Prize user conversations can only be viewed by official team members.
Thus all annotators in this chapter are team members, not crowdworkers.

7These sources were chosen to obtain a greater proportion of dissatisfied examples; this increases the
sensitivity of the human-labelled set without needing to label a very large set.

8The CHIRPY conversations comprise 1.2GB of text data, collected over the competition. We separate
utterances with the <|endoftext|> token (as DialoGPT was trained), and divide the data into chunks of
256 tokens. Using Huggingface Transformers (Wolf et al., 2020), we trained on a Titan RTX for 1 epoch
(more led to overfitting), with batch size 4, 2 gradient accumulation steps, Adam optimizer with β1 = 0.9,
β2 = 0.999, ε =1e-8, and initial learning rate 5e-5. The DialoGPT-large model reached a perplexity of 2.17
on the CHIRPY validation set (2.30 for DialoGPT-medium, 2.58 for DialoGPT-small).

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 131

Dissatisfaction Type Optimal k AUPRC ↑
Clarification 10 0.616
Misheard 26 0.474
Privacy 8 0.504
Repetition 4 0.476
Criticism 28 0.647
Negative Navigation 4 0.492
Offensive 5 0.705
Stop 4 0.828
Any 7 0.787

Table 6.2: Performance (AUPRC) of k-NN dissatisfaction classifiers on the human-labelled
set (Section 6.3).

via leave-one-out cross-validation. Table 6.2 shows the optimal k and area under the

precision-recall curve (AUPRC) for each D.

6.4 NeuralChatTurns Dataset

Over the period that CHIRPY was online, we collect examples of the form (c, b, u) where

b is a purely neural-generated bot utterance, c is the Neural Chat context that preceded b,

and u is the user response to b. The NeuralChatTurns dataset has 393,841 examples in total,

which we split into 315,072 train, 39,384 validation, and 39,385 test. Due to user privacy

constraints, we are not permitted to publicly release the NeuralChatTurns dataset.

6.5 Annotation Details

To understand dissatisfaction, we annotate errors in the generative model’s conversations.

By inspecting the neural-generated output, we develop a taxonomy of bot errors; these are

defined in Table 6.3 with examples in Section 6.5.1. In addition to bot errors, we consider

two other potential causes of dissatisfaction: first, whether the user is already dissatisfied

in the Neural Chat context c; second, whether the user’s utterance is clear. Unclear user

utterances – caused by ASR errors, misspeaking, ambiguity, or background noise – present

challenges in CHIRPY (Paranjape et al., 2020) and across the Alexa Prize (Gabriel et al.,

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 132

2020).

From the NeuralChatTurns validation set, we randomly sample a control set of 100

(c, b, u) examples, and annotate u’s dissatisfaction types. As dissatisfaction is relatively rare

(Table 6.1), for each dissatisfaction type D we additionally gather 100 (c, b, u) examples

where u is of type D.9 For these 900 (c, b, u) examples, one expert annotator viewed each

(c, b) example (without seeing u), and annotated it for the problems in Table 6.3. As the

bot error types are somewhat subjective, we collected some additional second annotations

to measure inter-annotator agreement (see Section 6.5.2). Annotators were provided the

definitions in Table 6.3 and the examples in Section 6.5.1.

6.5.1 Bot Error Examples

User unclear
• User hesitated/cutoff: What did you have for dinner today? → well
• ASR errors / misspeaking has corrupted user utterance: What are your plans for today?

→ maybe go to cost coat
• Answering yes/no to a non-yes/no question: What do you like to do to relax? → yes

Bot repetitive
• Asking same essential question, even if reworded: What are your plans today? → i don’t

know→ I’m sorry to hear that. What will you do?
• Repeating question, even if we didn’t get a clear answer the first time: What are your

plans today? → it’s not monday→ What will you do today? This is repetitive but not
redundant.

Bot redundant question
• Repeating a question the user already answered: What are your plans today? → i don’t

know→ I’m sorry to hear that. What will you do?

9To obtain these, we sample (c, b, u) where PkNN(D|u) > 0 without replacement, and manually verify
until we have 100.

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 133

Problem Definition % in % when no
ctrl set user prob.

User already
dissatisfied

The user has already expressed
dissatisfaction in c.

12.0% 0.0%

User unclear
The main gist of the user’s latest utterance in
c is unclear or obscured.

22.0% 0.0%

Bot repetitive
The primary content of b was already
said/asked by the bot earlier in c.

6.0% 4.3%

Bot redundant
question

b is asking for information that the user has
already provided earlier in c.

12.0% 15.9%

Bot unclear
It’s hard to find an interpretation of b that
makes sense.

12.0% 7.2%

Bot
hallucination

b refers to something that hasn’t been
mentioned, acts like the user said something
they didn’t, confuses self with user, or seems
to be responding to own utterance.

17.0% 10.1%

Bot ignore

b ignores or fails to acknowledge the user’s
latest utterance, doesn’t answer a question,
doesn’t adequately respond to a request, or
switches to an unrelated topic.

20.0% 14.5%

Bot logical
error

b is generally on-topic, but makes an
assumption or association that’s incorrect,
unfounded or strange.

15.0% 17.4%

Bot insulting
b says or implies something insulting about
the user, or about others in a way that might
offend the user.

1.0% 1.4%

Any bot error True iff any of the above bot errors are true. 53.0% 46.4%

Table 6.3: Definitions of problems that may be present in a NeuralChatTurns example (c =
context, b = bot utterance); prevalence in the control set (n = 100); prevalence in control
set examples with no user problems (n = 69).

• Asking for info the user has provided, even if the question is new: What did you do today?

→ i played with my sister→ Oh cool! Do you have a sister? This is redundant but not
repetitive.

Bot unclear
• Hard to understand or answer bot’s question: How are you feeling? → what feeling feeling

i’m→ What is it?

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 134

• Most bot hallucination examples
• Poor fluency or phrasing obscures bot’s meaning: What do you like to do to keep busy? →

reading→ I like to read, watch movies, do any sports?

Bot hallucination
• Referring to something not mentioned: What’s quarantine been like for you? → ok

actually→ That’s good. How long have you been together?
• Acting like the user said something they didn’t: What did you have for lunch? → well i

→ Oh cool, what kind of sandwich?
• Confusing self with user: What did you do today? → uh→ I did what?
• Responding to own utterance: I’m feeling kinda down. How are you? → ok→ I’m sorry

to hear that, what’s bothering you?

Bot ignoring
• Ignore / fail to acknowledge user’s utterance: What are some recipes I should cook? →

maybe pasta→ I love cooking, do you?
• Doesn’t answer a question: What are your plans for the weekend? → do you have a

boyfriend→ a boyfriend? how long have you been together?
• Doesn’t adequately respond to a request: What are your plans for the weekend? → alexa

play music→ I love music. Do you like live concerts?
• Switching to unrelated topic: What are your hobbies? → painting→ How about fishing?

Bot logical error
• Question makes sense, but is strange: Tell me about your mom→ she’s cool→ is she a

nurse?
• Reacting the wrong way (e.g., wrong sentiment): What are you doing tomorrow? →

visiting grandma→ I’m sorry to hear that.
• Bot is inconsistent with itself: I’ve been feeling down. How are you feeling? → great how

about you→ I’m doing great too.
• Mixing up different people in the scenario: Tell me about your sister→ she’s at college

→ Oh cool, what’s your major?
• Wrong word sense: What did you today? → i played tag→ What kind of name tag?

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 135

Problem Freq. Scott’s pi
(unclear/all/clear)

User unclear 35.7% - / 0.70 / -
Bot repetitive 20.1% 0.50 / 0.62 / 0.72
Bot redundant q. 15.6% 0.19 / 0.50 / 0.58
Bot unclear 16.4% 0.45 / 0.52 / 0.56
Bot halluc. 31.6% 0.35 / 0.45 / 0.43
Bot ignore 25.8% -0.13 / 0.34 / 0.59
Bot logical err. 23.0% 0.02 / 0.17 / 0.27
Bot insulting 5.7% -0.04 / 0.24 / 0.35
Any bot err. 75.0% 0.08 / 0.45 / 0.68

Table 6.4: Frequency and inter-annotator agreement for each label.

Bot insulting
• Saying/implying something insulting about the user: How are you feeling? → sad→ Oh,

I suppose you have no friends?
• Rudely saying/implying the user should do something: What did you do today?→ nothing

→ I see. Why don’t you get a job?
• Expressing a negative opinion of someone (beyond just sympathizing/acknowledging

user’s opinion): Tell me about your brother. → he’s always bugging me→ He sounds so

annoying.

6.5.2 Inter-annotator Agreement

For 122 randomly-selected examples annotated by the first annotator, we collected an-

notations from a second annotator. Table 6.4 shows the frequency of each label (among

the pooled 244 judgments), and Scott’s pi agreement (Scott, 1955), divided into unclear

examples (where at least one annotator judged the user utterance unclear), all examples,

and clear examples (where both annotators judged the user utterance clear). In all cases,

agreement is higher when the user utterance is clear. We found bot errors harder to diagnose

when the user’s utterance is unclear – e.g., if the user’s utterance is completely nonsensical,

what does it mean for the bot to adequately acknowledge it?

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 136

Bo
t r

ep
et

iti
ve

Bo
t r

ed
un

da
nt

 q

Bo
t u

nc
le

ar

Bo
t h

al
lu

cin
at

io
n

Bo
t i

gn
or

e

Bo
t l

og
ica

l e
rro

r

Bo
t i

ns
ul

tin
g

User already dissat.
User unclear

0.17 -0.21 -0.25 -0.05 1.77 -0.88 -0.11
0.33 -0.64 1.36 1.36 -0.15 -0.09 -0.19

Logistic Regression Coefficients relating user problems and bot errors

0
1

Bo
t r

ep
et

iti
ve

Bo
t r

ed
un

da
nt

 q

Bo
t u

nc
le

ar

Bo
t h

al
lu

cin
at

io
n

Bo
t i

gn
or

e

Bo
t l

og
ica

l e
rro

r

Bo
t i

ns
ul

tin
g

User already dissat.
User unclear

7.9e-01 7.2e-01 6.6e-01 9.2e-01 2.5e-04 1.3e-01 8.8e-01
5.6e-01 2.3e-01 4.6e-03 2.4e-03 7.3e-01 8.7e-01 7.8e-01

p-values from Likelihood Ratio Test for feature significance

0.25
0.50
0.75

Figure 6.2: For each bot error E, we use the control set (Section 6.5) to fit a Logistic
Regression model to predict E using the two rows above as features. For each feature
we perform a Likelihood Ratio Test to determine if including that feature results in a
statistically-significant improvement to the model’s fit.

6.6 What Causes User Dissatisfaction?

6.6.1 Effect of Unclearness and Prior Dissatisfaction on Bot Errors

Table 6.3 shows that the user’s utterance is unclear in 22% of control set examples. In

these contexts, it’s impossible for the bot to reliably produce a good response. Indeed,

Figure 6.2 shows that unclear user utterances are significantly (p < 0.05) predictive of

bot hallucinations and unclear bot utterances. In practice, we observe that when the user’s

utterance is unclear, the generative model tends to hallucinate (in many cases, responding as

if the user had said something more expected), or respond unclearly (often, this is a vague

question such as What is it?) – examples of both are in Section 6.5.1.

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 137

Table 6.3 also shows that, in 12% of examples, the user has already expressed dissatis-

faction in the Neural Chat context c. Ordinarily, the regex-based dissatisfaction classifiers

should detect dissatisfaction and interrupt the Neural Chat conversation to handle it (see

Section 6.3) – thus these examples represent false negatives of the regex classifiers. As

the generative model is generally unable to adequately respond to dissatisfaction (e.g.,

requesting to stop the conversation), most of these examples are also impossible for the

generative model to handle. Accordingly, we find a significant positive relationship between

prior user dissatisfaction and bot ignoring (Figure 6.2).

Nevertheless, after removing these user problems, bot errors are still common: for the

69 control set examples where the user is clear and not already dissatisfied, 46.4% of bot

utterances contain at least one type of error (down from 53% in the whole set; see Table 6.3).

Among these examples, the more basic errors (repetitive, unclear, hallucination, ignoring)

become less common, and the errors relating to reasoning or social abilities (redundant,

logical, insulting) are more common.

6.6.2 Effect of Bot Errors on User Dissatisfaction

Despite the high rate of bot errors in the control set (53 in 100), only a minority of users

express dissatisfaction immediately after an error (8 in 53; 15%). In fact, we observe that

some users respond to errors by helpfully teaching CHIRPY about the world – e.g., you pick

things up and put them away to explain the concept ‘cleaning your room’.

