
REINFORCEMENT LEARNING FOR SEQUENTIAL DECISION-MAKING:

FROM CHIP DESIGN TO LANGUAGE MODELING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Anna Goldie

June 2025

© 2025 by Anna Darling Goldie. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.
http://creativecommons.org/licenses/by/3.0/us/

This dissertation is online at: https://purl.stanford.edu/kc333cx8703

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
https://purl.stanford.edu/kc333cx8703

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Chelsea Finn

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Azalia Mirhoseini

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

Reinforcement learning (RL) methods have achieved impressive results in simulated environments and

games, but only recently have they been deployed to solve real-world problems. This is due in part

to the instability of these methods, their relative sample inefficiency, and the difficulty of attributing

reward to individual steps within the long trajectories characteristic of real-world tasks. To address

these challenges, this dissertation presents approaches to problem formulation, representation learning,

effective reward attribution, and scalable curation of high-quality multi-step trajectories. To ground

these principles, I will introduce RL agents capable of solving real-world challenges in two disparate

areas: chip design and language modeling. First, I will describe AlphaChip, a deep reinforcement

learning method capable of generating superhuman chip layouts in hours, rather than weeks or

months of human effort. AlphaChip was one of the first reinforcement learning methods deployed to

solve a real-world engineering problem, and it has designed chip layouts in the last four generations

of Google TPU, as well as other chips across Alphabet and by external chipmakers. Next, I will

introduce Step-Wise Reinforcement Learning (SWiRL), a reinforcement learning and synthetic data

generation method that improves the ability of large language models (LLMs) to perform multi-step

reasoning and use tools. Finally, I conclude with a new dataset for evaluating the performance of

LLM-based RL agents on challenging multi-step reasoning tasks, and discuss open problems and

opportunities in this new frontier.

iv

Acknowledgments

I would like to start by thanking my advisor, Christopher Manning. When I was considering PhD

programs, my absolute top choice was to be at Stanford and to be advised by Chris. I grew up

reading Chris’s NLP textbooks, and I have such incredible respect for him, for the depth and breadth

of his research contributions (I have heard him referred to as “the pope of NLP”, and I feel this is no

exaggeration), for his commitment to advising his students, for the clarity and enthusiasm with which

he teaches NLP concepts. My esteem for him has only grown as we worked together longer, and in

different capacities (as a research assistant, and as head TA for his course). I appreciate that he was

always careful to give me freedom and autonomy, even when my research interests diverged from

those he normally pursued. If not for his open-mindedness in this regard, I would never have been

able to write the dissertation that follows. I also appreciate all of his incredibly detailed feedback on

this dissertation. It made me feel like a true part of the linguistics lineage that I carry through him,

and I enjoyed the opportunity to collaborate deeply on one last piece of writing together. Chris is a

legend, and I have grown so much from having him as my advisor.

I would also like to thank my advisor, Azalia Mirhoseini. She is an absolutely brilliant researcher,

a true visionary, and a deeply funny and kind person as well. We first met during the Google Brain

Residency in 2016, and we have worked together ever since. Joining Google Brain in 2016 was the

best career decision I have ever made; this was true for many reasons, but chief among them was

that I met Azalia. Our partnership has been invaluable to me, and the greatest work of my life was

done in collaboration with her. We’ve experienced both great joy and intense pain in our research

journey together, and I am so grateful that neither of us had to face such experiences alone. Although

in some sense it felt odd to take on an advisor-student relationship after having worked as equal

partners for many years, it is a great honor to be her first student, and I am glad that we will share

this additional bond throughout life. I hope that we will always remain close collaborators, as I feel

that anything is possible when we work together.

I am very grateful to Quoc Le for supporting me in my dream of earning a PhD, and for serving

on my oral committee. I feel extremely lucky to have gotten to work with Quoc and to have had him

as a manager and mentor for so many years. He is brilliant, creative, curious, inspiring, and one

of the most impressive researchers I have ever met, and yet somehow he is also funny, humble, and

v

down-to-earth. As a manager, he has given me the freedom and autonomy to pursue my greatest

work, and has been there for me through the most challenging times.

I greatly appreciate Chelsea Finn for serving on both my reading and oral committee. She is one

of my RL heroes, so I felt incredibly honored when she agreed to serve on my committee. I am very

grateful that she took the time to engage with my work and ask interesting questions at my defense!

I am also very grateful to Amin Saberi for serving as external chair of my committee. The

moment I met him, I was struck by his intelligence and quick wit. When it came time to select my

external chair, he was my first and immediate choice. He executed his duties flawlessly, managing

the discussion and asking deep and wide-ranging questions himself.

I am especially thankful to Bill Dally, who shaped the course of my life when I met him at MLSys

back in 2018. When he heard that I was going to do my PhD at MIT in the fall, he immediately said

that I should come to Stanford instead and work with Chris Manning, although I had not applied to

the program that year due to my own error. I have no idea how he could so quickly and confidently

come to this conclusion, but he was right. He is one of the most impressive individuals I have ever

met, and his brain is truly overclocked with seemingly instantaneous reaction speeds. In any case, I

am extremely grateful to him for his advice and support, which have always served me well.

I’d like to sincerely thank Dave Patterson for his technical advice, for his deep wisdom about life

and career, and for his support throughout my PhD and my time at Google.

I would like to thank Jeff Dean for his deep support over many years, for collaborating with

me on exciting research projects, for the joy of our technical discussions, for convincing me to join

Google Brain back in 2016, and for agreeing to let me do my PhD while maintaining my position

at Google. This dissertation would never have been possible without this unique combination of

academia and industry. Jeff is someone I greatly admire, and if I had to pick one person that I’d

want to be more like when I “grow up”, I would have to say Jeff. He is just an incredible combination

of brilliance, strategic thinking, mental velocity, technical depth, integrity, empathy, kindness, and

punny humor. My favorite part of working at Google is having lunch with him and Azalia, and

talking about technical challenges at the intersection of systems and machine learning.

I’d like to thank all of my amazing coauthors across all of the papers in this dissertation, and

beyond it. None of this would have been possible without them, and I learned so much from working

with incredible people from Google Brain, Stanford, and Anthropic throughout my PhD.

I’d like to thank the people who patiently gave me advice when I was agonizing over whether to

do a PhD, including those who vehemently advised me not to! These generous individuals include

Ion Stoica, Hugo Larochelle, Chris Olah, Greg Brockman, Sergey Levine, Yoshua Bengio, Pieter

Abbeel, Dan Jurafsky, Percy Liang, Jim Glass, Stephanie Seneff, Song Han, Joshua Tenenbaum,

Michael Jordan, Richard Socher, Luke Zettlemoyer, among many others.

I am grateful to the students in the Stanford CS department who always made me feel welcome.

vi

I especially want to thank the members of the NLP group and of SAIL more broadly, as well as

Chris’s and Azalia’s students, including Alex Tamkin, Shikhar Murty, Moussa Doumbouya, Katelyn

Zhou, Kaylee Burns, Nelson Liu, John Hewitt, Ethan Chi, Parth Sarthi, Jasper Jian, Ryan Chi,

Jordan Jurafsky, Jon Saad-Falcon, Anne Ouyang, Caia Costello, Dilara Soylu, Robert Csordas, Mo

Tiwari, Martijn Bartelds, Tolulope Ogunremi, Houjun Liu, Derek Chong, Julie Kallini, Zhengxuan

Wu, Xinran Zhao, among many others.

I’d like to thank Google and its leadership for supporting me in my research career and in

earning this PhD. I am especially grateful to Jeff Dean, Zoubin Ghahramani, Ed Chi, Samy Bengio,

Koray Kavukcuoglu, Demis Hassabis, Doug Eck, D. Sculley, Anna Patterson, and everyone else who

supported me during difficult times and who offered me amazing opportunities.

I’d like to thank Stephanie Seneff, my research advisor at MIT. Working with her was my first

experience doing research, and I am so grateful that she took me under her wing. I am also grateful

to Victor Zue for giving the lecture on dialogue systems that inspired me to go into this field back

in 2004, as well as the Spoken Language Systems Group more broadly. I am grateful also to the

Women’s Technology Program at MIT that provided me with my first taste of electrical engineering,

computer science, and discrete math.

I’d like to thank Anne Hunter for her help in dealing with an incredibly challenging situation at

MIT that no one else was able to. Her assistance fundamentally altered the course of my life, and

removing this obstacle allowed me to pursue an MEng and conduct independent research for the

first time. This opened doors for me at Google Research and Google Brain, and ultimately made my

career what it is today. I’d also like to thank my friend Jenny Liu for referring me to Google back in

2013.

I’d like to thank my high school science team coach and earth science teacher, Dr. Steve Wilkins.

He believed in me endlessly and well before he had any reason to. He strongly encouraged me to

pursue a career in research and engineering, and he put great effort into helping me grow. For

example, I was so nervous when giving presentations that he had me come in early every Wednesday

morning to give a practice talk. Although I didn’t feel like I was improving at the time, I am so

grateful to him now.

I’d like to thank my aunt(-in-law) Sarah Freedman for her advice and support over many years.

When I first moved to the Bay Area to work for Google, she allowed me to stay at her house for

months while I searched for housing. I am continuously inspired by her intelligence, energy, generosity,

and lifelong love for learning and life. No one in my immediate family had ever gone into academia

or gotten a PhD, so it was especially helpful to get the advice and perspective of a Berkeley faculty

member as I navigated my PhD.

I also am especially thankful for my mother and father-in-law, who have shown me true love and

care, and have celebrated the wins together and comforted me during challenging times.

vii

I am grateful to my friends Katya Dreyer-Oren and Jessa Dickinson for being there for me since

we were 4 years old, and for all the amazing friends I’ve met in the intervening years, including Aviv

Ovadya, Edwin Chen, Mark Avara, Seastar Lin, Maithra Raghu, Jacob Steinhardt, Greg Belote, Katy

Blumer, Victoria Dean, Hugh Oh, Tyler Lu, Leonid Shamis, Omari Stephens, Naomi Saphra, Simon

Safar, Jelani Nelson, Chris Baranowski, Martin Froehlich, Mo Bavarian, Sharon Zhou, Rosemary Ke,

Been Kim, Pia Pal, Advay Mengle, Aakanksha Chowdhery, and many others.

I’d like to thank my family for supporting me always: my Mom and Dad, my siblings William

and Sam, and my grandmother who is turning 100 in just 6 days. I’ve always felt accepted and loved

just as I am, and free to pursue my dreams and passions without judgment. Being born into this

family is the greatest luck of my life, and I cannot imagine a kinder, sweeter, more intelligent, or

engaging tribe to have gotten to grow up around and go through life beside.

Finally, I’d like to thank my husband Gabriel Warshauer-Baker. I feel incredibly lucky to have

met him at MIT, though I suppose he would say that he didn’t leave that up to chance. He is

brilliant, handsome, funny, and kind. It is often said that the most important decision in life is one’s

choice of a life partner, and I have found that to be undoubtedly true. There’s no way I could have

done this PhD without Gabe’s incredible support and kindness during many difficult times. He has

been a truly selfless partner, and has always done everything he could to make sure that I was happy

and could achieve my dreams, and he is the reason that all of them have come true. He is the light

of my life and the person I look forward to seeing at the end of every day.

viii

Contents

Abstract iv

Acknowledgments v

1 Introduction 2

1.1 Reinforcement Learning for Sequential Decision-Making 2

1.2 A Brief History of Reinforcement Learning . 3

1.3 Thesis Statement, Research Questions, and Contributions 5

1.4 Overview of Dissertation . 7

1.5 Bibliographic Notes . 8

I Reinforcement Learning for Chip Design 13

2 Placement Optimization With Reinforcement Learning 14

2.1 Background . 14

2.2 Placement Optimization as an RL Problem . 14

2.3 Principles of Deep Reinforcement Learning . 15

2.4 Deep Reinforcement Learning for Placement Optimization 17

2.4.1 Placement Problem Formulation . 17

2.4.2 Graph Convolutional Neural Networks . 19

2.4.3 Domain Adaptation . 19

2.4.4 Solving the Placement Objective with Policy Gradient Optimization 20

2.5 Ingredients for RL Success . 20

2.6 Conclusion . 22

3 AlphaChip: A Graph Placement Method for Chip Design 23

3.1 Background . 23

3.2 Introduction . 24

3.3 Related Work . 26

ix

3.4 Chip floorplanning as a learning problem . 28

3.5 Designing Domain-Adaptive Policies . 29

3.6 Methods . 32

3.6.1 Problem Statement . 32

3.6.2 Overview of Our Approach . 32

3.6.3 Detailed Methodology . 33

3.6.4 Synthesis of the input netlist . 34

3.6.5 Selection of grid rows and columns . 34

3.6.6 Selection of macro order . 34

3.6.7 Clustering of Standard Cells . 35

3.6.8 Generation of Adjacency Matrix . 35

3.6.9 Placement of Standard Cells . 35

3.6.10 Postprocessing . 36

3.6.11 Reward . 36

3.6.12 Action Representation . 37

3.6.13 State Representation . 37

3.6.14 Enabling Transfer Learning . 37

3.6.15 Policy Network Architecture . 39

3.6.16 Policy Network Update: Training Parameters 40

3.7 Empirical Evaluation . 40

3.7.1 Experimental Setup . 40

3.7.2 Open-Source Benchmark: Ariane RISC-V . 41

3.7.3 Google TPU Results: Comparing with Baseline Methods 43

3.7.4 Domain Adaptation Results . 45

3.7.5 Learning from Larger Datasets . 46

3.8 Discussion . 46

3.8.1 Use in a Production Setting . 46

3.8.2 Impact of Cost Trade-offs . 47

3.8.3 Robustness to Noise . 48

3.8.4 Generalization vs. Training Data . 48

3.8.5 Insights and Visualizations . 49

3.8.6 Implications for a Broader Class of Problems 50

3.9 Conclusion . 51

Appendices 52

3.A Early Exploration of RL Optimization Algorithms 52

3.B Exploring RL Convergence Properties . 54

x

3.C Exploring Effect of Input Ordering . 55

3.D Post-RouteOpt Validation of AlphaChip . 56

3.E Comparing with Simulated Annealing . 58

4 From Scrutiny to Silicon: AlphaChip Post-Publication 60

4.1 Background . 60

4.2 Errors in Attempted Reproduction of Our Method 64

4.2.1 No Pre-Training Performed for RL Method 64

4.2.2 RL Method Provided with Far Fewer Compute Resources 65

4.2.3 RL Method Not Trained to Convergence . 66

4.2.4 Test Cases Not Representative of Modern Chips 68

4.3 Transparency & Reproducibility . 68

4.3.1 AlphaChip is Fully Open-Source . 68

4.3.2 Claims They Cannot Share Their “Open” Test Cases 69

4.4 Discussion . 70

4.5 Moving Forward: AlphaChip’s Broader Impact . 70

4.6 External Perspectives from Academic and Industry Leaders 70

4.7 Conclusion . 72

Appendices 73

4.A Other Discussions . 73

4.A.1 Inappropriate Comparison With Commercial Autoplacers 73

4.A.2 Contrived “Ablation” of Initial Placement in Standard Cell Cluster Rebalancing 73

4.A.3 Flawed Study of Correlation Between Proxy Cost and Final Metrics 74

4.A.4 Incorrect Claim of Validation by Google Engineers 75

II Reinforcement Learning for Language Modeling 76

5 Synthetic Data Generation and Multi-Step RL 77

5.1 Introduction . 77

5.2 Methodology . 79

5.2.1 Multi-Step Data Collection . 80

5.2.2 Step-Wise Reinforcement Learning Methodology 81

5.2.3 Step-Wise Inference-time Evaluation . 82

5.3 Related Work . 83

5.4 Experiments . 85

5.4.1 Evaluation Datasets . 85

xi

5.4.2 Results and Discussion . 86

5.5 Conclusion . 90

Appendices 91

5.A Prompts for Synthetic Data Generation, Filtering, and Evaluation 91

5.B Impact of Model Size on Effectiveness of SWiRL . 94

5.C Error Analysis of Three LLM Judges . 95

5.D Example Trajectories . 96

5.E Example Ids . 98

6 Benchmarking Multi-Step Reasoning and Tool Use 101

6.1 Introduction . 101

6.2 Data Collection . 103

6.2.1 Sourcing and Generating Queries . 103

6.2.2 Filtering and Rewriting Queries . 103

6.2.3 Generating Trajectories with Human Annotators 103

6.3 Evaluation Benchmark . 105

6.3.1 LLM as a Judge . 105

6.3.2 Data Format . 106

6.3.3 Dataset Composition . 106

6.4 Dataset Validation and Analysis . 106

6.4.1 Dataset Validation . 107

6.4.2 Multi-Hop Nature . 107

6.4.3 Distribution Over Actions . 108

6.5 Rubric-Based LLM Evaluation . 108

6.6 Experiments . 109

6.7 Related Work . 109

6.8 Conclusion . 111

Appendices 112

6.A Filter and Rewrite Input Queries for Multi-Hop Search 112

6.B Summary . 112

6.C Instructions . 112

6.D Example 1: Accept Query . 112

6.E Example 2: Rewrite Query . 113

6.F Example 3: Query Rejected . 113

6.G Data Collection for Multi-Hop Search & Response Generation 114

xii

6.H Example Trajectories . 115

7 Conclusions 120

xiii

List of Tables

3.1 Hyperparameters used to finetune the RL agent . 42

3.2 Hyperparameters used for force-directed standard cell clustering 42

3.3 Hyperparameters used to generate standard cell clusters with hMETIS 43

3.4 Comparison against baselines . 44

3.5 Effect of cost trade-offs on the post-PlaceOpt performance 48

3.6 Sensitivity of results to the choice of random seed . 48

3.C.1Ablation Study on the Effect of Macro Ordering . 55

3.D.1Detailed performance metrics for a TPU-v5 block . 57

3.E.1Performance of our method compared to Simulated Annealing 58

4.2.1 Summary of Cheng et al. Tensorboards . 68

4.A.1RL results after clustering standard cells with and without the initial placement . . 74

5.4.1 Comparison of SWiRL accuracy across multiple datasets 85

5.4.2 SWiRL generalization performance . 87

5.4.3 Impact of SWiRL on Process Correctness . 90

5.C.1Error Rates for Gemma-2-27b Judgments on HotPotQA (N=100) 95

5.C.2Manual Analysis of LLM Math Grading Accuracy (N=100) 95

6.3.1 Number of examples in each split of the dataset. 106

6.6.1 Percentage of ‘Excellent’ Grades out of 300 example answers graded on a 5-point

Likert scale, where ‘Excellent’ corresponds to the highest possible score. 110

6.6.2 Full Distribution of LLM-Generated Grades . 110

xiv

List of Figures

2.1 Diagram of RL agent exploring an environment and taking actions 16

2.2 Placement optimization overview . 18

3.1 Zero-shot performance of Edge-GNN vs. GCN . 30

3.2 AlphaChip Policy and value network architecture . 31

3.3 Overview of AlphaChip method and training regimen 32

3.4 Evaluation workflow for producing the results in Table 3.4 41

3.5 Training from scratch vs. fine-tuning for varying amounts of time 45

3.6 Convergence plots on Ariane RISC-V CPU . 46

3.7 Effect of pre-training dataset size . 47

3.8 Generalization performance as a function of pre-training dataset size 49

3.9 Visualization of Ariane RISC-V CPU placements . 50

3.10 Visualization of a TPU placement . 50

3.A.1DQN Variants vs. Human Baseline on an Edge Block 52

3.A.2PPO vs. Human Baseline on an Edge Block . 53

3.B.1Placement cost as a function of training times of up to 60 hours 54

3.D.1Image of an AlphaChip layout taped out in TPU-v5 56

3.E.1Sample Efficiency of RL vs. SA . 59

4.1.1 AlphaChip deployments across three generations of TPU 61

4.2.1 Performance gains from pre-training on a larger number of blocks 65

4.2.2 Pre-training improves convergence speed . 66

4.2.3 Figures demonstrating that speed and quality improve with additional compute resources 66

4.2.4 Convergence plots from Cheng et al.’s project site 67

4.A.1Cheng et al.’s Table 2 shows weak but positive correlation 74

5.2.1 SWiRL Stage 1: Generating and Filtering Multi-Step Synthetic Trajectories 80

5.2.2 SWiRL Stage 2: Step-Wise Reinforcement Learning 81

5.2.3 SWiRL Stage 3: Multi-Step Inference . 83

xv

5.4.1 Impact of Data Filtering on Model Performance . 86

5.4.2 Comparison of SFT and SWiRL . 88

5.4.3 Performance of SWiRL with and without multi-step tool use 89

5.4.4 Performance as a Function of Synthetic Dataset Size 89

5.B.1SWiRL Performance vs. Model Size . 94

6.4.1 Histogram depicting the number of hops . 108

6.4.2 Piechart depicting the composition of trajectories with respect to action types. . . . 109

xvi

I see only one move ahead, but always the best move.

— Charles Jaffe, Chess Review, May 1946

Chapter 1

Introduction

1.1 Reinforcement Learning for Sequential Decision-Making

When I started my PhD in 2019, the research community harbored doubts about the reliability

and effectiveness of reinforcement learning (RL) methods, questioning whether such methods could

be used to solve real-world problems or whether they even worked at all [91]. This gap stemmed

largely from the instability of these methods [154, 127], their relative sample inefficiency [11, 193],

and the difficulty of attributing reward to individual steps within the long trajectories characteristic

of real-world tasks [146, 145, 194, 166, 32].

To address these challenges, my dissertation presents approaches to problem formulation, rep-

resentation learning, effective reward attribution, and scalable curation of high-quality multi-step

trajectories. To illustrate these principles, I will introduce RL agents capable of solving real-world

challenges in two disparate areas: chip design and language modeling.

In the first half of this dissertation, I will motivate the use of reinforcement learning for placement

optimization, a combinatorial optimization task that is commonly found in systems and chip design.

I will then introduce AlphaChip, a deep reinforcement learning method capable of generating

superhuman chip layouts in hours, rather than weeks or months of human effort. AlphaChip was one

of the first reinforcement learning methods deployed to solve a real-world engineering problem, and

it has designed chip layouts in the last four generations of Google TPU, as well as other chips by

Alphabet and external chipmakers. Finally, I will discuss the subsequent impact of this method and

the research discussions surrounding it.

In the second half, I will introduce SWiRL (Step-Wise Reinforcement Learning), an approach

to synthetic data generation and reinforcement learning that improves the ability of large language

models (LLMs) to perform multi-step reasoning and tool use. In particular, I target multi-hop

question-answering and mathematical reasoning. I will then describe COMPASS-QA, a new dataset

2

CHAPTER 1. INTRODUCTION 3

designed for evaluating LLM performance on challenging multi-step reasoning tasks and for training

LLM-based RL agents in these domains. I will conclude this dissertation by presenting a new dataset

for training and evaluating the performance of LLM-based RL agents on challenging multi-step

reasoning tasks, and discuss open problems and opportunities in this new frontier.

Placing the nodes of a chip onto a 2D canvas may seem wildly different from solving mathematical

reasoning problems or answering multi-hop questions using a search engine, and yet these tasks

share common structure. In all cases, they involve performing a sequence of non-trivial decisions,

culminating in a final solution. This dissertation demonstrates that these types of tasks can be

effectively addressed by deep neural networks optimized with reinforcement learning, using the

approaches developed in this dissertation to mitigate the RL pitfalls outlined above.

My long-term research objective was to build computer systems capable of understanding and

generating human language, and as we asymptotically approach this goal, it shifts to designing highly

intelligent LLM agents. Compute is the fuel for progress in Natural Language Processing (NLP),

as demonstrated particularly clearly by neural scaling laws [83, 106, 85]. I chose to pursue this

dissertation topic because I believe that RL for sequential decision-making is a powerful framework

that unifies much of my work. Furthermore, my work initiates a recursive feedback loop between

hardware and AI, where advances in AI lead to stronger hardware, which leads to stronger AI, and

so on. Indeed, TPUs with superhuman chip layouts designed by AlphaChip were used to train and

evaluate all of the models and datasets described in the second half of this dissertation.

1.2 A Brief History of Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning, in which an agent learns by interacting

with an environment and receives positive or negative reward as a result of its actions1 [193]. In this

section, I will provide an abbreviated history of reinforcement learning to contextualize the work

presented in this dissertation.

The theoretical underpinnings of reinforcement learning trace back to the early 1900s and are

rooted in an unlikely marriage between animal psychology and control theory. In psychology, Edward

Thorndike’s “Law of Effect” in the early 20th century proposed that behaviors followed by positive

feedback are more likely to be repeated, establishing a fundamental principle of learning from feedback

[201]. In control theory and operations research, Richard Bellman’s work on dynamic programming

in the 1950s provided a mathematical framework for making optimal sequences of decisions over

time [21]. Together, these separate lines of research formed the conceptual foundation of RL, namely

learning through trial-and-error interaction with an environment to achieve a goal.

In 1959, Arthur Samuel introduced a checkers-playing program that arguably represents the first
1See Section 2.3 for a brief introduction to reinforcement learning.

CHAPTER 1. INTRODUCTION 4

reinforcement learning approach, or at least a clear precursor. This pioneering work shared many

key elements of what later came to characterize the field of reinforcement learning. For example,

it featured a lookup table containing all board positions ever seen, a scoring function to evaluate

how favorable a particular position was, and the ability to adjust its own weights and learn from

experience via self-play [175]. However, Samuel’s mathematical formulation differed substantially

from subsequent work, taking a more heuristic and practical approach that was distinct from the

formalisms of dynamic programming [193].

In the 1980s and early 1990s, many seminal contributions were made to the field of reinforcement

learning, such as the introduction of the actor-critic architecture [20], temporal-difference (TD)

learning [194], and other model-free algorithms such as Q-Learning [217] and SARSA [174], which

enabled learning without an explicit model of the environment. Although these works introduced key

concepts that are still relevant today, they relied on exhaustive lookup tables covering all possible

states. As a result, for problems with large or continuous state spaces, initializing or maintaining

such a table is computationally infeasible [13, 193].

In 1995, TD-Gammon took a first step toward overcoming this fundamental limitation. In

particular, this work combined TD-learning with a neural network approximating the value function

for the game of backgammon [200]. TD-Gammon kicked off the modern era of deep reinforcement

learning, where deep neural network representations replaced exhaustive lookup tables. However,

the combination of function approximation, bootstrapping (learning from estimates), and off-policy

training proved to be a notoriously unstable recipe for divergence—‘the Deadly Triad’ as it is now

known [193]—and triggered an RL winter in which other machine learning approaches, such as

supervised learning, enjoyed much faster progress and wider adoption [205, 152].

In a watershed moment for the field, AlphaGo defeated the human world champion at the game

of Go in 2016 [186], revitalizing interest in deep reinforcement learning methods. Unfortunately,

despite promising subsequent results in games and simulations [186, 187, 209, 105, 89], RL methods

had yet to be successfully deployed to solve real-world problems. For example, even in the case of

the well-known RL for datacenter cooling paper which suggested that power consumption could

be reduced by up to 40% [172], the RL method itself was never deployed in production and the

performance gains reported were merely hypothetical.

In 2020, my collaborators and I introduced AlphaChip, a deep reinforcement learning approach

to designing chip layouts [16, 149]. AlphaChip was arguably the first RL method deployed to solve a

real-world engineering problem, and its superhuman chip layouts have been taped out in the last

four generations of Google’s Tensor Processing Units (TPUs), as well as other chips across Alphabet

and by external chipmakers. These chips have been deployed and are currently running in Google

datacenters all over the world [74]. This work will be discussed in detail in Part I of my dissertation.

AlphaChip’s publication triggered an explosion of work on AI for chip design [229, 227, 233,

CHAPTER 1. INTRODUCTION 5

228, 42, 66, 23, 195, 29, 47, 65, 216, 28, 144]. Nevertheless, as described in Sutton’s “The Bitter

Lesson” [192], there is often reluctance to accept the application of machine learning to new areas,

and ultimately this led to some confusion around our work, which I will discuss in Chapter 4. Today,

RL approaches to chip design have been widely adopted by leading commercial Electronic Design

Automation (EDA) companies, such as Synopsys and Cadence, and heavily featured at top chip

design conferences like the Design Automation Conference (DAC)2.

In recent years, the natural language processing (NLP) community has achieved impressive results

via reinforcement learning optimization of large language models (LLMs) [45, 18, 199, 69, 12, 161].

In Part II of my dissertation, I will describe some of my work on this new frontier, where I have

focused on building agents that can reason, plan, and use tools over multiple steps to accomplish

increasingly complex tasks. Ultimately, I believe that the full potential of RL lies in multi-step

sequential decision-making, and the development of agentic AI systems capable of autonomously

solving a wide variety of real-world challenges.

1.3 Thesis Statement, Research Questions, and Contributions

Overall, my thesis is that reinforcement learning is a powerful technique whose weaknesses can

be overcome through careful problem formulation (design of the action space), representation

learning (design of the neural state representation), curation of high-quality synthetic data (to enable

generalization across tasks), and per-step reward attribution (for more stable and effective learning).

When wielded properly, RL methods are capable of having real-world impact across a broad range of

disciplines, including chip layout optimization and multi-step reasoning in large language models.

To this end, my dissertation seeks to provide insights into the following research questions:

• How can we develop RL strategies that are effective across long time horizons and multiple

steps of sequential decision-making?

• What are effective strategies to mitigate instability in RL training and enable real-world impact?

• What approaches can be employed to address the relative sample inefficiency of RL methods?

In the chapters that follow, I will discuss in detail the key lessons learned in the development and

successful deployment of RL agents across a broad range of domains and modalities, including both

chip design and language modeling. Below I summarize these findings:

Handling Long Trajectories: In the course of my dissertation work, I found that effective reward

attribution was key to scaling RL to the long trajectories characteristic of real-world tasks. For
2At DAC 2025, there is even a session entitled “Need a Break from AI? Memory-centric Computing for Beyond

Machine Learning Application”, jokingly alluding to the fact that nearly every session is now AI-related.

CHAPTER 1. INTRODUCTION 6

example, in SWiRL, we decomposed synthetic trajectories into single actions (chains of thought

followed by tool use invocations) in the context of all prior actions, enabling the RL policy to receive

a rich and granular reward signal for each action. In contrast, for AlphaChip, we found that it was

not necessary to provide granular reward signal after each step (though we did explore this approach),

but instead focused on decomposing the task into placing a sequence of approximately 100 macros

(the most difficult part, which was previously performed by human experts), followed by invocation

of a standard cell placement tool to quickly and approximately place millions of standard cells (a

problem that was already effectively addressed by prior analytic approaches). This allowed us to

reduce the effective sequence length and enabled the effective deployment of an RL approach to chip

placement optimization with only implicit per-step signal via AlphaChip’s value network and the

edge-based graph neural network encodings of the state at each step.

Mitigating RL Instability: I found that both problem formulation (i.e., the design of the state

and action space) and representation learning (via either custom architecture and/or large-scale pre-

training) were critical to addressing the instability of RL training and enabling effective deployment.

Regarding pre-training and representation learning, we observed that this created a dramatic difference

in training stability and convergence of AlphaChip. For example, AlphaChip policies trained from

scratch had approximately a 1 in 10 chance of converging, whereas those initialized from a pre-

trained policy nearly always converged. This underscores the value of starting with a well-initialized

representation. My experience with SWiRL echoed this finding: initializing from a pre-trained Large

Language Model (LLM) provided a strong foundation, leading to remarkably stable RL training.

Beyond representation learning, problem formulation emerged as a critical factor for enhancing

RL stability. SWiRL achieved more consistent convergence by gathering trajectories offline and

subsequently employing LLMs to filter this data, disentangling the unstable tool use invocation

from the RL training. AlphaChip implemented an even more direct offline approach: chip layouts

were generated and evaluated, with only high-quality layouts being retained. This inherently im-

proved stability because the quality of the best-known layout could only monotonically increase

throughout training, providing a more consistent signal, albeit a noisy one due to imperfect proxy costs.

Addressing Sample Inefficiency: Finally, handling RL’s infamously poor sample inefficiency

required a combination of designing custom neural architectures with the appropriate inductive

bias and developing new approaches to scaling synthetic data. In AlphaChip, we developed a novel

edge-based graph neural network encoder that enabled us to effectively represent a range of input

chips and to generalize across them. This dramatically improved the sample efficiency of our RL

approach to chip floorplanning, causing it to be approximately 100× more sample efficient than

prior approaches like simulated annealing. SWiRL offered a complementary lesson: if a model

CHAPTER 1. INTRODUCTION 7

struggles with sample inefficiency, one approach is to simply generate more samples. We found that

scaling the generation of synthetic trajectories consistently improved performance at all tested scales.

Importantly, these improvements generalized across different tasks and tools, highlighting the power

of abundant, targeted synthetic data for overcoming sample limitations in LLM-based agents.

1.4 Overview of Dissertation

This dissertation is divided into two main parts. In Part I, I will describe reinforcement learning

approaches to problems in systems and chip design. In Part II, I will explore how reinforcement

learning methods can be developed to overcome challenges in natural language processing. Here, I

provide an overview of each chapter.

Part I: Reinforcement Learning for Chip Design

The first part of this thesis focuses on RL agents for placement optimization and chip design, framing

these tasks as sequential decision-making problems that can be effectively addressed using reinforce-

ment learning.

Chapter 2: Placement Optimization with Reinforcement Learning. This chapter begins

with an overview of reinforcement learning, followed by a description of placement optimization, a

challenging category of combinatorial optimization that is a common subtask in systems and chip

design tasks. I will then motivate the use of reinforcement learning in this domain and describe

how it can be best adapted to this category of problem, including considerations for the design of

the action space, neural representation of state, reward function, and the handling of hard constraints.