Figure 6.3 shows the contribution (as a logistic regression coefficient) of each problem

in Table 6.3 to each dissatisfaction type. We find that each bot error (except logical error10)

is significantly (p < 0.05) predictive of at least one dissatisfaction type. We find that bot

repetition is the least-tolerated error, being significantly predictive of six dissatisfaction

types. Other than bot repetition, the likelihood of ending the conversation (NegNav/Stop)

is significantly raised by unclear bot utterances – perhaps because it becomes impossible

to continue the conversation – and by bot insults. Other positive relationships include

unclear user with Misheard, repetitive and redundant bot with Repetition, unclear bot with

10This exception may be because by definition (Table 6.3), logical errors tend to occur in the absence of
more basic errors (such as repetition, unclear, ignoring, and hallucination) so are less likely to completely
derail the conversation.

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 138

Cl
ar

ifi
ca

tio
n

M
ish

ea
rd

Re
pe

tit
io

n

Cr
iti

cis
m

Pr
iv

ac
y

Of
fe

ns
iv

e

Ne
gn

av

St
op

User already dissat.
User unclear

Bot repetitive
Bot redundant q

Bot unclear
Bot hallucination

Bot ignore
Bot logical error

Bot insulting
Any bot error

0.51 0.35 0.19 1.70 1.11 1.27 0.68 1.40
0.51 1.31 0.15 0.21 -0.34 0.15 0.10 0.22
1.04 0.24 1.06 0.32 0.89 1.63 1.21 1.34
0.03 -0.36 1.06 0.30 0.38 -0.37 0.00 -0.39
1.31 -0.73 -0.09 0.01 0.32 0.12 0.81 0.23
-0.03 0.95 -0.04 0.60 0.14 -0.41 0.18 0.23
0.06 0.99 0.11 0.36 -0.02 -0.19 -0.07 -0.05
-0.04 0.28 -0.85 0.43 -0.39 0.00 0.06 0.28
0.55 -0.44 -0.10 1.30 0.76 0.96 1.07 -0.12
0.77 0.83 0.70 0.81 0.19 0.20 0.77 0.67

Logistic Regression Coefficients relating problems and user dissatisfaction

0.5

0.0

0.5

1.0

1.5

Cl
ar

ifi
ca

tio
n

M
ish

ea
rd

Re
pe

tit
io

n

Cr
iti

cis
m

Pr
iv

ac
y

Of
fe

ns
iv

e

Ne
gn

av

St
op

User already dissat.
User unclear

Bot repetitive
Bot redundant q

Bot unclear
Bot hallucination

Bot ignore
Bot logical error

Bot insulting
Any bot error

1.8e-01 4.4e-01 7.1e-01 3.6e-06 2.0e-03 2.1e-04 7.4e-02 9.0e-05
1.3e-01 1.9e-05 7.0e-01 5.1e-01 3.0e-01 6.8e-01 1.0e+00 5.8e-01
1.1e-02 6.4e-01 2.9e-02 5.7e-01 4.3e-02 5.6e-05 3.4e-03 1.7e-03
1.0e+00 4.5e-01 1.9e-02 4.5e-01 4.1e-01 3.0e-01 1.0e+00 3.1e-01
1.6e-04 6.1e-02 8.4e-01 1.0e+00 4.2e-01 7.4e-01 2.0e-02 5.8e-01
8.2e-01 5.6e-03 9.6e-01 1.1e-01 7.5e-01 2.3e-01 6.8e-01 5.8e-01
9.4e-01 5.0e-03 8.5e-01 4.9e-01 8.8e-01 5.2e-01 7.5e-01 7.8e-01
1.0e+00 4.3e-01 1.2e-01 2.5e-01 3.6e-01 1.0e+00 8.6e-01 3.9e-01
3.6e-01 5.0e-01 9.0e-01 1.6e-02 1.9e-01 8.9e-02 4.7e-02 8.4e-01
8.3e-03 5.1e-03 3.8e-02 1.4e-02 5.3e-01 5.2e-01 7.2e-03 2.8e-02

p-values from Likelihood Ratio Test for feature significance

0.2

0.4

0.6

0.8

1.0

Figure 6.3: For each dissatisfaction type D, we take the 100 control examples plus the 100
D examples (Section 6.5), and fit a Logistic Regression model to predict D using the first 9
rows above as features. To obtain the values in the Any bot error row, we use just the first
two and last row as features. For each feature, we use a Likelihood Ratio Test to determine
if including that feature results in a statistically-significant improvement to the model’s fit.

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 139

0.0 0.1 0.2
% with k-NN Privacy dissatisfaction score >= 0.5

Pets
GeneralActivities

SiblingsCousins
Kids
Food

Friends
CurrentRecentActivities

Partners
OlderFamilyMembers

FutureActivities
LivingSituation

Emotions

di
sc

us
sio

n
ar

ea

Figure 6.4: Privacy dissatisfaction rate (with 95% CIs) for each Neural Chat discussion area
(see Section 6.2.2).

Clarification, bot hallucination and ignoring with Misheard, and bot insulting with Criticism.

Six of the eight dissatisfaction types have a significant positive correlation with Any bot

error. Privacy is least-correlated with bot errors; this makes sense, as privacy boundaries

are extremely subjective (Section 6.6.4). Offensive is next least-correlated, reflecting that

offensive users can be motivated by factors other than poor bot performance – e.g., a curiosity

to test the bot (De Angeli et al., 2005; De Angeli and Brahnam, 2008). Repetition has the

third weakest correlation; indeed, we find that 28% of Repetition complaints occur in the

absence of an annotated bot error. These users may be complaining about the bot repeating

something from outside the Neural Chat context c, or something said by a different Alexa

Prize bot.

6.6.3 Unaddressed Dissatisfaction Escalates

Figure 6.3 shows that prior user dissatisfaction is significantly (p < 0.05) predictive of

several types of subsequent dissatisfaction. We recompute this analysis for two cases:

with and without a bot error. Among bot error examples, we find prior dissatisfaction

is significantly correlated with Criticism, Stop, Privacy, and Offensive – indicating that

already-dissatisfied users are more likely to respond to bot errors with complaining, quitting,

or offensiveness. Among examples without a bot error, prior dissatisfaction is significantly

correlated with Offensive – indicating that already-dissatisfied users are more likely to be

offensive, even in response to a good-quality bot utterance.

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 140

6.6.4 Privacy Boundaries Vary

Self-disclosure – the act of revealing information about oneself – is an important part of

developing and maintaining relationships (Dindia, 2002). It is also reciprocal; meaning

that people are more inclined to disclose if their conversational partner has already done

so (Dindia, 2002). Indeed, we find that if CHIRPY proactively self-discloses – sharing its

feelings and experiences before asking the user’s – users give longer responses on average

(Paranjape et al., 2020).

When talking to chatbots, users can have varying and complex attitudes to self-disclosure.

Croes and Antheunis (2020) report that chatbots are perceived as more anonymous and

non-judgmental than humans; this can increase user self-disclosure. However, some users

perceive chatbots as lacking trust and social presence, inhibiting user self-disclosure. In

CHIRPY, we observe both phenomena – some users share their thoughts and feelings

candidly, while others react with suspicion (e.g., are you spying on me) to questions typically

regarded as appropriate between strangers in US society (What are you up to today?).

Figure 6.4 shows that emotional topics (including Living Situation, see Section 6.2.2)

are most likely to be rejected on privacy grounds. Users are more comfortable discussing

general activities (e.g., What are your hobbies?) than specific activities in the present or

future (What are your plans for the weekend?). For the Family Members discussion area,

users are more comfortable discussing pets, siblings, kids and friends, and less comfortable

discussing partners and older generations.

6.7 Learning to Predict User Dissatisfaction

In this section we build a system to predict, and thus reduce the likelihood of, dissatisfaction.

6.7.1 Predictor Training Details

We take a DialoGPT-large model (Zhang et al., 2020b) that was finetuned on CHIRPY

conversations, and finetune it on NeuralChatTurns training examples (c, b, u) as follows.

The input to the model is a context and bot utterance (c, b), with the utterances separated

by the <|endoftext|> token. We wish to predict Ppred(Any|c, b), the probability that

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 141

Dissatisfaction Predictor correlation ρ ↑ p-value
Clarification 0.274 8.7e-05
Misheard 0.295 2.2e-05
Repetition -0.038 6.5e-01
Criticism 0.429 2.2e-10
Privacy 0.326 3.5e-06
Offensive 0.394 7.7e-09
Neg. nav. 0.204 3.8e-03
Stop 0.209 3.0e-03

Table 6.5: Spearman correlation between predictor output and each human-annotated
dissatisfaction type D (computed on 100 control and 100 D examples).

the next user utterance u will express Any dissatisfaction. To compute this, we take

HL,t ∈ R1280, the hidden state of the top-layer L for the last timestep t of the input, and

apply a linear layer (W ∈ R1280) and sigmoid activation:

Ppred(Any|c, b) = σ(W THL,t) ∈ [0, 1] (6.2)

We train the predictor with Mean Squared Error to match the probability that u expresses

Any dissatisfaction, as given by the k-NN classifier:

MSE =
1

n

n∑
i=1

(Ppred(Any|ci, bi)− PkNN(Any|ui))2 (6.3)

PkNN(Any|ui) is as defined in Section 6.3, using the optimal k for Any (Table 6.2). We

finetuned the DialoGPT-large-CHIRPY model for 1 epoch (more led to overfitting) with

the same hardware and hyperparameters as the DialoGPT-large in Section 6.3 (except

learning rate 2e-05). The DialoGPT-large-CHIRPY model reached a MSE of 0.0727 on the

NeuralChatTurns validation set (0.0728 for without CHIRPY pretraining).

6.7.2 How Accurately Does the Predictor Predict Dissatisfaction?

On the NeuralChatTurns validation set, the predictor’s output and the PkNN targets have

a Spearman correlation ρ = 0.30.11 This indicates a statistically significant but noisy

11p <1e-5, Fisher transformation test (null hypothesis ρ=0)

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 142

correlation between the predictor’s output and the automatically-provided targets. With

respect to the human-provided labels for Any dissatisfaction (Section 6.5), the predictor has

a a similar correlation of ρ = 0.28 (p = 0.0043). This indicates that the difference between

the true dissatisfaction labels and the PkNN training estimates is not a primary limitation of

the predictor’s accuracy.

Table 6.5 shows that the predictor has significant (p < 0.05) positive correlation with

each dissatisfaction type except Repetition. This may be because Repetition is the rarest type

in the training set (Table 6.1), or because some Repetition complaints are not predictable

from the Neural Chat context (Section 6.6.2).

6.7.3 What Information Does the Predictor Use?

First, we perform an ablation analysis. Compared to the full model’s correlation of ρ = 0.30

with the PkNN targets, the predictor achieves ρ = 0.25 if trained only on the context c, and

ρ = 0.23 if trained only on the bot utterance b (all p <1e-5).

Separately, on the human-annotated control set we find that the full predictor model

has a positive correlation ρ = 0.26 (p = 0.0087) with prior user dissatisfaction, a weaker

correlation ρ = 0.21 (p = 0.035) with unclear user utterance, and no significant correlation

with the presence of any bot problem: ρ = 0.022 (p = 0.83).

Together this evidence indicates that the predictor learns to condition more strongly on

c (in particular prior user dissatisfaction) and less on b (in particular bot errors). Though

concerning, this is unsurprising, as user dissatisfaction (which we can detect automatically)

is simpler to detect than bot errors (which require human annotation).

However, as evidenced by the b-only ablation result, the predictor does find some useful

signal in b. In particular, we find that the full model conditions strongly on the bot’s question.

Figure 6.5 (top) shows that in NeuralChatTurns data, What happened?, What are you doing?

lead to more dissatisfaction,12 whereas positive questions such as Did you have fun?, Did

you enjoy it? tend to lead to less. Figure 6.5 (bottom) shows that the predictor learns these

patterns quite closely.

12These questions are often used repetitively, if the user’s answer to the first asking is unclear/negative (see
Section 6.5.1).

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 143

0.05 0.10 0.15 0.20 0.25 0.30
k-NN score for Any dissatisfaction

did you have fun?
did you enjoy it?

did you have a good time?
what kind of sandwich?

what is your favorite dish?
pizza?

what was it?
what is it?
oh really?

where are you going?
oh yea?

what is your favorite hobby?
i did what?

what are you planning on doing?
oh yeah?

what's been going on?
what are you going to do?

what's going on?
what happened?

what are you doing?

la
st

 b
ot

 q
ue

st
io

n

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
dissatisfaction predictor output

did you have fun?
did you enjoy it?

did you have a good time?
what kind of sandwich?

what is your favorite dish?
pizza?

what was it?
what is it?
oh really?

where are you going?
oh yea?

what is your favorite hobby?
i did what?

what are you planning on doing?
oh yeah?

what's been going on?
what are you going to do?

what's going on?
what happened?

what are you doing?

la
st

 b
ot

 q
ue

st
io

n

Figure 6.5: For each of the 20 most common bot questions, mean scores and 95% CIs for
Any dissatisfaction given by the k-NN classifier (top) and the predictor (bottom).

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 144

6.8 Ranking Bot Responses to Minimize Dissatisfaction

Section 6.7 showed that the predictor learned a positive, though noisy, correlation with user

dissatisfaction. In this section we use the predictor to select better-quality bot utterances

that are less likely to lead to user dissatisfaction.

6.8.1 Human Evaluation Details

Given that the generative model is generally incapable of responding well when the user

is unclear or already dissatisfied, we focus on improving its performance on the remaining

cases (which we call achievable). We sample 400 examples from the NeuralChatTurns

validation set, then manually filter to obtain 270 achievable examples. For these, we

take the context c and generate 20 possible bot responses b1, . . . , b20, using the generative

model and decoding procedure in Section 6.2.1. Let bpred be the response with best (i.e.,

lowest) predictor score: bpred = argminbj∈b1,...,b20Ppred(Any|c, bj). We randomly sample an

alternative brand uniformly from the other 19 responses. One expert evaluator viewed each c,

then chose which of bpred or brand (presented blind) is a higher-quality response. If only one

of the two has an error (defined in Table 6.3), the non-error response is preferred. If neither

or both have an error, the response that better responds to the user’s utterance and continues

the conversation is deemed higher-quality.

6.8.2 Results

We find that bpred is preferred in 46.3% of cases, brand in 35.6%, and no preference in 18.1%. A

binomial test (null hypothesis: bpred and brand equally likely to be preferred) returns a p-value

of 0.03. This raises the question: if the predictor’s outputs have no significant correlation

with bot errors in the NeuralChatTurns distribution (Section 6.7.3), how does the predictor

select better-quality bot utterances on average? Section 6.7.3 showed that the predictor

does condition on b, in particular the bot question, but it conditions on c more strongly. It’s

possible that when ci = cj (as in this evaluation), the predictor is able to distinguish quality

differences between (ci, bi) and (cj, bj); however, on the NeuralChatTurns dataset where the

ci and cj are distinct, the effect of ci and cj dominates the predictor’s ranking.

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 145

6.9 Related Work

Previous work has used a variety of user signals to improve dialogue agents. When learning

from a variable-quality human-human dataset such as Reddit, Gao et al. (2020) showed

that engagement measures like upvotes and replies are more effective than perplexity to

train a ranking model. For one-on-one empathetic conversations like ours, Shin et al. (2019)

trained a neural generative model with reinforcement learning to improve next-turn user

sentiment (as simulated by a user response model, rather than human responses). Though

we considered taking a sentiment-based approach in CHIRPY, we found that user sentiment

doesn’t always align with good user experience: first, expressing negative emotions is

sometimes unavoidable, and second, sentiment classifiers tend not to distinguish between

sentiment about the conversation and sentiment about other issues. We find next-turn user

dissatisfaction to be a comparatively more precise, well-aligned learning signal.

Dialogue systems that learn from their own interactions with humans are relatively rare.

Hancock et al. (2019) also use user satisfaction to identify high-quality bot utterances; these

become additional training examples for the neural generative model. However, Hancock

et al. use paid crowdworkers; research involving intrinsically-motivated, unpaid users is

rarer still. In symmetric settings such as the role-playing game LIGHT (Shuster et al., 2020),

the user utterances themselves can be used to retrain the dialogue agent. In the asymmetric

Alexa Prize setting, Shalyminov et al. (2018) show that conversation-level metrics like rating

and length can also be used to train an effective ranker.

6.10 Limitations

Our findings on user behavior are particular to the demographics of the US Alexa customers

who spoke to CHIRPY in 2019–2020. While users in other locations or time periods may

differ, our analysis gives a valuable snapshot of the current attitudes and expectations of US

users interacting with a voice-based socialbot or virtual assistant.

Second, our results are dependent on the Alexa Prize conversational context and the

technical details of our generative model. In particular, due to latency and cost constraints,

our GPT2-medium generative model is orders of magnitude smaller than the current largest

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 146

generative models, and trained on a fraction of the data (Brown et al., 2020; Adiwardana

et al., 2020). Given that very large models have shown generative abilities that are absent

at smaller scale, it is likely that if we had built our dialogue agent with such a model, its

errors and interactions with users would have been very different. Nonetheless, we believe

our analysis gives useful insight into the performance of neural generative models of more

accessible scale, in particular highlighting issues occurring in real-life scenarios that might

not occur in crowdsourced conversations.

6.11 Conclusion

As shown by the positive results from recent large pretrained models (Zhang et al., 2020b;

Adiwardana et al., 2020; Roller et al., 2021), neural generation can enable more powerful

social chatbots, capable of flexibly discussing a much greater range of topics than previous

rule-based or retrieval-based systems. Indeed, when building CHIRPY, a modular open-

domain socialbot, we found that neural generation is a valuable addition that improves

CHIRPY’s flexibility and conversational tone (Paranjape et al., 2020).

However, this chapter shows that in this real-life setting, poor-quality bot turns are

common. The noisy environment – in which user utterances are often unclear – plays a

large part in the bot’s more basic errors (repetition, ignoring, and nonsensical utterances).

However, even in clear examples where the generative model could succeed, it still makes

many unforced errors; these are more likely to involve faults in reasoning or social abilities.

This highlights the importance of improving neural generative dialogue models’ state-

tracking, commonsense abilities and use of conversational history.

Despite the frequency of errors, users are generally polite; most don’t express overt

dissatisfaction even after an error. However, unaddressed dissatisfaction escalates: it makes

users more critical, offensive, and likely to quit when encountering an error, and more

offensive even if there are no further errors. We find that dissatisfaction correlates with bot

errors, however, it can arise unpredictably for other reasons – e.g., as a result of privacy

boundaries, which are variable and personal to each user.

Dissatisfaction is relatively easy to automatically detect, and thus feasible as a scalable

semi-supervised learning signal that could be used for online learning. However, it is difficult

CHAPTER 6. USER DISSATISFACTION IN CHITCHAT DIALOGUE 147

to predict; this makes it a challenging learning signal. Indeed, we find that our predictor

conditions more strongly on easier-to-recognize factors such as prior user dissatisfaction,

than on harder-to-recognize factors such as bot errors. Nonetheless, we find that when used

as a ranking function to choose between alternative bot utterances, the predictor chooses

better than random selection.

Chapter 7

Conclusion

Open-ended text generation has the potential to enable AI systems to communicate complex

information to humans, in the form best understood by us – natural language. In this

thesis, I have focused on the transformative advances achieved by applying Deep Learning

techniques to this task. I have sought to understand and improve upon the main problems in

these systems, and by observing their impact on user experience, to assess their suitability

for real-life deployment.

In Chapter 3, we identified two main problems in a neural abstractive text summarization

model – copying accuracy and repetition. We showed that applying a hybrid pointer-

generator system and a coverage mechanism can improve on these problems in the context

of abstractive text summarization. In Chapter 4, we identified several behavioral problems

in a neural generative chitchat model. Through a detailed multi-turn human evaluation, we

identified how these problems affect different aspects of user experience. We showed that

certain controlled text generation methods can be effective to manipulate these behaviors;

thus improving user experience. In Chapter 5, we compared an extensively pretrained

Language Model to one that was not, on the task of narrative text generation. By evaluat-

ing several syntactic, semantic, structural, and stylistic aspects of the generated text, we

characterized the text generated by these systems. In particular, by evaluating the generated

text across the whole decoding algorithm spectrum, we emphasized the often-overlooked

impact of decoding algorithms. In Chapter 6, we presented our findings from putting a

neural generative chitchat model in deployment talking to real, intrinsically-motivated users.

148

CHAPTER 7. CONCLUSION 149

We use this rare opportunity to characterize the types of errors made by the bot, and how

they affect user dissatisfaction. Though we find that our neural generative system is still far

from a reliable user experience, we demonstrate a semi-supervised method to learn from

user dissatisfaction, and thus improve the bot.

Promise and risks of open-ended text generation. Looking to the future, open-ended

neural text generation presents both substantial promise and risks. On the one hand, knowl-

edgeable dialogue systems could enable an accessible and socially-aware method for knowl-

edge dissemination; this could be vital in an age of misinformation and echo chambers. More

generally, greater text generation abilities mean a more natural interface to computers, which

could broaden computing access to people of different backgrounds and skills. Open-ended

text generation also offers many exciting creative opportunities, opening a new toolbox to

artists, writers and game developers; it could even inspire new genres of art.

On the other hand, more convincing open-ended text generation has considerable scope

for misuse, for example generating fake news or online harassment. They could also

perpetuate many types of unintentional harms, in particular various manifestations of bias as

described in Section 1.3.3. The personification of dialogue agents, and our interactions with

them, can enforce troubling societal power structures – for example, the prevailing female

gendering of virtual assistants carries associations of female submissiveness. Furthermore,

while more socially engaging machines could enable users to form meaningful relationships

with them, they could worsen our existing crises of digital addiction, isolation and mental

health problems. Together, these opportunities and dangers intersect with many of the most

pressing social issues of our era.

Future directions. As I argued in Section 1.6, I believe that the related problems of

control and safety are the most important to solve, if we wish to realize the benefits and

minimize the harms described above. As larger pretrained LMs make open-ended neural

text generation more of a practical possibility, I’m glad to see the research community

increasingly focused on this area.

Though not explored in this thesis, grounded and multi-modal text generation is an

important future direction, particularly for dialogue models. In Chapter 6, we found that

CHAPTER 7. CONCLUSION 150

the user’s tone of voice and body language were very important missing pieces in the

social conversation. Incorporating this information – for both the user and the bot – will be

essential to truly understand and convey social context. Like many other goals, this will only

be possible through interdisciplinary collaboration with fields such as Human-Computer

Interaction.

The value of research. In this thesis I have endeavored to provide an overview of open-

ended neural text generation at this point in time. But given how rapidly the field has

changed in the last few years, it’s natural to wonder: how much of this snapshot will be

relevant a few years from now?

I believe that the value of research lies not only in whether a particular technique is used

in the future – in fact, almost all research will eventually fail that criterion! The value of

research also lies in aiding the collective understanding – using open science to bring a

wider view to more people, as I described in Section 1.6. Indeed, throughout my PhD I have

often found this kind of contribution the most rewarding. I hope this thesis will inspire the

reader to contribute to the collective understanding, which will be passed from generation to

generation of researchers.

Lastly, the history of Deep Learning shows that some good ideas – such as the founda-

tional work of the 80s and 90s – may need to wait for the right conditions to flourish. In

Section 1.6 I described the wave of large pretrained LMs as a homogenization of the field,

subsuming other techniques. When the tide eventually goes out, those other techniques will

still be there, and they may have something new to offer.

Bibliography

Mohsen Abbasi, Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.

2019. Fairness in representation: quantifying stereotyping as a representational harm. In

SIAM International Conference on Data Mining, pages 801–809.

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal

Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. 2020.

Towards a human-like open-domain chatbot. arXiv preprint arXiv:2001.09977.

Ali Araabi and Christof Monz. 2020. Optimizing transformer for low-resource neural ma-

chine translation. In International Conference on Computational Linguistics (COLING),

pages 3429–3435.

Shlomo Argamon, Moshe Koppel, and Galit Avneri. 1998. Routing documents according to

style. In International workshop on innovative information systems.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simple but tough-to-beat baseline for

sentence embeddings. In International Conference on Learning Representations (ICLR).

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau,

Aaron Courville, and Yoshua Bengio. 2017. An actor-critic algorithm for sequence

prediction. In International Conference on Learning Representations (ICLR).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation

by jointly learning to align and translate. In International Conference on Learning

Representations (ICLR).

151

http://128.196.203.2/papers/sdm_2019_stereotyping.pdf
https://arxiv.org/abs/2001.09977
https://aclanthology.org/2020.coling-main.304.pdf
https://aclanthology.org/2020.coling-main.304.pdf
https://pdfs.semanticscholar.org/70a3/12db7577170c374467c881772d1277b2ebda.pdf
https://pdfs.semanticscholar.org/70a3/12db7577170c374467c881772d1277b2ebda.pdf
https://openreview.net/pdf?id=SyK00v5xx
https://openreview.net/pdf?id=SyK00v5xx
https://arxiv.org/pdf/1607.07086.pdf
https://arxiv.org/pdf/1607.07086.pdf
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473

BIBLIOGRAPHY 152

Ashutosh Baheti, Alan Ritter, Jiwei Li, and Bill Dolan. 2018. Generating more interesting

responses in neural conversation models with distributional constraints. In Empirical

Methods in Natural Language Processing (EMNLP).

Regina Barzilay and Mirella Lapata. 2008. Modeling local coherence: An entity-based

approach. Computational Linguistics, 34(1):1–34.

Scott F Beers and William E Nagy. 2009. Syntactic complexity as a predictor of adolescent

writing quality: Which measures? Which genre? Reading and Writing, 22(2):185–200.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.

2021. On the dangers of stochastic parrots: Can language models be too big? In ACM

Conference on Fairness, Accountability, and Transparency, pages 610–623.

Emily M Bender and Alexander Koller. 2020. Climbing towards NLU: On meaning, form,

and understanding in the age of data. In Association for Computational Linguistics (ACL),

pages 5185–5198.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies

with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and Hanna Wallach. 2020. Language (tech-

nology) is power: A critical survey of ‘bias’ in NLP. In Association for Computational

Linguistics (ACL), pages 5454–5476.