Chapter 3: AlphaChip: A Graph Placement Methodology for Fast Chip Design. In this

chapter, we will describe AlphaChip, a deep reinforcement learning method capable of generating

superhuman chip layouts in hours, rather than weeks or months of effort by teams of human experts.

AlphaChip formulates chip placement as a sequential reinforcement learning problem, placing the

nodes of a chip one-at-a-time onto a 2D canvas, representing the state using a novel edge-based graph

neural network, and calculating reward signal as the weighted average of approximate wirelength,

density, and routing congestion.

Chapter 4: From Scrutiny to Silicon: Post-Publication Discussion and Impact of

AlphaChip. In this chapter, we will describe the real-world impact of AlphaChip, including its

deployment in four generations of TPU, datacenter CPUs (Axion), and other chips across Alphabet

and by external chipmakers. As one of the first RL methods deployed to solve a real-world engineering

CHAPTER 1. INTRODUCTION 8

problem, its publication triggered an explosion of work on AI for chip design, as well as intense

skepticism and discussion within the semiconductor community, which will be summarized in this

chapter.

Part II: Reinforcement Learning for Language Modeling

The second part of this thesis develops RL agents and datasets for multi-step reasoning and tool

use in the domain of natural language processing, focusing on question answering and mathematical

reasoning. I also introduce a new dataset designed to enable evaluation and training of future

LLM-based RL agents in this domain.

Chapter 5: Synthetic Data Generation and Multi-Step Reinforcement Learning This

chapter introduces Step-Wise Reinforcement Learning (SWiRL), our approach to addressing limita-

tions of traditional single-step reinforcement learning (RL) methods for complex, multi-step language

model tasks. SWiRL employs iterative synthetic data generation and a step-wise decomposition of

trajectories for optimization. We demonstrate its effectiveness with substantial performance gains

(e.g., up to 21.5% relative accuracy improvement) on diverse benchmarks and highlight its capacity

for cross-task generalization.

Chapter 6: Benchmarking Multi-Step Reasoning and Tool Use In this chapter, we introduce

a new benchmark to measure the ability of current models to perform multi-step reasoning and tool

use. Furthermore, we describe a rubric-based LLM evaluation framework which enables consistent

evaluation of open-ended questions. We provide 700 challenging questions that require multiple steps

of reasoning and tool use to effectively answer. To enable training RL agents with these capabilities,

we provide trajectories generated by human annotators outlining the steps they took to reach the final

answer. We hope that this dataset will help researchers meaningfully benchmark the effectiveness of

new models on multi-step reasoning and tool use.

1.5 Bibliographic Notes

The chapters of my dissertation are largely based on the following publications, where * indicates

co-first authorship. For clarity, I describe my personal contributions to each co-authored publication.

• Chapter 2

– Publication: Anna Goldie & Azalia Mirhoseini, Placement Optimization with Deep

Reinforcement Learning. Association for Computing Machinery, Proceedings of the

International Conference on Physical Design 2020.

CHAPTER 1. INTRODUCTION 9

– Contributions: I conceived the project with Azalia Mirhoseini, drew insights from

experiments and analysis that I had run across various deep RL for placement optimization

problems (e.g. device placement and chip floorplanning), and led the writing of the paper.

• Chapter 3

– Publication: Azalia Mirhoseini*, Anna Goldie*, Mustafa Yazgan, Joe Wenjie Jiang,

Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade

Nova, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V.

Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean. A Graph Placement

Methodology for Fast Chip Design. Nature 594, 207–212 (2021).

– Contributions: I conceived the idea and initiated the project with Azalia Mirhoseini

and Jeff Dean, ran experiments, pair-programmed the first RL prototype with Azalia,

generated all of the superhuman layouts used in AlphaChip’s first TPU deployment,

supervised other researchers and engineers, proposed ideas, analyzed results, designed

experiments, and wrote the Nature paper with Azalia, as well as the cover letter and all

of the peer review responses throughout the 7-month review process [73]. Note that the

two co-first authors contributed equally, and the order of their names was determined by

a coin flip [75].

• Chapter 4:

– Publication: Anna Goldie*, Azalia Mirhoseini*, Mustafa Yazgan, Joe Wenjie Jiang,

Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade

Nova, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V.

Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean. Addendum: A Graph

Placement Methodology for Fast Chip Design. Nature 634, E10-11 (2024).

– Contributions: I devised the strategy for the Addendum, including how we would

describe the scientific disagreement, how we would address all concerns raised by Nature

and the peer reviewers, and how we would highlight the subsequent impact of this work. I

proposed the experiments in the Addendum and supervised their execution. I wrote the

Addendum with input from Azalia and Jeff and sign-off from all 20 of the original Nature

co-authors.

– Publication: Anna Goldie, Azalia Mirhoseini, & Jeff Dean. That Chip Has Sailed: A

Critique of Unfounded Skepticism Around AI for Chip Design. arXiv 2024.

– Contributions: I originated the idea (and the name) of this paper, obtained approval to

publish it, and wrote the paper with input from Jeff Dean and Azalia Mirhoseini.

CHAPTER 1. INTRODUCTION 10

– Publication: Anna Goldie, Azalia Mirhoseini. How AlphaChip Transformed Chip Design.

Google DeepMind Blog. September 26, 2024.

– Contributions: I proposed the idea and the structure of the blogpost, wrote the initial

draft, and negotiated with DeepMind comms on every sentence to maintain scientific

accuracy. I also coordinated with external research leaders and internal partners.

• Chapter 5:

– Publication: Anna Goldie*, Azalia Mirhoseini*, Hao Zhou, Irene Cai, & Christopher

D. Manning. Synthetic Data Generation and Multi-Step RL for Reasoning and Tool Use.

Under Review at the Conference on Language Modeling (COLM) 2025.

– Contributions: I conceived the idea for this project in collaboration with Azalia and

Chris Manning. I ran all of the experiments and wrote all of the code. I wrote the paper

with Azalia, and prepared the peer review responses.

• Chapter 6:

– Publication: Anna Goldie*, Azalia Mirhoseini*, Hao Zhou, Christopher D. Manning.

Benchmarking Multi-Step Reasoning and Tool Use in Large Language Models. Under

Embargo until October 18, 2025.

– Contributions: I initiated the project and conceived the idea in collaboration with Azalia

and Chris Manning. I oversaw data collection, led trajectory filtering, the development

and implementation of the design, and did all the experiments and writing.

During my PhD, I also contributed to the following publications, which are not included in my

dissertation.

• Anna Goldie, Azalia Mirhoseini. RL for Placement and Partitioning, Textbook Chapter in RL

for Placement and Partitioning Machine Learning Applications in Electronic Design Automation,

Springer International Publishing. Aug 10, 2022.

• Caia Costello, Simon Guo, Anna Goldie, Azalia Mirhoseini. Think, Prune, Train: Can Small

Models Teach Themselves to Reason? ICLAD 2025.

• Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, Christopher D.

Manning. RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval. ICLR

2024

• Moussa Doumbouya, Ananjan Nandi, Gabriel Poesia, Davide Ghilardi, Anna Goldie, Federico

Bianchi, Dan Jurafsky, Christopher D. Manning. h4rm3l: A language for Composable Jailbreak

Attack Synthesis. International Conference on Learning Representations (ICLR) 2025.

CHAPTER 1. INTRODUCTION 11

• Parth Sarthi, Shreyansh Choudhary, Ayush Mangal, Ankur Bhatia, Anna Goldie, Suvrat

Bhooshan, Christopher D Manning. Scaling Compute-Optimal Text-to-Speech Models. Under

Review at the International Conference on Machine Learning (ICML) 2025.

• Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,

Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon et al. Constitutional AI:

Harmlessness from AI Feedback. arXiv 2022.

• Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, Azalia

Mirhoseini. A Full-Stack Search Technique for Domain Optimized Deep Learning Accelera-

tors. Proceedings of the 27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, p27-42. February 28, 2022.

• Summer Yue, Ebrahim M Songhori, Joe Wenjie Jiang, Toby Boyd, Anna Goldie, Azalia

Mirhoseini, Sergio Guadarrama. Scalability and Generalization of Circuit Training for Chip

Floorplanning. Proceedings of the 2022 International Symposium on Physical Design, p65-70.

April 13, 2022.

• Ahmet F Budak, Zixuan Jiang, Keren Zhu, Azalia Mirhoseini, Anna Goldie, David Z Pan.

Reinforcement Learning for Electronic Design Automation: Case Studies and Perspectives. 2022

27th Asia and South Pacific Design Automation Conference (ASP-DAC), p500-505. January

17, 2022.

• Zixuan Jiang, Ebrahim Songhori, Shen Wang, Anna Goldie, Azalia Mirhoseini, Joe Jiang,

Young-Joon Lee, David Z Pan. Delving into Macro Placement with Reinforcement Learning.

2021 ACM/IEEE 3rd Workshop on Machine Learning for Computer-Aided Design (MLCAD),

p1-3.

• Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, Azalia Mirhoseini. Clustering by Learning

to Optimize Normalized Cuts. NeurIPS 2019 Workshop on Sets & Partitions.

• Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas I. Liao, Kamilė Lukošiūtė, Anna

Chen, Anna Goldie, Azalia Mirhoseini, Catherine Olsson, Danny Hernandez et al. The Capacity

for Moral Self-Correction in Large Language Models. arXiv 2023.

• Sandipan Kundu, Yuntao Bai, Saurav Kadavath, Amanda Askell, Andrew Callahan, Anna

Chen, Anna Goldie, Avital Balwit, Azalia Mirhoseini, Brayden McLean et al. Specific versus

General Principles for Constitutional AI. arXiv 2023.

• Samuel R. Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner,

Kamilė Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini et

al. Measuring Progress on Scalable Oversight for Large Language Models. arXiv 2022.

CHAPTER 1. INTRODUCTION 12

• Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C Ma, Qiumin Xu, Ming

Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirhoseini, James Laudon. A Generalized Approach

to End-to-End Computational Graph Optimization. NeurIPS 2020 (Oral)

• Jialin Song, Joe Jiang, Ebrahim Songhori, Anna Goldie, Navdeep Jaitly, Azalia Mirhoseini.

Policy Optimization By Local Improvement Through Search. ICML 2020 Workshop on Inductive

Biases, Invariances and Generalization in RL.

Part I

Reinforcement Learning for Chip

Design

13

Chapter 2

Placement Optimization With

Reinforcement Learning

2.1 Background

Placement Optimization is an important problem in systems and chip design, which consists of

mapping the nodes of a graph onto a limited set of resources to optimize for an objective, subject to

constraints. Common examples of this class of problem include placement of TensorFlow graphs onto

hardware devices to minimize training or inference time, or placement of an ASIC or FPGA netlist

onto a grid to optimize for power, performance, and area. In this chapter, we start by motivating

reinforcement learning (RL) as a solution to the placement problem. We then give an overview of

what deep reinforcement learning is. We next formulate the placement problem as a reinforcement

learning problem, and show how this problem can be solved with policy gradient optimization. Finally,

we describe lessons we have learned from training deep reinforcement learning policies across a variety

of placement optimization problems.

2.2 Placement Optimization as an RL Problem

Placement optimization is a very challenging problem as several factors, including the size and

topology of the input graph, number and properties of available resources, and the requirements and

constraints of feasible placements all contribute to its complexity. Placement optimizations of this

form appear in a wide range of science and engineering applications, including hardware design [139],

city planning [14], vaccine testing and distribution [142], and cerebral cortex layout [43]. There are

many approaches to the placement problem. A range of algorithms including analytical approaches

[113, 136, 48, 131], genetic and hill-climbing methods [50, 58, 117], Integer Linear Programming

14

CHAPTER 2. PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING 15

(ILP) [225, 33], and problem-specific heuristics have been proposed [184].

More recently, a new type of approach to the placement problem based on deep Reinforcement

Learning (RL) [150, 147, 239] has emerged. RL-based methods bring new challenges, such as

interpretability, brittleness of training to convergence, and unsafe exploration [55, 91]. However, they

also offer new opportunities, such as the ability to leverage distributed computing, ease of problem

formulation, end-to-end optimization, and domain adaptation, meaning that these methods can

potentially transfer what they learn from previous problems to new unseen instances.

2.3 Principles of Deep Reinforcement Learning

Most successful applications of machine learning are examples of supervised learning, where a model

is trained to approximate a particular function, given many input-output examples (e.g., given many

images labeled as cat or dog, learn to predict whether a given image is that of a cat or a dog).

Today’s state-of-the-art supervised models are typically deep learning models, meaning that the

function approximation is achieved by updating the weights of a multi-layered (deep) neural network

via gradient descent against a differentiable loss function.

Reinforcement learning, on the other hand, is a separate branch of machine learning in which a

model, or policy in RL parlance, learns to take actions in an environment (either the real-world or a

simulation) to maximize a given reward function. One well-known example of reinforcement learning

is AlphaGo [186], in which a policy learned to take actions (moves in the game of Go) to maximize

its reward function (number of winning games). Deep reinforcement learning is simply reinforcement

learning in which the policy is a deep neural network.

RL problems can be reformulated as Markov Decision Processes (MDPs) [193]. MDPs rely on

the Markov assumption, meaning that the next state st+1 depends only on the current state st, and

is conditionally independent of the past.

P (st+1|s0...st) = P (st+1|st)

Like MDPs, RL problems are defined by five key components:

• states: the set of possible states of the world (e.g., the set of valid board positions in Go)

• actions: the set of actions that can be taken by the agent (e.g., all valid moves in a game of Go)

• state transition probabilities: the probability of transitioning between any two given states.

• reward: the objective to be maximized, subject to future discounting as defined below (e.g., 1

if you win the game of Go, 0 otherwise)

CHAPTER 2. PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING 16

Agent

Environment

Action atReward rtState st

Figure 2.1: In Reinforcement Learning, an agent explores the environment and finds actions to
maximize cumulative rewards.

• discount for future rewards: how much to discount the value of future reward, due to its relative

uncertainty (e.g., a discount factor of .95 would mean that 95 dollars today is equivalent to 100

tomorrow).

At each time step t, the agent begins in state (st), takes an action (at), arrives at a new state

(st+1), and receives a reward (rt) from the environment, as shown in Figure 2.1. Through repeated

episodes (sequences of states, actions, and rewards), the agent learns to take actions that will

maximize cumulative reward.

Reinforcement learning approaches can be divided into two broad categories: model-free and

model-based. In model-free reinforcement learning, we train a policy to take actions that maximize

reward from a black-box environment. In model-based reinforcement learning, we train a policy to

take actions that maximize reward, while also training an explicit model of the world, which learns

to predict the reward and state transitions of the environment. Most existing work on reinforcement

learning for systems problems has taken a model-free approach, as it is generally easier to train

to convergence. However, model-based reinforcement learning has been shown to be more sample

efficient in other domains [92], so it may be a viable direction to take in future work, especially in

situations where the reward function is very expensive to evaluate.

Since the agent’s goal is to maximize cumulative reward, one approach is to learn a value function

that can predict the reward given a state, v(s), and then take the action which will bring the agent

into a state that yields the highest expected reward. However, a more common approach in recent

years is to use policy gradient methods, which seek to directly learn the policy π(a|s) that predicts

the optimal action given the current state. Popular policy gradient methods include REINFORCE

[221], A3C [153], TRPO [178], and PPO [179].

RL is helpful in cases where we do not have sufficient labeled data (input-output examples) to

take a supervised learning approach or when the objective function is not differentiable. It is also

CHAPTER 2. PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING 17

well-suited to massive search problems, where exhaustive or heuristic-based methods cannot scale,

and cases where it is necessary to perform long rollouts in order to determine final reward, such as

AlphaGo [186], AlphaStar [209], and OpenAI Five DOTA [160].

Reinforcement learning policies are famously difficult to train, as they tend to be brittle with

respect to their hyperparameters, hard to interpret and debug, and prone to catastrophic failures and

unsafe exploration. This area of machine learning is not yet as well understood, with few educational

resources available, as compared to more established areas like deep learning. This is part of our

motivation for writing this chapter, to demystify this area and empower more systems experts to

move into this promising, but challenging area.

2.4 Deep Reinforcement Learning for Placement Optimization

In this section, we first start by formulating the placement problem. We will then show how RL can

be applied to solve this problem.

2.4.1 Placement Problem Formulation

Recall that the placement problem consists of mapping the nodes of an input graph onto a limited set

of resources, such that an objective function is optimize while adhering to any hard constraints. Let

us assume the input graph g has nodes v1, v2, ..., vN . We want to place these nodes onto placement

locations l = l1, l2, ..., lM . In this set up, we use RL to find a mapping

(v1, v2, ..., vN) → (l1, l2, ..., lM)

that maximizes a reward function R subject to constraints. Here, there is a unique placement location

for each node vi, but each location lj can be assigned to multiple nodes. The constraints vary by

problem, but a common constraint is limited capacity for each placement location, meaning that

there is a limit on how many nodes can be assigned to each location. In the next section, we will

discuss some case-specific constraints and ways to incorporate them.

To formulate placement as a policy optimization problem, [150] proposed relaxing the objective

function. Instead of finding the absolute best placement, one can train a policy that generates a

probability distribution of nodes to placement locations such that it maximizes the expected reward

generated by those placements.

Let us denote the policy π parameterized by θ as πθ. θ represents the weights of a deep network

architecture. Here, we describe the objective, which is to train parameters θ such that the network

predicts placement decisions for the nodes of the input graph g, and as a result, the placement reward

Rl,g is maximized. We can write the cost function we are optimizing for as follows:

CHAPTER 2. PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING 18

CLBs

Input graph:

TensorFlow Graph

ASIC Netlist

FPGA Netlist

Neural Network

Grid cells

Device 1
Device 2

Device M

v1v2

vN

N
x
M

Probability of assigning
 nodes to devices

Graph nodes:

Target placement
locations

Figure 2.2: Placement optimization overview. Target placement locations for TensorFlow graphs,
ASIC netlists, and FPGA netlists are the computing devices (e.g., TPU or GPUs), grid cells of the
chip canvas, and FPGA Configurable Logic Blocks (CLBs), respectively.

J(θ, g) = Eg,l∼πθ
[Rl,g] =

∑
l∼πθ

πθ(l|g)Rl,g (2.1)

We can then train this policy (optimize parameters θ) using a policy gradient based method,

which we will discuss in this section.

Here, we provide an overview of the state and action space, reward function and the neural

network architecture of the policy by delving into example placement problems, namely TensorFlow

device placement, ASIC netlist placement, and FPGA netlist placement. As shown in Figure 2.2, all

of these placement problems require mapping the nodes of a graph onto placement locations such

that their corresponding reward metrics are optimized. Target placement locations for TensorFlow

graphs, ASIC netlists, and FPGA netlists are the computing devices (e.g., TPU or GPUs), grid cells

of the chip canvas, and FPGA Configurable Logic Blocks (CLBs), respectively.

For each of these problems, the neural network policy receives a state as input, and outputs an

action for that state. In general, the state should represent the information that the policy needs for

prediction, such as node ID, type, and adjacency matrix. The network then outputs a probability

distribution representing the probability of assigning an input node onto each placement location.

The action is selected by sampling or taking the argmax of the output probability distribution.

The reward function varies for different problems. For example, for TensorFlow graph placement,

we use negative runtime of a training step of the placed deep network model. For ASIC and FPGA

netlists, the reward is more complex and should include various metrics related to power and timing

(e.g., total wirelength, routability congestion, and cell density).

CHAPTER 2. PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING 19

2.4.2 Graph Convolutional Neural Networks

As discussed, many placement problems take input in the form of graph. The way in which these

input graphs are represented has great impact on the ability of machine learning models to generate

high-quality placements. More meaningful representations also help models to learn patterns that

generalize to new unseen graphs, as opposed to merely memorizing the graphs that they encounter.

We therefore describe some of the recent advances in neural graph representations, such as Graph

Convolutional Networks.

Graph neural networks can be divided into four high-level categories [223]: recurrent graph neural

networks (RecGNNs) [76, 177, 67], convolutional graph neural networks (ConvGNNs) [26, 82, 54],

graph autoencoders (GAEs), and spatial-temporal graph neural networks (STGNNs). RecGNNs

preceded ConvGNNs and pioneered the idea of message passing, or representing a node as an iterative

aggregate of its neighbors. Each iteration of message passing results in one additional hop (e.g.,

running the algorithm for k iterations would result in each node being influenced by all neighbors

within a k-hop radius). As such, these methods better encode the overall topology of the graph,

enabling domain adaptation, as described in the following section. Most graph neural network

methods used in systems today are ConvGNNs, which generalize the concept of convolution. After

all, images are merely a special case of graphs, in which pixels are nodes connected to the pixels

(nodes) immediately surrounding them. ConvGNNs use deep convolutional networks to capture even

distant relationships within the graph.

2.4.3 Domain Adaptation

Domain adaptation in placement is the problem of training policies that can learn across multiple

graphs and transfer the acquired knowledge to generate more optimized placements for new unseen

graphs. In the context of the three examples we discussed in this chapter, domain adaptation

means we train a policy across a set of TensorFlow graphs, ASIC or FPGA netlists and apply the

trained policy to an unseen TensorFlow graph, ASIC or FPGA netlist. [239] proposed the problem

formulation for a domain adaptive policy as follows:

J(θ,G) =
1

K

∑
g∼G

Eg,l∼πθ
[Rl,g] (2.2)

In this case, G is a set of K training graphs. The training procedure can be similar to that of

traditional machine learning (e.g., using a heldout validation set or cross validation).

CHAPTER 2. PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING 20

2.4.4 Solving the Placement Objective with Policy Gradient Optimization

Now that we have defined an objective function, we will explain how to use policy gradient optimization

to learn the parameters θ of the policy. We can write the derivative of the objective function in

Equation 2.2 as follows:

∇θJ(θ, g) =
∑
l∼πθ

∇θπθ(l|g)Rl,g (2.3)

=
∑
l∼πθ

πθ
∇θπθ(l|g)

πθ
Rl,g (2.4)

=
∑
l∼πθ

πθ∇θ log(πθ(l|g))Rl,g (2.5)

= E[∇θ log(πθ(l|g))Rl,g] (2.6)

The equation above is the basis of various policy gradient optimization methods, such as REIN-

FORCE [221], PPO [179], and SAC [81].

2.5 Ingredients for RL Success

In this section, I will share some of the lessons that I have learned in training deep reinforcement

learning policies to solve placement problems in computer systems and chip design.

Reward Function: Designing the right reward function is one of the most critical decisions.

Some properties of effective reward functions are as follows:

1) Reward functions should be fast to evaluate; RL training often requires 10-100s of thousands

of iterations of reward evaluation before reaching convergence. While the exact timing that makes a

tractable reward function depends on the complexity of the problem, a sub-second reward function

would be effective in nearly any scenario.

2) Reward functions should be strongly correlated with the true objective. In many real-world

scenarios, we need to use simulators or proxy reward functions to approximate the true objective,

which may be prohibitively expensive to calculate. If the proxy reward is not well-correlated with the

true objective, we are solving the wrong problem and the learned placement is unlikely to be useful.

While designing a good simulator or approximate function is a challenging task in its own right, it is

helpful to build a reward function by combining various approximate metrics that each independently

correlate with the true reward. For example, for TensorFlow placement, the proxy reward could be

a composite function of total memory per device, number of inter-device (and therefore expensive)

edges induced by the placement, imbalance of computation placed on each device. By incorporating

a weighted average of multiple proxy rewards, the total variance of the reward error is reduced and

CHAPTER 2. PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING 21

over-fitting to a particular proxy metric is avoided.

3) Another important factor is correctly engineering the reward function. This could be as simple

as normalizing the reward or applying more complex functions to change the shape of the reward.

For example, for the device placement problem, measuring the runtime of one step of the TensorFlow

graph was the true reward function. Due to the runtime varying widely across different placements,

using the runtime directly would interfere with learning and gradient updates. We chose to instead

use the square root of the runtime, which effectively dampened the range of values.

Action Space: Another key ingredient is designing the appropriate action space. For example,

the problem could be formulated as placing the nodes of the netlist one at a time onto the chip netlist,

or as placing all of the nodes and then deciding which perturbation (e.g., swap, shift, rotate, etc.)

to apply to each of the nodes in a fixed sequence. In device placement, we chose to place all of the

TensorFlow nodes onto hardware devices before evaluating the reward for that placement, because

otherwise measuring the reward of a partial placement would be very difficult, if not impossible. For

ASIC placement, on the other hand, one can define partial reward functions, because it is possible to

measure changes in metrics, such as wirelength and congestion, as nodes are being placed.

Managing Constraints: The constraints for feasible placements vary across placement problems.

For example, a common constraint is the capacity of placement locations, which limits the number

of nodes that can be placed onto that location. For example in device placement, the memory

footprint of the nodes placed onto a single device should not exceed the memory limit of that device.

Another constraint is that certain nodes cannot co-exist on the same location. For example, in ASIC

placement, two macro blocks cannot overlap on the chip canvas.

There are many approaches to enforcing these constraints to avoid or reduce the number of

infeasible placements generated by the policy. Perhaps the most straightforward way to handle the

constraints is to penalize the policy with a large negative reward whenever it generates infeasible

placements. A challenge with this solution is that the policy does not gain any information about

how far this placement was from a feasible placement. In the most extreme case, if all of the initial

placements generated by the policy are infeasible, there will be no positive signal to teach the policy

how to explore the environment and training will fail. Thus, creating a reward function that penalizes

the infeasible placements relative to how far they are from viable placements becomes critical.

Another approach is to force the policy to only generate feasible placements. This can be

accomplished via a function that masks out the infeasible placements. For example, a mask can be

updated given the partial placement of the graph nodes. Each time a new node is placed, the density

of all the locations is updated (based on the locations of the nodes that are already placed). The

action space then becomes limited to those locations that have enough free capacity to accept the

new node. This approach has its own challenges as calculating the mask, similar to calculating the

reward, must be done efficiently.

CHAPTER 2. PLACEMENT OPTIMIZATION WITH REINFORCEMENT LEARNING 22

Representations: Finally, the way in which state is represented has significant impact on

the performance of the policy and its ability to generalize to unseen instances of the placement

problem. For example, in the earlier TensorFlow device placement papers [150, 147], we represented

the computational graph as a list of adjacencies, indices of the node operations, and sizes of the

operations. This approach was effective when the policy was trained from scratch for each new

TensorFlow graph, but was unable to generalize or transfer what it learned to new graphs. On the

other hand, [239] used graph convolutional neural networks to learn better representations of the

computational graph structure, and was able to transfer knowledge across graphs.

2.6 Conclusion

In this chapter, we discuss placement optimization with deep reinforcement learning. Deep RL is a

promising approach for solving combinatorial problems, and enables domain adaptation and direct

optimization of non-differentiable objective functions. Training RL policies is a very challenging task,

in part due to the brittleness of gradient updates and the costliness of evaluating rewards. In this

chapter, we provide an overview of deep RL, formulate the placement problem as an RL problem,

and discuss strategies for training successful RL agents.

We predict a trend towards more effective RL-based domain adaptation techniques, in which

graph neural networks will play a key role in enabling both higher sample efficiency and more optimal

placements. We also foresee a future in which easy-to-use RL-based placement tools will enable

non-ML experts to harness and improve upon these powerful techniques.

Chapter 3

AlphaChip: A Graph Placement

Methodology for Fast Chip Design

3.1 Background

In Chapter 2, we described placement optimization and motivated an RL approach to this combi-

natorial optimization task. In this chapter, we describe AlphaChip, an RL methodology for chip

placement optimization. Chip floorplanning is the engineering task of designing the physical layout

of a computer chip. Despite five decades of research [139], chip floorplanning has defied automation,

requiring months of intense effort by physical design engineers to produce manufacturable layouts. In

this chapter, we present a deep reinforcement learning (RL) approach to chip floorplanning. In under

six hours, our method automatically generates chip floorplans that are superior or comparable to

humans in all key metrics, including power consumption, performance, and chip area. To achieve this,

we pose chip floorplanning as a reinforcement learning problem, and develop a novel edge-based graph

convolutional neural network architecture capable of learning rich and transferable representations of

the chip. As a result, our method is capable of leveraging past experience to become both better

and faster at solving new instances of the problem, ushering in a new era in which chip design is

performed by artificial agents with more experience than any human designer could ever gain. Our

method has been used in the design of the last four generations of Google TPU, including every

generation since the method was published in Nature, saving thousands of hours of human effort and

hundreds of millions of dollars in labor, compute, and opportunity cost. Finally, we believe that more

powerful AI-designed hardware will fuel advances in AI, creating a symbiotic relationship between

the two fields.

23

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 24

3.2 Introduction

In this chapter, we propose a new graph placement method based on reinforcement learning, and

demonstrate state-of-the-art results on chip floorplanning, an NP-hard problem [198]. Our method

generates manufacturable chip floorplans in under 6 hours, compared to the strongest baseline which

requires months of intense effort by human experts.

A computer chip is divided into dozens of blocks, each of which is an individual module, such

as a memory subsystem, compute unit, or control logic system. These blocks can be described by

a netlist, a graph of circuit components, such as macros (memory components) and standard cells

(logic gates like NAND, NOR, and XOR), all of which are connected by wires. Chip floorplanning

involves placing netlists onto chip canvases (2D grids), such that performance metrics (e.g., power

consumption, timing, area, and wirelength) are optimized, while adhering to hard constraints on

density and routing congestion.

Since the 1960s, many approaches to chip floorplanning have been proposed, falling into three

broad categories: partitioning-based methods [25, 61, 173], stochastic/hill-climbing approaches

[118, 180, 176], and analytic solvers [138, 87, 211, 111, 136, 48]. However, none of these approaches

could achieve human-level performance, and the exponential growth in chip complexity has rendered

these techniques largely unusable on modern chips.

The limitations of these prior approaches are varied. For example, partitioning-based methods

sacrifice quality of the global solution in order to scale to larger netlists, and a poor early partition

may result in an unsalvageable final result [214, 102]. Hill-climbing approaches have low convergence

rates and do not scale to modern chip netlists with millions or billions of nodes [136]. Prior to

this work, analytic solvers were the leading approach, but they can only optimize for differentiable

loss functions, meaning that they cannot effectively optimize for critical metrics, such as routing

congestion or timing violations. Our method, on the other hand, can scale to netlists with millions of

nodes, and optimizes directly for any mixture of differentiable or non-differentiable cost functions.

Furthermore, our method improves in both speed and quality of result as it is exposed to more

instances of the chip placement problem.

Due to the limitations of these prior methods, human physical designers must iterate for months

with commercial EDA tools, taking as input a register transfer level (RTL) description of the chip

netlist, generating a manual placement of that netlist onto the chip canvas, and waiting up to 72

hours for EDA tools to evaluate that placement. Based on this feedback, the human designer either

concludes that the design criteria have been achieved, generates an updated floorplan for evaluation,

or provides feedback to upstream RTL designers who then modify the low-level code to make the

placement task easier (e.g., resolve timing violations).

To address the chip floorplanning problem, we developed an RL method capable of generalizing

across chips, meaning that it can learn from experience to become both better and faster at placing

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 25

new chips, ushering in a new era in which chip designers are assisted by artificial agents with more

experience than any human could ever gain.

Training placement policies that generalize across chips is extremely challenging, as it requires

learning to optimize the placement of all possible chip netlists onto all possible canvases. Chip

floorplanning is analogous to a game with varying pieces (e.g., netlist topologies, macro counts, macro

sizes and aspect ratios), boards (varying canvas sizes and aspect ratios), and win conditions (relative

importance of different evaluation metrics or different density and routing congestion constraints).

Even one instance of this game (placing a particular netlist onto a particular canvas) has an enormous

state-action space. For example, the state space of placing 1000 clusters of nodes on a grid with 1000

cells is on the order of 1000! (greater than 102500), compared to Go, which has a state space of 10360

[188].

To enable generalization, we focused on learning transferable representations of chips, grounding

representation learning in the supervised task of predicting placement quality. By designing a neural

architecture that can accurately predict reward across a wide variety of netlists and their placements,

we are able to generate rich feature embeddings of the input netlists. We then use this architecture

as the encoder of our policy and value networks to enable transfer learning. In our experiments, we

show that, as our agent is exposed to a greater volume and variety of chips, it becomes both faster

and better at generating optimized placements for new chip blocks, bringing us closer to a future in

which chip designers are assisted by artificial agents with vast chip placement experience.

In addition to the immediate impact on chip floorplanning, the ability of our method to generalize

and quickly generate high-quality solutions has major implications, unlocking opportunities for co-

optimization with earlier stages of the chip design process. Large-scale architectural explorations were

previously impossible, as it took months of human effort to accurately evaluate a given architectural

candidate. However, modifying the architectural design can have an outsized impact on performance,

and would facilitate full automation of the chip design process. Automating and accelerating the

chip design process can also enable co-design of AI and hardware, yielding high performance chips

customized to important workloads, such as autonomous vehicles, medical devices, and data centers.

At an abstract level, our method learns to map the nodes of a graph onto a limited set of resources,

subject to constraints. Placement optimizations of this form appear in a wide range of science and

engineering applications, including hardware design [139], city planning [14], vaccine testing and

distribution [142], and cerebral cortex layout [43]. Therefore, we believe that our novel placement

optimization methodology can be applied to impactful placement problems beyond chip design.

Beyond the experimental results reported, our method is already having real-world impact and

our floorplan solutions have been used in the last four generations of Google’s flagship AI accelerator

chip (TPU).

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 26

3.3 Related Work

Chip floorplanning is a longstanding challenge, requiring multi-objective optimization over circuits of

ever-growing complexity. Since the 1960s, many approaches have been proposed, so far falling into

three broad categories: 1) partitioning-based methods, 2) stochastic/hill-climbing methods, and 3)

analytic solvers.