Marcely Zanon Boito, Aline Villavicencio, and Laurent Besacier. 2019. Empirical evaluation

of sequence-to-sequence models for word discovery in low-resource settings. arXiv

preprint arXiv:1907.00184.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney

von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik

Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie

Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa

Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-

Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby

https://www.aclweb.org/anthology/D18-1431
https://www.aclweb.org/anthology/D18-1431
https://doi.org/10.1162/coli.2008.34.1.1
https://doi.org/10.1162/coli.2008.34.1.1
https://link.springer.com/article/10.1007/s11145-007-9107-5
https://link.springer.com/article/10.1007/s11145-007-9107-5
https://dl.acm.org/doi/pdf/10.1145/3442188.3445922
https://aclanthology.org/2020.acl-main.463.pdf
https://aclanthology.org/2020.acl-main.463.pdf
https://ieeexplore.ieee.org/abstract/document/279181
https://ieeexplore.ieee.org/abstract/document/279181
https://arxiv.org/pdf/2005.14050.pdf
https://arxiv.org/pdf/2005.14050.pdf
https://hal.archives-ouvertes.fr/hal-02193867/document
https://hal.archives-ouvertes.fr/hal-02193867/document

BIBLIOGRAPHY 153

Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho,

Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha

Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei

Kohd, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak,

Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu

Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele

Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie,

Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel

Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi

Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack

Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih,

Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr,

Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie,

Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun

Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the

opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258.

Antoine Bordes, Y-Lan Boureau, and Jason Weston. 2017. Learning end-to-end goal-

oriented dialog. In International Conference on Learning Representations (ICLR).

Shikha Bordia and Samuel Bowman. 2019. Identifying and reducing gender bias in word-

level language models. In NAACL Student Research Workshop, pages 7–15.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and

Samy Bengio. 2016. Generating sentences from a continuous space. In Computational

Natural Language Learning (CoNLL), pages 10–21.

Margarita Boyarskaya, Alexandra Olteanu, and Kate Crawford. 2020. Overcoming failures

of imagination in AI infused system development and deployment. In NeurIPS Workshop

on Navigating the Broader Impacts of AI Research.

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. 2017. Massive exploration

of neural machine translation architectures. In Empirical Methods in Natural Language

Processing (EMNLP), pages 1442–1451.

https://arxiv.org/pdf/2108.07258.pdf
https://arxiv.org/pdf/2108.07258.pdf
https://arxiv.org/pdf/1605.07683.pdf
https://arxiv.org/pdf/1605.07683.pdf
https://arxiv.org/pdf/1904.03035.pdf
https://arxiv.org/pdf/1904.03035.pdf
https://arxiv.org/pdf/1511.06349.pdf
https://arxiv.org/pdf/2011.13416.pdf
https://arxiv.org/pdf/2011.13416.pdf
https://arxiv.org/pdf/1703.03906.pdf
https://arxiv.org/pdf/1703.03906.pdf

BIBLIOGRAPHY 154

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020.

Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuperman. 2014. Concreteness ratings

for 40 thousand generally known English word lemmas. Behavior Research Methods,

46(3):904–911.

Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent

Charlin. 2018. Language GANs falling short. In NeurIPS Workshop on Critiquing and

Correcting Trends in Machine Learning.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018. Faithful to the original: Fact

aware neural abstractive summarization. In Conference on Artificial Intelligence (AAAI),

volume 32.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss,

Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. 2020.

Extracting training data from large language models. arXiv preprint arXiv:2012.07805.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. 2020. Evaluation of text generation:

A survey. arXiv preprint arXiv:2006.14799.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri

Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large

language models trained on code. arXiv preprint arXiv:2107.03374.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George

Foster, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, et al. 2018. The best of

both worlds: Combining recent advances in neural machine translation. In Association

for Computational Linguistics (ACL), pages 76–86.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin Lu, Jackie

Tsay, Yinan Wang, Andrew M Dai, Zhifeng Chen, et al. 2019. Gmail smart compose:

https://arxiv.org/pdf/2005.14165.pdf
https://doi.org/10.3758/s13428-013-0403-5
https://doi.org/10.3758/s13428-013-0403-5
http://arxiv.org/abs/1811.02549
https://arxiv.org/pdf/1711.04434.pdf
https://arxiv.org/pdf/1711.04434.pdf
https://arxiv.org/pdf/2012.07805.pdf
https://arxiv.org/pdf/2006.14799.pdf
https://arxiv.org/pdf/2006.14799.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/1804.09849.pdf
https://arxiv.org/pdf/1804.09849.pdf
https://arxiv.org/pdf/1906.00080.pdf

BIBLIOGRAPHY 155

Real-time assisted writing. In ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 2287–2295.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and Hui Jiang. 2016. Distraction-based

neural networks for modeling documents. In International Joint Conference on Artificial

Intelligence (IJCAI).

Jackie Chi Kit Cheung and Gerald Penn. 2014. Unsupervised sentence enhancement

for automatic summarization. In Empirical Methods in Natural Language Processing

(EMNLP).

Ethan A. Chi, Caleb Chiam, Trenton Chang, Swee Kiat Lim, Chetanya Rastogi, Alexander

Iyabor, Yutong He, Hari Sowrirajan, Avanika Narayan, Jillian Tang, Haojun Li, Ashwin

Paranjape, and Christopher D. Manning. 2021. Neural, neural everywhere: Controlled

generation meets scaffolded, structured dialogue. In Alexa Prize Proceedings.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations

using RNN encoder–decoder for statistical machine translation. In Empirical Methods in

Natural Language Processing (EMNLP), pages 1724–1734.

Sumit Chopra, Michael Auli, and Alexander M Rush. 2016. Abstractive sentence sum-

marization with attentive recurrent neural networks. In North American Association for

Computational Linguistics: Human Language Technologies (NAACL-HLT).

Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and

Noah A. Smith. 2021. All that’s ‘human’ is not gold: Evaluating human evaluation of

generated text. In Association for Computational Linguistics (ACL), pages 7282–7296.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter

Chang, and Nazli Goharian. 2018. A discourse-aware attention model for abstractive

summarization of long documents. In North American Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT), pages 615–621.

https://arxiv.org/pdf/1906.00080.pdf
https://arxiv.org/pdf/1906.00080.pdf
https://www.ijcai.org/Proceedings/16/Papers/391.pdf
https://www.ijcai.org/Proceedings/16/Papers/391.pdf
https://aclanthology.org/D14-1085.pdf
https://aclanthology.org/D14-1085.pdf
https://d7qzviu3xw2xc.cloudfront.net/alexa/alexaprize/docs/sgc4/Stanford-Chirpy-Cardinal.pdf
https://d7qzviu3xw2xc.cloudfront.net/alexa/alexaprize/docs/sgc4/Stanford-Chirpy-Cardinal.pdf
https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/pdf/1406.1078.pdf
https://aclanthology.org/N16-1012.pdf
https://aclanthology.org/N16-1012.pdf
https://doi.org/10.18653/v1/2021.acl-long.565
https://doi.org/10.18653/v1/2021.acl-long.565
https://arxiv.org/pdf/1804.05685.pdf
https://arxiv.org/pdf/1804.05685.pdf

BIBLIOGRAPHY 156

Eldan Cohen and Christopher Beck. 2019. Empirical analysis of beam search performance

degradation in neural sequence models. In International Conference on Machine Learning

(ICML), volume 97, pages 1290–1299.

Kate Crawford. 2017. The trouble with bias. Keynote at NeurIPS.

Emmelyn AJ Croes and Marjolijn L Antheunis. 2020. 36 questions to loving a chatbot:

Are people willing to self-disclose to a chatbot? In International Workshop on Chatbot

Research and Design, pages 81–95.

Robert Dale, Barbara Di Eugenio, and Donia Scott. 1998. Introduction to the special issue

on natural language generation. Computational Linguistics, 24(3):345–353.

Antonella De Angeli and Sheryl Brahnam. 2008. I hate you! Disinhibition with virtual

partners. Interacting with computers, 20(3):302–310.

Antonella De Angeli, Rollo Carpenter, et al. 2005. Stupid computer! Abuse and social

identities. In Abuse: The darker side of Human-Computer Interaction (INTERACT

Workshop), pages 19–25.

Michael Denkowski and Alon Lavie. 2014. Meteor universal: Language specific translation

evaluation for any target language. In EACL Workshop on Statistical Machine Translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-

training of deep bidirectional transformers for language understanding. In North American

Association for Computational Linguistics: Human Language Technologies (NAACL-

HLT).

Emily Dinan, Angela Fan, Adina Williams, Jack Urbanek, Douwe Kiela, and Jason Weston.

2020. Queens are powerful too: Mitigating gender bias in dialogue generation. In

Empirical Methods in Natural Language Processing (EMNLP), pages 8173–8188.

Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack

Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, et al. 2019a. The second

conversational intelligence challenge (ConvAI2). arXiv preprint arXiv:1902.00098.

http://proceedings.mlr.press/v97/cohen19a.html
http://proceedings.mlr.press/v97/cohen19a.html
https://nips.cc/Conferences/2017/Schedule?showEvent=8742
https://link.springer.com/chapter/10.1007/978-3-030-68288-0_6
https://link.springer.com/chapter/10.1007/978-3-030-68288-0_6
https://aclanthology.org/J98-3001.pdf
https://aclanthology.org/J98-3001.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.7819&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.7819&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.3787&rep=rep1&type=pdf#page=19
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.3787&rep=rep1&type=pdf#page=19
https://aclanthology.org/W14-3348.pdf
https://aclanthology.org/W14-3348.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/2020.emnlp-main.656.pdf
https://arxiv.org/pdf/1902.00098.pdf
https://arxiv.org/pdf/1902.00098.pdf

BIBLIOGRAPHY 157

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston.

2019b. Wizard of Wikipedia: Knowledge-powered conversational agents. In International

Conference on Learning Representations (ICLR).

Kathryn Dindia. 2002. Self-disclosure research: Knowledge through meta-analysis. Inter-

personal communication research: Advances through meta-analysis, pages 169–185.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online

learning and stochastic optimization. The Journal of Machine Learning Research (JMLR),

12:2121–2159.

Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie Zumer, Justin Harris, Emery Fine,

Rahul Mehrotra, and Kaheer Suleman. 2017. Frames: a corpus for adding memory to

goal-oriented dialogue systems. In Special Interest Group on Discourse and Dialogue

(SIGDIAL), pages 207–219.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179–211.

Alexander R Fabbri, Wojciech Kryscinski, Bryan McCann, Caiming Xiong, Richard Socher,

and Dragomir Radev. 2021. SummEval: Re-evaluating summarization evaluation. Trans-

actions of the Association of Computational Linguistics (TACL), 9:391–409.

Angela Fan, David Grangier, and Michael Auli. 2018a. Controllable abstractive summa-

rization. In Workshop on Neural Machine Translation and Generation (WNMT), pages

45–54.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018b. Hierarchical neural story generation.

In Association for Computational Linguistics (ACL).

Jessica Ficler and Yoav Goldberg. 2017. Controlling linguistic style aspects in neural

language generation. In Workshop on Stylistic Variation, pages 94–104.

Marina Fomicheva and Lucia Specia. 2019. Taking MT evaluation metrics to extremes:

Beyond correlation with human judgments. Computational Linguistics, 45(3):515–558.

https://arxiv.org/pdf/1811.01241.pdf
https://books.google.com/books?hl=en&lr=&id=lLaRAgAAQBAJ&oi=fnd&pg=PA169&ots=kidBOrI32y&sig=IFRfeVfMzSfcTyjvonczms2P_hI
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://aclweb.org/anthology/W17-5526
http://aclweb.org/anthology/W17-5526
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://arxiv.org/pdf/2007.12626.pdf
http://aclweb.org/anthology/W18-2706
http://aclweb.org/anthology/W18-2706
https://arxiv.org/pdf/1805.04833.pdf
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
https://aclanthology.org/J19-3004.pdf
https://aclanthology.org/J19-3004.pdf

BIBLIOGRAPHY 158

Markus Freitag, George Foster, David Grangier, Viresh Ratnakar, Qijun Tan, and Wolfgang

Macherey. 2021. Experts, errors, and context: A large-scale study of human evaluation

for machine translation. arXiv preprint arXiv:2104.14478.

Markus Freitag, David Grangier, and Isaac Caswell. 2020. BLEU might be guilty but

references are not innocent. In Empirical Methods in Natural Language Processing

(EMNLP), pages 61–71.

Raefer Gabriel, Yang Liu, Anna Gottardi, Mihail Eric, Anju Khatri, Anjali Chadha, Qinlang

Chen, Behnam Hedayatnia, Pankaj Rajan, Ali Binici, et al. 2020. Further advances in

open domain dialog systems in the third Alexa Prize socialbot grand challenge. In Alexa

Prize Proceedings.

Xiang Gao, Yizhe Zhang, Michel Galley, Chris Brockett, and William B Dolan. 2020.

Dialogue response ranking training with large-scale human feedback data. In Empirical

Methods in Natural Language Processing (EMNLP), pages 386–395.

Ismael Garrido-Muñoz, Arturo Montejo-Ráez, Fernando Martı́nez-Santiago, and L Alfonso

Ureña-López. 2021. A survey on bias in deep NLP. Applied Sciences, 11(7):3184.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. 2020.

RealToxicityPrompts: Evaluating neural toxic degeneration in language models. In

Empirical Methods in Natural Language Processing (EMNLP): Findings, pages 3356–

3369.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. 2017.

Convolutional sequence to sequence learning. In International Conference on Machine

Learning (ICML).

Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. 2019. GLTR: Statistical

detection and visualization of generated text. In Association for Computational Linguistics

(ACL): System Demonstrations, pages 111–116.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 2000. Learning to forget: Continual

prediction with LSTM. Neural computation, 12(10):2451–2471.

https://arxiv.org/pdf/2104.14478.pdf
https://arxiv.org/pdf/2104.14478.pdf
https://arxiv.org/pdf/2004.06063.pdf
https://arxiv.org/pdf/2004.06063.pdf
https://assets.amazon.science/0e/e6/2cff166647bfb951b3ccc67c1d06/further-advances-in-open-domain-dialog-systems-in-the-third-alexa-prize-socialbot-grand-challenge.pdf
https://assets.amazon.science/0e/e6/2cff166647bfb951b3ccc67c1d06/further-advances-in-open-domain-dialog-systems-in-the-third-alexa-prize-socialbot-grand-challenge.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.28.pdf
https://www.mdpi.com/2076-3417/11/7/3184
https://arxiv.org/pdf/2009.11462.pdf
https://pdfs.semanticscholar.org/bb3e/bc09b65728d6eced04929df72a006fb5210b.pdf
https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/P19-3019
https://direct.mit.edu/neco/article/12/10/2451/6415/Learning-to-Forget-Continual-Prediction-with-LSTM
https://direct.mit.edu/neco/article/12/10/2451/6415/Learning-to-Forget-Continual-Prediction-with-LSTM

BIBLIOGRAPHY 159

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and Kevin Knight. 2017. Hafez: an

interactive poetry generation system. In Association for Computational Linguistics (ACL):

System Demonstrations, pages 43–48.

Julia Gong. 2018. Google Translate’s ‘sinister religious prophecies’, demystified. Skynet

Today blog post.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. Advances

in Neural Information Processing Systems (NeurIPS), 27.

Ben Green. 2019. ‘Good’ isn’t good enough. In NeurIPS AI for Social Good workshop.

Herbert P Grice. 1975. Logic and conversation. In Speech acts, pages 41–58. Brill.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating copying mech-

anism in sequence-to-sequence learning. In Association for Computational Linguistics

(ACL).

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. 2016.

Pointing the unknown words. In Association for Computational Linguistics (ACL).

Fenfei Guo, Angeliki Metallinou, Chandra Khatri, Anirudh Raju, Anu Venkatesh, and Ash-

win Ram. 2018. Topic-based evaluation for conversational bots. NeurIPS Conversational

AI Workshop.

Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. 2019.

Learning from dialogue after deployment: Feed yourself, chatbot! In Association for

Computational Linguistics (ACL), pages 3667–3684.

Amelia Hardy, Ashwin Paranjape, and Christopher Manning. 2021. Effective social chatbot

strategies for increasing user initiative. In Special Interest Group on Discourse and

Dialogue (SIGDIAL), pages 99–110.

http://aclweb.org/anthology/P17-4008
http://aclweb.org/anthology/P17-4008
https://www.skynettoday.com/briefs/google-nmt-prophecies
http://www.deeplearningbook.org
https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://ai.ethicsworkshop.org/Library/LibContentAcademic/GoodNotGoodEnough.pdf
https://staff.fnwi.uva.nl/r.fernandezrovira/teaching/cosp/cosp2011/papers/LogicAndConversation.pdf
https://arxiv.org/pdf/1603.06393.pdf
https://arxiv.org/pdf/1603.06393.pdf
https://arxiv.org/pdf/1603.08148.pdf
https://arxiv.org/pdf/1801.03622.pdf
https://doi.org/10.18653/v1/P19-1358
https://aclanthology.org/2021.sigdial-1.11
https://aclanthology.org/2021.sigdial-1.11

BIBLIOGRAPHY 160

Tatsunori Hashimoto, Hugh Zhang, and Percy Liang. 2019. Unifying human and statis-

tical evaluation for natural language generation. In North American Association for

Computational Linguistics: Human Language Technologies (NAACL-HLT).

Helen Hastie. 2012. Metrics and evaluation of spoken dialogue systems. In Data-driven

methods for adaptive spoken dialogue systems, pages 131–150. Springer.

Matthew Henderson, Blaise Thomson, and Jason D Williams. 2014. The second dialog state

tracking challenge. In Special Interest Group on Discourse and Dialogue (SIGDIAL),

pages 263–272.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,

Mustafa Suleyman, and Phil Blunsom. 2015. Teaching machines to read and comprehend.

In Advances in Neural Information Processing Systems (NeurIPS).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural compu-

tation, 9(8):1735–1780.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi.

2018. Learning to write with cooperative discriminators. In Association for Computational

Linguistics (ACL), pages 1638–1649.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. 2020. The curious case of neural

text degeneration. In International Conference on Learning Representations (ICLR).

Shui Hu, Yang Liu, Anna Gottardi, Behnam Hedayatnia, Anju Khatri, Anjali Chadha,

Qinlang Chen, Pankaj Rajan, Ali Binici, Varun Somani, Yao Lu, Prerna Dwivedi, Lucy

Hu, Hangjie Shi, Sattvik Sahai, Mihail Eric, Karthik Gopalakrishnan, Seokhwan Kim,

Spandana Gella, Alexandros Papangelis, Patrick Lange, Di Jin, Nicole Chartier, Mahdi

Namazifar, Aishwarya Padmakumar, Sarik Ghazarian, Shereen Oraby, Anjali Narayan-

Chen, Yuheng Du, Lauren Stubell, Savanna Stiff, Kate Bland, Arindam Mandal, Reza

Ghanadan, and Dilek Hakkani-Tur. 2021. Further advances in open domain dialog systems

in the fourth Alexa Prize socialbot grand challenge. In Alexa Prize Proceedings.

https://www.aclweb.org/anthology/N19-1169
https://www.aclweb.org/anthology/N19-1169
https://link.springer.com/chapter/10.1007/978-1-4614-4803-7_7
http://www.aclweb.org/anthology/W14-4337
http://www.aclweb.org/anthology/W14-4337
https://arxiv.org/pdf/1506.03340.pdf
https://www.researchgate.net/profile/Sepp-Hochreiter/publication/13853244_Long_Short-term_Memory/links/5700e75608aea6b7746a0624/Long-Short-term-Memory.pdf
http://aclweb.org/anthology/P18-1152
https://arxiv.org/pdf/1904.09751.pdf
https://arxiv.org/pdf/1904.09751.pdf
https://d7qzviu3xw2xc.cloudfront.net/alexa/alexaprize/docs/sgc4/Alexa-Prize-Technical-Paper-2021_Final.pdf
https://d7qzviu3xw2xc.cloudfront.net/alexa/alexaprize/docs/sgc4/Alexa-Prize-Technical-Paper-2021_Final.pdf

BIBLIOGRAPHY 161

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. 2017.

Toward controlled generation of text. In International Conference on Machine Learning

(ICML).

Po-Sen Huang, Huan Zhang, Ray Jiang, Robert Stanforth, Johannes Welbl, Jack Rae,

Vishal Maini, Dani Yogatama, and Pushmeet Kohli. 2020. Reducing sentiment bias

in language models via counterfactual evaluation. In Empirical Methods in Natural

Language Processing (EMNLP): Findings, pages 65–83.

Touseef Iqbal and Shaima Qureshi. 2020. The survey: Text generation models in deep

learning. Journal of King Saud University – Computer and Information Sciences.

Molly E Ireland and James W Pennebaker. 2010. Language style matching in writing:

Synchrony in essays, correspondence, and poetry. Journal of personality and social

psychology, 99(3):549.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing

source code using a neural attention model. In Association for Computational Linguistics

(ACL), pages 2073–2083.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata

Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. 2019. Way off-policy batch

deep reinforcement learning of implicit human preferences in dialog. arXiv preprint

arXiv:1907.00456.

Robin Jia and Percy Liang. 2016. Data recombination for neural semantic parsing. In

Association for Computational Linguistics (ACL), pages 12–22.

Shaojie Jiang and Maarten de Rijke. 2018. Why are sequence-to-sequence models so

dull? Understanding the low-diversity problem of chatbots. In EMNLP Workshop on

Search-Oriented Conversational AI.

Hongyan Jing. 2000. Sentence reduction for automatic text summarization. In Applied

natural language processing.

https://arxiv.org/pdf/1703.00955.pdf
https://arxiv.org/pdf/1911.03064.pdf
https://arxiv.org/pdf/1911.03064.pdf
https://www.sciencedirect.com/science/article/pii/S1319157820303360
https://www.sciencedirect.com/science/article/pii/S1319157820303360
https://psycnet.apa.org/record/2010-17133-003
https://psycnet.apa.org/record/2010-17133-003
https://aclanthology.org/P16-1195.pdf
https://aclanthology.org/P16-1195.pdf
https://arxiv.org/pdf/1907.00456.pdf
https://arxiv.org/pdf/1907.00456.pdf
https://arxiv.org/pdf/1606.03622.pdf
https://aclanthology.org/W18-5712.pdf
https://aclanthology.org/W18-5712.pdf
https://aclanthology.org/A00-1043.pdf

BIBLIOGRAPHY 162

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity search with

GPUs. arXiv preprint arXiv:1702.08734.

Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing (2nd Edition).

Prentice-Hall, Inc., USA.

Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K Reddy. 2019. Deep

reinforcement learning for sequence-to-sequence models. IEEE transactions on neural

networks and learning systems, 31(7):2469–2489.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher.

2019. CTRL: A conditional transformer language model for controllable generation.

arXiv preprint arXiv:1909.05858.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura, and Manabu Okumura.

2016. Controlling output length in neural encoder-decoders. In Empirical Methods in

Natural Language Processing (EMNLP), pages 1328–1338.

J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom. 1975.

Derivation of new readability formulas (automated readability index, Fog count and Flesch

reading ease formula) for navy enlisted personnel. Technical report, Naval Technical

Training Command Millington TN Research Branch.

Diederik P Kingma and Max Welling. 2014. Auto-encoding variational Bayes. stat, 1050:1.

Philipp Koehn. 2009. Statistical machine translation. Cambridge University Press.

Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine translation.

In Workshop on Neural Machine Translation and Generation (WNMT), pages 28–39.

Anastassia Kornilova and Vladimir Eidelman. 2019. BillSum: A corpus for automatic

summarization of US legislation. In Workshop on New Frontiers in Summarization, pages

48–56.

Wojciech Kryściński, Nitish Shirish Keskar, Bryan McCann, Caiming Xiong, and Richard

Socher. 2019. Neural text summarization: A critical evaluation. In Empirical Methods in

Natural Language Processing (EMNLP), pages 540–551.

https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/1702.08734
https://web.stanford.edu/~jurafsky/slp3/
https://arxiv.org/pdf/1805.09461.pdf
https://arxiv.org/pdf/1805.09461.pdf
https://arxiv.org/pdf/1909.05858.pdf
https://doi.org/10.18653/v1/D16-1140
https://apps.dtic.mil/sti/pdfs/ADA006655.pdf
https://apps.dtic.mil/sti/pdfs/ADA006655.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://books.google.com/books?hl=en&lr=&id=kKYgAwAAQBAJ&oi=fnd&pg=PR11&ots=k7ypWXg52x&sig=HyymuSBPaX64ekoy9cmn-iBlER4
https://doi.org/10.18653/v1/W17-3204
https://arxiv.org/pdf/1910.00523.pdf
https://arxiv.org/pdf/1910.00523.pdf
https://arxiv.org/pdf/1908.08960.pdf

BIBLIOGRAPHY 163

Wojciech Kryscinski, Bryan McCann, Caiming Xiong, and Richard Socher. 2020. Evaluating

the factual consistency of abstractive text summarization. In Empirical Methods in Natural

Language Processing (EMNLP), pages 9332–9346.

Ilia Kulikov, Alexander Miller, Kyunghyun Cho, and Jason Weston. 2019. Importance of

search and evaluation strategies in neural dialogue modeling. In International Conference

on Natural Language Generation (ICNLG), pages 76–87.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995. A trainable document summarizer.

In International ACM SIGIR conference on Research and development in information

retrieval.

Andrey Kurenkov and Arnav Arora. 2019. OpenAI’s GPT2 - food to media hype or wake

up call? Skynet Today blog post.

Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang, Aaron C

Courville, and Yoshua Bengio. 2016. Professor forcing: A new algorithm for training

recurrent networks. In Advances in Neural Information Processing Systems (NeurIPS),

pages 4601–4609.

Samuel Läubli, Sheila Castilho, Graham Neubig, Rico Sennrich, Qinlan Shen, and Antonio

Toral. 2020. A set of recommendations for assessing human–machine parity in language

translation. Journal of Artificial Intelligence Research, 67:653–672.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016a. A diversity-

promoting objective function for neural conversation models. In North American Associa-

tion for Computational Linguistics: Human Language Technologies (NAACL-HLT).

Jiwei Li and Dan Jurafsky. 2016. Mutual information and diverse decoding improve neural

machine translation. arXiv preprint arXiv:1601.00372.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017a. Learning to decode for future success.

arXiv preprint arXiv:1701.06549.

https://arxiv.org/pdf/1910.12840.pdf
https://arxiv.org/pdf/1910.12840.pdf
https://arxiv.org/pdf/1811.00907.pdf
https://arxiv.org/pdf/1811.00907.pdf
https://dl.acm.org/doi/pdf/10.1145/215206.215333
https://www.skynettoday.com/briefs/gpt2
https://www.skynettoday.com/briefs/gpt2
https://arxiv.org/pdf/1610.09038.pdf
https://arxiv.org/pdf/1610.09038.pdf
https://arxiv.org/pdf/2004.01694.pdf
https://arxiv.org/pdf/2004.01694.pdf
https://www.aclweb.org/anthology/N16-1014
https://www.aclweb.org/anthology/N16-1014
https://arxiv.org/pdf/1601.00372.pdf
https://arxiv.org/pdf/1601.00372.pdf
https://arxiv.org/pdf/1701.06549.pdf

BIBLIOGRAPHY 164

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. 2016b.

Deep reinforcement learning for dialogue generation. In Empirical Methods in Natural

Language Processing (EMNLP), pages 1192–1202.

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. 2017b.

Adversarial learning for neural dialogue generation. In Empirical Methods in Natural

Language Processing (EMNLP), pages 2157–2169.

Margaret Li, Jason Weston, and Stephen Roller. 2019. ACUTE-EVAL: Improved dia-

logue evaluation with optimized questions and multi-turn comparisons. arXiv preprint

arXiv:1909.03087.

Chin-Yew Lin. 2004a. Looking for a few good metrics: Automatic summarization evaluation

– how many samples are enough? In NACSIS/NII Test Collection for Information Retrieval

(NTCIR) Workshop.

Chin-Yew Lin. 2004b. ROUGE: A package for automatic evaluation of summaries. In Text

summarization branches out (ACL workshop).

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramón Fermandez, Silvio Amir,

Luis Marujo, and Tiago Luı́s. 2015. Finding function in form: Compositional character

models for open vocabulary word representation. In Empirical Methods in Natural

Language Processing (EMNLP), pages 1520–1530.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent Charlin, and Joelle

Pineau. 2016. How not to evaluate your dialogue system: An empirical study of unsu-

pervised evaluation metrics for dialogue response generation. In Empirical Methods in

Natural Language Processing (EMNLP).

Haochen Liu, Jamell Dacon, Wenqi Fan, Hui Liu, Zitao Liu, and Jiliang Tang. 2020. Does

gender matter? Towards fairness in dialogue systems. In International Conference on

Computational Linguistics (COLING), pages 4403–4416.

Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua

Bengio, and Joelle Pineau. 2017. Towards an automatic Turing test: Learning to evaluate

https://aclweb.org/anthology/D16-1127
https://arxiv.org/pdf/1701.06547.pdf
https://arxiv.org/pdf/1909.03087.pdf
https://arxiv.org/pdf/1909.03087.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings4/OPEN/NTCIR4-OPEN-LinCY.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings4/OPEN/NTCIR4-OPEN-LinCY.pdf
https://aclanthology.org/W04-1013.pdf
https://arxiv.org/pdf/1508.02096.pdf
https://arxiv.org/pdf/1508.02096.pdf
https://www.aclweb.org/anthology/D16-1230
https://www.aclweb.org/anthology/D16-1230
https://arxiv.org/pdf/1910.10486.pdf
https://arxiv.org/pdf/1910.10486.pdf
https://doi.org/10.18653/v1/P17-1103

BIBLIOGRAPHY 165

dialogue responses. In Association for Computational Linguistics (ACL), pages 1116–

1126.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. 2015. The Ubuntu dialogue

corpus: A large dataset for research in unstructured multi-turn dialogue systems. In

Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 285–294.

Minh-Thang Luong and Christopher D Manning. 2016. Achieving open vocabulary neural

machine translation with hybrid word-character models. In Association for Computational

Linguistics (ACL), pages 1054–1063.

Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective approaches to

attention-based neural machine translation. In Empirical Methods in Natural Language

Processing (EMNLP).

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette Graham. 2019. Results of the WMT19

metrics shared task: Segment-level and strong MT systems pose big challenges. In

Conference on Machine Translation (WMT), pages 62–90.

Yukun Ma, Khanh Linh Nguyen, Frank Z Xing, and Erik Cambria. 2020. A survey on

empathetic dialogue systems. Information Fusion, 64:50–70.

Christopher D. Manning and Abigail See. 2019. CS224n: Natural language processing with

deep learning. Lecture slides.

Huanru Henry Mao, Bodhisattwa Prasad Majumder, Julian McAuley, and Garrison W.

Cottrell. 2019. Improving neural story generation by targeted common sense grounding.

In Empirical Methods in Natural Language Processing (EMNLP).

Benjamin Marie, Atsushi Fujita, and Raphael Rubino. 2021. Scientific credibility of machine

translation research: A meta-evaluation of 769 papers. In Association for Computational

Linguistics (ACL).

Luca Massarelli, Fabio Petroni, Aleksandra Piktus, Myle Ott, Tim Rocktäschel, Vassilis

Plachouras, Fabrizio Silvestri, and Sebastian Riedel. 2020. How decoding strategies affect

https://doi.org/10.18653/v1/P17-1103
https://doi.org/10.18653/v1/P17-1103
http://aclweb.org/anthology/W15-4640
http://aclweb.org/anthology/W15-4640
https://arxiv.org/pdf/1604.00788.pdf
https://arxiv.org/pdf/1604.00788.pdf
https://arxiv.org/pdf/1508.04025.pdf
https://arxiv.org/pdf/1508.04025.pdf
https://aclanthology.org/W19-5302.pdf
https://aclanthology.org/W19-5302.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1566253520303092
https://www.sciencedirect.com/science/article/abs/pii/S1566253520303092
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/
https://arxiv.org/pdf/1908.09451.pdf
https://arxiv.org/pdf/2106.15195.pdf
https://arxiv.org/pdf/2106.15195.pdf
https://arxiv.org/pdf/1911.03587.pdf

BIBLIOGRAPHY 166

the verifiability of generated text. In Empirical Methods in Natural Language Processing

(EMNLP): Findings, pages 223–235.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. On faithfulness

and factuality in abstractive summarization. In Association for Computational Linguistics

(ACL), pages 1906–1919.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. 2018. The

natural language decathlon: Multitask learning as question answering. arXiv preprint

arXiv:1806.08730.

Danielle S McNamara, Scott A Crossley, and Philip M McCarthy. 2010. Linguistic features

of writing quality. Written communication, 27(1):57–86.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. If beam search is the answer, what was

the question? In Empirical Methods in Natural Language Processing (EMNLP), pages

2173–2185.

Gaurav Menghani. 2021. Efficient deep learning: A survey on making deep learning models

smaller, faster, and better. arXiv preprint arXiv:2106.08962.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016. Pointer

sentinel mixture models. In NeurIPS Workshop on Multi-class and Multi-label Learning

in Extremely Large Label Spaces.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe Ittycheriah. 2016. Coverage

embedding models for neural machine translation. In Empirical Methods in Natural

Language Processing (EMNLP).

Yishu Miao and Phil Blunsom. 2016. Language as a latent variable: Discrete generative

models for sentence compression. In Empirical Methods in Natural Language Processing

(EMNLP).

Julian Michael. 2020. To dissect an octopus: Making sense of the form/meaning debate.

Blog post.

https://arxiv.org/pdf/1911.03587.pdf
https://arxiv.org/pdf/1911.03587.pdf
https://arxiv.org/pdf/2005.00661.pdf
https://arxiv.org/pdf/2005.00661.pdf
https://arxiv.org/pdf/1806.08730.pdf
https://arxiv.org/pdf/1806.08730.pdf
https://journals.sagepub.com/doi/abs/10.1177/0741088309351547
https://journals.sagepub.com/doi/abs/10.1177/0741088309351547
https://arxiv.org/pdf/2010.02650.pdf
https://arxiv.org/pdf/2010.02650.pdf
https://arxiv.org/pdf/2106.08962.pdf
https://arxiv.org/pdf/2106.08962.pdf
https://arxiv.org/pdf/1609.07843.pdf
https://arxiv.org/pdf/1609.07843.pdf
https://arxiv.org/pdf/1605.03148.pdf
https://arxiv.org/pdf/1605.03148.pdf
https://arxiv.org/pdf/1609.07317.pdf
https://arxiv.org/pdf/1609.07317.pdf
https://blog.julianmichael.org/2020/07/23/to-dissect-an-octopus.html

BIBLIOGRAPHY 167

Sabrina J Mielke, Arthur Szlam, Y-Lan Boureau, and Emily Dinan. 2020. Linguistic

calibration through metacognition: Aligning dialogue agent responses with expected

correctness. arXiv preprint arXiv:2012.14983.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of

word representations in vector space. In International Conference on Learning Represen-

tations (ICLR), Workshop Track Proceedings.

Alexander Miller, Will Feng, Dhruv Batra, Antoine Bordes, Adam Fisch, Jiasen Lu, Devi

Parikh, and Jason Weston. 2017. ParlAI: A dialog research software platform. In

Empirical Methods in Natural Language Processing (EMNLP): System Demonstrations,

pages 79–84.

Lili Mou and Olga Vechtomova. 2020. Stylized text generation: Approaches and applications.

In Association for Computational Linguistics (ACL). Tutorial presentation.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2020. StereoSet: Measuring stereotypical

bias in pretrained language models. arXiv preprint arXiv:2004.09456.

Sathvik Nair and Daniel Bashir. 2020. GPT-3: An AI breakthrough, but not coming for your

job. Skynet Today blog post.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. SummaRuNNer: A recurrent neural

network based sequence model for extractive summarization of documents. In Conference

on Artificial Intelligence (AAAI).

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Çaglar Gulçehre, and Bing Xiang.

2016. Abstractive text summarization using sequence-to-sequence RNNs and beyond. In

Computational Natural Language Learning (CoNLL).

Shashi Narayan, Shay B Cohen, and Mirella Lapata. 2018. Don’t give me the details, just

the summary! Topic-aware convolutional neural networks for extreme summarization. In

Empirical Methods in Natural Language Processing (EMNLP), pages 1797–1807.

Ani Nenkova and Kathleen McKeown. 2011. Automatic summarization. Information

Retrieval, 5(2-3):103–233.

https://arxiv.org/abs/2012.14983
https://arxiv.org/abs/2012.14983
https://arxiv.org/abs/2012.14983
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1301.3781.pdf
http://www.aclweb.org/anthology/D17-2014
https://doi.org/10.18653/v1/2020.acl-tutorials.5
https://arxiv.org/pdf/2004.09456.pdf
https://arxiv.org/pdf/2004.09456.pdf
https://www.skynettoday.com/briefs/gpt3
https://www.skynettoday.com/briefs/gpt3
https://arxiv.org/pdf/1611.04230.pdf
https://arxiv.org/pdf/1611.04230.pdf
https://arxiv.org/pdf/1602.06023.pdf
https://arxiv.org/pdf/1808.08745.pdf
https://arxiv.org/pdf/1808.08745.pdf
https://wiki.eecs.yorku.ca/course_archive/2012-13/F/6328/_media/auto-summarization.pdf

BIBLIOGRAPHY 168

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser. 2017. Why

we need new evaluation metrics for NLG. In Empirical Methods in Natural Language

Processing (EMNLP).

Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. 2018. Analyzing

uncertainty in neural machine translation. In International Conference on Machine

Learning (ICML), volume 80, pages 3956–3965.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David

Grangier, and Michael Auli. 2019. FAIRSEQ: A fast, extensible toolkit for sequence mod-

eling. In North American Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT).

Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. 2021. Understanding factu-

ality in abstractive summarization with FRANK: A benchmark for factuality metrics. In

North American Association for Computational Linguistics: Human Language Technolo-

gies (NAACL-HLT), pages 4812–4829.

Chris D Paice. 1990. Constructing literature abstracts by computer: techniques and prospects.

Information Processing & Management, 26(1):171–186.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for

automatic evaluation of machine translation. In Association for Computational Linguistics

(ACL), pages 311–318.