Starting in the 1960s, industry and academic labs took a partitioning-based approach to the chip

floorplanning problem, proposing [25, 61],[56], as well as resistive-network based methods [40, 204].

These methods are characterized by a divide-and-conquer approach; the netlist and the chip canvas

are recursively partitioned until sufficiently small sub-problems emerge, at which point the sub-netlists

are placed onto the sub-regions using optimal solvers. Such approaches are quite fast to execute and

their hierarchical nature allows them to scale to arbitrarily large netlists. However, by optimizing

each sub-problem in isolation, partitioning-based methods sacrifice quality of the global solution,

especially routing congestion. Furthermore, a poor early partition may result in an unsalvageable

end placement.

In the 1980s, analytic approaches emerged, but were quickly overtaken by stochastic / hill-climbing

algorithms, particularly simulated annealing [118, 180, 176]. Simulated annealing (SA) is named for

its analogy to metallurgy, in which metals are first heated and then gradually cooled to induce, or

anneal, energy-optimal crystalline surfaces. SA applies random perturbations to a given placement

(e.g., shifts, swaps, or mirroring of macros), and then measures their effect on the objective function

(e.g., half perimeter wirelength). If the perturbation is an improvement, it is applied; if not, it is still

applied with some probability, referred to as temperature. Temperature is initialized to a particular

value and is then gradually annealed to a lower value. Although SA generates high-quality solutions,

it is very slow and difficult to parallelize, thereby failing to scale to the increasingly large and complex

circuits of the 1990s and beyond.

The 1990s-2000s were characterized by multi-level partitioning methods [6, 173], as well as the

resurgence of analytic techniques [10], such as force-directed methods [138, 87], [158, 191, 211, 210]

and non-linear optimizers [97, 98, 96, 37]. The renewed success of quadratic methods was due in part

to algorithmic advances, but also to the large size of modern circuits (10-100 million nodes), which

justified approximating the placement problem as that of placing nodes with zero area. However,

despite the computational efficiency of quadratic methods, they are generally less reliable and produce

lower quality solutions than their non-linear counterparts.

Non-linear optimization approximates cost using smooth mathematical functions, such as log-sum-

exp [156] and weighted-average [86] models for wirelength, as well as Gaussian [36] and Helmholtz

models for density. These functions are then combined into a single objective function using a

Lagrange penalty or relaxation. Due to the higher complexity of these models, it is necessary to

take a hierarchical approach, placing clusters rather than individual nodes, an approximation which

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 27

degrades the quality of the placement.

The last decade has seen the rise of modern analytic techniques, including more advanced quadratic

methods [111, 114, 112, 24, 130], and more recently, electrostatics-based methods like ePlace [136],

RePlAce [48]. Modeling netlist placement as an electrostatic system, ePlace [136] proposed a new

formulation of the density penalty where each node (macro or standard cell) of the netlist is analogous

to a positively charged particle whose area corresponds to its electric charge. In this setting, nodes

repel each other with a force proportional to their charge (area), and the density function and gradient

correspond to the system’s potential energy. Variations of this electrostatics-based approach have

been proposed to address standard-cell placement [136] and mixed-size placement [135, 137]. RePlAce

[48] is a recent state-of-the-art mixed-size placement technique that further optimizes ePlace’s density

function by introducing a local density function, which tailors the penalty factor for each individual

bin size. DREAMPlace [131] further speeds up RePlAce by taking a deep learning based approach

to optimize the placement and leveraging GPU acceleration. However, the focus of DREAMPlace is

standard cell placement optimization, rather than macro placement, and reports comparable quality

to RePlAce. Therefore, we compare the performance of our method against RePlAce.

Modern commercial EDA is dominated by the duopoly consisting of Synopsys (Market Cap:

$72.33B) and Cadence (Market Cap: $79.87B). These companies sell software for millions of dollars

per license per seat, and their licensing agreements prohibit any public comparison against methods.

However, as discussed in Section 4.A.1, we performed a blind study in which we compared an early

version of AlphaChip against unnamed commercial offerings, and report high-level results. Although

neither company publishes or open-sources its methods, we can infer from their press releases and

webpages that they employ some manner of reinforcement learning in their chip design products

[195, 171, 144, 29], following publication of AlphaChip work in Nature.

There are numerous opportunities for machine learning to advance physical design [100, 101, 7].

Recent work [88] proposes training a model to predict the number of Design Rule Check (DRC)

violations for a given macro placement. DRCs are rules that ensure that the placed and routed

netlist adheres to tape-out requirements. To generate macro placements with fewer DRCs, [88] use

the predictions from this trained model as the evaluation function in simulated annealing. While this

work represents an interesting direction, it reports results on netlists with no more than 6 macros, far

fewer than any modern block, and does not consider the effect of place and route optimizations, which

can dramatically alter the number of DRCs. Furthermore, although adhering to the DRC criteria is

a necessary condition, the primary objective of macro placement is to optimize for wirelength, timing

(e.g., Worst Negative Slack (WNS) and Total Negative Slack (TNS)), power, and area, and this work

does not even consider these metrics.

To address this classic problem, we propose a new category of approach: an end-to-end learning-

based method. This new approach is most closely related to analytic solvers, particularly non-linear

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 28

ones, in that all of these methods optimize an objective function via gradient updates. However,

our approach differs from prior approaches in its ability to learn from past experience to generate

higher-quality placements on new chips. Unlike existing methods that optimize the placement for

each new chip from scratch, our work leverages knowledge gained from placing prior chips to become

better over time. In addition, our method enables direct optimization of the target metrics, such

as wirelength, density, and congestion, without having to define convex approximations of those

functions as is done in other approaches [48, 136]. Not only does our formulation make it easy to

incorporate new cost functions as they become available, but it also allows us to weight their relative

importance according to the needs of a given chip block (e.g., timing-critical or power-constrained).

Domain adaptation is the problem of training policies that can learn across multiple experiences

and transfer the acquired knowledge to perform better on new unseen examples. In the context of

chip floorplanning, domain adaptation involves training a policy across a set of chip netlists and then

applying that trained policy to a new unseen netlist. The use of deep learning for combinatorial

optimization is an area of growing interest, including approaches to the Traveling Salesman Problem

[22], [110], Neural Architecture Search [242], and Model Parallelism [151, 148]. More recently, there

has been work on domain adaptation for compiler optimization [3, 239, 165, 240] and the Maximum

Cut problem [19]. Our approach not only leverages past experience to reduce training time, but also

produces higher quality results when exposed to more instances of the problems. To our knowledge,

our method is the first deep RL approach used in production to solve a combinatorial optimization

problem, namely in the design of the last four generations of Google TPU.

3.4 Chip floorplanning as a learning problem

The underlying problem is a high-dimensional contextual bandits problem [122], but similar to prior

work, such as [207, 22, 151, 148], we have chosen to reformulate it as a sequential Markov Decision

Process (MDP), as this allows us to more easily incorporate the problem constraints as described

below. Our MDP consists of four key elements:

• states encode information about the partial placement, including the netlist (adjacency matrix),

node features (width, height, type), edge features (number of connections), current node (macro)

to be placed, and metadata of the netlist graph (routing allocations, total number of wires,

macros, and standard cell clusters).

• actions are all possible locations (grid cells of the chip canvas) onto which the current macro

can be placed without violating any hard constraints on density or blockages.

• state transitions define the probability distribution over next states, given a state and an

action.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 29

• rewards are 0 for all actions except the last action where the reward is a negative weighted

sum of proxy wirelength, congestion, and density as described below.

We train a policy (an RL agent) modeled by a neural network that through repeated episodes

(sequences of states, actions, and rewards), learns to take actions that will maximize cumulative

reward (see Figure 3.3). We use Proximal Policy Optimization (PPO) [179] to update the parameters

of the policy network, given the cumulative reward for each placement.

We can formally define the objective function as follows:

J(θ,G) =
1

K

∑
g∼G

Eg,p∼πθ
[Rp,g] (3.1)

Here J(θ,G) is the cost function. The agent is parameterized by θ. The dataset of netlists of

size K is denoted by G with each individual netlist in the dataset written as g. Rp,g is the episode

reward of a placement p drawn from the policy network applied to netlist g.

Rp,g = −Wirelength(p, g)− λ Congestion(p, g)− γDensity(p, g) (3.2)

In each iteration, the RL agent (policy network) sequentially places the macros. Once all macros

are placed, we use a force-directed method [158, 191, 211, 210] to approximately place clusters of

standard cells. The reward at the end of each iteration is calculated as a linear combination of the

approximate wirelength, congestion, and density (Equation 3.2). In our experiments, congestion

weight λ is set to 0.01, density weight γ is set to 0.01, and the max density threshold is set to 0.6.

3.5 Designing Domain-Adaptive Policies

As mentioned earlier, developing domain-adaptive policies for the chip floorplanning problem is

extremely challenging, as this problem is analogous to a game with varying pieces, boards, and win

conditions, and has an enormous state-action space. To address this challenge, we first focused on

learning rich representations of the state space. Our intuition was that a policy capable of the general

task of chip placement should also be able to encode the state associated with a new unseen chip into

a meaningful signal at inference time. We therefore trained a neural network architecture capable of

predicting reward on placements of new netlists, with the ultimate goal of using this architecture as

the encoder layer of our policy.

To train this supervised model, we needed a large dataset of chip placements and their corre-

sponding reward labels. We therefore created a dataset of 10,000 chip placements where the input is

the state associated with a given placement and the label is the reward for that placement.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 30

To accurately predict the reward labels and generalize to unseen data, we developed a novel

edge-based graph neural network architecture, which we call Edge-GNN (Edge-Based Graph Neural

Network). The role of this network is to embed the netlist, distilling information about the type and

connectivity of nodes into a low-dimensional vector representation which can be used in downstream

tasks. To show the impact of our edge-based neural architecture on generalization, please see Figure

3.1.

Figure 3.1: The zero-shot performance of our Edge-GNN vs. GCN [116]. The agent with an
Edge-GNN architecture is more robust to over-fitting and yields higher quality results, as measured
by average zero-shot performance, on the test blocks in Table 3.4.

In Edge-GNN, we create an initial representation of each node by concatenating its features,

including node type, width, height, x and y coordinates, and its connectivity to other nodes. We

then iteratively perform the following updates: 1) each edge updates its representation by applying a

fully connected network to a concatenation of the two nodes which it connects, and 2) each node

updates its representation by passing the mean of all in/outgoing edges into another fully connected

network. The node and edge updates are shown in Equation 3.3.

eij = fce(concat(vi|vj |we
ij)) (3.3)

vi = fcv(meanj∈N (vi)(eij))

Node embeddings are denoted by vi for 1 ≤ i ≤ N , where N is the total number of macros and

standard cell clusters. Vector representations of edges connecting nodes vi and vj are denoted as eij .

The outputs of the algorithm are the node and edge embeddings.

The supervised model is trained via regression to minimize the weighted sum of mean squared loss

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 31

(negative reward). This supervised task allowed us to find the features and architecture necessary to

generalize reward prediction across netlists. To incorporate Edge-GNN into our RL policy network,

we removed the prediction layer and then used it as the encoder of the policy network as shown in

Figure 3.2.

;øÔřŞŎø�)īíøôôĔĬČŒ

ZÔîŎĲ�
)īíøôôĔĬČŒ

[øřĦĔŒř�
ZøřÔôÔřÔ

ZÔîŎĲ�
;øÔřŞŎøŒ

[øřĦĔŒř�
<ŎÔŋđ

�ŞŎŎøĬř�
ZÔîŎĲ�Dô

)ôČø�
)īíøôôĔĬČŒ

}øôŞîø�
īøÔĬ

<ŎÔŋđ�
)īíøôôĔĬČ

�ŞŎŎøĬř�ZÔîŎĲ�
)īíøôôĔĬČ

[øřĦĔŒř�
ZøřÔôÔřÔ�
)īíøôôĔĬČ

<ŎÔŋđ�
�ĲĬű

DĬôøŷ
IF

IF

�\�\�� �\�\��
��\��\�

��\��\�

:EPYI2IX

4SPMG]2IX

��\��\�

IF

zĲĦĔîŸ�ÔĬô��ÔĦŞø�[øřŲĲŎģŒ

IF

'H�
FRQY

���\���\�

'H�
FRQY

'H�
FRQY

'H�
FRQY

'H�
FRQY

���\���\�

1EWOIH�
4SPMG]

���\���\�

ZÔŒģ

Figure 3.2: Policy and value network architecture. An embedding layer encodes information about
the netlist adjacency, node features, and the current macro to be placed. The policy and value
networks then output a probability distribution over available grid cells and an estimate of the
expected reward for the current placement, respectively.

To place a new netlist at inference time, we load the pre-trained weights of the policy network

and apply it to the new netlist. We refer to placements generated by a pre-trained policy with no

finetuning as zero-shot placements. Such a placement can be generated in subseconds, because it

requires only a single forward pass through the pre-trained policy for each macro. We can further

optimize placement quality by finetuning the policy network. Doing so gives us the flexibility to

either use the pre-trained weights (which have learned a rich representation of the input state) or

further finetune these weights to optimize for the properties of a particular chip netlist.

Figure 3.2 shows an overview of the proposed policy network (modeled by πθ in Equation 3.1) and

value network architectures. The input is the chip netlist (represented as an adjacency matrix and list

of node features), id of the current node to be placed, metadata of the netlist and process technology

node (e.g., 7nm). The netlist is fed into our edge-GNN architecture to generate embeddings of

the partially placed netlist and of the current node. We use a feedforward network to embed the

metadata. These embedding vectors are then concatenated to form the state embedding, which is

passed to another feedforward neural network to generate a final representation of the state. This

state is then fed into the policy network (composed of 5 deconvolutions1, batch normalization [90],

and ReLU activation layers [155]) to generate a probability distribution over actions and into a value

network (composed of a feedforward network) to predict the value of the input state.
1The deconvolution layers have kernel size of 3x3, stride of 2, and 16, 8, 4, 2, and 1 filter channels, respectively.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 32

3.6 Methods

In the following, we provide details of the proposed methodologies.

3.6.1 Problem Statement

In this chapter, we target the chip floorplanning problem, in which the objective is to map the nodes

of a netlist (a hypergraph encoding chip components and their connectivity via wires) onto a chip

canvas (a bounded 2D space), such that final power, performance, and area (PPA) is optimized. In

this section, we describe an overview of how we formulate this task as an RL problem, followed by a

detailed description of the reward function, action and state representations, policy architecture, and

policy updates.

3.6.2 Overview of Our Approach

We take a deep reinforcement learning approach to the chip floorplanning problem, where an RL agent

(policy network) sequentially places the macros. Once all macros are placed, we use a force-directed

method [158, 191, 211, 210] to place clusters of standard cells, as shown in Figure 3.3.

agent agent agent agent

Force-Directed Method Places
Standard Cell

s0 s1 s2 sT

a0 a1 aT-1
r1=0 r2=0

....

rT= −Wirelength
 −λ Congestion

 −γ Density
r0=0

RL Agent Places Macros One at a TimeChip
Canvas

Figure 3.3: Overview of our method and training regimen. In each training iteration, the RL agent
places macros one at a time (actions, states, and rewards are denoted by ai, si, and ri). Once all
macros are placed, the standard cells are placed using a force-directed method. The intermediate
rewards are zero. The reward at the end of each iteration is calculated as a linear combination of
the approximate wirelength, congestion, and density, and is provided as feedback to the agent to
optimize its parameters for the next iteration.

In our setting, at the initial state, s0, we have an empty chip canvas and an unplaced netlist. At

each step, one macro is placed, and the final state sT corresponds to a completely placed netlist.

Thus, T is equal to the total number of macros in the netlist. At each time step t, the agent begins

in state (st), takes an action (at), arrives at a new state (st+1), and receives a reward (rt) from the

environment (0 for t < T and negative proxy cost for t = T).

We define st to be a concatenation of features representing the state at time t, including a graph

embedding of the netlist (including both placed and unplaced nodes), a node embedding of the

current macro to place, metadata about the netlist, and a mask representing the feasibility of placing

the current node onto each cell of the grid.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 33

The action space is all valid placements of the tth macro, which is a function of the density mask.

Action at is the cell placement of the tth macro predicted by the RL policy network.

st+1 is the next state, which includes an updated representation containing information about the

newly placed macro, an updated density mask, and an embedding for the next node to be placed.

In our formulation, rt is 0 for every time step except for the final rT , where it is a weighted sum

of approximate wirelength, congestion, and density.

Through repeated episodes (sequences of states, actions, and rewards), the policy network learns

to take actions that will maximize cumulative reward. We use Proximal Policy Optimization (PPO)

[179] to update the parameters of the policy network, given the cumulative reward for each placement.

In this section, we define the reward r, state s, actions a, policy network architecture πθ(a|s)

parameterized by θ, and finally the optimization method we use to train those parameters.

3.6.3 Detailed Methodology

Our goal in this chapter is to minimize power, performance and area, subject to constraints on

routing congestion and density. Our true reward is the output of a commercial EDA tool, including

wirelength, routing congestion, density, power, timing, and area. However, RL policies require 10,000s

of examples to learn effectively, so it is critical that the reward function be fast to evaluate, ideally

running in a few milliseconds. In order to be effective, these approximate reward functions must

also be positively correlated with the true reward. Therefore, a component of our cost is wirelength,

because it is not only much cheaper to evaluate, but also correlates with power and performance

(timing).

To combine multiple objectives into a single reward function that can be optimized, we take the

weighted sum of proxy wirelength, congestion, and density, where the weights can be used to explore

the trade-off between these metrics.

While we treat congestion as a soft constraint (i.e., lower congestion improves the reward function),

we treat density as a hard constraint, masking out actions (grid cells to place nodes onto) whose

density exceeds the target density.

To keep the runtime per iteration small, we apply several approximations to the calculation of

the reward function:

1. We group millions of standard cells into a few thousand clusters using hMETIS [107], a

partitioning technique based on the minimum cut objective. Once all macros are placed, we

use a force-directed method to place the standard cell clusters. Doing so enables us to generate

an approximate but fast standard cell placement that facilitates policy network optimization.

2. We discretize the grid to a few thousand grid cells and place the center of macros and standard

cell clusters onto the center of the grid cells.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 34

3. When calculating wirelength, we make the simplifying assumption that all wires leaving a

standard cell cluster originate at the center of the cluster.

4. To calculate routing congestion cost, we only consider the average congestion of the top 10%

most congested grid cells.

A chip netlist typically consists of hundreds of macros and millions of standard cells. Due to their

negligible area, standard cells can be approximated as points with zero area, allowing for analytic

solvers to optimally place them with a small margin of error. Macros, on the other hand, have much

larger area and cannot be optimally placed with these same analytic techniques. We chose to target

macro placement as it is a much more challenging problem that previously required human experts

to iterate for months to generate a high-quality placement.

3.6.4 Synthesis of the input netlist

We use a commercial tool to synthesize the netlist from RTL. Synthesis is physical-aware in the sense

that it has access to the floorplan size and the locations of the Input-Output (I/O) pins, which were

informed by inter and intra-block level information.

3.6.5 Selection of grid rows and columns

Given the dimensions of the chip canvas, there are many choices to discretize the 2D canvas into grid

cells. This decision impacts the difficulty of optimization and the quality of the final placement. We

limit the maximum number of rows and columns to 128. We treat choosing the optimal number of

rows and columns as a bin-packing problem and rank different combinations of rows and columns by

the amount of wasted space they incur. We use an average of 30 rows and columns in our experiments.

3.6.6 Selection of macro order

To select the order in which the macros are placed, we sort macros by descending size and break

ties using a topological sort. By placing larger macros first, we reduce the chance of there being

no feasible placement for a later macro. The topological sort can help the policy network learn to

place connected nodes close to one another. Another potential approach would be to learn to jointly

optimize the ordering of macros and their placement, making the choice of which node to place

next part of the action space. However, this enlarged action space would significantly increase the

complexity of the problem, and we found that this heuristic worked in practice.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 35

3.6.7 Clustering of Standard Cells

In order to quickly place standard cells to provide signal to our RL policy, we first cluster millions

of standard cells into a few thousand clusters. There has been a large body of work on clustering

for chip netlists [8, 31, 34, 9, 64, 63]. As has been suggested in the literature [99], such clustering

helps not only with reducing problem size, but also helps “prevent mistakes” (e.g., prevents timing

paths from being split apart). We also provide the clustered netlist to each of the baseline methods

with which we compare. To perform this clustering, we employed a standard open-source library,

hMETIS [107], which is based on multilevel hypergraph partitioning schemes with two important

phases: 1) Coarsening phase, and 2) uncoarsening and refinement phase. After clustering with

hMETIS, we rebalance cluster sizes using heuristics based on an initial placement from physical

synthesis, the previous step in the chip design process2.

3.6.8 Generation of Adjacency Matrix

In order to convert the netlist hypergraph into an adjacency matrix that can be consumed by the

Edge-GNN encoder, we apply the transformation described below. Technically, the input netlist is

a hypergraph, as its edges (wires) may connect more than two chip components. However, for the

purposes of the placement problem, this distinction is uninteresting and we reduce the hypergraph

to a graph in which each edge connects just two components (either standard cells or macros),

facilitating the use of graph neural network based methods.

For each pair of nodes in the clustered netlist (either macros or clusters of standard cells), we

generate an edge in the adjacency matrix with the following weight. If the register distance between

the two nodes is greater than 4, then no edge is created. Otherwise, we apply an exponentially

decaying weight as the distance grows, starting with 1 if the distance is 0 and halved with each

additional unit of distance.

3.6.9 Placement of Standard Cells

To place standard cell clusters, we use an approach similar to classic force-directed methods[183].

We represent the netlist as a system of springs that apply force to each node, according to the

weight× distance formula, causing tightly connected nodes to be attracted to one another. We also

introduce a repulsive force between overlapping nodes to reduce placement density. After applying all

forces, we move nodes in the direction of their force vector. To reduce oscillations, we set a maximum

distance for each move.
2Note that this cluster rebalancing step has no apparent impact on performance (see ablation study in Table 4.A.1),

and we recommend instead instructing hMETIS to produce balanced clusters from the outset by setting UBFactor to 1.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 36

3.6.10 Postprocessing

To prepare the placements for evaluation by a commercial EDA tool, we perform a simple legalization

step to snap macros to the nearest power grid. We then fix the macro placements and use an EDA

tool to place the standard cells and evaluate the placement.

3.6.11 Reward

Wirelength

Following the literature [183, 30, 104, 103], we employ half perimeter wirelength (HPWL), the most

commonly used approximation for wirelength. HPWL is defined as the half perimeter of the bounding

boxes for all nodes in the netlist. The HPWL for a given net (edge) i is shown in the equation below:

HPWL(i) = (MAXb∈i{xb} −MINb∈i{xb}+ 1) + (MAXb∈i{yb} −MINb∈i{yb}+ 1) (3.4)

Here xb and yb show the x and y coordinates of the end points of net i. The overall HPWL cost

is then calculated by taking the normalized sum of all half-perimeter bounding boxes, as shown in

Equation 3.5. Here q(i) is a normalization factor which improves the accuracy of the estimate by

increasing the wirelength cost as the number of nodes increases, where Nnetlist is the number of nets.

We calculate the total HPWL as follows:

HPWL(netlist) =

Nnetlist∑
i=1

q(i)×HPWL(i) (3.5)

Wirelength also has the advantage of correlating with other important metrics, such as power

and timing. Although our method does not optimize directly for these other metrics, it generates

placements that meet design criteria with respect to power and timing (as shown in Table 3.4).

Routing congestion

We also followed convention in calculating proxy congestion [114], using a simple deterministic routing

based on the locations of the driver and loads on the net. The routed net occupies a certain portion

of available routing resources (determined by the underlying semiconductor fabrication technology)

for each grid cell through which it passes. We keep track of vertical and horizontal allocations in

each grid cell separately. To smooth the congestion estimate, we run 5× 1 convolutional filters in

both the vertical and horizontal direction. After all nets are routed, we take the average of the top

10% congestion values, drawing inspiration from the ABA10 metric in MAPLE [114]. The congestion

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 37

cost in Equation 3.2 is the top 10% average congestion calculated by this process.

Density

We treat density as a hard constraint, disallowing the policy network from placing macros in locations

which would cause density to exceed the target (maxdensity) or which would result in infeasible macro

overlap. This approach has two benefits: (1) it reduces the number of invalid placements generated

by the policy network, and (2) it reduces the search space of the optimization problem, making it

more computationally tractable.

A feasible placement of a standard cell cluster must meet the following criterion: the density of

placed items in each grid cell must not exceed a given target density threshold (maxdensity). We set

this threshold to be 0.6 in our experiments to avoid over-utilisation, which would render placements

unusable. To meet this constraint, during each RL step, we calculate the current density mask, a

binary m× n matrix representing grid cells onto which we can place the center of the current node

without violating the density threshold. Before selecting an action, we first take the dot product of

the mask and the policy network output and then sample from the resulting probability distribution

over feasible locations. This approach prevents the policy network from generating placements with

overlapping macros or dense standard cell areas.

We also enable blockage-aware placements (such as clock straps) by setting the density function

of the blocked areas to 1.

3.6.12 Action Representation

For policy optimization purposes, we convert the canvas into an m×n grid. Thus, for any given state,

the action space (or the output of the policy network) is the probability distribution of placements of

the current macro over the m× n grid. The action is then sampled from this probability distribution.

3.6.13 State Representation

Our state contains information about the adjacency matrix corresponding to the clustered netlist, its

node features (width, height, type), edge features (number of connections), current node (macro) to

be placed, and metadata of the netlist and the underlying technology (e.g., routing allocations, total

number of wires, macros, and standard cell clusters). Next, we discuss how we process these features

to learn effective representations for the chip floorplanning problem.

3.6.14 Enabling Transfer Learning

In order to discover domain-adaptive architectures, we propose grounding the policy architecture

search in the supervised task of predicting the value of reward functions. We take this approach

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 38

because exploration would be far costlier in an RL setting, and the underlying complexity of training

a domain-adaptive policy network would be prohibitively high, as it involves an immense state-space

encompassing all possible placements of all possible chips. Furthermore, different netlists and grid

sizes can have very different properties, including differing numbers of nodes, macro sizes, netlist

topologies, and canvas widths and heights.

The intuition behind this approach is that a policy network architecture capable of transferring

placement optimization across chips should also be able to encode the state associated with a new

unseen chip into a meaningful signal at inference time. We therefore propose training a neural

network architecture capable of predicting reward on new netlists, with the ultimate goal of using

this architecture as the encoder layer of our policy network.

To train this supervised model, we needed a large dataset of chip floorplans and their corresponding

reward labels. We therefore created a dataset of 10,000 chip floorplans where the input is the state

associated with a given floorplan and the label is the reward for that floorplan (wirelength and

congestion). We built this dataset by generating 2,000 floorplans for each of 5 TPU blocks. To collect

diverse floorplans, we trained a vanilla policy network with various congestion weights (ranging from

0 to 1) and random seeds, and collected snapshots of floorplans throughout the course of policy

training. An untrained policy network starts off with random weights and the generated floorplans

are of low quality, but as the policy network trains, the quality of generated floorplans improves,

allowing us to gather a diverse dataset with floorplans of varying quality.

To train a supervised model capable of accurately predicting wirelength and congestion labels and

generalizing to unseen data, we developed a novel graph neural network architecture (Edge-GNN) to

embeds information about the netlist. The role of the Edge-GNN is to distill information about the

type and connectivity of a node into a low-dimensional vector representation which can be used in

downstream tasks. Some examples of such downstream tasks are node classification [157], device

placement [239], link prediction [237], and Design Rule Violations (DRCs) prediction [224].

We create a vector representation of each node by first concatenating its features, including

node type, width, height, and x and y coordinates. We also pass node adjacency information as

input to our algorithm. We then repeatedly perform the following updates: 1) each edge updates its

representation by applying a fully connected network to an aggregated representation of intermediate

node embeddings, and 2) each node updates its representation by taking the mean of adjacent edge

embeddings. The node and edge updates are shown in Equation 3.3.

Node embeddings are denoted by vis for 1 ≤ i ≤ N , where N is the total number of macros

and standard cell clusters. The vector representations of the edge connecting nodes vi and vj is

represented as eij . Both edge (eij) and node (vi) embedding are 32-dimensional. vi is initialized

by passing the node features (type, width, height, x, y) through a feedforward network. fce is a

65× 32 feedforward network and we
ijs are 1× 1 weights corresponding to the number of nets between

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 39

adjacent nodes. N (vi) shows the neighbors of vi. The outputs of the algorithm are the node and

edge embeddings.

Our supervised model consists of: (1) The graph neural network (Edge-GNN) described above

which embeds information about node type and the netlist adjacency matrix. (2) A fully connected

feedforward network that embeds netlist metadata, including information about the underlying

semiconductor technology (horizontal and vertical routing capacity), the total number of nets (edges),

macros, and standard cell clusters, canvas size, and number of rows and columns in the grid. (3)

A fully connected feedforward network (the prediction layer) whose input is a concatenation of the

netlist adjacency matrix and metadata embeddings and whose output is the reward prediction. The

netlist embedding is created by applying a reduce mean function on the edge embeddings. The

supervised model is trained via regression to minimize the weighted sum of the mean squared loss of

wirelength and congestion.

This supervised task allowed us to find the features and architecture necessary to generalize

reward prediction across netlists. To incorporate this architecture into our policy network, we simply

removed the prediction layer and then used the remaining network as the encoder of the policy

network as shown in Figure 3.2.

To handle different grid sizes corresponding to different choices of rows and columns, we set the

grid size to 128× 128, and mask the unused L-shaped section for grid sizes smaller than 128 rows

and columns.

To place a new test netlist at inference time, we load the pre-trained weights of the policy network

and apply it to the new netlist. We refer to placements generated by a pre-trained policy network

with no finetuning as zero-shot placements. Such a placement can be generated in less than a second,

because it only requires a single inference step of the pre-trained policy network for each macro.

We can further optimize placement quality by finetuning the policy network, meaning that we have

the option to either use the pre-trained weights (which have learned a rich representation of the

input state) directly at inference or further finetune these weights to optimize for the properties of a

particular chip netlist.

3.6.15 Policy Network Architecture

Figure 3.2 depicts an overview of the policy network (modeled by πθ in Equation 3.1) and the value

network architecture that we developed for chip floorplanning. The input to these networks is the

adjacency matrix and node features corresponding to the chip netlist, the id of the current node to

be placed, and the metadata of the netlist and the semiconductor technology. The netlist is passed

through our graph neural network architecture (Edge-GNN) as described earlier. Edge-GNN generates

embeddings of (1) the partially placed netlist and (2) the current node. We use a simple feedforward

network to embed (3) the metadata. These three embedding vectors are then concatenated to form

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 40

the state embedding, which is passed to a feedforward neural network. The output of the feedforward

network is then fed into the policy network (composed of 5 deconvolutions 3, Batch Normalization,

and ReLU activation layers) to generate a probability distribution over actions and passed to a value

network (composed of a feedforward network) to predict the value of the input state.

3.6.16 Policy Network Update: Training Parameters

In Equation 3.1, the objective is to train a policy network πθ that maximizes the expected value (E)

of the reward (Rp,g) over the policy network’s placement distribution. To optimize the parameters of

the policy network, we use Proximal Policy Optimization (PPO) [179] with a clipped objective as

shown below:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]

where Êt represents the expected value at timestep t, rt is the ratio of the new policy and the old
policy, and Ât is the estimated advantage at timestep t.

See Appendix 3.A for an early exploration of other RL optimization algorithms for this task.

3.7 Empirical Evaluation

In this section, we evaluate the ability of our method to generalize, explore the impact of using

pre-trained policies, and compare our method to state-of-the-art baselines. We also inspect the visual

appearance of generated placements and provide insights into the behavior of our policy.

In terms of resource usage, for pre-training, we used the same number of workers as blocks in the

training dataset (e.g., for the largest training set with 20 blocks, we pre-trained with 20 workers)

and the pre-training runtime was 48 hours. To generate the fine-tuning results in Table 3.4, our

method ran on 16 workers for up to 6 hours, but the runtime was often significantly lower due to

early stopping. For both pre-training and finetuning, a worker consists of an Nvidia Volta GPU and

10 CPUs each with 2GB of RAM. For zero-shot mode (applying a pre-trained policy to a new netlist

with no fine-tuning), we can generate a placement in less than a second on a single GPU.

3.7.1 Experimental Setup

In order to perform a fair comparison, we ensured that our method and all baseline methods had

access to the same inputs and the same evaluation settings. Figure 3.4 shows the flow that we used

to conduct the evaluations.
3The deconvolutions layers have a 3x3 kernel size with stride 2 and 16, 8, 4, 2, and 1 filter channels respectively.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 41

Figure 3.4: Evaluation workflow for producing the results in Table 3.4. We allow each method access
to the same clustered netlist. We use the same hyperparameters (to the extent possible) in all the
methods. Once the placement is completed by each method (this includes the legalization step for
RePlAce), we snap the macros to the power grids, freeze the macro locations, and use a commercial
EDA tool to place the standard cells and report final results.

Once each method finishes placing the netlist, the macro locations are frozen and snapped to the

power grid. Next, the EDA tool performs standard cell placement. The settings for the EDA tool

are drawn directly from our production flow and thus we cannot share all details. The final metrics

in Table 3.4, are reported after PlaceOpt, meaning that global routing has been performed by the

EDA tool.

Clustering standard cells allowed our method to more effectively optimize the placement of macros.

We therefore gave RePlAce access to clustered standard cells and found that its performance also

improved, so we reported results of RePlAce on the netlist with clustered standard cells. Although

RePlAce has a default density threshold of 1.0, we found that our setting of 0.6 resulted in better

performance, so that is what we used to report RePlAce performance. In all other cases, we used the

default settings and cost functions for RePlAce.

For reproducibility, we provide all architectural details and hyperparameter settings for our RL

algorithm in Table 3.1, as well as for the FD method used to place standard cells in Table 3.2.

To cluster the standard cells for each chip block, we used hMETIS [107], which partitions millions

of standard cells into thousands of clusters. The hyperparameters for hMETIS are listed in Table

3.3. For all other hMETIS hyperparameters, we simply use the default settings. Please refer to the

hMETIS manual [1] for the value of these defaults and for more detailed information about each

hyperparameter. Note that we use a licensed version of hMETIS, but to our knowledge, the same

features are available in the open-source version.

To avoid overfitting, we employ an early stopping mechanism that halts RL training once the

policy converges. More precisely, training stops when it has been two hours since the evaluation

return improved by at least 0.5% over the best return so far.

3.7.2 Open-Source Benchmark: Ariane RISC-V

For the Ariane benchmark, we used the following open-source design [234] (https://github.com/

pulp-platform/ariane), and mapped all logical memories to physical memories of size 256x16,

https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/ariane

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 42

Hyperparameter Value
Learning rate 1.00E-04
Optimizer Adam
Num Epochs 4
Num GPUs 16
Num CPUs per GPU worker 10
Batch size per GPU 64
Effective batch size (Num GPUS × Batch size per GPU) 1024
Clip Grad 1
Num actors per GPU 32
Weight initializer Xavier
Episodes per rollout 2
PPO loss:
Clipping parameter (ϵ) 0.2
Value Coeff 0.5
Entropy Coeff 0.01
Discount (γ) 1

Table 3.1: Hyperparameters used for finetuning the RL agent. The pre-training hyperparameters are
the same, except for the number of GPUs and the effective batch size. For pre-training, we use one
GPU per block in the training dataset (our largest dataset has 20 blocks).

Hyperparameter Value Description

Number of schedules 3 Number of schedules to run the force-directed
algorithm

Steps [100, 100, 100] Number of steps of the force-directed algorithm
during each schedule

Move Distance Factors [1.0, 1.0, 1.0]
Maximum distance relative to canvas size that a
node can move in a single step of the
force-directed algorithm

Attract Factors [100, 1e-3, 1e-5] The spring constants between two connected
nodes in the force-directed algorithm

Repel Factors [0, 1e6, 1e7] The repellent factor for spreading the nodes to
avoid congestion in the force-directed algorithm

I/O Factors [1.0,1.0, 1.0]
The I/O factor for multiplying the forces from the
I/O ports to the nodes in the force-directed
algorithm

Table 3.2: Hyperparameters used for the force-directed algorithm that places standard cell clusters.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 43

Name Val Definition

UBfactor 5 The extent to which unbalanced partitions
are permitted.

Nruns 10
The number of bisections performed by
hMETIS, the best of which is returned
as the final solution.

CType 5

Edge Coarsening (EC) algorithm
(heavy-edge maximal matching).
In this mode, pairs of vertices are grouped
together if they are connected by multiple
hyperedges.

RType 3

Early-Exit Fiduccia-Mattheyses refinement
scheme (FM-EE) algorithm. In this mode,
the FM iteration is aborted if the quality of
the solution does not improve after a
relatively small number of vertex moves.

Vcycle 3

Performs Vcycle refinement on each
intermediate solution, meaning that each
one of the Nruns bisections is also refined
using Vcycles.

Table 3.3: Hyperparameters used to generate standard cell clusters with hMETIS [107].

resulting in 133 macros. In Figure 3.9, we compare a placement generated by our method trained

from scratch and one that was generated in zero-shot mode by a pre-trained policy.

3.7.3 Google TPU Results: Comparing with Baseline Methods

In this section, we compare our method with the state-of-the-art RePlAce [48] and to the production

design of the previous generation of TPU (TPU-v4), which was generated by a team of human

physical designers. The results are shown in Table 3.4.

To perform a fair comparison, we ensured that all methods had the same experimental setup,

including the same inputs and the same EDA tool settings. Note that we ran all of the evaluations of

RePlAce and our method ourselves, but we relied on the TPU physical design team to share metrics

for their best performing manual placements, and they may have evaluated with a slightly different

EDA version. For more details, please see Figure 3.4.

For our method, we use a policy pre-trained on the largest dataset (20 TPU blocks) and then

finetune it on 5 target unseen blocks (denoted by Blocks 1 to 5) for no more than six hours. Due to

confidentiality, we cannot disclose the details of these blocks, but each contains up to 131 macros

and millions of standard cells.

When evaluating the quality of a chip floorplan, there are several metrics that are important

and which trade off against each other. There is no single metric that can be used to capture the

overall quality of a placement, so we report all key metrics, including total wirelength, timing, routing

congestion (horizontal and vertical), area, and power. Timing is reported via TNS (total negative

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 44

Name Method Timing Area Power Wirelength Congestion
WNS (ps) TNS (ns) Total (µm2) Total (W) (m) H (%) V (%)

Block 1 RePlAce 374 233.7 1693139 3.70 52.14 1.82 0.06
Manual 136 47.6 1680790 3.74 51.12 0.13 0.03
Ours 84 23.3 1681767 3.59 51.29 0.34 0.03

Block 2 RePlAce 97 6.6 785655 3.52 61.07 1.58 0.06
Manual 75 98.1 830470 3.56 62.92 0.23 0.04
Ours 59 170 694757 3.13 59.11 0.45 0.03

Block 3 RePlAce 193 3.9 867390 1.36 18.84 0.19 0.05
Manual 18 0.2 869779 1.42 20.74 0.22 0.07
Ours 11 2.2 868101 1.38 20.80 0.04 0.04

Block 4 RePlAce 58 11.2 944211 2.21 27.37 0.03 0.03
Manual 58 17.9 947766 2.17 29.16 0.00 0.01
Ours 52 0.7 942867 2.21 28.50 0.03 0.02

Block 5 RePlAce 156 254.6 1477283 3.24 31.83 0.04 0.03
Manual 107 97.2 1480881 3.23 37.99 0.00 0.01
Ours 68 141.0 1472302 3.28 36.59 0.01 0.03

Table 3.4: Comparisons against baselines. Here, we compare our method with the state-of-the-
art (RePlAce [48]) method and manual placements using an industry standard electronic design
automation (EDA) tool. For all metrics in this table, lower is better.

slack) and WNS (worst negative slack). Negative slack is a measure of the extent to which the

latency of the signal exceeds the expected latency. Timing and congestion are constraints, whereas

wirelength, power, and area are metrics to optimize.

To compare with RePlAce which has a different objective function, we treat the output of a

commercial EDA tool as ground truth. To perform this comparison, we fix the macro placements

generated by our method and by RePlAce and allow a commercial EDA tool to further optimize the

standard cell placements with settings drawn from our production workflow. We used the version of

RePLAce provided in [2], based on the commit on January 9th, 2020. Except for density threshold

(where RePlAce benefited from a lower threshold than its default), we used the default settings and

did not use the timing-driven capability of RePlAce.

As shown in Table 3.4, our method outperforms RePlAce in generating placements that meet

design criteria. While RePlAce is faster and runs in under an hour on a single Intel CPU 3.7 GHz,

the placements are generally of lower quality. Given constraints imposed by the underlying process

technology node, placements will not be able to meet timing constraints in the later stages of the

design flow if WNS is significantly above 150 ps or if the horizontal or vertical congestion is over 1%,

rendering many RePlAce placements (Blocks 1, 2, 3) unusable. These results demonstrate that our

approach is effective in generating high-quality placements that meet design criteria.

Table 3.4 also shows the results for the manual baseline, which is the actual production design of

the previous TPU chip. This baseline was generated by the TPU’s physical design team, and involved

many iterations of placement optimization, guided by feedback from a commercial EDA tool over a

period of several months. Both our method and human experts consistently generate viable placements

that meet timing and congestion requirements. However, our method also outperforms or matches

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 45

manual placements in area, power, and wirelength. Furthermore, our end-to-end learning-based

approach takes far less time to meet design criteria.

3.7.4 Domain Adaptation Results

Figure 3.5 compares the quality of placements generated using pre-trained policies to those generated

by training the policy from scratch. The training dataset is composed of blocks of TPU and of the

open source Ariane RISC-V CPU [234]. In each experiment, we pre-train the policy on all blocks

except for the target block on which we evaluate. We show results for zero-shot mode, as well as

after finetuning the pre-trained policy on a particular design for 2 and 12 hours.

Figure 3.5: Training from scratch vs. fine-tuning for varying amounts of time. For each block, we
show zero-shot results, results after finetuning for 2 and 12 hours, and results for policies trained
from scratch. As can be seen in the table, the pre-trained policy network consistently outperforms
the policy network trained from scratch, demonstrating the effectiveness of learning from training
data offline.

The policy trained from scratch takes much longer to converge, and even after 24 hours, the

results (as evaluated by the reward function) are worse than what the finetuned policy achieves in 12

hours. This demonstrates that exposure to many different designs during pre-training enables faster

generation of higher quality placements for new unseen blocks.

Figure 3.6 shows the convergence plots for training from scratch vs. training from a pre-trained

policy network for Ariane RISC-V CPU [234]. Not only does the pre-trained policy start with a lower

placement cost, but it also converges more than 30 hours faster than the policy trained from scratch.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 46

Figure 3.6: Convergence plots on Ariane RISC-V CPU. Here, we plot the placement cost of training a
policy network from scratch vs. finetuning a pre-trained policy network for a block of Ariane RISC-V
CPU.

3.7.5 Learning from Larger Datasets

In the following, we explore the impact of the training data on the learning ability of our policy.

TPU chip blocks are quite diverse, and we carefully selected blocks across a representative range of

functionalities (e.g., on-chip and inter-chip network blocks, computation cores, memory controllers,

data transport buffers and logic, and various interface controllers), saturations (ratio of total area of

macros to that of the canvas, < 30%, 30− 60%, > 60%), and macro counts (up to 107). The small

training set contains 2 blocks, the medium set contains 5 blocks, and the large one contains 20 blocks.

As we pre-train on more chip blocks, we are able to more quickly generate higher quality placements

for new unseen chip blocks. Figure 3.7 shows the impact of a larger training set on performance. As

we increase the training set from 2 blocks to 5 blocks and finally to 20 blocks, the policy network

generates better placements both at zero-shot and after being finetuned for the same number of hours.

This suggests that as we expose the policy network to a greater variety of distinct chip designs, the

policy network becomes less prone to overfitting and better at generalizing to new unseen designs.

3.8 Discussion

3.8.1 Use in a Production Setting

Our method was used in the product tapeout of the last four generations of TPU. We fully automated

the placement process through PlaceOpt, at which point the design was sent to a third party for post-

placement optimization, including detailed routing, clock tree synthesis, and post-clock optimization.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 47

Figure 3.7: Effect of pre-training dataset size. We pre-train the policy network on three different
training datasets (the small dataset is a subset of the medium one, and the medium dataset is a
subset of the large one). We then finetune this pre-trained policy network on the test block and
report cost at various training durations. As the dataset size increases, both the time to convergence
and the quality of generated placements increase.

This is a standard practice for many hardware teams, and physical designers spend months iterating

with commercial EDA tools to produce designs that meet the strict requirements to move to this

next stage.

In the production flow, we use the same reinforcement learning method described in this chapter

and the same EDA workflow to place standard cells. Although the RL placements were already

comparable to manual designs, we performed an additional fine-tuning step with simulated annealing

to further boost performance, which helped to improve macro orientation, as we do not currently

perform macro mirroring in RL. Adding this fine-tuning step improved wirelength by an average of

1.07% (stddev=.04%), slightly reduced timing (average 1.18ns reduction in TNS (stddev=2.4ns)),

and negligibly affected congestion (less than 0.02% variation in vertical or horizontal congestion in

all cases). The resulting end-to-end runtime was 8 hours on average. Since that production launch,

we have replaced SA in our production workflow with a greedy postprocessing step that tunes the

macro orientation in a few minutes, significantly reducing our end-to-end runtime without degrading

quality.

3.8.2 Impact of Cost Trade-offs

In Table 3.5, we perform an ablation study to examine the impact of congestion weight on the

quality of post-PlaceOpt results (final quality of result from the commercial EDA tool). As expected,

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 48

increasing congestion weight improves both horizontal and vertical congestion up to a point, but

results in wirelength degradation, due to the inherent trade-off between these two metrics. A

congestion weight of 0.1 represents a sweet spot in this case, as routing congestion is already low, but

wirelength has not yet overly degraded, which together contribute to lower TNS and WNS as well.

Congestion
Weight

WNS
(ps)

TNS
(ns)

Wirelength
(m)

Congestion
Horizontal (%)

Congestion
Vertical (%)

0.01 163 22.85 48190736 0.30 0.03
0.1 154 11.80 50841227 0.06 0.03
1.0 118 34.73 53153141 0.07 0.02

Table 3.5: Effect of different cost trade-offs on the post-PlaceOpt performance of Block 1 in Table 3.4.
As expected, increasing congestion weight improves both horizontal and vertical congestion up to a
point, but results in wirelength degradation, due to the inherent trade-off between these two metrics.

3.8.3 Robustness to Noise

To demonstrate the sensitivity of our method to noise, we performed 8 runs of fine-tuning on Ariane

RISC-V block, each time with a different random seed and reported the results (in proxy wirelength,

congestion, and density) in Table 3.6. Our evaluations demonstrate that the choice of random seed

had negligible impact on all the metrics, including proxy wirelength, congestion, and density, with a

standard deviation of .0022 in the overall cost across all runs.

Seed Proxy Wirelength Proxy Congestion Proxy Density
111 0.1187 0.9856 0.5780
222 0.1237 1.0251 0.5691
333 0.1207 0.9456 0.5714
444 0.1189 0.9559 0.5681
555 0.1174 0.9168 0.5561
666 0.1187 0.9676 0.5815
777 0.1200 0.9693 0.5772
888 0.1199 1.0087 0.5819

mean 0.1198 0.9718 0.5729
std 0.0019 0.0346 0.0086

Table 3.6: Sensitivity of results to the choice of random seed as measured on a Ariane RISC-V block.
We observed little sensitivity to random seed in any of the three cost functions, though variations
in wirelength and density are lower than congestion. The overall cost for these eight runs had a
standard deviation of 0.0022.

3.8.4 Generalization vs. Training Data

As we train on more chip blocks, we are able to speed up the fine-tuning process on new blocks and

generate higher quality results faster. As discussed earlier, as we increase the training set from 2

blocks (small dataset) to 5 blocks (medium dataset) and finally to 20 blocks (large dataset), the

policy network generates better placements both at zero-shot and after being finetuned for the same

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 49

number of hours. Figure 3.8 shows the placement cost on one test block (a TPU block not included in

training), as the policy network is being pre-trained. We can see that for the small training dataset,

the policy network quickly overfits to the training data and performance on the test data degrades,

whereas it takes longer for the policy network to overfit on the largest dataset and the policy network

pre-trained on this larger dataset yields better results on the test data. This plot suggests that as we

expose the policy network to a greater variety of different training blocks, it will take longer for the

policy network to pre-train, but the policy network will become less prone to overfitting and better

at finding optimized placements for new unseen blocks.

Figure 3.8: Generalization performance as a function of pre-training dataset size. We pre-train the
policy network on three different training datasets (the small dataset with 2 blocks is a subset of
the medium one with 5 blocks, and the medium dataset is a subset of the large one with 20 blocks).
For each policy, at various snapshots during pre-training, we report its inference performance on an
unseen test block. As the dataset size increases, both the quality of generated placements on the test
block as well as the generalization performance of the policy improves. The policy trained on the
largest dataset is most robust to over-fitting.

3.8.5 Insights and Visualizations

Below we share some observations about our method’s behavior that may provide insight into the

metrics in Table 3.4.

One observation is that the RL policy tends to place macros on the same datapath close to each

other, which results in better timing performance. The Edge-GNN encoder embeds the features

of each node by iteratively averaging and applying non-linear transformations to the node’s k-hop

neighboring nodes and edges, where k is the number of iterations applied. Therefore, one hypothesis

is that the representation of nodes in a given datapath are similar to one another, causing our policy

network to generate similar predictions about where they should be placed on the canvas. This

naturally results in nodes in the same datapath being placed near to one another, improving timing

performance.

Another observation is that our policy learns to reserve sufficient area for the subsequent placement

of standard cells, as this effectively optimizes its reward function. Even at zero-shot (meaning that

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 50

we run inference on our policy network in less than one second), our method already exhibits this

behavior as shown in Figure 3.9.

Figure 3.9: Visualization of Ariane placements. On the left, zero-shot placements from the pre-trained
policy and on the right, placements from the finetuned policy are shown. The zero-shot placements
are generated at inference time on a previously unseen chip. The pre-trained policy network (with no
fine-tuning) reserves a convex hull in the center of the canvas in which standard cells can be placed,
a behavior which reduces wirelength and which only emerges after many hours of fine-tuning in the
policy trained from scratch.

Figure 3.10 juxtaposes a placement generated by a human physical designer (on the left) with that

of our method (on the right) for a recent TPU block. The white area shows the macro placements

and the green area shows the standard cell placements. Our method creates donut-shaped placements

of macros surrounding standard cells, which results in a reduction in the total wirelength. These

placement images are blurred to preserve confidentiality.

Figure 3.10: Visualization of a TPU placement. Human expert placements are shown on the left and
results from our approach are shown on the right. The white area represents macros and the green
area represents standard cells. The figures are intentionally blurred as the designs are proprietary.
The wirelength for the human expert design is 57.07m, whereas ours is 55.42m. Furthermore, our
method achieves these results in hours, whereas the manual baseline took several weeks.

3.8.6 Implications for a Broader Class of Problems

We believe that the proposed method has broader implications for other stages of chip design and

other placement optimization tasks. For example, our zero-shot mode allows design space explorations

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 51

through rapid evaluation of computer architectures grounded in the physical reality. Automating

and optimizing architectural exploration and its interface with physical design can not only further

accelerate the chip design process, but also lead to additional improvements in critical hardware

metrics, such as power and timing.

Furthermore, this method is applicable to a broad class of placement optimization problems

outside of chip design, such as city planning (e.g., traffic light placement), compiler optimization

(e.g., datacenter resource allocation), and environmental engineering (e.g., dam placement).

3.9 Conclusion

In this chapter, we propose an RL-based approach to chip floorplanning that enables domain

adaptation. The RL agent becomes better and faster at floorplanning optimization as it places a

greater number of chip netlists. We show that our method can generate chip floorplans that are

comparable or superior to human experts in under six hours, whereas humans take months to produce

acceptable floorplans for modern accelerators. Our method has been used in production to design

the next generation of Google TPU.

Appendix

3.A Early Exploration of RL Optimization Algorithms

We felt that it would be valuable to see more side-by-side comparisons of widely used RL algorithms,

such as PPO [179], REINFORCE [221], and DQN variants [154, 208, 215] on challenging benchmarks.

In the very early days of the AlphaChip project, we ran these comparisons and plotted relative

performance. You can see our comparison against DQN variants in the plots below, which show

a huge gap between DQN and PPO (0.1642 vs. 0.1112, meaning that PPO achieved 32% higher

reward). See Figures 3.A.1 and 3.A.2 below.

Figure 3.A.1: DQN Variants vs. Human Baseline on an Edge Block. Here, we plot cost (negative
reward) for a number of DQN variants, including standard DQN [154], Double DQN [208], and
Dueling DQN [215], compared to a human baseline on the task of placement a block of an edge device.
Lower cost is better. Double DQN and Dueling DQN achieve similar performance, outperforming
vanilla DQN; however, all DQN variants have much higher placement cost than a human expert
placement.

Given the strong performance of PPO, we developed a distributed PPO implementation for this

task, and have since significantly updated our RL architecture, reward functions, and overall problem

formulation.

In recognition of the fact that after such significant changes to our overall method, it is very

possible that these other algorithms would now outperform PPO, we did attempt to revive our

implementations of other RL optimization algorithms. However, we found that, for example, DQN

no longer converges, and we would need to dedicate significant additional development and tuning

effort in order to produce fair side-by-side comparisons.

In chip floorplanning, where the search space is massive and the vast majority of solutions are

52

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 53

Figure 3.A.2: PPO vs. Human Baseline on an Edge Block. Here, we plot reward for Proximal Policy
Optimization (PPO) compared to a human baseline on the task of placement a block of an edge
device. Higher reward is better.

invalid, PPO is an effective choice because it allows for safe and efficient exploration, but we do think

it is possible that other RL algorithms could enable even better performance.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 54

3.B Exploring RL Convergence Properties

We ran an additional experiment in which we ran the RL method for longer to see the full convergence

properties of the pretrained policy, as well as one that was trained from scratch.

Figure 3.B.1: Placement cost as a function of training times of up to 60 hours, demonstrating that
the pre-trained RL agent outperforms the one that is trained from scratch.

Although we weren’t able to find the exact checkpoints for the policies in Figure 4 (as those

experiments were run nearly five years ago), we did plot placement cost over time for another TPU

block. As you can see, both policies have fully converged and produce placements of comparable

quality after roughly 60 hours.

It is possible that, on a different block, a policy trained from scratch could eventually overtake

the pre-trained policy. However, from a practical perspective, performance gains seen only after

multiple days would not be useful to a production chip design team.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 55

3.C Exploring Effect of Input Ordering

Below, we show 10 random orderings for the open-source Ariane RISC-V CPU. As you can see, the

standard deviation of wirelength and congestion cost is very low across different macro orderings,

perhaps because our edge-based graph convolutional neural network is able to effectively capture

netlist topology. This is consistent with what we have observed in earlier work on device placement

[150, 147], where using GNNs greatly reduced the impact of placement ordering.

Random Ordering Proxy Wirelength Proxy Congestion
#1 0.1144 0.9515
#2 0.1137 0.9378
#3 0.1138 0.9629
#4 0.1131 0.9166
#5 0.1134 0.9150
#6 0.1152 0.9401
#7 0.1127 0.9033
#8 0.1122 0.9294
#9 0.1133 0.9163
#10 0.1145 0.9195

MEAN 0.1136 0.9292
STD 0.0009 0.0186

Table 3.C.1: Ablation Study on the Effect of Macro Ordering. Here, we show the effect of varying the
order in which macros are placed by measuring proxy cost given 10 different random macro orderings
of the Ariane RISC-V CPU core.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 56

3.D Post-RouteOpt Validation of AlphaChip

After placement optimization, the TPU team hands off the layouts to a third party vendor, which

performs detailed routing and sign off.

In Table 3.4, we show results on a previous generation of TPU (TPU-v4), so that we can compare

against manual placements generated by the TPU team. On TPU-v4, our method was generating

placements with strong QoR metrics (post-PlaceOpt), but their unusual shape was concerning to the

TPU team, so they decided to send just one of our placements to this third party vendor for detailed

routing and signoff, along with their own manual placement. Our placement met all of the QoR

requirements (with slightly better metrics than the human placement) and was closable. Generally

speaking, this process is very expensive, but in this one case, both our TPU-v4 placement and the

human expert placement were sent to this external vendor for detailed routing and signoff.

In TPU-v5, on the other hand, placements generated by our method were sent for detailed routing

and signoff (with no accompanying manual placement), and have been validated all the way to

tapeout.

However, to provide insight into the relationship between pre- and post-tool metrics, we provide

these metrics for an example TPU-v5 block, as placements generated by our method were taped out

in TPU-v5, and therefore were taken all the way post-RouteOpt.

Below, we show a blurred placement of this TPU-v5 block, with the yellow/orange rectangles

corresponding to macros. Note that no macros were moved in the course of the external vendor’s

detailed routing optimization.

Figure 3.D.1: Image of an AlphaChip layout taped out in TPU-v5. The yellow and orange rectangles
correspond to macros. Note that no macros were moved in the course of the external vendor’s detailed
routing optimization. The image has been blurred to comply with export control restrictions.

Below, we report the metrics we measured post-PlaceOpt (pre-tool), as well as the post-PlaceOpt

(pre-tool) and post-RouteOpt (post-tool) metrics reported by the external vendor. Note that the

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 57

vendor did not share wirelength metrics.

Core Block Step Wirelength
(um)

WNS (ps) TNS (ns) Congestion
(Vertical)

Congestion
(Hori-
zontal)

fp_hde_top PlaceOpt (Ours) 7.90E+06 -0.002 0 0.00 0.00
fp_hde_top PlaceOpt (Vendor) - -0.008 -0.015 0.00 0.01
fp_hde_top RouteOpt (Vendor) - 0.00 0.00 0.00 0.00

Table 3.D.1: Detailed performance metrics for a TPU-v5 block. Here, we report post-PlaceOpt and
post-RouteOpt metrics from the external vendor on a block of TPU-v5 (fp_hde_top).

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 58

3.E Comparing with Simulated Annealing

In the main body of this chapter, we compared our method against 2 baselines: the academic

state-of-the-art RePlAce and human expert placements. In this appendix section, we provide an

additional comparison with simulated annealing. To generate results for our method, we use the

same procedure as in Table 3.4, pre-training a policy on the largest dataset (20 TPU blocks) and

then fine-tuning it on the same 5 unseen test blocks.

Simulated Annealing (SA) is known to be a powerful, but slow, optimization method. However,

like RL, simulated annealing is capable of optimizing arbitrary non-differentiable cost functions.

To show the relative sample efficiency of RL, we ran experiments in which we replaced it with a

simulated annealing optimizer. Our SA algorithm works as follows: in each SA iteration (step), we

perform 2*N macro actions (where N is the number of macros). A macro action takes one of three

forms: swap, shift, and mirror. Swap selects two macros at random and swaps their locations, if

feasible. Shift selects a macro at random and shifts that macro to a neighboring location (left, right,

up, or down). Mirror flips a macro at random either across the x-axis, across the y-axis, or across

both the x-axis and y-axis. We apply a uniform probability over the three move types, meaning that

at each time step there is a 1
3 chance of swapping, a 1

3 chance of shifting, and a 1
3 chance of flipping.

After N macro actions, we use a Force-Directed (FD) method to place clusters of standard cells,

while keeping macro locations fixed, just as we do in our RL method. For each macro action or FD

action, the new state is accepted if it leads to a lower cost. Otherwise, the new state is accepted with

a probability of exp((prevcost − newcost)/t), where t = tmax × exp(− log(tmax/tmin)× step/steps).

To make comparisons fair, we ran 80 SA experiments sweeping different hyperparameters, including

max temperature ({1× 10−5, 3× 10−5, 5× 10−5, 7× 10−5, 1× 10−4, 2× 10−4, 5× 10−4, 1× 10−3}),

max SA episode length ({5e4, 1e5}), and seed (5 different random seeds), and report the best results

in terms of proxy wirelength and congestion costs in Table 3.E.1. Each of the 80 SA workers runs an

experiment corresponding to one particular choice of the 5 random seeds, 2 episode lengths, and 8

max temperatures.

Replacing Deep RL with SA in our framework Ours
Proxy Wirelength Proxy Congestion Proxy Wirelength Proxy Congestion

Block 1 0.048 1.21 0.047 0.87
Block 2 0.045 1.11 0.041 0.93
Block 3 0.044 1.14 0.034 0.96
Block 4 0.030 0.87 0.024 0.78
Block 5 0.045 1.29 0.038 0.88

Table 3.E.1: Performance of our method compared to Simulated Annealing (SA). This table shows
proxy wirelength and congestion for each block. Note that because these proxy metrics are relative,
comparisons are only valid for different placements of the same block. Even with additional time (18
hours of SA vs. 6 hours of RL), SA generates placements with 14.4% higher wirelength and 24.1%
higher congestion on average.

CHAPTER 3. ALPHACHIP: A GRAPH PLACEMENT METHOD FOR CHIP DESIGN 59

The SA baseline uses more compute (80 SA workers × 2 CPUs per SA worker × 18 hours of

runtime = 2880 CPU-hours) than our method (16 RL workers × (1 GPU + 10 CPUs per RL worker)

× 6 hours = 1920 CPU-hours). Here, we are treating the cost of one GPU as roughly 10 times that

of a CPU . If we had stopped SA after 12 hours (and if we didn’t use early stopping in RL), then the

two methods would have used equivalent compute, but the SA results after 12 hours were not even

close to competitive. Even with additional time (18 hours of SA vs. 6 hours of RL), SA struggles

to produce high-quality placements compared to our approach, generating placements with 14.4%

higher wirelength and 24.1% higher congestion on average.

In addition to producing lower quality layouts, we also observed that SA falls far short of RL

in its sample efficiency and ability to leverage compute. For example, we plot below the relative

sample efficiency of RL vs. SA on a TPU block given different numbers of workers (16, 64, 256, and

1024). SA requires more than 10× as many samples (environment calls) to reach the same placement

quality when training with 16 workers, and the gap only widens with growing worker counts with SA

requiring nearly 100× more environment interactions once we scale to 1024 workers.

Figure 3.E.1: Sample Efficiency of RL vs. SA. Here, we depict cost as a function of the number of
samples (environment calls) for both RL and SA. We show this for a set up with 16 workers, 64
workers, 256 workers, and 1024 workers, in the upper left, upper right, lower left, and lower right,
respectively.

Chapter 4

From Scrutiny to Silicon:

Post-Publication Discussion and

Impact of AlphaChip

4.1 Background

In Chapter 3, we introduced AlphaChip, a deep RL method for chip placement optimization. In this

chapter, we describe the post-publication impact and discussion surrounding this work. AlphaChip

was one of the first RL methods deployed to solve a real-world engineering problem, and its publication

triggered an explosion of work on AI for chip design [229, 227, 233, 228, 42, 66, 23, 195, 29, 47, 65,

216, 28, 144]. Since the work described there was published in Nature, AlphaChip has been used in

three additional generations of Google’s flagship AI accelerator, the Tensor Processing Unit (TPU).

These chips have been manufactured and deployed in data centers all over the world. As shown in

Figure 4.1.1, the gap between the performance of AlphaChip and human experts has grown with

each successive generation of TPU, going from 10 RL-placed blocks and 3.2% wirelength reduction

vs. human experts in TPU v5e, to 15 blocks with 4.5% reduction in TPU v5p, to 25 blocks with

6.2% reduction in Trillium. AlphaChip has also generated superhuman chip layouts for blocks used

in datacenter CPUs (Axion) and other unannounced chips across Alphabet. Other organizations

have adopted our approach and built on it. For example, MediaTek, a leading global chipmaker,

extended AlphaChip to accelerate development of their most advanced chips, while improving power,

performance, and area.

Nevertheless, as described in Sutton’s “The Bitter Lesson” [192], there is often reluctance to accept

the application of machine learning to new areas, and ultimately this has led to some confusion

60

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 61

Figure 4.1.1: AlphaChip has been deployed in three additional generations of TPU. In each generation,
it has been adopted in a greater proportion of blocks and has outperformed human experts by a
wider margin.

around our work, which we summarize below.

These concerns were collected into an article published in the November 2024 issue of Communi-

cations of the ACM [141], which was presented as a “meta-analysis” of our Nature paper and two

non-peer-reviewed papers:

• Cheng et al.: The first is an invited ISPD paper1 by Cheng et al. [39]. This paper did not

follow standard machine learning practices, and its reinforcement learning methodology and

experimental setup diverged significantly from those described in our Nature paper. Nevertheless,

its hamstrung version of our method still outperformed RePlAce2 [48], which was the state of

the art when we published in Nature.

• Markov et al.: The second “meta-analyzed” paper is an unpublished PDF with no author

list [15], which is described as a “separate evaluation” performed by “Google Team 2”, but

was in fact co-authored by the author of the CACM article, Igor Markov3, though this is not

disclosed4. This paper did not meet Google’s bar for publication. In 2022, it was reviewed

by an independent committee at Google, which determined that “the claims and conclusions

in the draft are not scientifically backed by the experiments” [163] and “as the [AlphaChip]

results on their original datasets were independently reproduced, this brought the [Markov

et al.] RL results into question” [163]. We provided the committee with one-line scripts that

generated significantly better RL results than those reported in Markov et al., outperforming

their “stronger” simulated annealing baseline. We still do not know how Markov and his

collaborators produced the numbers in their paper.
1Invited papers at ISPD are not peer-reviewed.
2Incidentally, RePlAce, as noted in a footnote of Cheng et al., is unable to produce any result at all for 2 out of the

6 test cases in its main data table.
3Markov did not disclose anywhere in his “meta-analysis” that he is an author of one of the two “separate evaluations”.

He also omitted his name from the paper’s authors in the references section, and linked only to an anonymous PDF.
When questioned on LinkedIn, Markov admitted his authorship, but later deleted the post.

4Markov also failed to disclose his role as a high-level employee at Synopsys, a company which licenses commercial
tools that compete with our open-source method.

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 62

Markov’s “meta-analysis” offers one additional source of concern regarding our paper: a “whistle-

blower” within Google. However, this “whistleblower” admitted to a Google investigator that he had

no reason to believe fraud occurred: “he stated that he suspected that the research being conducted

by Goldie and Mirhoseini was fraudulent, but also stated that he did not have evidence to support

his suspicion of fraud” [123].

In his “meta-analysis”, Markov speculates wildly and without evidence about fraud and scientific

misconduct, none of which occurred. Most of Markov’s criticisms are of this form: it does not look

to him like our method should work, and therefore it must not work, and any evidence suggesting

otherwise is fraud. Nature investigated Markov’s concerns, found them to be entirely without merit,

and published an Addendum upholding our work at the conclusion of this process [75].

As an example, in the opening paragraph of his conclusions, Markov states (emphasis his): “In the

paper, we find a smorgasbord of questionable practices in ML [26]5 including irreproducible research

practices, multiple variants of cherry-picking, misreporting, and likely data contamination (leakage).”