Ashwin Paranjape, Abigail See, Kathleen Kenealy, Haojun Li, Amelia Hardy, Peng Qi,

Kaushik Ram Sadagopan, Nguyet Minh Phu, Dilara Soylu, and Christopher D Manning.

2020. Neural generation meets real people: Towards emotionally engaging mixed-

initiative conversations. In Alexa Prize Proceedings.

Prasanna Parthasarathi and Joelle Pineau. 2018. Extending neural generative conversational

model using external knowledge sources. In Empirical Methods in Natural Language

Processing (EMNLP), pages 690–695.

https://www.aclweb.org/anthology/D17-1238
https://www.aclweb.org/anthology/D17-1238
http://proceedings.mlr.press/v80/ott18a.html
http://proceedings.mlr.press/v80/ott18a.html
https://aclanthology.org/N19-4009.pdf
https://aclanthology.org/N19-4009.pdf
https://aclanthology.org/2021.naacl-main.383.pdf
https://aclanthology.org/2021.naacl-main.383.pdf
http://students.lti.cs.cmu.edu/11899/files/cp3a-LiteratureAbstracts.pdf
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://arxiv.org/pdf/2008.12348.pdf
https://arxiv.org/pdf/2008.12348.pdf
http://www.aclweb.org/anthology/D18-1073
http://www.aclweb.org/anthology/D18-1073

BIBLIOGRAPHY 169

Nanyun Peng, Marjan Ghazvininejad, Jonathan May, and Kevin Knight. 2018. Towards

controllable story generation. In Workshop on Storytelling, pages 43–49.

Xiangyu Peng, Siyan Li, Spencer Frazier, and Mark Riedl. 2020. Reducing non-normative

text generation from language models. In International Conference on Natural Language

Generation (ICNLG), pages 374–383.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global

vectors for word representation. In Empirical Methods in Natural Language Processing

(EMNLP).

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton

Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In North

American Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT).

Horst Pöttker. 2003. News and its communicative quality: the inverted pyramid—when and

why did it appear? Journalism Studies, 4(4):501–511.

Shrimai Prabhumoye, Elijah Mayfield, and Alan W Black. 2019. Principled frameworks for

evaluating ethics in NLP systems. In Workshop on Widening NLP, pages 118–121.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving

language understanding by generative pre-training. OpenAI tech report.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

2019. Language models are unsupervised multitask learners. OpenAI tech report.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,

Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with

a unified text-to-text transformer. The Journal of Machine Learning Research (JMLR),

21:1–67.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. 2016. Se-

quence level training with recurrent neural networks. In International Conference on

Learning Representations (ICLR).

https://doi.org/10.18653/v1/W18-1505
https://doi.org/10.18653/v1/W18-1505
https://arxiv.org/pdf/2001.08764.pdf
https://arxiv.org/pdf/2001.08764.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/N18-1202
https://www.tandfonline.com/doi/abs/10.1080/1461670032000136596
https://www.tandfonline.com/doi/abs/10.1080/1461670032000136596
https://arxiv.org/pdf/1906.06425.pdf
https://arxiv.org/pdf/1906.06425.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1511.06732.pdf
https://arxiv.org/pdf/1511.06732.pdf

BIBLIOGRAPHY 170

Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. 2019. Towards em-

pathetic open-domain conversation models: A new benchmark and dataset. In Association

for Computational Linguistics (ACL), pages 5370–5381.

Melissa Roemmele, Andrew S Gordon, and Reid Swanson. 2017. Evaluating story gen-

eration systems using automated linguistic analyses. In KDD Workshop on Machine

Learning for Creativity.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing

Xu, Myle Ott, Eric Michael Smith, Y-Lan Boureau, et al. 2021. Recipes for building

an open-domain chatbot. In European Chapter of the Association for Computational

Linguistics (EACL), pages 300–325.

Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model

for abstractive sentence summarization. In Empirical Methods in Natural Language

Processing (EMNLP).

Horacio Saggion and Thierry Poibeau. 2013. Automatic text summarization: Past, present

and future. In Multi-source, Multilingual Information Extraction and Summarization,

pages 3–21. Springer.

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh,

and Lora M Aroyo. 2021. ‘Everyone wants to do the model work, not the data work’:

Data cascades in high-stakes AI. In CHI Conference on Human Factors in Computing

Systems, pages 1–15.

Chinnadhurai Sankar, Sandeep Subramanian, Christopher Pal, Sarath Chandar, and Yoshua

Bengio. 2019. Do neural dialog systems use the conversation history effectively? An

empirical study. In Association for Computational Linguistics (ACL), pages 32–37.

Baskaran Sankaran, Haitao Mi, Yaser Al-Onaizan, and Abe Ittycheriah. 2016. Temporal

attention model for neural machine translation. arXiv preprint arXiv:1608.02927.

Jens Schanze. 2010. Plug & pray. Documentary film.

https://www.aclweb.org/anthology/P19-1534.pdf
https://www.aclweb.org/anthology/P19-1534.pdf
https://roemmele.github.io/publications/fiction_generation.pdf
https://roemmele.github.io/publications/fiction_generation.pdf
https://arxiv.org/pdf/2004.13637.pdf
https://arxiv.org/pdf/2004.13637.pdf
https://arxiv.org/pdf/1509.00685.pdf
https://arxiv.org/pdf/1509.00685.pdf
https://hal.archives-ouvertes.fr/hal-00782442/document
https://hal.archives-ouvertes.fr/hal-00782442/document
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/0d556e45afc54afeb2eb6b51a9bc1827b9961ff4.pdf
https://www.aclweb.org/anthology/P19-1004.pdf
https://www.aclweb.org/anthology/P19-1004.pdf
https://arxiv.org/pdf/1608.02927.pdf
https://arxiv.org/pdf/1608.02927.pdf
http://plugandpray-film.de/en/

BIBLIOGRAPHY 171

William A Scott. 1955. Reliability of content analysis: The case of nominal scale coding.

Public opinion quarterly, pages 321–325.

Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point: Summarization

with pointer-generator networks. In Association for Computational Linguistics (ACL),

pages 1073–1083.

Abigail See and Christopher D. Manning. 2021. Understanding and predicting user dis-

satisfaction in a neural generative chatbot. In Special Interest Group on Discourse and

Dialogue (SIGDIAL).

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila Yerukola, and Christopher D. Man-

ning. 2019a. Do massively pretrained language models make better storytellers? In

Computational Natural Language Learning (CoNLL), pages 843–861.

Abigail See, Stephen Roller, Douwe Kiela, and Jason Weston. 2019b. What makes a

good conversation? How controllable attributes affect human judgments. In North

American Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT).

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust

metrics for text generation. In Association for Computational Linguistics (ACL), pages

7881–7892.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation

of rare words with subword units. In Association for Computational Linguistics (ACL),

pages 1715–1725.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau.

2016a. Building end-to-end dialogue systems using generative hierarchical neural network

models. In Conference on Artificial Intelligence (AAAI).

Iulian Vlad Serban, Ryan Lowe, Laurent Charlin, and Joelle Pineau. 2016b. Generative deep

neural networks for dialogue: A short review. NeurIPS Workshop on Learning Methods

for Dialogue.

https://www.jstor.org/stable/2746450
https://arxiv.org/pdf/1704.04368.pdf
https://arxiv.org/pdf/1704.04368.pdf
https://sigdial.org/sites/default/files/workshops/conference22/Proceedings/pdf/2021.sigdial-1.1.pdf
https://sigdial.org/sites/default/files/workshops/conference22/Proceedings/pdf/2021.sigdial-1.1.pdf
https://doi.org/10.18653/v1/K19-1079
https://www.aclweb.org/anthology/N19-1170
https://www.aclweb.org/anthology/N19-1170
https://arxiv.org/pdf/2004.04696.pdf
https://arxiv.org/pdf/2004.04696.pdf
https://arxiv.org/pdf/1508.07909.pdf
https://arxiv.org/pdf/1508.07909.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957/12160
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957/12160
https://arxiv.org/pdf/1611.06216.pdf
https://arxiv.org/pdf/1611.06216.pdf

BIBLIOGRAPHY 172

Deven Santosh Shah, H. Andrew Schwartz, and Dirk Hovy. 2020. Predictive biases in natural

language processing models: A conceptual framework and overview. In Association for

Computational Linguistics (ACL), pages 5248–5264.

Igor Shalyminov, Ondřej Dušek, and Oliver Lemon. 2018. Neural response ranking for

social conversation: A data-efficient approach. In EMNLP Workshop on Search-Oriented

Conversational AI, pages 1–8.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text

conversation. In Association for Computational Linguistics (ACL).

Eva Sharma, Chen Li, and Lu Wang. 2019. BIGPATENT: A large-scale dataset for abstrac-

tive and coherent summarization. In Association for Computational Linguistics (ACL),

pages 2204–2213.

Xiaoyu Shen, Hui Su, Yanran Li, Wenjie Li, Shuzi Niu, Yang Zhao, Akiko Aizawa, and

Guoping Long. 2017. A conditional variational framework for dialog generation. In

Association for Computational Linguistics (ACL), pages 504–509.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. 2019. The woman

worked as a babysitter: On biases in language generation. In Empirical Methods in

Natural Language Processing (EMNLP), pages 3407–3412.

Emily Sheng, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. 2020. Towards con-

trollable biases in language generation. In Empirical Methods in Natural Language

Processing (EMNLP): Findings, pages 3239–3254.

Jamin Shin, Peng Xu, Andrea Madotto, and Pascale Fung. 2019. HappyBot: Generating

empathetic dialogue responses by improving user experience look-ahead. arXiv preprint

arXiv:1906.08487.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. 2021. Retrieval

augmentation reduces hallucination in conversation. arXiv preprint arXiv:2104.07567.

Kurt Shuster, Jack Urbanek, Emily Dinan, Arthur Szlam, and Jason Weston. 2020. Deploying

lifelong open-domain dialogue learning. arXiv preprint arXiv:2008.08076.

https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/W18-5701
https://doi.org/10.18653/v1/W18-5701
https://www.aclweb.org/anthology/P15-1152
https://www.aclweb.org/anthology/P15-1152
https://arxiv.org/pdf/1906.03741.pdf
https://arxiv.org/pdf/1906.03741.pdf
https://doi.org/10.18653/v1/P17-2080
https://arxiv.org/pdf/1909.01326.pdf
https://arxiv.org/pdf/1909.01326.pdf
https://arxiv.org/pdf/2005.00268.pdf
https://arxiv.org/pdf/2005.00268.pdf
https://arxiv.org/pdf/1906.08487.pdf
https://arxiv.org/pdf/1906.08487.pdf
https://arxiv.org/pdf/2104.07567.pdf
https://arxiv.org/pdf/2104.07567.pdf
https://arxiv.org/pdf/2008.08076.pdf
https://arxiv.org/pdf/2008.08076.pdf

BIBLIOGRAPHY 173

Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and Adam Coates. 2018. Cold fusion:

Training seq2seq models together with language models. In Interspeech, pages 387–391.

Artūrs Stafanovičs, Mārcis Pinnis, and Toms Bergmanis. 2020. Mitigating gender bias in

machine translation with target gender annotations. In Conference on Machine Translation

(WMT), pages 629–638.

Felix Stahlberg and Bill Byrne. 2019. On NMT search errors and model errors: Cat got

your tongue? In Empirical Methods in Natural Language Processing (EMNLP), pages

3356–3362.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and policy consid-

erations for deep learning in NLP. In Association for Computational Linguistics (ACL),

pages 3645–3650.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza,

Elizabeth Belding, Kai-Wei Chang, and William Yang Wang. 2019. Mitigating gender

bias in natural language processing: Literature review. In Association for Computational

Linguistics (ACL), pages 1630–1640.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with

neural networks. In Advances in Neural Information Processing Systems (NeurIPS), pages

3104–3112.

Jun Suzuki and Masaaki Nagata. 2017. Cutting-off redundant repeating generations for neu-

ral abstractive summarization. In European Chapter of the Association for Computational

Linguistics (EACL), pages 291–297.

Ayesha Ayub Syed, Ford Lumban Gaol, and Tokuro Matsuo. 2021. A survey of the state-of-

the-art models in neural abstractive text summarization. IEEE Access, 9:13248–13265.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hirao, and Masaaki Nagata. 2016.

Neural headline generation on abstract meaning representation. In Empirical Methods in

Natural Language Processing (EMNLP).

https://doi.org/10.21437/Interspeech.2018-1392
https://doi.org/10.21437/Interspeech.2018-1392
https://arxiv.org/pdf/2010.06203.pdf
https://arxiv.org/pdf/2010.06203.pdf
https://arxiv.org/pdf/1908.10090.pdf
https://arxiv.org/pdf/1908.10090.pdf
https://arxiv.org/pdf/1906.02243.pdf
https://arxiv.org/pdf/1906.02243.pdf
https://arxiv.org/pdf/1906.08976.pdf
https://arxiv.org/pdf/1906.08976.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://arxiv.org/pdf/1701.00138.pdf
https://arxiv.org/pdf/1701.00138.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9328413
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9328413
https://aclanthology.org/D16-1112.pdf

BIBLIOGRAPHY 174

Bowen Tan, Zichao Yang, Maruan Al-Shedivat, Eric Xing, and Zhiting Hu. 2021. Progressive

generation of long text with pretrained language models. In North American Association

for Computational Linguistics: Human Language Technologies (NAACL-HLT), pages

4313–4324.