We did not engage in any of these practices, or any other form of scientific misconduct, and Markov

provides no evidence for these allegations. Nowhere in Markov’s paper does he describe any form

of alleged cherry-picking, let alone multiple variants, nor does he provide evidence. Nor does he

describe any form of alleged “misreporting,” or explain what he means by this, or provide evidence.

Nor does he provide any evidence of data contamination (leakage), aside from his speculation that it

would have improved our results if it had occurred. Many of these allegations appear for the first

time in his “Conclusions” section!

In an effort to discredit our TPU deployments, Markov also suggests that Google must just be

“dogfooding” our method, allowing inferior AlphaChip placements to be used in TPU in order to

prop up our research paper. This is untrue, and absurd on its face. Google cares far more about the

efficiency of TPU designs – a multi-billion-dollar project that is central to Google’s cloud and AI

initiatives – than it does about a research paper6.

For clarity, we present a timeline of events, including non-confidential deployments7:

• Apr 2020: Released arXiv preprint of our Nature paper [16].

• Aug 2020: 10 AlphaChip layouts taped out in TPU v5e.

• Jun 2021: Published Nature article [149].

• Sep 2021: 15 AlphaChip layouts taped out in TPU v5p.
5Note that Markov’s citation 26 has nothing to do with our paper, though readers may mistakenly believe that it

offers corroboration.
6In reality, we had to work for a long time to build enough trust for the TPU team to use our layouts, even after

AlphaChip was outperforming human experts on the metrics, and this makes sense – their job is to deliver TPU chips
and make them as efficient and reliable as possible, and they cannot afford to take unnecessary risks.

7AlphaChip has been deployed in other hardware across Alphabet that we cannot yet disclose.

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 63

• Jan 2022 - Jul 2022: Open-sourced AlphaChip [79], after ensuring compliance with export

control restrictions and excising internal dependencies. This involved independent replication

of the results in our Nature paper by another team at Google. See Section 4.3.

• Feb 2022: Independent committee within Google declined to publish Markov et al. as the

data did not support its claims and conclusions [163].

• Oct 2022: 25 AlphaChip layouts taped out in Trillium.

• Feb 2023: Cheng et al. posted on arXiv [39], claiming to perform “massive reimplementation”

of our method, despite it being fully open-source. As discussed in Sections 4.2 and 4.A, Cheng

et al. did not run our method as described in Nature, among other issues.

• Jun 2023: Markov released arXiv preprint of his “meta-analysis” [140].

• Sep 2023: Nature posted Editor’s note stating that they are investigating our paper, and

initiated second peer review process [149].

• Mar 2024: 7 AlphaChip layouts adopted in Google Axion Processors (ARM-based CPU).

• Apr 2024: Nature completed its investigation and post-publication review, and found entirely

in our favor, concluding that “the best way forward is to publish an update to the paper in

the form of an Addendum (not a ‘Correction’, as we have established that there is little that

actually needs correcting).” [241]

• Sep 2024: Nature published Addendum upholding our work [75], removed Editor’s note.

• Sep 2024: SVP of MediaTek announced that they extended AlphaChip to accelerate develop-

ment of their most advanced chips [74].

• Nov 2024: Markov republished his “meta-analysis”, though his concerns were already found to

be without merit during Nature’s investigation and second peer review process.

• April 2025: AlphaChip layouts used in Ironwood (latest public TPU as of May 2025).

In brief, Markov’s CACM paper contains no original data, and is a “meta-analysis” of just two

papers. The first is presented with no author list (though Markov was an author), was never published,

made claims that were not scientifically backed by the data, and could not be reproduced. The

second, Cheng et al., is the only substantive content in Markov’s “meta-analysis”, so we devote the

remainder of this chapter to describing significant issues in its purported reproduction of our method.

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 64

4.2 Errors in Attempted Reproduction of Our Method

Cheng et al. claim to evaluate our method against alternative approaches on new test cases.

Unfortunately, Cheng et al. did not run our method as described in Nature, so it is unsurprising that

they report different results. In this section, we describe major errors in their purported reproduction:

• Did not pre-train the RL method. The ability to learn from prior experience is the

key advantage of our learning-based method, and to remove it is to evaluate a different and

inferior approach. Incidentally, pre-training also gives rise to the impressive capabilities of

large language models like Gemini [199] and ChatGPT [161] (the “P” in “GPT” stands for

“pre-trained”). See Section 4.2.1.

• Used an order of magnitude fewer compute resources: 20x fewer RL experience collectors

(26 vs 512 in Nature) and 2x fewer GPUs (8 vs 16 in Nature). See Section 4.2.2.

• Did not train to convergence. Training to convergence is standard practice in machine

learning, as not doing so is well known to harm performance [4]. See Section 4.2.3.

• Evaluated on non-representative, irreproducible benchmarks. Cheng et al.’s bench-

marks have much older and larger technology node sizes (45nm and 12nm vs sub-7nm in

Nature), and differ substantially from a physical design perspective. Additionally, the authors

were unable or unwilling to share the synthesized netlists necessary to replicate the results in

their main data table. See Sections 4.2.4 and 4.3.2.

• Performed “massive reimplementation” of our method, which may have introduced

errors. We recommend instead using our open-source code. See Section 4.3.

These major methodological differences unfortunately invalidate Cheng et al.’s comparisons with

and conclusions about our method. If Cheng et al. had reached out to the corresponding authors of

the Nature paper8, we would have gladly helped them to correct these issues prior to publication9.

4.2.1 No Pre-Training Performed for RL Method

Unlike prior approaches, AlphaChip is a learning-based method, meaning that it becomes better and

faster as it solves more instances of the chip placement problem. This is achieved by pre-training,

which consists of training on “practice” blocks (training data) prior to running on the held-out test

cases (test data).
8Prior to publication of Cheng et al., our last correspondence with any of its authors was in August of 2022 when

we reached out to share our new contact information.
9In contrast, prior to publishing in Nature, we corresponded extensively with Andrew Kahng, senior author of

Cheng et al. and of the prior state of the art (RePlAce), to ensure that we were using the appropriate settings for
RePlAce.

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 65

As we showed in Figure 5 of our Nature paper (reproduced below as Figure 4.2.1), the larger

the training dataset is, the better the method becomes at placing new blocks. As described in our

Nature article, we pre-trained on 20 blocks in our main data table (Nature Table 1).

Figure 4.2.1: Figure 5 of the Nature paper (reproduced above) shows performance gains from
pre-training on a larger number of blocks. As we scale up the pre-training dataset size, the RL
agent’s performance improves.

Cheng et al. did not pre-train at all (i.e., no training data), meaning that the RL agent had

never seen a chip before and had to learn how to perform placement from scratch for each of the test

cases. This removed the key advantage of our method, namely its ability to learn from prior

experience.

By analogy to other well-known work on reinforcement learning, this would be like evaluating a

version of AlphaGo [186] that had never seen a game of Go before (instead of being pre-trained on

millions of games), and then concluding that AlphaGo is not very good at Go.

We discussed the importance of pre-training at length in our Nature paper (e.g., the word

“pre-train” appeared 37 times), and empirically demonstrated its impact. For example, Nature

Figure 4 (reproduced here as Figure 4.2.2) showed that pre-training improves placement quality

and convergence speed. On the open-source Ariane RISC-V CPU [62], it took 48 hours for the

non-pretrained RL policy to approach what the pre-trained model could produce in 6 hours. As

described in our Nature paper, we pre-trained for 48 hours for the results in our main data table,

whereas Cheng et al. pre-trained for 0 hours.

Our open-source repository [79] enables full reproduction of the methods described in our Nature

paper (see Section 4.3). Cheng et al. have attempted to excuse their lack of pre-training by suggesting

that our open-source repository does not support pre-training [39], but this is incorrect. Pre-training

is simply running the method on multiple examples, and this has been always been supported.

4.2.2 RL Method Provided with Far Fewer Compute Resources

In Cheng et al., the RL method is provided with 20x fewer RL experience collectors (26 vs 512 in

Nature) and half as many GPUs (8 vs 16 in Nature). Using less compute is likely to harm performance,

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 66

Figure 4.2.2: Figure 4 of the Nature paper (reproduced above) showed that pre-training improves
convergence speed compared to starting from a randomly initialized policy. On the open-source
Ariane RISC-V CPU, the randomly initialized policy took 48 hours to approach what the pre-trained
policy could produce in 6 hours.

or require running for considerably longer to achieve the same (or worse) performance.

As shown in Figure 4.2.3 (reproduced from a follow-up paper [232]), training on a larger number

of GPUs speeds convergence and yields better final quality. If Cheng et al. had matched the

experimental settings described in Nature, this would likely have improved their results.

Figure 4.2.3: Figure 6 from a follow-up paper [232] (reproduced above) demonstrated that speed
and quality improve with additional compute resources. Left: Placement return (higher is better) vs.
training time as a function of the number of GPUs. An infeasible placement receives a −2 placement
return. Increasing the number of GPUs results in better final placements. Right: Time to reach
a given placement return as a function of the number of GPUs. The grey bars indicate that the
experiment did not reach a specific return value. The best placement return −1.07 can only be
achieved with GPU=8, the largest setting in this experiment.

4.2.3 RL Method Not Trained to Convergence

As a machine learning model trains, loss typically decreases and then asymptotes, representing

“convergence” — the model has learned what it can about the task it is performing. Training to

convergence is standard practice in machine learning, and not doing so is well known to harm

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 67

performance [4].

Cheng et al. did not train to convergence on any of the four blocks for which

convergence plots were provided on their accompanying project site [159] (no plots were

provided for BlackParrot-NG45 or Ariane-NG45).

Figure 4.2.4 shows the convergence plots from Cheng et al.’s project site, and Table 4.2.1

summarizes the information available. For all four blocks with convergence plots (Ariane-GF12,

MemPool-NG45, BlackParrot-GF12, and MemPool-GF12), training was cut off at a relatively low

step count (350k, 250k, 160k, and 250k steps, respectively)10. Following standard machine learning

practices would likely improve performance on these test cases.

Figure 4.2.4: Convergence plots from Cheng et al.’s project site. On Ariane-NG45 (top left) and
MemPool-NG45 (top right), there is an odd divergence at around 100k steps, but loss appears to be
trending downwards and would likely have improved with further training. On BlackParrot-GF12
(bottom left) and MemPool-GF12 (bottom right), the model has not yet converged and would likely
benefit from additional training time as well.

10Although Cheng et al.’s Figure 4 appears to show convergence on Ariane-NG45 after 1M steps, it omits most
components of the total training loss, depicting only wirelength, density, and congestion costs. However, total loss is
composed of entropy regularization loss, KL penalty loss, L2 regularization loss, policy gradient loss, and value estimate
loss. See open-source code for details of training loss: https://github.com/google-research/circuit_training/
blob/90fbe0e939c3038e43db63d2cf1ff570e525547a/circuit_training/learning/agent.py#L408. Cheng et al. did
not provide the Tensorboard for this block, and as shown in Table 4.2.1, all other blocks were run for far fewer than
1M steps.

https://github.com/google-research/circuit_training/blob/90fbe0e939c3038e43db63d2cf1ff570e525547a/circuit_training/learning/agent.py#L408
https://github.com/google-research/circuit_training/blob/90fbe0e939c3038e43db63d2cf1ff570e525547a/circuit_training/learning/agent.py#L408

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 68

Block Name from Cheng et al.’s Table 1 Tensorboard? Num Steps Total Loss Curve
Ariane-NG45 No 1M No Tensorboard.
BlackParrot-NG45 No ? No Tensorboard.
MemPool-NG45 Yes 250k Divergence at 100k steps,

clearly has not con-
verged.

Ariane-GF12 Yes 350k Divergence at 130k steps,
clearly has not con-
verged.

BlackParrot-GF12 Yes 160k Still converging, training
stopped prematurely.

MemPool-GF12 Yes 250k Still converging, training
stopped prematurely.

Table 4.2.1: Cheng et al. did not train properly on any of the test cases for which Tensorboards were
provided on the accompanying project site.

4.2.4 Test Cases Not Representative of Modern Chips

In our Nature paper, we report results on Tensor Processing Unit (TPU) blocks with sub-7nm

technology node size, which is typical of modern chips. In contrast, Cheng et al. reports results

on older technology node sizes (45nm and 12nm), which differ substantially from a physical design

perspective; for example, at sub-10nm, multiple patterning is typically used [52, 220], causing routing

congestion issues to emerge at lower density. Therefore, for older technology node sizes, our method

may benefit from adjustment to the congestion or density components of its reward function11. We

have not focused on applying our technique to designs with older nodes because all of our work is at

7nm, 5nm, and more recent processes, though we would welcome contributions from the community

on this front.

4.3 Transparency & Reproducibility

4.3.1 AlphaChip is Fully Open-Source

We have open-sourced a software repository [79] to fully reproduce the methods described in our

Nature paper. Every line of our RL method is freely available for inspection, execution, or modification,

and we provide source code or binaries to perform all preprocessing and postprocessing steps. Open-

sourcing the code took over a year of effort by the TF-Agents team12, and included independent

replication of our methodology and the results in our Nature paper. From our open-source repository:

“Open-sourcing our code involved partnering with another team at Google (TF-Agents).
11Google engineers suggested this, but their guidance was not followed (see Section 4.A.4).
12TensorFlow Agents is a reinforcement learning infrastructure team at Google, which provides open-source libraries.

See https://www.tensorflow.org/agents.

https://www.tensorflow.org/agents

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 69

TF-Agents first replicated the results in our Nature article using our codebase, then

reimplemented our method and replicated our results using their own implementation, and

then open-sourced their implementation as it does not rely on any internal infrastructure.”

Cheng et al. unnecessarily “reverse-engineered” two functions that we provide as binaries for

performance optimization (the proxy cost function and force-directed (FD) standard cell placer). As

discussed in an MLCAD 2021 paper [93], we now recommend using DREAMPlace [132] for standard

cell placement, rather than FD, as it yields superior performance. We provide the legacy FD binary

for the sole purpose of enabling exact reproduction of our method as published in Nature.

Regarding public benchmarks, we reported results on the open-source Ariane RISC-V CPU [62]

in Nature. Additionally, in a follow-up paper at MLCAD 2021 [93], we evaluated on the open-source

ISPD 2015 contest benchmark [27]. Because we have open-sourced our code, the community is free

to follow our methodology and evaluate our method on any public benchmark.

4.3.2 Claims They Cannot Share Their “Open” Test Cases

One of the criticisms put forth in Cheng et al. was that the Nature evaluation was done on proprietary

TPU blocks (in addition to the open-source Ariane block that was also evaluated, and the public

ISPD 2015 benchmark in a follow-up publication [93]). Cheng et al. claimed to evaluate on a set of

open test cases to improve reproducibility, but when we corresponded with the authors, they were

unable or unwilling to provide the synthesized netlists necessary to replicate their results on the

“open” test cases in their main data table (Table 1).

Unfortunately, this means that we cannot replicate any of the results in Cheng et al.’s Table 1:

• GF12 (12nm): These test cases are proprietary and unavailable to the public, and Cheng et

al.’s results are obfuscated, meaning that even if an external researcher were to obtain access, a

direct comparison would still be impossible.

• NG45 (45nm): Cheng et al. have not shared the synthesized netlists necessary to reproduce

their NG45 results, despite 10+ requests since February 2024. Note that other papers evaluate

on the NG45 blocks, but their results are inconsistent with those in Cheng et al.’s Table 1 (e.g.,

see Table 2 of AutoDMP [5]), underscoring reproducibility challenges.

Notably, other researchers have also repeatedly requested access to these test cases and to the

output placements referenced in the paper, but Cheng et al. have so far been unable to release

them13, meaning that no one is able to reproduce their findings on these “open” testcases.

It is unfortunate that modern chip IP is sensitive and proprietary, and to our knowledge, there are

no open benchmarks available for cutting edge processes. We encourage the chip design community
13For example, see https://github.com/TILOS-AI-Institute/MacroPlacement/issues/78 and https://github.

com/TILOS-AI-Institute/MacroPlacement/issues/67.

https://github.com/TILOS-AI-Institute/MacroPlacement/issues/78
https://github.com/TILOS-AI-Institute/MacroPlacement/issues/67
https://github.com/TILOS-AI-Institute/MacroPlacement/issues/67

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 70

to create more open designs for modern sub-7nm processes, as this will help push the field forward.

At the moment, fully open designs are typically 28nm, 45nm, or even 130nm, and many physical

design issues are quite different than in sub-7nm processes.

4.4 Discussion

In Cheng et al.’s attempt to reassess our work, the authors did not run our method as described in

Nature (e.g., they performed no pre-training, used substantially less compute, and did not train to

convergence), reported results on benchmarks that are neither representative nor reproducible, and

ran questionable ablation/correlation studies.

In his paper [141], Markov published baseless allegations of fraud based on a “meta-analysis” of

Cheng et al. (which did not reproduce our methodology) and an anonymous PDF (that Markov

actually coauthored), whose results could not be reproduced and for which “the claims and conclusions

in the draft are not scientifically backed by the experiments” [163].

Meanwhile, AlphaChip has inspired an explosion of work on AI for chip design, and its superhuman

layouts have been taped out in four generations of TPU deployed in Google datacenters all over

the world, as well as other chips across Alphabet and by external chipmakers. We look forward to

seeing AI continue to transform all aspects of hardware design, just as advances in hardware have

revolutionized AI.

4.5 Moving Forward: AlphaChip’s Broader Impact

AlphaChip’s impact can be seen through its applications across Alphabet, the research community

and the chip design industry. Beyond designing specialized AI accelerators like TPUs, AlphaChip

has generated layouts for other chips across Alphabet, such as Google Axion Processors, Google’s

first Arm-based general-purpose data center CPUs.

External organizations are also adopting and building on AlphaChip. For example, MediaTek,

one of the top chip design companies in the world, extended AlphaChip to accelerate development of

their most advanced chips while improving power, performance and chip area.

AlphaChip has triggered an explosion of work on AI for chip design, and has been extended to

other critical stages of chip design, such as logic synthesis [44] and macro selection [124].

4.6 External Perspectives from Academic and Industry Leaders

Below we share perspectives from industry and academic leaders on the research and production

impact of AlphaChip [74]:

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 71

“AlphaChip’s groundbreaking AI approach revolutionizes a key phase of chip design. At

MediaTek, we’ve been pioneering chip design’s floorplanning and macro placement by

extending this technique in combination with the industry’s best practices. This paradigm

shift not only enhances design efficiency, but also sets new benchmarks for effectiveness,

propelling the industry towards future breakthroughs.”

— SR Tsai, Senior Vice President of MediaTek

“AlphaChip has inspired an entirely new line of research on reinforcement learning for

chip design, cutting across the design flow from logic synthesis to floor planning, timing

optimization and beyond. While the details vary, key ideas in the paper including pretrained

agents that help guide online search and graph network based circuit representations

continue to influence the field, including my own work on RL for logic synthesis. If not

already, this work is poised to be one of the landmark papers in machine learning for

hardware design.”

— Siddharth Garg, Professor of Electrical and Computer Engineering, NYU

“AlphaChip demonstrates the remarkable transformative potential of Reinforcement Learn-

ing (RL) in tackling one of the most complex hardware optimization challenges: chip

floorplanning. This research not only extends the application of RL beyond its established

success in game-playing scenarios to practical, high-impact industrial challenges, but also

establishes a robust baseline environment for benchmarking future advancements at the

intersection of AI and full-stack chip design. The work’s long-term implications are

far-reaching, illustrating how hard engineering tasks can be reframed as new avenues for

AI-driven optimization in semiconductor technology.”

— Vijay Janapa Reddi, John L. Loeb Associate Professor of Engineering and

Applied Sciences, Harvard University

“Reinforcement learning has profoundly influenced electronic design automation (EDA),

particularly by addressing the challenge of data scarcity in AI-driven methods. Despite

obstacles including delayed rewards and limited generalization, research has proven re-

inforcement learning’s capability in complex electronic design automation tasks such as

floorplanning. This seminal paper has become a cornerstone in reinforcement learning-

electronic design automation research and is frequently cited, including in my own work

that received the Best Paper Award at the 2023 ACM Design Automation Conference.”

— Professor Sung-Kyu Lim, Georgia Institute of Technology

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 72

“There are two major forces that are playing a pivotal role in the modern era: semiconductor

chip design and AI. This research charted a new path and demonstrated ideas that

enabled the electronic design automation (EDA) community to see the power of AI and

reinforcement learning for IC design. It has had a seminal impact in the field of AI for

chip design and has been critical in influencing our thinking and efforts around establishing

a major research conference like IEEE LLM-Aided Design (LAD) for discussion of such

impactful ideas.”

— Ruchir Puri, Chief Scientist, IBM Research; IBM Fellow

4.7 Conclusion

We believe AlphaChip has the potential to optimize every stage of the chip design cycle, from

computer architecture to manufacturing — and to transform chip design for custom hardware found

in everyday devices such as smartphones, medical equipment, agricultural sensors and more.

Future versions of AlphaChip are now in development and we look forward to working with the

community to continue revolutionizing this area and to bring about a future in which chips are even

faster, cheaper and more power-efficient.

Appendix

4.A Other Discussions

In this appendix, we describe other concerns with Cheng et al., including its comparison with

closed-source commercial autoplacers, its contrived “ablation” of initial placement in standard cell

cluster rebalancing, its flawed correlation study, and its erroneous claim of validation by Google

engineers.

4.A.1 Inappropriate Comparison With Commercial Autoplacers

Cheng et al. compares a severely weakened RL method against unpublished, closed-source, proprietary

software released years after our method was published. This is not a reasonable way to evaluate our

method – for all we know, the closed-source tool could have built directly on our work.

In May of 2020, we performed a blind internal study14 comparing our method against the latest

version of two leading commercial autoplacers. Our method outperformed both, beating one 13 to 4

(with 3 ties) and the other 15 to 1 (with 4 ties). Unfortunately, standard licensing agreements with

commercial vendors prohibit public comparison with their offerings.

4.A.2 Contrived “Ablation” of Initial Placement in Standard Cell Cluster

Rebalancing

Prior to running the methods evaluated in our Nature paper, an approximate initial placement from

physical synthesis, the previous step of the chip design process [196], was used to resolve imbalances

in the sizes of standard cell clusters from hMETIS [108].

Cheng et al. ran an “ablation” study on a single block (Ariane-NG45). Instead simply skipping

the cluster rebalancing step, they tried placing all chip components on top of each other in the
14Our blind study compared RL to human experts and commercial autoplacers on 20 TPU blocks. First, the physical

design engineer responsible for placing a given block ranked anonymized placements from each of the competing
methods, evaluating purely on final QoR metrics with no knowledge of which method was used to generate each
placement. Next, a panel of seven physical design experts reviewed each of the rankings and ties. The comparisons
were unblinded only after completing both rounds of evaluation. The result was that the best placement was produced
most often by RL, followed by human experts, followed by commercial autoplacers.

73

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 74

lower-left corner15, causing the rebalancing step to produce degenerate standard cell clusters. When

this harmed performance, Cheng et al. concluded that our RL agent was somehow making use of

initial placement information, even though it does not have access to the initial placement and does

not place standard cells.

We ran an ablation study which eliminated any use of initial placement whatsoever, and observed

no degradation in performance (see Table 4.A.1). We simply skipped the cluster rebalancing step and

instead reduced hMETIS’s cluster “unbalancedness” parameter to its lowest setting (UBFactor=1)16,

which causes hMETIS to generate more balanced clusters [108]. This ancillary preprocessing step

has been documented and open-sourced since June 10, 2022 [79], but is unnecessary and has already

been removed from our production workflow.

TPU-v6 Block wirelength wns tns density congestion (H) congestion (V)
Clustering with
initial placement

5,176 -0.046 -2.466 23.830 0.01 0.01

Clustering with
no initial place-
ment

5,133 -0.048 -2.583 23.827 0.01 0.01

Table 4.A.1: RL results after clustering standard cells with and without the initial placement. Lower
magnitude is better for all metrics. Clustering without initial placement does not appear to harm
performance.

4.A.3 Flawed Study of Correlation Between Proxy Cost and Final Metrics

Cheng et al. claimed that our proxy costs are not well-correlated with final metrics, but their

correlation study actually showed a weak but positive correlation between overall proxy cost and all

final metrics except standard cell area (see Cheng et al.’s Table 2, reproduced here as Figure 4.A.1).

Note that we treat area as a hard constraint, and therefore do not optimize for it.

Figure 4.A.1: Cheng et al.’s Table 2 (reproduced above, emphasis ours) showed a weak but positive
correlation between overall proxy cost and final metrics, except std cell area, which we treat as a
hard constraint and do not optimize.

Proxy costs used in ML-based optimization are often only weakly correlated with the target
15Cheng et al. also tried placing all components on top of each other in the upper-right corner and on a single point

in the center of the canvas. Unsurprisingly, this yielded the same degenerate results.
16UBfactor is a parameter that ranges from 1 to 49, where lower settings instruct hMETIS to prioritize balanced

cluster sizes. UBfactor was set to 5 in our Nature paper.

CHAPTER 4. FROM SCRUTINY TO SILICON: ALPHACHIP POST-PUBLICATION 75

objective. For example, large language models like Gemini [199] and ChatGPT [161] are trained to

guess the next word in a sequence, which is an intrinsically noisy signal.

Additionally, Cheng et al.’s correlation study made some surprising choices:

• Cheng et al. only report correlation for proxy costs below 0.9 and provide no justification for

this decision. This threshold excludes the majority of their own results (e.g., see Cheng et al.’s

Table 1).

• The correlation study considers only a single 45nm test case (Ariane-NG45). NG45 is a much

older technology node size and the congestion and density components of the overall cost

function should probably be adjusted for better correlation (see Section 4.2.4).

Incidentally, AutoDMP17 used proxy wirelength, congestion, and density costs similar to those

proposed in our Nature paper, and found that they do in fact correlate with final metrics [5].

4.A.4 Incorrect Claim of Validation by Google Engineers

Cheng et al. claimed that Google engineers confirmed its technical correctness, but this is untrue.

Google engineers (who were not corresponding authors of the Nature paper) merely confirmed that

they were able to train from scratch (i.e., no pre-training) on a single test case from the quick start

guide in our open-source repository. The quick start guide is of course not a description of how to

fully replicate the methodology described in our Nature paper, and is only intended as a first step to

confirm that the needed software is installed, that the code has compiled, and that it can successfully

run on a single simple test case (Ariane).

In fact, these Google engineers share our concerns and provided constructive feedback, which was

not addressed. For example, prior to publication of Cheng et al., through written communication

and in several meetings, they raised concerns about the study, including the use of drastically less

compute, and failing to tune proxy cost weights to account for a drastically different technology node

size.

The Acknowledgements section of Cheng et al. also lists the Nature corresponding authors and

implies that they were consulted or even involved, but this is not the case. In fact, the corresponding

authors only became aware of this paper after its publication.

17AutoDMP is also one of the methods compared against in Cheng et al.’s Table 1.

Part II

Reinforcement Learning for Language

Modeling

76

Chapter 5

Synthetic Data Generation and

Multi-Step Reinforcement Learning

5.1 Introduction

This chapter, the first in Part II, introduces SWiRL (Step-Wise Reinforcement Learning), a synthetic

data generation and RL method that improves performance on multi-step reasoning and tool use.

This approach iteratively generates multi-step reasoning and tool use data, and then learns from

that data. It employs a simple step-wise decomposition that breaks each multi-step trajectory into

multiple sub-trajectories corresponding to each action by the original model. It then applies synthetic

data filtering and RL optimization on these sub-trajectories. We evaluated SWiRL on a number

of multi-step tool use, question answering, and mathematical reasoning tasks. Our experiments

show that SWiRL outperforms baseline approaches by 21.5%, 12.3%, 14.8%, 11.1%, and 15.3% in

relative accuracy on GSM8K, HotPotQA, CofCA, MuSiQue, and BeerQA, respectively. Excitingly,

the approach exhibits generalization across tasks: for example, training only on HotPotQA (text

question-answering) improves zero-shot performance on GSM8K (a math dataset) by a relative 16.9%.

Large Language Models (LLMs) have demonstrated remarkable capabilities in Natural Language

Processing [69, 12, 162]. However, they often struggle to answer complex queries that require reasoning

and tool use across multiple steps [222], such as multi-hop question-answering, mathematical problem-

solving, coding, and other agentic tasks, [226, 202, 222, 49, 94, 57, 126].

Traditional reinforcement learning (RL) approaches, such as RL from Human Feedback (RLHF)

[45], RL from AI Feedback (RLAIF) [18], and RL from Execution Feedback (RLEF) [68], have

focused on single-step optimization, leaving the challenge of multi-step tasks largely unaddressed.

Many real-world problems require a sequence of interrelated actions; for example, when answering

a challenging question, a model must determine not just what information to seek, but when to

77

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 78

stop searching and synthesize its findings. Multi-step reasoning creates a compounding challenge,

as incorrect intermediate steps often lead to incorrect final results, making it critical to maintain

accuracy across the entire chain of actions or learn to effectively recover from such errors.

To address this challenge, we present Step-Wise Reinforcement Learning (SWiRL), an offline

multi-step optimization technique. We consider a setting where the model has access to a tool, such

as a search engine or calculator, and can run a sequence of tool use calls as needed to answer the

question. Our goal is to teach the model how to decompose complex problems into a sequence of

more manageable subtasks, when to call the tool, how to formulate a call to the tool, when to use

the results of these queries to answer the question, and how to effectively synthesize its findings. In

particular, we propose a two stage approach, in which we first generate multi-step synthetic data and

then learn from these data using a step-wise reinforcement learning method. This approach has the

key practical advantage that we can quickly generate large volumes of multi-step training data via

parallel calls to avoid throttling the training process with slow tool use execution. In addition, this

offline process enables greater reproducibility due to having a fixed dataset.

To generate multi-step synthetic training data, we provide an open-source LLM (Gemma 2 [71])

with access to a relevant tool (e.g., a search engine or calculator). We iteratively prompt the model

to generate multi-step trajectories; at each step, the model is free to generate a chain of thought,

and may either call a tool or produce a final answer, which we refer to as the model’s action. If

the model generates a tool use call, its query is automatically extracted from the overall response

and executed in the environment, and the result is presented to the model in the next step. The

trajectory ends when the model generates an answer to the original question, which it indicates using

special markers. We convert each trajectory with k actions into k subtrajectories, containing the

context from the beginning of the trajectory up to that action. We then use a step-wise reinforcement

learning approach to optimize over this dataset, employing a generative reward model that evaluates

each action in the context of its subtrajectory.

This granular approach enables us to apply direct feedback after each step of the trajectory, and

to do so in a manner that is contextually aware. Unlike prior RL finetuning approaches used in

frontier open-source models like DeepSeek-R1 [53] and Llama-3 [77], we do not solely optimize for

final performance, and use no golden labels; however, by optimizing for the reasonableness of each

step given prior steps, SWiRL does in fact improve final performance.

In addition to evaluating SWiRL on challenging multi-hop question-answering and mathematical

problem-solving tasks, we also study the generalization properties of this methodology. This is of key

interest because there is an explosion of agentic applications for language models, and methods that

generalize across datasets and tasks will be easier, cheaper and faster to adapt to diverse agentic

applications of LLMs. We also measure the effectiveness of different synthetic data filtering strategies,

study SWiRL’s ability to generalize across datasets and tasks, measure the impact of model size and

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 79

dataset size, and explore the mechanism driving these performance improvements.

Our contributions are as follows:

• We propose Step-Wise Reinforcement Learning (SWiRL), an approach to synthetic data

generation and offline RL that advances multi-step reasoning and tool use.

• We demonstrate generalization across datasets. For example, training SWiRL on HotPotQA

[226] not only improves performance on the dataset itself, but also yields superior performance

on other multi-hop question-answering datasets, e.g., 21.5% on GSM8K [49], 15.3% on BeerQA

[167], 11.1% on MuSiQue [202] and 14.8% on CofCA [222].

• We also show transfer across disparate tasks, namely mathematical reasoning to question-

answering and vice versa. Training only on multi-hop HotPotQA question-answering improves

performance on GSM8K [49] (a math dataset) by 16.9%, and training on GSM8K improves

performance on HotPotQA (multi-hop question-answering) by 9.2%.

• We analyze the impact of synthetic data filtering strategies in a multi-step reasoning and tool

use setting, and demonstrate that models learn best from datasets which have been filtered

step-wise to ensure high-quality reasoning traces, but which are not filtered by outcome (correct

final answer).

• We explore the impact of training dataset size and model size on SWiRL, observing that

significant gains can be achieved even with just 1000 trajectories and that smaller models

(Gemma-2-2b and 9b) can benefit from in-domain SWiRL, but do not display the same

generalization as their larger counterpart, Gemma-2-27b.

• We demonstrate that SWiRL effectively improves the average process reward, even when

evaluated on out-of-distribution tasks, suggesting that the downstream performance gains are

driven by improved multi-step reasoning.

5.2 Methodology

Our methodology, Step-Wise Reinforcement Learning (SWiRL), consists of two stages. In the first

stage, we generate and filter synthetic data. In the second stage, we use a step-wise reinforcement

learning approach to optimize a generative base model on the synthetic trajectories. SWiRL does not

require golden labels or human annotations, and instead relies entirely on model-based judgments for

data generation, filtering, and RL optimization. The overall flow of our methodology is depicted in

Figure 5.2.1 (Stage 1) and Figure 5.2.2 (Stage 2).

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 80

Figure 5.2.1: In SWiRL Stage 1, we generate and filter multi-step synthetic trajectories. At each step,
the model is free to generate a chain of thought, call a tool such as a search engine or calculator, and/or
produce an answer to the original question. Process-filtered data corresponds to trajectories in which
every step is judged to be reasonable by a model judge (Gemini 1.5 Pro Thinking). Outcome-filtered
data corresponds to trajectories with a final answer that matches the golden label.

5.2.1 Multi-Step Data Collection

In Stage 1 (see Figure 5.2.1), we generate synthetic trajectories consisting of multiple steps of

reasoning and tool use, which we use as training data for the step-wise RL methodology described in

the next section. To compile a large-scale collection of synthetic trajectories, we augment a language

model with a tool (e.g., a search engine or calculator), and iteratively prompt the model to generate

multi-step trajectories. At each step, the model is asked to choose whether to call a tool or produce a

final answer, and is always free to generate chains of thought (which it typically does). If the model

generates a tool use call, it is parsed from the overall response, executed in the environment, and the

result is presented to the model in the next step. See Appendix 5.A for the prompt, which contains a

question, explicit instructions regarding multi-step tool utilization, and the results of prior tool use

calls.

For each multi-step synthetic trajectory, we define the following annotations. The trajectory itself

is denoted by τ = (s1, a1, . . . , sK , aK). The first state s1 is the original prompt. Each following state

si contains the entire context so far, containing state si−1, action ai−1, and the environment (tool

call) response to ai−1. Each action ai is the model response, given state si. The last action, aK , is

the model’s answer to the original prompt.

In this chapter, we compiled a dataset of 50,000 synthetic trajectories seeded by 10,000 multi-step

questions from the HotPotQA training set [226] (i.e., 5 trajectories per question), and a mathematical

reasoning dataset of 37,500 synthetic trajectories seeded by the 7,500 questions in the GSM8K

training set [49]. Note that, for HotPotQA, we filtered out “Easy” questions, which can typically be

answered with a single search query. To prevent synthetic trajectories from being excessively long,

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 81

we set a maximum step count of 5 for HotPotQA questions, and 10 for GSM8K questions (which

typically require 2-8 steps to solve).

Having compiled these datasets, we consider four different filtering strategies and measure their

impact on performance (Figure 5.2.1): (1) No filtering; (2) Process filtering, where we retain

trajectories in which each step was deemed reasonable given all previous steps. Concretely, a model

(Gemini 1.5 Pro Thinking, in our case) is prompted to render a binary judgment as to whether action

ai is reasonable given the context si. See Appendix 5.A for our prompt. No golden labels are used;

(3) Outcome filtering, where we select trajectories based solely on whether the final response, aK ,

matches the golden answer; and (4) Process and outcome filtering, in which we take the intersection

of both filtering approaches and retain only trajectories that exhibit both step-wise soundness and

correct final outcomes.

Recent approaches to synthetic data distillation, such as Deep-Seek R1 [53], have demonstrated

that synthetic data filtered for correct outcomes can lead to good performance with single-step RL

and supervised finetuning (SFT). In this chapter, we sought to explore whether this pattern would

hold in a multi-step, tool use setting, and to explore the impact of both outcome and process filters.

Like this prior work, we observed that filtering multi-step trajectories for correctness was effective for

SFT, and in fact critical for good performance. However, we found that SWiRL, unlike SFT, can

learn even from trajectories that end in incorrect final answers. In fact, we achieve our best results

by including process-filtered data, regardless of the correctness of the outcome.

5.2.2 Step-Wise Reinforcement Learning Methodology

 “Next, I should find out what Ross Lynch’s age is.
<search_query>Ross Lynch age</search_query>”

Action 1
Prompt

“To figure out who is older, I should first search for age of Glenn Hughes.
 <search_query>age of Glenn Hughes</search_query>”

SWiRL Stage 2: Step-Wise RL Optimization

Step 1

Action 1
Prompt Env

Response
Step 1

Action 2

Step 2

Action 1
Prompt Env

Response
Step 1

Action 2

Env
Response
Step 2

Action N
(Response)

Step N

…

…

“Who is older Glenn
Hughes or Ross Lynch?”

Reward

“Given the results of my previous
previous searches, I have enough
information to answer the question.
<answer>Glenn Hughes</answer>”

Reward model
generates score for
last action, given
prior steps.

“Who is older Glenn
Hughes or Ross Lynch?”

“Who is older Glenn
Hughes or Ross Lynch?”

Reward

Reward
Reward model generates
score for last action, given
prior steps. (no access to
golden answers.)

Reward model
generates score for last
action, given prior steps.

Figure 5.2.2: In SWiRL Stage 2, we perform step-wise RL to train on the synthetic multi-step
trajectories from Stage 1. Each step contains an action, which corresponds to a tool call or the
final response. The model is free to generate chains of thought during each step. The environment
responses are captured in the prior steps of the synthetic trajectories, which were generated offline.
Granular feedback is provided by a generative reward model, which is used to perform RL optimization
directly on each action, given the prior context.

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 82

As shown in Figure 5.2.2, we propose a RL approach capable of learning effectively from the

synthetic multi-step trajectories generated in Stage 1. At each step, a base model is optimized to

predict either the next intermediate step or the final response based on preceding context. At each

step i, the model has access to the full contextual history, including the original prompt, all previous

model-generated steps and any applicable environment response corresponding to those steps.

Thus, our objective function is the expected sum of stepwise rewards:

J(θ) = Es∼T, a∼πθ(s) [R(a|s)]

Here, πθ is the base model parametrized by θ, which is finetuned via SWiRL (Note that we

also use πθ to generate synthetic data.) T denotes the set of all states in the synthetic multi-step

trajectories, i.e., each incremental state s within each trajectory τ . The reward signal R(a|s) is

derived from a generative reward model, specifically Gemini 1.5 Pro in our experiments, which

assesses the quality of the generated response a given the context s. No golden labels are used.

We optimize this expected reward using the same policy gradient algorithm used in Gemma 2 to

perform RLHF [70, 71]1 Our granular, step-by-step finetuning paradigm enables the model to learn

both local decision-making (next-step prediction) and global trajectory optimization (final response

generation) while being guided by immediate feedback on the soundness of each prediction.

5.2.3 Step-Wise Inference-time Evaluation

As shown in Figure 5.2.3, at inference time, we iteratively prompt the model to either call a tool

or produce a final answer. If the model generates a search query (indicated by <search_query>

</search_query> tags), we parse out that query, embed it with a Gecko model [125], perform a

nearest neighbor lookup in the corresponding vector database, and inject the retrieved article into the

model’s context window. If the model generates a calculator tool call (indicated by <math_exp>

</math_exp> tags), we parse out the mathematical expression, execute it with a SymPy interpreter,

and inject the calculated results into the context window. This process terminates when the model

either produces an answer (signaled by producing <answer> </answer> tags) or reaches the

maximum number of queries (5 for question-answering datasets, and 10 for mathematical reasoning

datasets). See Appendix 5.D for example trajectories.
1This particular RL algorithm remains unpublished, an unfortunate circumstance that I came to realize only after

having run all of the experiments in this chapter. For the purposes of this chapter, I think it is sufficient to say that it
is a policy gradient method that closely resembles GRPO [185], as the contributions here are largely orthogonal to the
choice of RL optimization algorithm.

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 83

Figure 5.2.3: SWiRL Multi-Step Inference. At inference time, we iteratively prompt the model to
call available tools as many times as necessary (up to a limit) before answering the original question.
Here, prompts are truncated for clarity and to adhere to space limitations, but full trajectories are
available in Appendix 5.D. Note that, in this particular example, the original GSM8K question
contains a grammatical error and should read “How much was each watermelon sold for?”.

5.3 Related Work

Reinforcement Learning for LLM Finetuning. One prominent approach, Reinforcement Learn-

ing from Human Feedback (RLHF) [164, 45], consists of training a reward model on human preference

labels at the response level, followed by RL optimization using Proximal Policy Optimization (PPO)

[179]. Building upon this framework, Reinforcement Learning with AI Feedback (RLAIF) [18] has

emerged as a scalable alternative that leverages AI models to generate feedback based on predefined

principles or constitutions, reducing the need for costly human annotations. RL from Execution

Feedback (RLEF) [68] uses environment feedback, such as pass rate on coding test cases, to calculate

the reward, which it then optimized via PPO. Besides PPO, other RL optimizations, such as Direct

Preference Optimization (DPO) [169] and its successors (e.g., [17, 59, 143, 121]) as well as GRPO [185]

have also proven to be effective for finetuning LLMs to maximize a target reward. A limitation of the

above approaches is that they focus on single-step optimization with the reward being calculated only

at the end of the episode, leading to suboptimal performance for multi-step optimization [133, 213]. In

SWiRL, we focus on scenarios where multiple steps of reasoning and tool calls are necessary prior to

generating a response. Unlike the above methods, SWiRL enables the model to receive feedback on its

granular stepwise actions which leads to better multi-step reasoning and tool use across longer horizons.

Multi-Step Optimization with RL. Recent work including DQO [133] and OREO [213] propose

offline reinforcement learning to improve multi-step reasoning for LLMs. However, neither focuses

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 84

on enhancing a model’s ability to use tools or interact with an external environment. Additionally,

unlike our approach, which optimizes at the (reasoning) step level, DQO relies on token-level actions,

which as shown in [213], are generally less effective than step-level actions. Moreover, OREO requires

training a separate value network and policy network, and relies on iterative co-optimization of both

models. The process of maintaining, training, and serving these two models can be prohibitively

expensive, particularly for larger models. PRIME [51] proposes an online approach to improve

multi-step reasoning, but does not enable tool use or offline training. Tulu-3 [120] uses verifiable

rewards to train a language model to do better at mathematical reasoning, but unlike SWiRL,

requires access to golden labels.

Reasoning Improvement with Synthetic Data. Several approaches have been proposed for

generating synthetic reasoning data. These methods either rely on golden labels to filter the data or

use a combination of golden labels and process or outcome reward models [235, 189]. For example,

STaR [235] generates chain-of-thoughts (CoT) for reasoning questions, filters for those that result in

correct answers, and performs Supervised Fine-Tuning (SFT) on those reasoning traces. The paper

also proposes an augmentation technique called “rationalization”, in which for each question the

model answered incorrectly, the model is provided with the correct answer and prompted to generate

a CoT that leads to that answer. Rejection finetuning (RFT) [231] is another method that relies on

collecting reasoning traces from the model and using those with correct outcomes for SFT. ReST

[80] demonstrates strong performance on machine translation by iteratively generating data and

then finetuning on that data using either a supervised or reinforcement learning objective. ReSTEM

[189] is an extension of ReST which outperforms training on human data alone for math and coding

evaluations, but which plateaus after a few iterations, presumably due to overfitting. Our method

also uses a model-based approach to generate multi-step trajectories. However, we show that using a

model to label the steps within each reasoning trajectory leads to higher out-of-domain generalization

than using only the trajectories which contain correct final answers, meaning that we do not require

golden labels. In addition, we enable the model to use tools iteratively to perform multi-hop question

answering and mathematical reasoning.

Process vs. Outcome Based Optimization. There have been a number of attempts to compare

the effectiveness of process and outcome-based approaches in the domain of math and reasoning [128,

206, 190]. For example, [128] showed that (Outcome Reward Models) ORMs are more effective than

(Process Reward Models) PRMs at the task of ranking samples from a fixed generator model, whereas

[206] demonstrated that outcome supervision yields comparable accuracy to process supervision at

lower cost, but that the reasoning traces from the resulting model exhibit lower fidelity. Both rely on

expensive human annotations and golden labels, and do not explore the differential effect of data

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 85

filtering on supervised vs. RL optimization objectives.

5.4 Experiments

Datasets HotpotQA CofCA (Avg) MuSiQue
Metrics PM† PM† PM†

Proprietary LLMs
GPT-4 74.8 51.9 63.9

GPT-3.5 62.8 40.7 53.1
Gemini 1.0 Pro 63.5 33.3 46.9

Bing Chat 72.1 41.6 52.3
o1-preview 76.9 58.5 67.9

Open Source LLMs
Llama 2-7b 38.5 28.9 34.2
Mistral-7b 34.9 25.6 29.2
Qwen 2-7b 39.3 30.7 33.5

Base Gemma 2-27b 58.6 31.7 35.4
SWiRL Gemma 2-27b (Ours) 67.8 39.3 43.6

Table 5.4.1: Comparison of Accuracy (PM†: Partial Match) across Multiple Datasets: HotpotQA,
CofCA (Average of 2-hop, 3-hop, and 4-hop), and MuSiQue. Baseline results were drawn from
[222]. The Gemma-2 models, both SWiRL and the base model, were not given access to the context
documents, but were allowed to sequentially query a vector database. The SWiRL model was trained
on HotPotQA using process-filtered data, and for consistency with baseline results, evaluated on
GPT-4o with the same prompts as [222] on 300 randomly subsampled questions. See Appendix 5.E
for example ids.

5.4.1 Evaluation Datasets

To evaluate performance on multi-step search tool use, we selected five challenging multi-hop

question-answering and mathematical reasoning datasets:

• HotPotQA [226] is comprised of multi-hop questions from a variety of domains. Human

annotators constructed the questions to be answerable only by combining information from

two paragraphs of Wikipedia.

• MuSiQue [202] is a multi-hop question-answering dataset constructed by chaining together

multiple single-hop questions.

• CofCA [222] is a multi-hop dataset constructed to be answerable only by querying a counter-

factual version of Wikipedia. It contains 2- to 4-hop questions.

• BeerQA [168] is an extension of HotPotQA designed to include an even greater number of

hops than the original dataset.

• GSM8K [49] is a dataset composed of grade school math word problems, which typically take

2-8 steps to solve.

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 86

For question-answering datasets, we set up a vector database containing all articles from each

data split using Gecko-1B with 768-dimensional embeddings (English) [125].

For the experiments in Table 1, we follow the same procedure as [222], evaluating performance

on 300 randomly subsampled examples from the target dataset, using the same language model

as a judge (GPT4o) and the same prompt. For every other experiment in this paper, we used

Gemma-2-27b as our judge, as this was more cost effective, with the exception of GSM8K for which

we used Gemini 1.5 Pro as it exhibited noticeably better numeric evaluation. Model-based evaluation

is emerging as a scalable and less brittle alternative to exact match and F1 metrics [238, 78], but

does introduce a new source of stochasticity into the evaluation. See Appendix 5.C for our own

manual inspection and error analysis of three different model judges.

As described in Section 5.2.3, for each question, we iteratively prompt the model to either call a

tool or produce a final answer, and limit the maximum number of queries to 5 for question-answering

datasets, and 10 for mathematical reasoning datasets.

5.4.2 Results and Discussion

Figure 5.4.1: Impact of Data Filtering on Model Performance. The synthetic trajectories used
for training were derived from HotPotQA prompts. SWiRL learns to perform multi-hop question
answering even when trained on unfiltered synthetic data. SWiRL’s best performance comes from
training on process-only filtered data, where the data is selected based on the soundness of each step
within its reasoning traces, but which includes both correct and incorrect responses.

Impact of Data Filtering on Model Performance: We evaluated the influence of various

filtering mechanisms on downstream task accuracy, as shown in Figure 5.4.1. Concretely, we consider

4 different types of filtering: no filtering, outcome-based filtering that ensures correct final answers,

process-based filtering that ensure that each step is correct as judged by a model, and both process

and outcome-based filtering.

In all experiments, we fix the number of trajectories used for finetuning (with the exception of our

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 87

GSM8K HotPotQA CofCA BeerQA MuSiQue
(math) (qa) (qa) (qa) (qa)

Base Model 0.65 0.65 0.54 0.59 0.45
SWIRL on GSM8K (math) 0.79 0.71 0.56 0.68 0.49
SWIRL on HotPotQA (qa) 0.76 0.73 0.62 0.68 0.50

Table 5.4.2: SWiRL Generalization Performance. Finetuning on synthetic traces from HotPotQA or
GSM8K improves performance on both in-distribution and out-of-distribution tasks. Interestingly,
training on a different domain and tool (e.g., math and a calculator) improves performance on
question-answering with a search engine and vice versa, suggesting the effectiveness of SWiRL in
improving general multi-step reasoning and tool use capability.

ablation study on the impact of scaling dataset size), and we provided all models with access to an

appropriate tool. Notably, process-only filtering consistently yields the highest accuracy, suggesting

that focusing on the procedural aspects of data refinement is more important than the correctness

of a training trajectory. While both unfiltered and filtered data demonstrated an improvement

over the baseline model, filtering for correctness usually harms performance; with the exception of

MuSiQue, outcome-filtered or outcome and process-filtered data is less effective than unfiltered data.

We hypothesize that this is because SWiRL actually benefits from having access to both positive and

negative examples. These results underscore the relative unimportance of outcome-based filtering,

which requires golden labels. They also demonstrate that our process RL method can effectively

learn from even trajectories with incorrect final answers.

Generalization Across Disparate Tasks: To measure generalization across training tasks, we

evaluated the mathematical reasoning capabilities of a model trained on multi-hop question-answering

with search tool use (HotPotQA). Specifically, we evaluated the performance of this model on GSM8K,

a mathematical reasoning task, providing the model with a SymPy interpreter to use as a calculator.

This experiment was run on a different random subsample of 300 examples. As shown in Table 5.4.2,

applying SWiRL on out-of-distribution data and tasks still improves performance.

Comparison of Supervised Finetuning and SWiRL: Figure 5.4.2 compares the performance of

Supervised Fine-Tuning (SFT) and SWiRL on downstream tasks. The results show that SFT leads to

worse overall performance when compared to SWiRL across all data filtering strategies. We observe

that SFT performs better if we apply it to data that is both process and outcome-filtered, rather only

process-filtered. However, interestingly, SWiRL learns best from data that is only process-filtered.

We attribute this to SFT’s tendency to memorize, rather than generalize [46, 181], which can hinder

the model’s performance on new, unseen scenarios. In contrast, SWiRL has the ability to improve

model performance by targeting per-step reward maximization. SWiRL enables the model to develop

a deeper understanding of the necessary steps of query generation and retrieval, which leads to

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 88

Figure 5.4.2: Comparison of SFT and SWiRL. Synthetic data for training is derived from HotPotQA,
and to derive accuracy, Gemma 2 27b evaluates whether the model’s answer matches the golden
answer. SWiRL greatly benefits from process-only filtered traces, and unlike SFT, is capable of
learning from traces with both correct and incorrect outcomes.

enhanced planning and generalization.

Effect of Tool Use: As discussed in Section 5.2.3, at inference time, we use the proposed multi-step

eval as shown in Figure 5.2.3 and we iteratively prompt the model to make tool calls as necessary to

answer the question. As shown in Figure 5.4.3, both base and SWiRL models improve with SWiRL’s

multi-step tool use inference, but SWiRL-training offers even further improvements. Without access

to a vector database, SWiRL does not outperform the base model, likely reflecting that these

questions cannot be answered without access to particular facts. However, the SWiRL model exhibits

substantial improvements in mathematical reasoning (GSM8K), even without access to a calculator

tool, suggesting that SWiRL training may improve the model’s ability to break down complex

problems into multiple manageable subtasks. However, the results on multi-hop question-answering

without tool use are more mixed,

Impact of Scaling Finetuning Dataset and Model Size: Our experiments on scaling the

fine-tuning dataset size reveal a clear trend: SWiRL has the ability to leverage larger datasets, even

when using only process-filtered data, as shown in Figure 5.4.4. As the fine-tuning dataset size

increases, a consistent enhancement in model performance is observed across our target multi-step

reasoning tasks. While a limited dataset of 100 data points appears insufficient for the model to

effectively generalize, a significant improvement is evident with 1,000 data points, showing solid

gains across all datasets. Furthermore, scaling up to 10,000 data points continues to yield further

performance enhancements, confirming the efficacy of our method in capitalizing on larger datasets

for improved reasoning capabilities.

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 89

Figure 5.4.3: Performance of SWiRL with and without multi-step tool use. SWiRL’s multi-step tool
use inference improves the performance of both the base model and the SWiRL-finetuned model,
but benefits the latter substantially more. Without access to a calculator tool, the SWiRL model
outperforms the base model on mathematical reasoning, but performance on multi-hop question-
answering suffers, as answering knowledge-based questions is more dependent on knowledge of
particular facts and therefore access to the search tool.

Figure 5.4.4: Performance as a Function of Synthetic Dataset Size. Synthetic training data is derived
from HotPotQA, and accuracy is evaluated by Gemma 2 27b. As we scale the dataset size, we observe
consistent improvements in model performance. With only 1000 data points, the model robustly
improves both on in- and out- of distribution datasets.

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 90

We also varied model size, observing that smaller models (2b and 9b) may benefit from in-domain

SWiRL, but do not display the same generalization as their larger counterpart, Gemma 2 27b. See

results in Appendix 5.B.

Effect on Mean Process Label Accuracy:

In the previous subsections, we evaluated the effect of SWiRL on downstream task accuracy. Here,

we take a deeper look to understand how SWiRL achieves these performance improvements. In Table

5.4.3, we show the average process label accuracy for the baseline model vs. a SWiRL finetuned

model on 500 trajectories (seeded by 100 questions) for both HotPotQA and GSM8K. To calculate

the score per step, we use the same model and prompt as we used for process filtering, as described in

Section 5.4.1. We take a macro-average of the process label scores within and then across trajectories.

We observe that both for in-distribution and out-of-distribution tasks, the SWiRL model generates

trajectories with higher average process labels, suggesting that the higher final accuracies are driven

by better multi-step reasoning.

HotPotQA GSM8K
(in distribution) (out of distribution)

Base (Mean Process Label) 82.5% 87.5%
SWiRL on HotPotQA (Mean Process Label) 91.0% 91.6%

Table 5.4.3: Impact of SWiRL on Process Correctness. After our multi-step RL optimization, we
observe that the average correctness of each step improves over the base model on both in- and out-
of distribution tasks.

5.5 Conclusion

In this chapter, we propose a synthetic data generation and offline reinforcement learning approach

to multi-step reasoning and tool use. This approach outperforms baselines by an average 15%

across challenging multi-hop question-answering and mathematical reasoning tasks. We explore the

effect of different data filtering strategies in a multi-step, tool use setting, and find that our RL

approach is effective even on unfiltered data, but performs best on process-filtered data. Unlike

supervised finetuning, our RL approach can learn from trajectories with incorrect final answers and

actually benefits from the presence of a mixture of both correct and incorrect final answers. SWiRL

demonstrates strong generalization properties, improving performance on mathematical reasoning

(GSM8K) by 16.9% when trained on multi-hop question-answering (HotPotQA) and 9.2% vice versa.

Appendix

5.A Prompts for Synthetic Data Generation, Filtering, and

Evaluation

In this chapter, we use the following prompts for data generation, filtering, and evaluation.

Prompt Type Prompt Text

Prompt for Multi-Step Syn-
thetic Data Generation for
Question-Answering with
Search Tool Use

<start_of_turn>user
Please help me answer the following question in just a
few words. If you think it would help to do a search,
please generate a search query enclosed by
<search_query> QUERY </search_query> tags.
Some questions may require multiple searches in order to
answer, so I will allow you to make up to {} sequential
queries before answering the question.
Please do not repeat queries you have already issued, as
this is a waste of time.
I will provide search results in the following format:
QUERY → RESULT.
Once you have enough information, generate an answer
enclosed by <answer>ANSWER</answer> tags.
Please either issue a search query or answer the question,
but not both.
The question is: {}
<end_of_turn>

91

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 92

Prompt Type Prompt Text

Prompt for Multi-Step Syn-
thetic Data Generation for
Mathematical Reasoning with
Calculator Tool Use

<start_of_turn>user
Please help me answer the following question in just a
few words. If you think it would help to use a calculator,
please generate a mathematical query enclosed by
<math_exp> MATH EXP </math_exp> tags.
Some questions may benefit from using a calculator
multiple times in order to answer, so I will allow you to
make up to {} sequential queries before answering the
question.
Please do not repeat queries you have already issued, as
this is a waste of time.
I will provide results in the following format:
QUERY → RESULT.
Once you have enough information, generate an answer
enclosed by <answer>ANSWER</answer> tags.
Please either issue a search query or answer the question,
but not both.
The question is: {}
<end_of_turn>

Prompt Type Prompt Text

Prompt for Process-Filtering
on Multi-Step Search Tool Use
Trajectories

<start_of_turn>user
My boss asked me to answer the following question with
the help of a search engine: {}
This means that I might need to decompose the question
into a sequence of searches before being able to answer
the question.
I am trying to learn how to do this more effectively, so
please provide feedback on my last message.
Please take a look at our conversation so far: {}
When evaluating a message, please only consider the last
message and do not penalize or reward me for previous
messages.
When evaluating an answer, please consider only whether
the answer follows from the search results, and not
whether you believe the answer to be correct.
If there is not enough information from the search results
to answer the question, you should rate any answer as
"BAD". Pay close attention as it may initially seem like
the answer is present when it is not.
When evaluating a search query, please consider whether
it is likely to help me answer the original question.
Explain your reasoning and then answer with either
"GOOD" or "BAD".
<end_of_turn>

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 93

Prompt Type Prompt Text

Prompt for Evaluation /
Outcome-Filtering on Multi-
Step Trajectories with Search
Tool Use

<start_of_turn>user
I need you to help me grade the answer to the following
question: "{}".
The answer key says: {}, and my answer is {}. Am I
correct?
Please explain your reasoning and then answer "YES" or
"NO".
Do not use your own knowledge to the decide, but simply
check whether I gave the answer in the answer key.
<end_of_turn>

Prompt Type Prompt Text

Prompt for Evaluation /
Outcome-Filtering on Multi-
Step Trajectories with Calcula-
tor Tool Use

<start_of_turn>user
I need you to help me grade the answer to the following
question: "{}".
The answer key says: {}, and my answer is {}. Am I
correct?
Please explain your reasoning and then answer "YES" or
"NO".
There are multiple ways to write the same answer. For
example, "10", "10.00", "$10", and "$10.00" are all
equivalent.
<end_of_turn>

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 94

5.B Impact of Model Size on Effectiveness of SWiRL

The trend is that models are growing in parameter count over time [182], so measuring the impact

of model size on the effectiveness of a method can provide insight into its longevity and future

impact. It is also interesting to see whether larger models are able to learn more general patterns

from the training process, and therefore exhibit greater transfer learning across datasets and even

domains (e.g., math vs. question-answering). As shown in Figure 5.B.1, SWiRL demonstrates a clear

performance boost over the baseline Gemma 2-27b model, showcasing consistent improvements across

both in-domain (HotPotQA) and out-of-domain datasets (MuSiQue, COFCA, and BeerQA); while the

2b and 9b Gemma models also exhibit enhanced performance on in-domain data, their generalization

performance on out-of-domain data is less consistent. This suggests that the effectiveness of SWiRL

grows with increased model size, which is consistent with the observation that methods such as

RLHF [164] and RLAIF [18] are more effective for larger models.

Figure 5.B.1: SWiRL Performance vs. Model Size. Synthetic data for training is derived from
HotPotQA. Step-Wise RL finetuning robustly improves performance over baseline for the 27b model
across both in-domain (HotPotQA) and out-of-domain datasets (MuSiQue, CofCA, and BeerQA).
However, while the in-domain improvements hold for smaller models, the out-of-domain performance
is mixed, suggesting that the relative effectiveness of SWiRL is higher for larger models.

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 95

5.C Error Analysis of Three LLM Judges

Table 5.C.1: Error Rates for Gemma-2-27b Judgments on HotPotQA (N=100)

Metric Rate (%)

False Positive Rate (FPR) 4

False Negative Rate (FNR) 1

Table 5.C.2: Manual Analysis of LLM Math Grading Accuracy (N=100)

Model FP FN Notes

Gemma-2-27b 15 0 Overly permissive; all errors
involved units.

GPT-4o 0 10 Overly harsh; all errors in-
volved units.

Gemini 1.5 Pro 4 0 Accurate, slightly permissive;
all errors involved units.

To evaluate the suitability of language models to serve as evaluators (i.e., check the correctness of

a model answer, given a golden answer), we manually checked the correctness of 100 model judgments

from Gemma-2-27b on HotPotQA questions. As shown in Table 5.C.1, we found that the error

was relatively low (4% false positives and 1% false negatives), justifying the use of this low cost

open-source model as our LLM judge.

However, we noticed that Gemma-2-27b made more errors when it came to numeric quantities,

so we decided to run a separate analysis for GSM8K, manually evaluating 100 model judgments each

for three language models (Gemma-2-27b, GPT-4o, and Gemini 1.5 Pro). Interestingly, we found

that Gemma-2-27b tended to be overly “permissive” in its grading, but had zero false negatives,

whereas GPT-4o had a relatively high false negative rate but no false positives. We also observed

that relative results were consistent across model judges; if GPT-4o gave a higher accuracy score to a

particular model, Gemma-2-27b did as well, even if the absolute scores differed. To reduce noise, we

chose to use Gemini 1.5 Pro as the LLM judge for GSM8K, in spite of its higher cost.

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 96

5.D Example Trajectories

For clarity, we provide example trajectories from question-answering and mathematical reasoning

datasets, which showcase both search and calculator tool use.

Trajectory Type Trajectory Text

Example Multi-Hop Question-
Answering Trajectory with
Search Tool Use Generated by
SWiRL model on HotPotQA

<start_of_turn>user
Please help me answer the following question in just a
few words. If you think it would help to do a search,
please generate a search query enclosed by
<search_query> QUERY </search_query> tags.
Some questions may require multiple searches in order to
answer, so I will allow you to make up to 5 sequential
queries before answering the question.
Please do not repeat queries you have already issued, as
this is a waste of time.
I will provide search results in the following format:
QUERY → RESULT.
Once you have enough information, generate an answer
enclosed by <answer>ANSWER</answer> tags.
Please either issue a search query or answer the question,
but not both.
The question is: What company published both The
Scorch Trials and The Death Cure?
<end_of_turn>
<start_of_turn>model
<search_query>the scorch trials publisher
</search_query>
<end_of_turn>
<start_of_turn>user
the scorch trials publisher -> The Scorch Trials is a 2010
young adult post-apocalyptic dystopian science fiction
novel written by American author James Dashner and
the second book, fourth chronologically, in "The Maze
Runner" series. The novel was published on September
18, 2010 by Delacorte Press. It is preceded by "The Maze
Runner", and followed by "The Death Cure". A was
released on September 18, 2015 by 20th Century Fox.
<end_of_turn>
<start_of_turn>model
<search_query>The Death cure publisher
</search_query>
<end_of_turn>
<start_of_turn>user
The Death cure publisher -> The Death Cure is a 2011
young adult dystopian science fiction novel written by
American writer James Dashner and the third book, fifth
chronologically, in the "Maze Runner" series. It was
published on October 11, 2011 by Delacorte Press and
was preceded by "The Maze Runner" and "The Scorch
Trials" and followed by the series prequels, "The Kill
Order and The Fever Code." <end_of_turn>
<start_of_turn>model
<answer>Delacorte Press</answer>
<end_of_turn><eos>

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 97

Trajectory Type Trajectory Text

Example Multi-Step Math Rea-
soning Trajectory with Calcu-
lator Tool Use Generated by
SWiRL model on GSM8K

<start_of_turn>user
Please help me answer the following question in just a
few words. If you think it would help to use a calculator,
please generate a mathematical query enclosed by
<math_exp> QUERY </math_exp> tags.
Some questions may benefit from using a calculator
multiple times in order to answer, so I will allow you to
make up to 10 sequential calls before answering the
question.
Please do not repeat queries you have already issued, as
this is a waste of time.
I will provide search results in the following format:
QUERY → RESULT.
Once you have enough information, generate an answer
enclosed by <answer>ANSWER</answer> tags.
Please either issue a math query or answer the question,
but not both.
The question is: Natalia sold clips to 48 of her friends in
April, and then she sold half as many clips in May. How
many clips did Natalia sell altogether in April and May?
<end_of_turn>
<start_of_turn>model
<math_exp>48 / 2 </math_exp>
<end_of_turn>
<start_of_turn>user
48 / 2 -> 24.0
<end_of_turn>
<start_of_turn>model
<math_exp>48 + 24</math_exp>
<end_of_turn>
<start_of_turn>user
48 + 24 -> 72.0 <end_of_turn>
<start_of_turn>model
<answer>72</answer> <end_of_turn><eos>

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 98

5.E Example Ids

For reproducibility, we provide the ids of the examples used for evaluation.