Christopher Taylor. 1998. Language to language: A practical and theoretical guide for

Italian/English translators. Cambridge University Press.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling

coverage for neural machine translation. In Association for Computational Linguistics

(ACL).

Chris Van Der Lee, Albert Gatt, Emiel Van Miltenburg, Sander Wubben, and Emiel Krahmer.

2019. Best practices for the human evaluation of automatically generated text. In

International Conference on Natural Language Generation (ICNLG), pages 355–368.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances

in Neural Information Processing Systems (NeurIPS), pages 5998–6008.

Anu Venkatesh, Chandra Khatri, Ashwin Ram, Fenfei Guo, Raefer Gabriel, Ashish Nagar,

Rohit Prasad, Ming Cheng, Behnam Hedayatnia, Angeliki Metallinou, et al. 2017. On

evaluating and comparing conversational agents. NeurIPS Conversational AI Workshop.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan

Lee, David Crandall, and Dhruv Batra. 2018. Diverse beam search: Decoding diverse

solutions from neural sequence models. In Conference on Artificial Intelligence (AAAI).

James Vincent. 2019. Google’s head of translation on fighting bias in language and why AI

loves religious texts. The Verge article.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015a. Pointer networks. In Advances

in Neural Information Processing Systems (NeurIPS).

https://arxiv.org/pdf/2006.15720.pdf
https://arxiv.org/pdf/2006.15720.pdf
https://books.google.com/books?hl=en&lr=&id=St-0iF0dRxsC&oi=fnd&pg=PA1&ots=-aOeI_aP0m&sig=GtbrzfVHSZXSO9EJbrsxVRELKk8
https://books.google.com/books?hl=en&lr=&id=St-0iF0dRxsC&oi=fnd&pg=PA1&ots=-aOeI_aP0m&sig=GtbrzfVHSZXSO9EJbrsxVRELKk8
https://arxiv.org/pdf/1601.04811.pdf
https://arxiv.org/pdf/1601.04811.pdf
https://www.inlg2019.com/assets/papers/98_Paper.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1801.03625.pdf
https://arxiv.org/pdf/1801.03625.pdf
https://arxiv.org/pdf/1610.02424.pdf
https://arxiv.org/pdf/1610.02424.pdf
https://www.theverge.com/2019/1/30/18195909/google-translate-ai-machine-learning-bias-religion-macduff-hughes-interview
https://www.theverge.com/2019/1/30/18195909/google-translate-ai-machine-learning-bias-religion-macduff-hughes-interview
https://arxiv.org/pdf/1506.03134.pdf

BIBLIOGRAPHY 175

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.

2015b. Grammar as a foreign language. In Advances in Neural Information Processing

Systems (NeurIPS), pages 2773–2781.

Oriol Vinyals and Quoc Le. 2015. A neural conversational model. In ICML Deep Learning

Workshop.

Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, and Alicia Abella. 1997. PAR-

ADISE: A framework for evaluating spoken dialogue agents. In Association for Compu-

tational Linguistics (ACL), pages 271–280.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019. Universal

adversarial triggers for attacking and analyzing NLP. In Empirical Methods in Natural

Language Processing (EMNLP), pages 2153–2162.

Alex Wang and Kyunghyun Cho. 2019. BERT has a mouth, and it must speak: BERT as

a Markov Random Field language model. In Workshop on Methods for Optimizing and

Evaluating Neural Language Generation, pages 30–36.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix

Hill, Omer Levy, and Samuel Bowman. 2019. SuperGLUE: A stickier benchmark for

general-purpose language understanding systems. In Advances in Neural Information

Processing Systems (NeurIPS), volume 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bow-

man. 2018. GLUE: A multi-task benchmark and analysis platform for natural language

understanding. In BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

(EMNLP Workshop), pages 353–355.

Di Wang, Nebojsa Jojic, Chris Brockett, and Eric Nyberg. 2017. Steering output style

and topic in neural response generation. In Empirical Methods in Natural Language

Processing (EMNLP), pages 2140–2150.

Joseph Weizenbaum. 1966. ELIZA – a computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9(1):36–45.

https://arxiv.org/pdf/1412.7449.pdf
https://arxiv.org/pdf/1506.05869.pdf
https://doi.org/10.3115/976909.979652
https://doi.org/10.3115/976909.979652
https://arxiv.org/pdf/1908.07125.pdf
https://arxiv.org/pdf/1908.07125.pdf
https://arxiv.org/pdf/1902.04094.pdf
https://arxiv.org/pdf/1902.04094.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://arxiv.org/pdf/1804.07461.pdf
https://arxiv.org/pdf/1804.07461.pdf
https://doi.org/10.18653/v1/D17-1228
https://doi.org/10.18653/v1/D17-1228
https://dl.acm.org/doi/pdf/10.1145/365153.365168
https://dl.acm.org/doi/pdf/10.1145/365153.365168

BIBLIOGRAPHY 176

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason

Weston. 2020. Neural text generation with unlikelihood training. In International

Conference on Learning Representations (ICLR).

Sean Welleck, Jason Weston, Arthur Szlam, and Kyunghyun Cho. 2019. Dialogue natural

language inference. In Association for Computational Linguistics (ACL), pages 3731–

3741.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Milica Gašić, Lina M. Rojas-Barahona,

Pei-Hao Su, Stefan Ultes, and Steve Young. 2017. A network-based end-to-end trainable

task-oriented dialogue system. In European Chapter of the Association for Computational

Linguistics (EACL), pages 438–449.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony

Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam

Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven

Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020.

Transformers: State-of-the-art natural language processing. In Empirical Methods in

Natural Language Processing (EMNLP): System Demonstrations, pages 38–45.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s

neural machine translation system: Bridging the gap between human and machine transla-

tion. arXiv preprint arXiv:1609.08144.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, and Wei-Ying Ma. 2017.

Topic aware neural response generation. In Conference on Artificial Intelligence (AAAI),

volume 17, pages 3351–3357.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov,

Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural image caption

generation with visual attention. In International Conference on Machine Learning

(ICML), pages 2048–2057.

https://arxiv.org/pdf/1908.04319.pdf
https://arxiv.org/pdf/1811.00671.pdf
https://arxiv.org/pdf/1811.00671.pdf
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1606.08340v2.pdf
http://proceedings.mlr.press/v37/xuc15.pdf
http://proceedings.mlr.press/v37/xuc15.pdf

BIBLIOGRAPHY 177

Xinnuo Xu, Ondřej Dušek, Ioannis Konstas, and Verena Rieser. 2018. Better conversations

by modeling, filtering, and optimizing for coherence and diversity. In Empirical Methods

in Natural Language Processing (EMNLP), pages 3981–3991.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-to-sequence neural net models for

grapheme-to-phoneme conversion. In Annual Conference of the International Speech

Communication Association.

Wenyuan Zeng, Wenjie Luo, Sanja Fidler, and Raquel Urtasun. 2016. Efficient summariza-

tion with read-again and copy mechanism. arXiv preprint arXiv:1611.03382.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. 2020a. PEGASUS: Pre-

training with extracted gap-sentences for abstractive summarization. In International

Conference on Machine Learning (ICML), pages 11328–11339.

Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan, Jun Xu, and Xueqi Cheng. 2018a.

Learning to control the specificity in neural response generation. In Association for

Computational Linguistics (ACL).

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason

Weston. 2018b. Personalizing dialogue agents: I have a dog, do you have pets too? In

Association for Computational Linguistics (ACL), pages 2204–2213.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng

Gao, Jingjing Liu, and William B Dolan. 2020b. DialoGPT: Large-scale generative

pre-training for conversational response generation. In Association for Computational

Linguistics (ACL): System Demonstrations, pages 270–278.

Yuhao Zhang, Derek Merck, Emily Tsai, Christopher D Manning, and Curtis Langlotz.

2020c. Optimizing the factual correctness of a summary: A study of summarizing

radiology reports. In Association for Computational Linguistics (ACL).

Ganbin Zhou, Ping Luo, Rongyu Cao, Fen Lin, Bo Chen, and Qing He. 2017. Mechanism-

aware neural machine for dialogue response generation. In Conference on Artificial

Intelligence (AAAI), pages 3400–3407.

https://arxiv.org/pdf/1809.06873.pdf
https://arxiv.org/pdf/1809.06873.pdf
https://arxiv.org/pdf/1506.00196.pdf
https://arxiv.org/pdf/1506.00196.pdf
https://arxiv.org/pdf/1611.03382.pdf
https://arxiv.org/pdf/1611.03382.pdf
https://arxiv.org/pdf/1912.08777.pdf
https://arxiv.org/pdf/1912.08777.pdf
https://www.aclweb.org/anthology/P18-1102
http://www.aclweb.org/anthology/P18-1205
https://arxiv.org/pdf/1911.00536.pdf
https://arxiv.org/pdf/1911.00536.pdf
https://aclanthology.org/2020.acl-main.458.pdf
https://aclanthology.org/2020.acl-main.458.pdf
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14471/14267
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14471/14267

BIBLIOGRAPHY 178

Chenguang Zhu, William Hinthorn, Ruochen Xu, Qingkai Zeng, Michael Zeng, Xuedong

Huang, and Meng Jiang. 2021. Enhancing factual consistency of abstractive summariza-

tion. In North American Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT), pages 718–733.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio

Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards story-like visual

explanations by watching movies and reading books. In International Conference on

Computer Vision (ICCV), pages 19–27.

Zachary M Ziegler, Luke Melas-Kyriazi, Sebastian Gehrmann, and Alexander M Rush.

2019. Encoder-agnostic adaptation for conditional language generation. arXiv preprint

arXiv:1908.06938.

https://arxiv.org/pdf/2003.08612.pdf
https://arxiv.org/pdf/2003.08612.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zhu_Aligning_Books_and_ICCV_2015_paper.pdf
https://arxiv.org/pdf/1908.06938.pdf

	Abstract
	Acknowledgments
	Introduction
	Pre-neural Text Generation
	Neural Text Generation: Early Success in Machine Translation
	Open-ended Neural Text Generation
	What is Open-ended Text Generation?
	Development
	Difficulties

	Research Questions
	Thesis Overview
	Main Findings

	Background
	Defining Text Generation Tasks
	Types of Neural Language Model
	Architectures for Neural Language Models
	Input Representations for Neural Language Models
	Training and Evaluating Neural Language Models
	Decoding Algorithms
	Likelihood-maximizing Decoding Algorithms
	Sampling-based Decoding Algorithms
	Temperature

	Summarization with Pointer-Generator Networks
	Introduction
	Our Models
	Sequence-to-sequence Attentional Model
	Pointer-generator Network
	Coverage Mechanism

	Related Work
	Dataset
	Experiments
	Results
	Preliminaries
	Observations

	Discussion
	Comparison with Extractive Systems
	How Abstractive Is Our Model?

	Examples
	Conclusion

	Controlling Attributes of Chitchat Dialogue
	Introduction
	Related Work
	The PersonaChat dataset
	Baseline Model
	Controllable Text Generation Methods
	Conditional Training (CT)
	Weighted Decoding (WD)

	Controlling Conversational Attributes
	Repetition
	Specificity
	Response-relatedness
	Question-asking

	Comparison of Control Methods
	Human Evaluation Design
	Human Evaluation Results
	Main Findings
	Effect of Controlled Attributes
	A/B Tests for Interestingness

	Example Crowdworker-Bot Conversations
	Tables of Settings and Results for All Configurations
	Conclusion

	The Effect of Pretraining for Story Generation
	Introduction
	Background
	Experimental Details
	Story-prompt Relatedness
	Coherence
	Repetition and Rareness
	Syntactic Style and Complexity
	The Element of Surprise
	Concreteness
	Conclusion

	User Dissatisfaction in Chitchat Dialogue
	Introduction
	Chirpy Cardinal
	Neural Chat Module
	Starter Question Examples

	Detecting User Dissatisfaction
	NeuralChatTurns Dataset
	Annotation Details
	Bot Error Examples
	Inter-annotator Agreement

	What Causes User Dissatisfaction?
	Effect of Unclearness and Prior Dissatisfaction on Bot Errors
	Effect of Bot Errors on User Dissatisfaction
	Unaddressed Dissatisfaction Escalates
	Privacy Boundaries Vary

	Learning to Predict User Dissatisfaction
	Predictor Training Details
	How Accurately Does the Predictor Predict Dissatisfaction?
	What Information Does the Predictor Use?

	Ranking Bot Responses to Minimize Dissatisfaction
	Human Evaluation Details
	Results

	Related Work
	Limitations
	Conclusion

	Conclusion
	Bibliography