HotPotQA Example Ids

5ab46a295542990594ba9c1c, 5a85ad925542997b5ce40023, 5a8353285542996488c2e40d, 5a79be835542994bb9457052,
5a82a0fc55429954d2e2eb87, 5adc2c9355429947ff173904, 5ab1e71b554299340b525421, 5a7790ac5542992a6e59def9,
5a83e4195542990548d0b243, 5ab3239b554299194fa93574, 5ae1a460554299234fd042a8, 5a81e075554299676cceb128,
5a7f714c5542992097ad2f6e, 5ab639c055429953192ad2aa, 5a7c1fe4554299683c1c62cf, 5ab7cff355429928e1fe391e,
5aba5b2455429939ce03dc9c, 5a7173b45542994082a3e83c, 5a90049d55429933b8a20468, 5a8e0d7e5542995085b373b4,
5adfbf3155429906c02daa29, 5abf1fed5542990832d3a127, 5addf6415542990dbb2f7f25, 5a8138c155429938b6142300,
5a7ae77b554299042af8f6b0, 5ae293fb5542996483e649fe, 5ae40a8b55429970de88d8a9, 5ab457445542991751b4d748,
5a77d6025542995d83181301, 5a89c2715542993b751ca990, 5a7a4d845542990783324f04, 5ae0ef5e5542990adbacf6df,
5a72321f55429971e9dc934a, 5ac440355542995c82c4ad0d, 5a7dd8625542990b8f503ae8, 5ab48dd55542991779162cd9,
5abc3948554299700f9d782b, 5a8a7cb255429930ff3c0df8, 5ae1178e5542997b2ef7d0d6, 5abd08ae554299700f9d7980,
5ab1e5975542997061209590, 5a74dca85542996c70cfae1f, 5ab8348d55429934fafe6d13, 5a78f1ef55429974737f7919,
5ac16eb355429964131be1f5, 5ae5e12d55429929b08079e4, 5ade6bbf5542997c77adee24, 5adf573c5542995534e8c798,
5a8901d9554299515336125b, 5a89fd9e55429970aeb701e8, 5a7917d955429974737f7982, 5adc1017554299438c868d20,
5a8da5c355429941ae14dffe, 5a8cad265542996e8ac88b19, 5add4ae25542992200553a88, 5ae026eb55429924de1b703a,
5a74fcbe5542996c70cfae67, 5adfa8ac55429942ec259add, 5adbf4555542994650320c18, 5ac31609554299741d48a1c0,
5a7b65bf55429931da12ca86, 5a73870455429905862fe051, 5a8b009755429950cd6afc40, 5ae62b2d5542992ae0d1625b,
5a7b5d795542992d025e6825, 5ab3185755429976abd1bc5f, 5ac046475542996f0d89cb70, 5a89138255429951533612af,
5a85d69f5542997175ce2062, 5a82dfa455429940e5e1a938, 5a8730355542991e7718170f, 5a85b3455542994c784ddb4d,
5a8658c4554299211dda2b02, 5abd9fa55542996e802b4809, 5ab268aa5542993be8fa9908, 5ae5dcc755429929b08079d8,
5a727ef15542992359bc30c5, 5a8e2ba85542995a26add474, 5a84f9465542991dd0999e36, 5a87099455429960ec39b704,
5a864d835542994775f6073c, 5ab9bf3b554299743d22ebe6, 5a864dfc5542994775f6073f, 5a871ce055429960ec39b749,
5a8bd3375542997f31a41dd3, 5ab277965542993be8fa9919, 5abcea83554299114383a194, 5a897561554299515336130b,
5adfdf4a55429906c02daa7c, 5ae265bb5542992decbdccea, 5a84b3035542992a431d1a91, 5a77280b5542994aec3b71ff,
5ae4d41355429908b6326488, 5a76de035542994aec3b718d, 5a7d2045554299452d57bb09, 5abc7af15542993a06baf8ed,
5abddeb55542991f66106083, 5a8218855542990a1d231f4e, 5a732fbb5542992359bc3271, 5a8024ad5542992097ad2fde,
5ae142a4554299422ee9964a, 5a72d5155542991f9a20c5b4, 5a722a4b55429971e9dc931f, 5a7a9ca455429941d65f26f3,
5adfa5405542992d7e9f93ca, 5a7b8e3d55429927d897bfec, 5a7c6ac25542996dd594b925, 5abae9cd5542996cc5e49f04,
5ae18e37554299234fd0428f, 5a84d29d5542994c784dda60, 5ae44eeb5542995dadf2430f, 5adbe7b455429944faac23b0,
5abedd105542993fe9a41d63, 5a80a7df554299485f59867f, 5ab2f6b1554299545a2cfaea, 5ac29ddc554299657fa28fdc,
5a7222ce55429971e9dc92c7, 5ae221f15542994d89d5b366, 5a7f9cc25542995d8a8ddec2, 5abe42aa55429976d4830ac2,
5ae329e45542991a06ce993e, 5a882caa5542997e5c09a596, 5ac1a94455429964131be262, 5a762e0f5542992d0ec06052,
5a7918ec554299148911f9ef, 5a7e0bd25542997cc2c4750b, 5ab8af3c55429916710eb0ac, 5aba94465542994dbf019953,
5a82ef725542995ce29dcd0a, 5ab2a5fb554299545a2cf9ef, 5ab3d4ae5542992ade7c6ec5, 5ac25882554299636651998c,
5ae535f55542993aec5ec17c, 5ac55c915542993e66e8234f, 5adfcf7655429906c02daa49, 5a8a12555542992e4fca84f1,
5a8af82c55429950cd6afc31, 5a8c564b554299240d9c2128, 5a89efb25542992e4fca8497, 5ab58009554299637185c5b2,
5ae69a455542996d980e7c48, 5a8f8dfb5542997ba9cb32bb, 5a811e1955429903bc27b931, 5a81f2955542990a1d231eee,
5abc428955429959677d6a67, 5ac263a25542992f1f2b38a3, 5ac5190d5542996feb3fe9f8, 5a82fbfc55429954d2e2ebe5,
5abce73b5542993a06baf9a2, 5adbf672554299438c868cf0, 5a75dd02554299109176e5aa, 5a8200d055429926c1cdade2,
5a8090105542996402f6a55c, 5adfda36554299025d62a35e, 5a7f9e0155429969796c1aee, 5a7b5f64554299042af8f757,
5a8a7bfb5542996c9b8d5eff, 5ae73fae5542991bbc9761c9, 5a77b0795542992a6e59df89, 5ac178655542994ab5c67d5a,
5ab5eab35542992aa134a3dd, 5ab667be55429954757d328a, 5a7a333f5542996a35c17130, 5ac262a055429951e9e6859a,
5a87ae9d5542994846c1cdc6, 5ac1985e55429964131be248, 5a848c215542992a431d1a4f, 5a89a79c5542993b751ca970,
5a8e16d355429917b4a5bd18, 5a7289755542992359bc30d9, 5a7d1dd055429909bec76960, 5ac152e755429964131be1bb,
5ae7d4f4554299540e5a5659, 5ae21559554299492dc91bc2, 5a8935e6554299669944a506, 5a831cb955429966c78a6b3f,
5a77aa565542992a6e59df6a, 5abff5e95542997d6429596a, 5ae07634554299603e418412, 5ab4eb2b55429942dd415fa2,
5abd512655429924427fcfb4, 5a7ad0195542992d025e66fd, 5a7cf9b455429907fabef07c, 5ae0fa52554299422ee99594,
5ae24d1a5542992decbdcca6, 5a7144df5542994082a3e72f, 5ac0279c5542996f0d89cb3f, 5a88a93c5542994846c1cead,
5adec5955542992fa25da83f, 5abbfd00554299114383a0d4, 5a7b9cac554299042af8f78f, 5ab9020d5542991b5579f0ca,
5a7c1c595542990527d55456, 5a7c583e5542996dd594b910, 5a8e72f05542990e94052b13, 5a85a1015542991dd0999e6f,
5adcb8205542994ed6169bd2, 5a8cef7a554299441c6b9f8a, 5a7fee435542994857a7685b, 5a7b4f2c55429931da12ca66,
5abeaf8a5542997ec76fd346, 5abbe67e5542993f40c73c05, 5a8f4e8955429918e830d1f1, 5ac1a0e15542994ab5c67dab,
5a7a9b4755429941d65f26ef, 5a87c1ac5542997e5c09a565, 5ab962ff554299131ca4231f, 5a7b79c95542997c3ec971b0,
5abe3ac35542993f32c2a0ac, 5a7639d55542992db9473748, 5a7a2ec05542990198eaf0bc, 5ac3d31a5542995ef918c249,
5abae3eb5542996cc5e49ee2, 5adff38b55429925eb1afb7d, 5ab7530b55429928e1fe3849, 5a88dcef55429938390d3fe3,
5ae0027b55429942ec259bda, 5a85ec815542994775f606af, 5ac172a15542994d76dcce2e, 5ac073eb5542996f0d89cbd8,
5ac5262755429924173fb60f, 5a8e72fe5542990e94052b14, 5a76133755429976ec32bcff, 5ae6b38c5542992ae0d16392,
5ab98fee554299131ca4237c, 5ac0e564554299294b219045, 5a72edeb5542992359bc31da, 5a7b663355429931da12ca87,
5a7cbe0f55429909bec767ee, 5a845bdd5542996488c2e524, 5a8a28b55542996c9b8d5e23, 5ae5fb975542996de7b71aa8,
5aba9cff5542994dbf01997e, 5ae11f0b5542997b2ef7d0e0, 5abe16c655429976d4830a71, 5abbdd355542992ccd8e7fc6,
5abedbfa5542993fe9a41d5f, 5a792421554299148911fa09, 5a80c5f6554299260e20a151, 5ab4136b5542996a3a969f18,
5adc375055429944faac246c, 5ac14d9d55429964131be1ab, 5abf23a65542997ec76fd3d7, 5a7e1d4255429965cec5ea79,
5ae63c8f5542992663a4f27c, 5ae71816554299572ea546d1, 5ae4bdeb55429913cc2044ee, 5ae4a09e5542996836b02ced,
5ac2312755429964131be2c3, 5ae36d325542992e3233c3f8, 5a7d68045542995f4f40226d, 5aba88d555429901930fa811,
5a8e1e4b554299068b959e63, 5a7e6d325542991319bc94a7, 5ab96d865542996be20204df, 5ae4d2c255429960a22e01f6,
5a8053cf5542992097ad2fe0, 5a8db1b75542994ba4e3dd01, 5a8d40c95542994ba4e3dc3b, 5ae5af10554299546bf82f23,
5a8d48ff5542994ba4e3dc5a, 5ab5f694554299488d4d9a66, 5a8f99bc55429918e830d28d, 5add0ed35542990d50227dac,
5a8c38235542995e66a4755f, 5ab6ccf155429954757d3372, 5ae44fe75542995dadf24314, 5adcb67e5542994ed6169bca,
5abe833d5542993f32c2a140, 5a8b002155429950cd6afc3e, 5a76f3c65542994aec3b719a, 5ab5207c5542996a3a96a02b,
5a8a73dd5542996c9b8d5eee, 5a9063c955429933b8a2050f, 5a7b45c855429931da12ca4a, 5a8e8b6c5542990e94052b43,
5a7a57935542990783324f1d, 5abe225c5542991f661060ec, 5a72a6b65542994cef4bc3b7, 5ab7f3625542995dae37ea06,
5a7cfdda55429907fabef095, 5a8994505542993b751ca950, 5ae308775542992decbdcdcd, 5ab72f32554299110f219ac3,
5a7b93e05542995eb53be961, 5a88710b554299206df2b26b, 5ab6259855429953192ad272, 5ac29ca6554299218029dac0,
5ac0ab335542992a796ded5d, 5ade469c5542992fa25da722, 5ab318a0554299233954ff07, 5ab1f75d554299340b525443,
5ade5664554299728e26c6d5, 5ae4a3b65542995ad6573dee, 5ae40e3955429970de88d8c5, 5ab9025855429934fafe6e47,
5a82100955429926c1cdae1e, 5ac5138c5542994611c8b36a, 5ab2eb7755429929539468b9, 5ab738945542993667793f97

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 99

CofCA Example Ids

5a866fee5542991e77181657, 5a7db2f75542990b8f503a34, 5a8ee0a35542990e94052ba0, 5ae525835542990ba0bbb1cd,
5ac4bfd05542997ea680caab, 5ac4c61a5542996feb3fe93c, 5abbbd0f55429931dba144d5, 5a89372855429951533612e6,
5ab381b155429969a97a816b, 5ac2a912554299218029dae8, 5ae3345f55429928c4239682, 5a7bb3d9554299294a54aaa0,
5abaa25155429901930fa868, 5ac39a1c554299657fa290f9, 5a73332b5542992359bc3287, 5ae655c855429908198fa599,
5add82fc5542997545bbbd57, 5add117e5542990d50227db2, 5ab93287554299753720f78f, 5ab979da554299131ca4233a,
5a79c7f95542994bb9457099, 5ab58ae15542992aa134a357, 5ae3bdfa5542990afbd1e1c0, 5add7d055542990dbb2f7e61,
5ae136f655429920d5234325, 5a80b4635542992bc0c4a7bd, 5ab93287554299753720f78f, 5ae3b4d05542992f92d82349,
5ae77a31554299540e5a55c7, 5ae0d91e55429924de1b7198, 5ae64cab5542991bbc9760be, 5ab865be5542990e739ec8e5,
5a804fc45542992bc0c4a6f0, 5ac2ffa9554299218029dbb2, 5ae7b03e5542993210983ef6, 5a77153355429937353601c8,
5ae61be055429929b0807ace, 5a8ae6c055429950cd6afbce, 5ae64cab5542991bbc9760be, 5a72a00d5542991f9a20c53c,
5ae7b03e5542993210983ef6, 5a8eacc75542995085b37473, 5ab9253c554299131ca4227f, 5a8ee0a35542990e94052ba0,
5a866fee5542991e77181657, 5a888a8a5542997e5c09a603, 5abeed7e5542993fe9a41da0, 5ae4b3da55429913cc2044d6,
5add28c85542992ae4cec4be, 5abffc58554299012d1db552, 5a8bab4e554299240d9c207c, 5abae52a5542996cc5e49eea,
5abba27f5542996606241708, 5ab6ad2855429953192ad35e, 5aba6b2d55429901930fa7a9, 5abc145b554299658360041f,
5a7336d05542991f9a20c68d, 5ac3b0f15542995ef918c1fc, 5ac3ad225542995ef918c1da, 5a7a06935542990198eaf050,
5ae6038155429929b0807a55, 5ab3dde2554299753aec59d6, 5ab381b155429969a97a816b, 5a77bd595542995d83181291,
5a76cb6e5542994aec3b717a, 5a7524ca55429929fddd850a, 5ade025e5542997dc790711e, 5ac17f4f5542994ab5c67d70,
5ae0fa8b5542997b2ef7d0c6, 5a7336d05542991f9a20c68d, 5a8b560855429950cd6afcba, 5adce28f5542990d50227d52,
5ac491eb5542996feb3fe8d2, 5a7fe9975542994857a76847, 5a72b2695542991f9a20c56f, 5a89372855429951533612e6,
5ac219df5542992f1f2b37fc, 5a8a84775542996c9b8d5f19, 5abd7ca05542993062266cab, 5ac07a585542996f0d89cbf0,
5a8e171b554299068b959e5a, 5a79e0445542994f819ef0e7, 5ae0d26455429945ae959473, 5a8f0e065542997ba9cb319c,
5adce28f5542990d50227d52, 5a8f7de3554299458435d657, 5adc1309554299438c868d3b, 5ac219df5542992f1f2b37fc,
5a80043055429969796c1ba0, 5ac39f2a554299391541382d, 5a72b1c25542992359bc3172, 5abe3f9455429976d4830aaa,
5a8f7de3554299458435d657, 5ab74412554299110f219ae8, 5a904e725542995651fb5118, 5a7a02235542996c55b2dcd3,
5adc318c5542996e685252d5, 5a78cdf7554299029c4b5e9f, 5ade8f5e55429975fa854f11, 5ab865be5542990e739ec8e5,
5abaf9df5542996cc5e49f45, 5adcf28c5542994ed6169c30, 5a7e7bf455429949594199d6, 5adbe1e755429947ff173853,
5a83168855429966c78a6b2e, 5adc134b5542994650320c5c, 5a90c58255429916514e756c, 5a8efd3c55429918e830d179,
5abbdc135542993f40c73bf6, 5add7d055542990dbb2f7e61, 5ab344af554299753aec5969, 5a8a35625542992d82986efd,
5ab3dad4554299753aec59cb, 5a8dcd8e55429941ae14e060, 5ae377155542991a06ce99c7, 5a7cb48a5542996dd594b9a1,
5ac143535542991316484aac, 5ac31c9d554299741d48a203, 5ae5569255429908b63265e4, 5ab93287554299753720f78f,
5abd04f15542996e802b467e, 5a72b2695542991f9a20c56f, 5ab59b045542997d4ad1f190, 5a7f3d325542992e7d278cb5,
5ae061d5554299603e41840e, 5ae56d31554299546bf82ed7, 5ae255db5542992decbdccc1, 5ab6e856554299710c8d1fac,
5a7a358f5542990783324ec1, 5a7f38ae5542992e7d278c99, 5ab5c9c5554299494045f065, 5ac061ab554299294b218fac,
5a8ee0a35542990e94052ba0, 5ae3bdfa5542990afbd1e1c0, 5ab561d85542992aa134a2fc, 5ae3d8dc5542992f92d8239c,
5a7bb3d9554299294a54aaa0, 5abb1f745542996cc5e49fb5, 5adce28f5542990d50227d52, 5a904e725542995651fb5118,
5add992c5542997545bbbd83, 5adc1309554299438c868d3b, 5adfd35b55429906c02daa54, 5ab39701554299233954ff5e,
5a8b58b955429950cd6afcc2, 5ae22d035542996483e64925, 5a7fa53c5542995d8a8ddedc, 5a84322b5542996488c2e50d,
5a8d0006554299441c6b9fa8, 5add82fc5542997545bbbd57, 5a80d30655429938b61421fe, 5a72b2695542991f9a20c56f,
5a81ff1d554299676cceb1c3, 5ae755665542997b22f6a6e9, 5a79e0445542994f819ef0e7, 5ae4c2145542995dadf243e7,
5abbbd0f55429931dba144d5, 5a7ccec9554299452d57ba72, 5a7bb3d9554299294a54aaa0, 5a8355f9554299123d8c20f3,
5ab5141a5542991779162d70, 5ae4c2145542995dadf243e7, 5ae2e27155429928c423952a, 5abee5e25542994516f45473,
5ab698885542995eadef002a, 5a7f98e655429969796c1ad8, 5a77bd595542995d83181291, 5a78ed46554299148911f9a6,
5ae377155542991a06ce99c7, 5ae614055542996de7b71b2a, 5a823ae45542990a1d231f6d, 5ab520565542996a3a96a02a,
5ac168865542994ab5c67d14, 5ac1944c5542996f0d89cc90, 5a7cedca55429909bec7689c, 5ab707c05542991d32223760,
5ae27edc5542992decbdcd2d, 5ab979da554299131ca4233a, 5ab345db55429969a97a8122, 5a88fea05542997e5c09a6e9,
5ae3b4d05542992f92d82349, 5ab39701554299233954ff5e, 5add992c5542997545bbbd83, 5ab5e6d65542997d4ad1f232,
5a88b7735542993e715ac079, 5adfd35b55429906c02daa54, 5a8514545542992a431d1ad2, 5adfd35b55429906c02daa54,
5ac538ef5542994611c8b437, 5ab520565542996a3a96a02a, 5a74fbe55542996c70cfae63, 5ab55435554299488d4d9939,
5ae31a9c55429928c42395ef, 5ab67b8f55429954757d32f0, 5ae13f525542997b2ef7d169, 5a7d1f605542995ed0d165fb,
5ade52e85542997c77adedfa, 5a7607d7554299109176e61a, 5a85603a5542997b5ce3fff1, 5ac17f4f5542994ab5c67d70,
5a7fa53c5542995d8a8ddedc, 5abaef34554299660624169c, 5ae3d8dc5542992f92d8239c, 5ae0fa8b5542997b2ef7d0c6,
5ab55435554299488d4d9939, 5a904e725542995651fb5118, 5a879c8e5542994846c1cdb3, 5a870d0255429960ec39b710,
5ab3dde2554299753aec59d6, 5ac3ad225542995ef918c1da, 5ae11a6755429901ffe4ad8d, 5ab9116f5542991b5579f0db,
5ae755665542997b22f6a6e9, 5ae316f355429928c42395e3, 5abfbb455542997ec76fd440, 5a88377c5542997e5c09a5a7,
5a8099025542996402f6a588, 5a74248855429929fddd83e5, 5ac39a1c554299657fa290f9, 5abbc70d5542992ccd8e7f9b,
5ae13f525542997b2ef7d169, 5ac1f7f355429964131be2ae, 5a84322b5542996488c2e50d, 5a7738dc554299373536021f,
5a760f6855429976ec32bcf9, 5a7f38ae5542992e7d278c99, 5ae655c855429908198fa599, 5a821ffa5542990a1d231f5c,
5a90c2b35542995651fb51df, 5a78ed46554299148911f9a6, 5a8454e85542992ef85e23be, 5a8514545542992a431d1ad2,
5ac168865542994ab5c67d14, 5a88b7735542993e715ac079, 5a77aff55542992a6e59df86, 5ab39701554299233954ff5e,
5ac219df5542992f1f2b37fc, 5ab67b8f55429954757d32f0, 5a7a0d455542990783324e13, 5a8461d55542990548d0b29b,
5a879ab05542996e4f30887e, 5ae5365d5542992663a4f16d, 5a7a0d455542990783324e13, 5a7f9ee855429969796c1af3,
5ae5365d5542992663a4f16d, 5a736bfa5542991f29ee2e03, 5abfbb455542997ec76fd440, 5a8f8f345542997ba9cb32c2,
5ab9121555429919ba4e238a, 5a8dfbeb5542995085b3736e, 5a8a35625542992d82986efd, 5ac31c9d554299741d48a203,
5ae5365d5542992663a4f16d, 5add28065542990d50227e08, 5ae64cbf5542992ae0d162c1, 5adc134b5542994650320c5c,
5ac31c9d554299741d48a203, 5adf2b325542993a75d2640b, 5ae755665542997b22f6a6e9, 5a8454e85542992ef85e23be,
5a7cc5ae55429909bec767fc, 5a8a84775542996c9b8d5f19, 5ae377a35542994393b9e6db, 5ac4fa8c55429924173fb536,
5a77aff55542992a6e59df86, 5ae31a9c55429928c42395ef, 5adf5ebd5542995ec70e8fd8, 5a8a4bdc55429930ff3c0d8c,
5ae77a31554299540e5a55c7, 5ac2adf3554299657fa2900f, 5ab5a2f85542997d4ad1f197, 5abd7cb855429924427fd00a,
5ae136f655429920d5234325, 5ae525835542990ba0bbb1cd, 5a7738dc554299373536021f, 5a7a52745542996c55b2dd4f,
5ae1f61a5542994d89d5b2e1, 5add28c85542992ae4cec4be, 5a8bdef85542997f31a41dea, 5ae614055542996de7b71b2a,
5a7336d05542991f9a20c68d, 5a8eacc75542995085b37473, 5a8cdc5255429941ae14df21, 5ae664955542992ae0d1631b,
5ae2aba15542996483e64a32, 5abba27f5542996606241708, 5abd7ca05542993062266cab, 5ac1a5cd5542994d76dcce94,
5a736bfa5542991f29ee2e03, 5a8f0e065542997ba9cb319c, 5a8a2d805542996c9b8d5e2e, 5ae546e85542992663a4f1b5,
5ab6e856554299710c8d1fac, 5aba0e675542994dbf0198a0, 5ae3345f55429928c4239682, 5a7a02235542996c55b2dcd3,
5ac4fa8c55429924173fb536, 5a8beddd5542995d1e6f1468, 5abd90545542996e802b47d7, 5a7e39515542995ed0d166da

CHAPTER 5. SYNTHETIC DATA GENERATION AND MULTI-STEP RL 100

MuSiQue Example Ids

2hop__376129_44537, 2hop__764465_126539, 3hop1__434518_136629_55288, 2hop__353084_36340,
2hop__344450_160798, 2hop__637856_351187, 2hop__760990_44191, 3hop1__162325_11248_3752,
2hop__326799_278127, 2hop__239927_62031, 2hop__153813_69936, 3hop1__213491_782843_75255,
2hop__2846_2741, 2hop__3880_909, 2hop__347735_36735, 2hop__144393_87372,
4hop1__709382_146811_31223_45305, 2hop__143434_20122, 2hop__21457_74218,
3hop1__129597_517267_451901, 2hop__469317_776926, 2hop__27032_5400, 3hop2__83954_32417_24628,
3hop2__14790_57411_86234, 2hop__78490_49700, 3hop1__228008_354329_5303, 2hop__631861_160851,
3hop1__662283_507729_351187, 2hop__482727_20661, 3hop1__858308_102146_84004, 2hop__565717_77346,
3hop1__470555_668347_492654, 2hop__25478_65517, 2hop__129389_31248, 2hop__527889_5365,
2hop__20857_20779, 2hop__770_919, 2hop__375649_80178, 3hop1__332614_131794_17114,
2hop__144295_211364, 2hop__108160_159045, 2hop__46545_88521, 2hop__518906_44191,
2hop__733628_131886, 4hop1__28235_74795_84660_15312, 2hop__104341_92821, 2hop__445544_127008,
2hop__46766_79233, 2hop__342213_185893, 2hop__528837_126102, 2hop__497897_541630,
3hop1__48619_26424_581618, 2hop__87287_83906, 4hop1__411538_805015_475503_32631,
2hop__658198_72962, 2hop__42307_120207, 2hop__30878_555599, 3hop1__8373_87072_45358,
3hop2__337255_48727_83343, 2hop__251450_8796, 3hop1__161080_639509_644660, 2hop__558231_52667,
2hop__424189_49441, 3hop1__821692_74047_756423, 2hop__531731_79705, 3hop1__257981_259472_611044,
2hop__370765_14904, 2hop__446352_14183, 2hop__81087_13292, 2hop__684971_333904,
2hop__234176_69926, 2hop__858097_121880, 4hop2__724536_444580_75897_631997, 2hop__492509_70585,
4hop1__405751_4520_65397_49736, 2hop__128610_126060, 3hop1__325154_786384_42990,
2hop__34130_56335, 2hop__145997_63766, 2hop__146446_690423, 2hop__225632_11125, 2hop__856457_495,
2hop__129234_330515, 2hop__15674_42467, 3hop1__161946_84298_53741, 2hop__48959_83539,
2hop__64650_20556, 3hop1__316518_395352_131877, 2hop__136618_92216, 2hop__199336_185893,
2hop__930_57555, 3hop1__31942_48661_15069, 2hop__35105_160978, 2hop__128804_351187,
2hop__153004_86587, 2hop__715365_565667, 2hop__401484_135138, 2hop__52622_67783,
2hop__713501_58946, 2hop__300786_39199, 2hop__5430_5348, 3hop2__29467_132027_73594,
3hop1__225298_755188_480696, 2hop__367037_80178, 2hop__343473_53204, 2hop__848923_66214,
3hop1__369072_287321_161879, 2hop__250315_64214, 3hop1__104311_833580_61459, 2hop__1835_322987,
3hop1__836616_291186_4303, 2hop__531924_1094, 2hop__131831_84128, 2hop__328708_90697,
2hop__704691_82816, 2hop__80353_3001, 2hop__196785_61424, 2hop__130964_47336,
3hop1__761109_548045_159613, 3hop1__4525_52205_55099, 3hop1__58522_787757_69397,
2hop__58284_37793, 2hop__487591_7672, 2hop__250913_58115, 2hop__131095_85298,
2hop__144937_8600, 3hop2__625639_25582_21116, 3hop2__30023_63595_53125, 2hop__584872_88978,
2hop__116643_351162, 2hop__826203_62031, 2hop__85036_909, 2hop__62996_299942,
2hop__236731_229413, 2hop__15169_87091, 2hop__143791_75878, 2hop__658198_90536,
2hop__70321_15755, 2hop__131105_68117, 2hop__143162_438686, 2hop__20771_65517,
2hop__65149_46180, 2hop__251426_88653, 3hop1__238983_403313_61770, 2hop__28291_709757,
2hop__391909_3430, 3hop1__266733_291186_50964, 2hop__205685_160137, 2hop__343141_702969,
3hop1__383692_434040_59381, 2hop__240975_736878, 2hop__507864_368521, 3hop1__723003_593059_76293,
2hop__109234_62766, 4hop1__16401_4520_65397_52251, 2hop__140591_256194,
2hop__104757_74309, 2hop__194976_55566, 2hop__361127_140822, 3hop1__108774_104782_14771,
4hop3__393686_620110_61746_261712, 2hop__324178_83854, 3hop1__849536_301867_127418,
2hop__24408_541630, 2hop__54755_729624, 2hop__693650_61232, 3hop1__89787_49283_632017,
4hop1__104663_221169_833580_61459, 2hop__664573_36741, 3hop1__702271_823374_26254,
2hop__129892_62851, 3hop1__659125_39490_23352, 2hop__222162_386543, 2hop__446009_412262,
2hop__781841_77980, 3hop1__706183_20196_10585, 2hop__809948_162428, 3hop1__458602_681261_369731,
2hop__529082_114112, 3hop1__388966_508834_145463, 2hop__582169_370960, 2hop__225632_52135,
2hop__302491_81463, 2hop__136889_52356, 2hop__81363_42667, 3hop1__599980_544161_92922,
2hop__504710_513189, 2hop__145939_11443, 2hop__320353_4018, 2hop__27033_85063,
2hop__145110_861627, 2hop__149891_44359, 2hop__376266_37939, 3hop2__10879_37094_161133,
3hop2__159915_8509_19700, 4hop1__15118_31258_43153_32993, 3hop1__522518_132413_16066,
2hop__129782_517267, 3hop1__252998_715836_26008, 4hop1__205937_144938_83779_44678,
2hop__131318_47465, 2hop__338405_68172, 4hop3__3153_3356_11988_24628, 2hop__106465_54210,
2hop__397761_404718, 4hop1__632232_164954_6975_6891, 2hop__121872_708662, 2hop__73501_31113,
2hop__378511_191233, 3hop1__85045_96305_25007, 3hop1__755950_592709_78102,
2hop__811421_377891, 3hop2__63595_391767_53125, 2hop__131380_84859, 3hop1__158678_48408_37793,
3hop1__7312_830682_68600, 2hop__207212_21032, 3hop1__10725_695397_74345, 2hop__445228_774871,
4hop1__603090_818753_783943_26110, 2hop__177131_646483, 3hop1__801682_192919_16121,
2hop__243908_500443, 3hop2__89818_157704_4107, 2hop__160546_26427, 2hop__128772_745471,
2hop__62588_20779, 2hop__661636_82027, 2hop__105388_89066, 2hop__368185_131944,
3hop1__153577_411195_8682, 2hop__327451_90697, 2hop__647590_134798, 3hop2__30796_804098_24137,
2hop__146227_42328, 2hop__152881_620955, 2hop__11693_42892, 2hop__753498_7606,
2hop__2795_2741, 3hop1__373317_533132_1660, 2hop__229374_333904, 3hop1__370820_301867_127418,
3hop1__713250_4016_83854, 2hop__130414_68117, 4hop1__7312_84360_334118_41330, 2hop__65149_68376,
2hop__182310_565529, 3hop1__136299_84467_89676, 2hop__454055_86874, 2hop__604878_40786,
2hop__307569_51671, 2hop__854082_159115, 2hop__198557_55566, 3hop1__352446_506157_44678,
2hop__468848_44537, 2hop__207571_126101, 4hop2__53235_18485_57802_311656, 2hop__451164_140822,
3hop1__37692_84298_53741, 3hop1__672119_196807_760519, 3hop2__131210_661360_54023,
2hop__8531_24846, 3hop2__77886_64137_69951, 2hop__730762_8600, 2hop__350323_45731,
2hop__131117_53519, 3hop1__157534_275705_81669, 2hop__185628_677577, 2hop__77119_20732,
2hop__67755_82010, 3hop1__790278_593059_76293, 3hop2__162189_611045_73761, 2hop__568848_50788,
2hop__45625_61952, 2hop__146207_30651, 2hop__57439_78714, 2hop__3756_52135,
3hop1__501828_348668_856982, 3hop1__106423_35178_686699, 2hop__103203_23140,
3hop1__77985_66386_16350, 2hop__664921_579740, 2hop__106125_20644, 2hop__400998_61424,
3hop1__35884_161545_16532, 2hop__584521_755188, 2hop__80508_400874, 2hop__664137_58115,
2hop__453207_80674, 3hop1__29335_30907_24600, 2hop__144364_68900, 2hop__226817_482901,
4hop3__39198_75897_8509_19700, 2hop__713863_64008, 2hop__71269_36735, 2hop__504228_64689,
2hop__604878_18657, 2hop__81372_303417, 3hop1__674688_707133_72062, 2hop__157766_18657

Chapter 6

Benchmarking Multi-Step Reasoning

and Tool Use

6.1 Introduction

In Chapter 5, I introduced an RL agent capable of performing sequential decision-making in the

domain of question-answering and mathematical reasoning. In this chapter, we propose COMPASS-

QA (Challenging Open-ended Multi-step Problems And Sequential Search), a new benchmark to

measure the ability of current models to perform multi-step reasoning and tool use, and to train more

advanced LLM-based RL agents. Here, we provide 700 challenging questions that require multiple

steps of reasoning and tool use to effectively answer. Additionally, we provide trajectories generated

by human annotators outlining the steps they took to reach the final answer. We hope that this

dataset will help researchers meaningfully benchmark the effectiveness of new models on multi-step

reasoning and tool use.

Large language models (LLMs) have demonstrated incredible capabilities in information processing

and solving complex tasks [69, 12, 162]. However, as discussed in Chapter 5, many high-value tasks

require information or capabilities that are beyond the model’s internal knowledge base. For example,

answering a question about recent events may need access to live internet search, solving a multi-step

math problem might require using a calculator or theorem-proving tool, and completing a complex

engineering task could require executing code, writing unit tests, or reading documentation about a

software framework. The ability to seamlessly identify the need for a tool call, generate a well-formed

query to invoke that tool, and incorporate the result of executing that query to plan subsequent steps

is key to solving many real-world challenges. Therefore, this motivates the need for new benchmarks

that can capture and evaluate such capabilities.

In this chapter, we introduce a benchmark that targets multi-step reasoning and tool use

101

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 102

capabilities, with a focus on complex knowledge-intensive tasks. Our benchmark focuses on two of

the most powerful and ubiquitous tools for information access: search and web browsing. Our dataset

consists of 700 multi-step knowledge-intensive questions. In addition to questions and solutions, we

also provide multi-step human-generated reasoning, search, and browsing trajectories for each query.

This dataset can be used for both training and evaluation purposes.

In order to solve these tasks, AI systems must go beyond simple information retrieval and search.

They must have the ability to interact with external knowledge resources, iteratively use search

and browsing tools, and perform multi-step reasoning to intelligently orchestrate a sequence of such

actions. Examples of such problems include diagnosing a software bug by searching for error codes

and reading documentation, or answering historical questions that require synthesis of information

from multiple primary sources. Furthermore, these tasks often require a chain of reasoning where the

output of one step (e.g., a search result) informs the input and the action for the next step (e.g.,

browse a specific webpage identified in the top search results).

Traditional question-answering datasets (e.g., SQuAD, Natural Questions, TriviaQA) are single-

step and can be solved with a simple search query or retrieval from the provided documents. Other

benchmarks, such as HotPotQA, Musique, BeerQA and CofCA which I evaluated on in Chapter 5,

require multi-hop retrieval from given datasets, but do not involve external tool interactions. Recent

open question-answering benchmarks such as SimpleQA are not designed for evaluating multi-step

capabilities. Recent agentic environments (e.g., GAIA, AgentBench) explore complex environment

interactions with several tools for real or simulated web environments. While valuable, these settings

can introduce additional complexity, such as the ability to perform multi-modal reasoning and visual

processing, meaning that these benchmarks cannot be used to evaluate the multi-step reasoning and

tool use capabilities of pure language models. To our knowledge, this benchmark is the only dataset

with accompanying reasoning and tool use traces generated by human annotators.

Our core contributions are as follows:

• We compiled a challenging dataset of questions that requires multiple steps of search and web

browsing.

• We provide human annotations capturing the exact sequence of actions necessary to answer

these challenging queries.

• We benchmark top-performing open-source (Gemma 3, Llama 4, and DeepSeek R1) and

proprietary models (Gemini 2.5 Pro, Claude 3.7 Opus, and ChatGPT 4.5) against this new

dataset.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 103

6.2 Data Collection

We worked with human annotators at Surge AI to capture the sequence of steps necessary to answer

a challenging, knowledge-intensive question.

6.2.1 Sourcing and Generating Queries

The root of the dataset was the challenging multi-hop questions, so we will start by describing how

we sourced, generated, rewrote, and filtered these queries. These questions were compiled by filtering

Gemini logs for questions that received thumbs-down feedback from users and which Gemini classified

as ones that would benefit from multiple steps of search and web browsing. These questions were

then rewritten and sanitized by Surge crowdworkers.

6.2.2 Filtering and Rewriting Queries

In this task, the human annotator filtered and rewrote questions from the previous stage. The

purpose is to curate a set of challenging, high-quality prompts that require (or would at least benefit

from) multi-turn search and web browsing. These will be used as input to the next phase.

We input 3000 questions into this data filtering and rewrite pipeline, and received 700 rewritten

questions that were high-quality and multi-step as judged by the human annotators, i.e., 24.3% were

preserved after this filtering step.

6.2.3 Generating Trajectories with Human Annotators

To generate trajectories for each question, we provided the human annotator with access to a search

engine and web browser, and allowed them to take any number of search and web browsing actions

before answering the original question.

Concretely, at each time step, the human annotator can take one of six actions:

• SEARCH: Issue a Google search query

• SAVE_TEXT: Save text, e.g., a search snippet or a paragraph on a webpage.

• SAVE_IMAGE: Save an image, e.g., a figure or relevant photo.

• CLICK: Open a URL, e.g., one of the search results or a link in a webpage.

• CTRL-F: Perform a keyword search within a webpage.

• ANSWER: Synthesize an answer to the original user question.

The trajectory terminates when the human annotator chooses the “ANSWER” action.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 104

Example Trajectory

To show the type of trajectories collected, we provide an example below. Note that we picked a

relatively simple example for illustrative purposes.

Question: “Is globbing done before or after shell expansions?”

Given the above question, we would like to collect the following information:

Step 0: User searches “What is globbing?”

Here is the data that should be collected for this step:

‘action’: SEARCH, ‘thought’: “First, I want to make sure I understand what globbing in

bash means, so I search for “What is globbing in bash?”, ‘input’: “What is globbing?”, ‘output’:

<SEARCH_RESULTS>

<SEARCH_RESULTS> is a list of 5 search results in the following format:

[index] <source_title>\n\n<snippet>\n\n<url>

For example, the first search result should be stored as:

[1] What is Globbing? - Definition from Techopedia

Globbing is the process of using wildcard characters to request or evaluate sets of files with the

same partial names or sets of characters.

https://www.techopedia.com › definition › globbing

Step 1: Now the user reads a snippet.

‘action’: READ, ‘thought’: “The first snippet seemed relevant so I read it.”, ‘input’: “<TEXT>”,

‘output’: None <TEXT> is the following snippet and URL stored as a string. Here we assume that

the user read URL 1.1 from Step 0.

Step 2: Next the user generates a new query which is “What are shell expansions?” and runs a

Google search.

‘action’: SEARCH, ‘thought’: “I was satisfied with the first snippet and feel that I understand

what globbing is, so I decide to make another search to learn more about shell expansions.”, ‘input’:

“What are shell expansions?”, ‘output’: <SEARCH_RESULTS>

<SEARCH_RESULTS> is the following (stored as a string)

Step 3: The user then reads a snippet.

‘action’: READ, ‘thought’: “The first snippet seemed helpful because it lists the kinds of

expansions, so I read it.”>, ‘input’: “<TEXT>”, ‘output’: None <TEXT> is the following snippet

and URL stored as a string. Here we assume that the user read URL 2.1 from Step 2.

Step 4: The user clicks on the first link from Step 3 and transitions to a new webpage:

‘action’: CLICK, ‘thought’: “The first snippet looked helpful, so I clicked on the first result

<URL2.1>”, ‘input’: “<URL2.1>”, ‘ output’: <WEBPAGE_HTML> <URL2.1> is the webpage

corresponding to the link the user clicks on. We assume the user clicked on URL2.1. <WEB-

PAGE_HTML> is the content of the webpage corresponding to URL2.1 (shown below) stored as a

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 105

string. .

Step 5: Next the user runs a Ctrl + F for keyword: “order”

‘action’: CTRL_F, ‘thought’: “I want to see if the page contains useful information about the order

of shell expansions, so I control-f for “order”.”, ‘input’: “order”, ‘output’: <KEYWORD_RESULTS>

<KEYWORD_RESULTS> is a list of indices in the webpage that represent occurrences of the

keyword.

Step 6: Read Text

‘action’: READ, ‘thought’: “The first keyword search result looks useful, so I read the paragraph

containing it.” ‘input’: “The order of expansions is: brace expansion; tilde expansion, parameter and

variable expansion, arithmetic expansion, and command substitution (done in a left-to-right fashion);

word splitting; and filename expansion” ‘output’: None

Step 7: User gives final answer

‘action’: ANSWER, ‘thought’: “I now have all the information I need to reply. From my first

search “What is globbing?” I know that globbing is filename expansion, and from the text above

[1.1]. Therefore, globbing is done after all other shell expansions." ‘input’: ‘Globbing is done after

all other shell expansions. To be more specific, there are 7 types of shell expansions, and they are

executed in the following order: brace expansion; tilde expansion, parameter and variable expansion,

arithmetic expansion, and command substitution (done in a left-to-right fashion); word splitting;

and filename expansion (aka globbing).’ ‘output’: None

6.3 Evaluation Benchmark

In this section, we will describe the procedure to evaluate a model with this dataset. This benchmark

relies upon the use of an LLM-as-a-judge in order to accurately evaluate performance.

6.3.1 LLM as a Judge

We adopt model-based evaluation, which is emerging as a strategy that combines the accuracy of

human evaluation with the cost-effectiveness and low latency of automated metrics [238, 78].

Because the questions are relatively complex, evaluating the quality and correctness of the answers

requires a model with strong reading comprehension. In this chapter, we use Gemini 2.5 Pro as our

model judge, as we found that it meets our need for a highly discerning, low-latency model.

To assess the answer to each question, we prompted Gemini 2.5 Pro to judge the correctness of

each answer compared to a golden answer (the human annotator’s final response).

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 106

6.3.2 Data Format

Below, we describe the JSON format in which we would like you to log the sequence of actions. Each

action has a slightly different set of expected inputs and outputs, so we will provide a high-level

template for each action type as well as a concrete example that includes at least one instance of

each action.

Action = Enum(’Action’, [‘SEARCH’, ‘CLICK’, ’READ’, ‘CTRL_F’])

‘action’: SEARCH, ‘thought’: <THOUGHT>, ‘input’: “<QUERY>”,

‘output’: <SEARCH_RESULTS>, ‘state’: <CURRENT_URL> ‘action’: CLICK, ‘thought’:

<THOUGHT>, ‘input’: “<URL>”, ‘output’: <WEBPAGE_HTML>, ‘state’: <CURRENT_URL>

‘action’: READ, ‘thought’: <THOUGHT>, ‘input’: “<TEXT>”, ‘output’: None, ‘state’: <CUR-

RENT_URL> ‘action’: CTRL_F, ‘thought’: <THOUGHT>, ‘input’: “<KEYWORD>”, ‘output’:

keyword_result=<KEYWORD_RESULT>, progress=X/Y, ‘state’: <CURRENT_URL>

where X is the index of the keyword result and Y is the total number of keyword matches in the

document.

Note that <WEBPAGE_HTML> = fetch_html(<URL>, date) if date is supported.

For more example trajectories, see Appendix 6.H.

6.3.3 Dataset Composition

As shown in Table 6.3.1, we divided the dataset into 279 train examples, 100 dev examples, and 300 test

examples. This provides enough examples to meaningfully develop and evaluate a new methodology,

while also offering the opportunity to train on a reasonably large number of human-annotated

trajectories.

Data Split Dataset Size

Train 279

Dev 100

Test 300

Table 6.3.1: Number of examples in each split of the dataset.

6.4 Dataset Validation and Analysis

In this section, we describe how the dataset was cleaned, formatted, and validated, and provide

insights into the composition of the dataset.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 107

6.4.1 Dataset Validation

The COMPASS-QA dataset underwent a meticulous multi-stage validation procedure to ensure

the integrity, safety, and utility of its contents. This process combined human oversight with large

language model capabilities for scale and consistency.

• Stage 1: Initial Manual Question Filtering. All candidate questions (approximately 700)

were first subjected to a manual review by the research team. This step aimed to filter out

questions that were unclear, trivial, inappropriate, or otherwise unsuitable for the benchmark’s

focus on multi-step reasoning, reducing the set to roughly 600 questions.

• Stage 2: Automated Content Moderation. To systematically screen for any potentially

inappropriate or sensitive content within the detailed human-annotated trajectories, Gemini 2.5

Pro was utilized. The model was tasked with reviewing every textual element: the questions,

the annotators’ thought processes, the actions logged, and the textual results of those actions.

This automated moderation flagged approximately 200 utterances across the dataset.

• Stage 3: Manual Review of Flagged Content. The 200 utterances identified by Gemini

2.5 Pro were then individually reviewed by human evaluators. This critical human-in-the-loop

step confirmed the automated flags and led to the removal of a further six questions, ensuring

the dataset met appropriate content standards.

• Stage 4: Property Tagging. To enhance the dataset’s utility for researchers, Gemini 2.5 Pro

was employed to automatically tag each question with several important characteristics. These

tags included assessments of the question’s open-endedness, its time-sensitivity, and whether

it required multi-modal understanding, providing valuable metadata for future analyses and

model evaluations.

6.4.2 Multi-Hop Nature

In Figure 6.4.1, we provide statistics for the number of hops across all human trajectories in our

dataset. Interestingly, we see no examples of 2-hop trajectories, suggesting that we have successfully

filtered out questions that require only one step of search or web browsing. Recall that the act of

answering the original question counts as an action, so any trajectory that involves calling a tool

more than once must contain at least three steps. However, there is one trajectory consisting of a

single action, meaning that the human felt confident to answer the question without performing any

search or web browsing. Although this single trajectory should have been filtered out, the overall

statistics are encouraging and suggest that this dataset consists of challenging multi-hop questions.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 108

Figure 6.4.1: Histogram depicting the number of hops across all trajectories.

6.4.3 Distribution Over Actions

In Figure 6.4.2, we depict the distribution over actions found in these trajectories. As can be seen

from this figure, the most common actions were searching, clicking URLs, and saving text, with each

comprising about 25% of all actions. Searching within webpages (Ctrl-F) was a relatively rare action

at 6.4%. All episodes contain exactly one synthesize step to generate a final answer to the original

question.

6.5 Rubric-Based LLM Evaluation

As the field moves toward more challenging agentic tasks, LLMs must be capable of providing

high-quality responses to open-ended questions. However, in order to achieve these capabilities, we

must be able to effectively measure such capabilities. Prior datasets like HotPotQA [226], BeerQA

[167], MuSiQue [203], and CofCA [222] have a single correct answer (or set of alias answers), and

cannot measure the ability of a model to answer challenging open-ended questions. To address this

gap, the natural next step is to employ LLMs to perform synthetic evaluations that mimic those

of human annotators, but at much lower cost and latency. Here, we propose to augment LLM

judges with LLM-generated rubrics, mimicking a best practice used to improve the consistency and

inter-rater agreement of human annotators. To further adopt best practices inspired by human

evaluation, we also report scores on a 5-point Likert scale from “Poor” to “Excellent”, offering richer

signal on the quality of a model response compared to a binary correctness label.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 109

Figure 6.4.2: Piechart depicting the composition of trajectories with respect to action types.

6.6 Experiments

In this section, we evaluate open-source and proprietary models using the rubric-based LLM framework

described above, yielding the results in Table 6.6.1. This is of course due in part to the nature of

this task, where we only consider the answer to be correct if it is judged to be “Excellent” on a

5-point Likert scale. Overall, the LLM judges were remarkably consistent with each other, which was

encouraging. In terms of performance on the task itself, o3-mini performed best (10.7%), with Gemini

2.5 Pro as a close second (9.9%). Claude 3.7 Sonnet did surprisingly poorly (7.2%), underperforming

even the open-source Gemma 3 27b model (8.2%). The most striking aspect of these results was how

poorly current frontier models performed with scores hovering around 10%. These results indicate

that this benchmark could potentially be useful for hill-climbing and improving the capabilities of

frontier models.

6.7 Related Work

Knowledge-based question-answering is a key application of language models and several important

benchmarks have targeted this task, including SQUAD [170], TriviaQA [95], Natural Questions [119],

FELM [35]. As model capabilities have advanced, many of these earlier benchmarks have become

saturated. More recent benchmarks such as SimpleQA [218] focus on queries with concise and short

answers, whereas LongFact [219] contains open-ended questions with longer answers.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 110

Grading Model Claude 3.7 Sonnet Gemini 2.5 Pro Gemma 3 o3-mini Average

Generating Model

Claude 3.7 Sonnet 0.070 0.143 0.027 0.047 0.072

Gemini 2.5 Pro 0.093 0.110 0.107 0.087 0.099

Gemma 3 0.077 0.053 0.107 0.090 0.082

o3-mini 0.150 0.167 0.047 0.063 0.107

Table 6.6.1: Percentage of ‘Excellent’ Grades out of 300 example answers graded on a 5-point Likert
scale, where ‘Excellent’ corresponds to the highest possible score.

Generating Model Grading Model Excellent Very Good Good Fair Poor

Claude 3.7 Sonnet

Claude 3.7 Sonnet 21 53 87 101 38
Gemma 3 8 64 166 58 4
Gemini 2.5 Pro 43 60 89 71 37
o3-mini 14 71 73 90 52

Gemini 2.5 Pro

Claude 3.7 Sonnet 28 38 83 100 51
Gemma 3 32 57 139 62 10
Gemini 2.5 Pro 33 56 77 82 52
o3-mini 26 69 70 97 38

Gemma 3

Claude 3.7 Sonnet 23 34 66 119 58
Gemma 3 32 25 158 67 18
Gemini 2.5 Pro 16 32 83 110 59
o3-mini 27 31 54 117 71

o3-mini

Claude 3.7 Sonnet 45 50 77 92 36
Gemma 3 14 71 167 44 4
Gemini 2.5 Pro 50 75 80 74 21
o3-mini 19 59 89 89 44

Table 6.6.2: Full Distribution of LLM-Generated Grades over 300 example answers and reported on
a 5 point Likert scale.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 111

FreshQA focuses on open-ended queries and evaluates model’s ability to answer questions with

misleading premises or queries with time-sensitive answers. TruthfulQA [129], HalluQA [41], CREPE,

[230], and QA2 [115] evaluate model’s ability to factually answer questions in the presence of miscon-

ceptions or counterfactual premises. Other datasets, such as TimeSensitiveQA[38], SituatedQA[236],

StreamingQA[134], RealTime QA[109], FreshLLMs [212] measure model’s ability to answer questions

whose answers change over time.

The most relevant prior work are multi-hop question-answering datasets [226, 167, 84, 222,

203, 72, 60, 197]. Answering these questions requires combining information from multiple sources.

HotpotQA [226], which is built on Wikipedia, requires the models to retrieve information across

multiple documents and synthesize a final answer based on that. The model is also asked to

provide supporting evidence. 2WikiMultiHopQA [84] is similar to HotpotQA, but relies on manual

compositional rules. IIRC [60] is also based on English Wikipedia and the accompanying paragraphs

offer only partial answers to the questions, and the model is required to locate the missing information

by following the links and acquiring and processing knowledge contained in those links. MuSiQue

[203] targets questions that would require the model to generate a sequence of 2-4 reasoning steps,

while StrategyQA [72] evaluates models’ implicit, multi-step reasoning ability with final answers in

yes/no format. ComplexWebQuestions [197] provides questions that require combining information

from multiple web snippets or performing multi-step reasoning. These benchmarks evaluate models’

ability to retrieve, sequentially reason, and integrate scattered information to answer complex queries.

While these datasets are all valuable, a differentiating factor for our benchmark is that we

provide both a large collection of questions that require multi-step search and browsing, and release

trajectories generated by expert human annotators, with clear tags for each action such as generating

new queries for search or navigating the web to browse new websites. These trajectories could be of

high value for both training the model to navigate multi-step processes and for evaluating models’

process-based and outcome-based performance.

6.8 Conclusion

This dataset is designed to benchmark multi-step tool use, and contains challenging question-answering

tasks that require search and web navigation. We also provide human annotations to enable deeper

analysis, including training based on process or outcome-based rewards. We hope this enables better

benchmarking of models’ ability to perform knowledge-intensive tasks. In particular, in the future,

we’d like to use it to extend our work on SWiRL from Chapter 5.

Appendix

6.A Filter and Rewrite Input Queries for Multi-Hop Search

Below, we include the instructions that were shared with human annotators to complete the task of

filtering and rewriting input queries.

6.B Summary

In this task, the human annotator will filter or rewrite input questions. The purpose is to curate

a set of challenging, high-quality prompts that require (or would at least benefit from) multi-turn

search and web browsing. These will be used as input to [Surge Instructions] Multi-Hop Search &

Response Generation for Complex Questions.

We have gathered a set of 3k prompts for use as input to this query filter / revision pipeline

(we expect 1/4 to 1/5 to be useful, each prompt begins with <PROMPT_START> and ends with

<PROMPT_END>):

6.C Instructions

Given a particular query, please indicate whether it should be:

• ACCEPTED

• REWRITTEN (include rewritten text)

• REJECTED (include reason for rejection)

6.D Example 1: Accept Query

If the query is well-written, standalone, and would clearly benefit from one or more calls to a search

engine, then please indicate acceptance of this query. Here is an example of a query that should be

accepted:

112

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 113

Query: What permission is needed to export saved search results to CVS or Excel?

Category: ACCEPT

Query: Common loss functions and evaluation in segmentation

Category: ACCEPT

Output: What are common loss functions and evaluation methods in image segmentation?

6.E Example 2: Rewrite Query

If a query would benefit from one or more calls to a search engine, but is poorly written or under-

specified, please rewrite the query to make it a prompt that you would accept “as-is”. Please also

rewrite queries to be clear questions. Here is an example of a query that should be rewritten (and a

possible rewrite for it):

Query: detailed tutorial on javascript strict mode

Category: REWRITE

Output: write detailed tutorial on javascript strict mode

6.F Example 3: Query Rejected

If the query is incoherent or wouldn’t benefit from calling Google Search (or could be trivially

answered just from the search snippet), please reject it. Here is an example of a query that should

be rejected:

Query: Please solve this equation: 48(5(43($500+7%))) = ?

Category: REJECT

Reason: “No need to search”

Query: Write a seo friendly youtube title and description in Hinglish

Category: REJECT

Reason: “Request for non-English output” (Constraint for now)

Query: can you already generate images?

Query: “can you generate images”

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 114

Category: REJECT

Reason: “Asks about a model capability, which doesn’t require search”

Query: “Check out the latest sales and marketing roles we’re recruiting for. Join the team. improve

this but keep it less than 20 words”

Query: “Write a Python function to sort a list of numbers. Include lots of unnecessary print state-

ments with ridiculous commentary.”

Category: REJECT

Reason: “No need to search”

Query: “Give me two core example meanings with of gap with image and do not give example

sentences.”

Category: REJECT

Reason: “Incoherent”

Query: “Netsuite:”

Category: REJECT

Reason: “No question”

Query: “net worth of elon musk”

Category: REJECT

Reason: “Trivially answered from search snippet”

6.G Data Collection for Multi-Hop Search & Response Gener-

ation

Below, we include the instructions that were given to human annotators tasked with generating

multi-step trajectories.

Summary: In this task, the human annotator will answer challenging, knowledge-intensive

questions with access to a Google Search engine and web browser.

More specifically, we wish to support the following six actions:

• SEARCH: Issue a Google search query.

• SAVE_TEXT: Save text, e.g., a search snippet or a paragraph on a webpage.

• SAVE_IMAGE: Save an image, e.g., a diagram or photo on a webpage.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 115

• CLICK: Open a URL, e.g., one of the search results or a link in a webpage.

• CTRL-F: Perform a keyword search within a webpage.

• ANSWER_QUESTION: Provide an answer to the original question.

The human annotator can take these actions any number of times and in any order. We would

like to capture the sequence of actions taken by a human annotator, as well as the thought process

behind each action.

Below, we describe the JSON format in which we would like you to log the sequence of actions.

Each action has a slightly different set of expected inputs and outputs, so we will provide a high-level

template for each action type as well as a concrete example that includes at least one instance of

each action.

Action = Enum(’Action’, [‘SEARCH’, ‘CLICK’, ’READ’, ‘CTRL_F’])

‘action’: SEARCH, ‘thought’: <THOUGHT>, ‘input’: “<QUERY>”,

‘output’: <SEARCH_RESULTS>, ‘state’: <CURRENT_URL> ‘action’: CLICK, ‘thought’:

<THOUGHT>, ‘input’: “<URL>”, ‘output’: <WEBPAGE_HTML>, ‘state’: <CURRENT_URL>

‘action’: READ, ‘thought’: <THOUGHT>, ‘input’: “<TEXT>”, ‘output’: None, ‘state’: <CUR-

RENT_URL> ‘action’: CTRL_F, ‘thought’: <THOUGHT>, ‘input’: “<KEYWORD>”, ‘output’:

keyword_result=<KEYWORD_RESULT>, progress=X/Y, ‘state’: <CURRENT_URL>

where X is the index of the keyword result and Y is the total number of keyword matches in the

document.

Note that <WEBPAGE_HTML> = fetch_html(<URL>, date) if date is supported.

6.H Example Trajectories

To illustrate the complexity of the human trajectories, we provide an additional example:

Input Question: ’can you configure irb to automatically show the string value of a result instead

of the raw result?’

Thought citation [1]: “I know that irb refers to Ruby REPL loop (interactive shell) that can be

used to quickly try out Ruby code.”

OR

Alternatively, if you don’t know what “irb” means, it would make sense to generate the following

thought citation:

“I don’t know what “irb” means here, but because the query refers to “configure”, “string value”

and “raw result”, I believe that “irb” likely refers to something programming related. Therefore, I

make the following search query: “irb programming” to find out what “irb” means.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 116

The search snippet is: “The Ruby Interactive Shell (IRB) is a command-line tool used for

interactively testing, debugging, and exploring Ruby code. It allows developers to execute Ruby code

line by line and see the results immediately, which is particularly helpful for learning new features,

testing code snippets, and troubleshooting issues.”

Next, I make the following search query (“ruby irb string value raw result”) to see if I can

quickly find a way to automatically configure irb (which I now know to be a Ruby interpreter) to

automatically render raw results as their string values.

The results are as follows:

[1.1] stackoverflow.com “Getting typed results from ActiveRecord raw SQL: Getting typed results

from ActiveRecord raw SQL: My use case: I’m calling a database function, want to get back a typed

result instead of a string. ruby · postgresql · activerecord · Share. . . ”

[1.2] github.com “Add a pager to evaluation result · Issue #495 · ruby/irb: The slowness comes

from IRB using ColorPrinter.pp to generate the inspected value string all at once. And value

inspection behavior is customisable in IRB so . . . ”

[1.3] digitalocean.com “How To Work with Strings in Ruby: You use variables to store data and

retrieve it later. To store a string in a variable, define the variable name and assign the string’s value”

I decide that I want to learn more about how strings work in Ruby, so I click on the third result

[1.3], and I skimmed the full page but none of the content was directly helpful for answering the

question.

Therefore, I decided to learn more about irb, so I searched “ruby irb” and saw the following

results:

[2.1] github.com “ruby/irb: interactive Ruby: IRB ... IRB stands for "interactive Ruby" and is a

tool to interactively execute Ruby expressions read from the standard input. The irb command from

your shell . . . ”

[2.2] digitalocean.com “How To Use IRB to Explore Ruby: Introduction. IRB, short for Interactive

Ruby, is a quick way to explore the Ruby programming language and try out code without creating

a file.”

[2.3] docs.ruby-lang.org “module IRB - Documentation for Ruby 3.4: The IRB input method

determines how command input is to be read; by default, the input method for a session is

IRB::RelineInputMethod”

I clicked on the first result [2.1], because I thought it would be useful to look at the original

documentation for the Ruby IRB.

On that page, I control-f’ed for “string value” to see if there was any information about how string

values are rendered by the IRB, but there were no matches.

I then control-f’ed for “raw result” to see if there was any information about how raw results are

handled by the IRB, which also resulted in no matches.

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 117

Next, I control-f’ed for “output” to see if there were any details on how outputs are handled by

IRB, and the results were as follows:

[CF 1.1] The following commands are available on IRB. You can get the same output from the

show_cmds command.

[CF 1.2] history Shows the input history. ‘-g [query]‘ or ‘-G [query]‘ allows you to filter the output.

[CF 1.3] ls Show methods, constants, and variables. ‘-g [query]‘ or ‘-G [query]‘ allows you to filter

out the output.

None of these senses of output seemed useful for answering the question, so I control-f’ed for

“configur” to see if there was any information about how to configure the IRB or its configurations.

[CF 2.1] Configuration Environment Variables

[CF 2.2-3] Configuration Environment Variables NO_COLOR: Assigning a value to it disables

IRB’s colorization. IRB_USE_AUTOCOMPLETE: Setting it to false disables IRB’s autocompletion.

IRB_COMPLETOR: Configures IRB’s auto-completion behavior, allowing settings for either regexp

or type. VISUAL: Its value would be used to open files by the edit command. EDITOR: Its value

would be used to open files by the edit command if VISUAL is unset. IRBRC: The file specified

would be evaluated as IRB’s rc-file.

Neither of these results was helpful for answering the question, so I decided that this page doesn’t

contain anything useful. Therefore, I clicked on the link (https://docs.ruby-lang.org/en/master/IRB.html)

in the next section (“Documentation”) to see if that had more helpful information.

I read the first paragraph which is as follows: “IRB¶ ↑ Module IRB (“Interactive Ruby”) provides

a shell-like interface that supports user interaction with the Ruby interpreter.

It operates as a read-eval-print loop (REPL) that:

Reads each character as you type. You can modify the IRB context to change the way input

works. See Input.

Evaluates the code each time it has read a syntactically complete passage.

Prints after evaluating. You can modify the IRB context to change the way output works. See

Output.”

I felt like I understood better what IRB is, but I still didn’t know how to configure its output

type, so I clicked on the link entitled “Output”.

The first paragraph is as follows: “Output This section describes the features that allow you to

change the way IRB output works; see also Input and Output.”

This seemed promising, so I decided to read the next section, rather than clicking on the “Input

and Output” link, though I made a mental note of it to potentially come back to later.

The next section was as follows: “Return-Value Printing (Echoing) By default, IRB prints (echoes)

the values returned by all input commands.

You can change the initial behavior and suppress all echoing by:

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 118

Adding to the configuration file: IRB.conf[:ECHO] = false. (The default value for this entry is

nil, which means the same as true.)

Giving command-line option –noecho. (The default is –echo.)

During the session, you can change the current setting with configuration method conf.echo= (set

to true or false).

As stated above, by default IRB prints the values returned by all input commands; but IRB offers

special treatment for values returned by assignment statements, which may be:

Printed with truncation (to fit on a single line of output), which is the default; an ellipsis (... is

suffixed, to indicate the truncation):

irb(main):001> x = ’abc’ * 100”

Although this section seemed highly relevant at first and did help me better understand outputs

in IRB, it ultimately did not help me to answer the question because it was primarily related to the

command echoing behavior in IRB.

I therefore decided to continue reading, and the next section was as follows:

“> “abc. . . ¶ ↑

Printed in full (regardless of the length).

Suppressed (not printed at all)

You can change the initial behavior by:

Adding to the configuration file: IRB.conf[:ECHO_ON_ASSIGNMENT] = false. (The default

value for this entry is niL, which means the same as :truncate.)

Giving command-line option –noecho-on-assignment or –echo-on-assignment. (The default is

–truncate-echo-on-assignment.)

During the session, you can change the current setting with configuration method conf.echo_on_assignment=

(set to true, false, or :truncate).

By default, IRB formats returned values by calling method inspect.

You can change the initial behavior by:

Adding to the configuration file: IRB.conf[:INSPECT_MODE] = false. (The default value for

this entry is true.)

Giving command-line option –noinspect. (The default is –inspect.)

During the session, you can change the setting using method conf.inspect_mode=.”

The paragraph above suggests that the way to configure the type of the output is through the

inspect method.

Therefore, I issue the following query to learn more about how to write inspect methods: "inspect

irb ruby"

[3.1] thoughtbot.com “Inspecting Ruby’s inspect method: The output for overriding inspect is

shown when you create an object, invoke p or pp on an object, or explicitly call inspect. The puts

CHAPTER 6. BENCHMARKING MULTI-STEP REASONING AND TOOL USE 119

command . . . ”

[3.2] ruby-lang.org “class IRB::Inspector - Documentation for Ruby 2.1.0 Public Class Methods ...

Determines the inspector to use where inspector is one of the keys passed during inspector definition.

... Creates a new inspector object, . . . ”

[3.3] apidock.com “inspect (IRB: Outputs the local variables to this current session, including

#signal_status and #context, using IRB::Locale. ... Register or log in to add new notes. Welcome

. . . ”

The first result [3.1] seemed the most helpful, so I click on it to learn how to override the inspect

method for a particular object.

I read the entire page and I learned how to override the inspect method for any particular object,

meaning that I could make any object be output as a string, but I still don’t know how how to

automatically configure this behavior for *all* objects. Based on all of the research above, I do not

believe it is possible to automatically configure IRB to show the string value of a result in all cases,

but you can override the inspect method for each object to achieve this behavior. I am now ready to

answer the question.

Final Answer: Although it is not possible to automatically configure IRB to show the string value

of a result instead of the raw result for all objects, you can override the inspect method for each

object that you care about to achieve this behavior.

Here is an example: <CODE>

Chapter 7

Conclusions

In this chapter, we developed RL agents for sequential decision-making tasks across both chip

design and language modeling, and explored approaches to mitigating the instability of RL methods

[154, 127], their relative sample inefficiency [11, 193], and the difficulty of attributing reward to

individual steps within the long trajectories characteristic of real-world tasks [166, 32].

In Part I, I motivated the use of reinforcement learning for placement optimization, a combinatorial

optimization task that is commonly found in systems and chip design. Next, I introduced AlphaChip,

a deep reinforcement learning method capable of generating superhuman chip layouts in hours, rather

than weeks or months of human effort. Finally, I discussed the subsequent impact of this method

and the research discussions surrounding it.

In Part II, I introduced SWiRL (Step-Wise Reinforcement Learning), an approach to synthetic

data generation and reinforcement learning that improves the ability of large language models (LLMs)

to perform multi-step reasoning and tool use. I then described COMPASS-QA, a new dataset

designed for evaluating LLM performance on challenging multi-step reasoning tasks and for training

LLM-based RL agents in these domains.

In this final chapter, I will distill key lessons learned through the development of AlphaChip for

chip design and SWiRL for language modeling. These experiences, spanning distinct domains, offer

valuable insights into tackling common challenges in reinforcement learning, particularly concerning

instability, reward attribution, and sample inefficiency.

Mitigating RL Instability: The Impact of Representation and Formulation: A primary

lesson regarding RL instability is the profound impact of representation learning, specifically through

pre-training. In the development of AlphaChip, we observed a dramatic difference in training stability

and convergence: policies trained from scratch had approximately a 1 in 10 chance of converging,

whereas those initialized from a pre-trained policy achieved nearly perfect convergence (approximately

120

CHAPTER 7. CONCLUSIONS 121

10 out of 10). This underscores the value of starting with a well-initialized representation. SWiRL

echoed this finding; initializing from a pre-trained Large Language Model (LLM) provided a strong

foundation, leading to remarkably stable RL training.

Beyond representation, problem formulation emerged as a critical factor for enhancing stability.

SWiRL achieved more consistent training by gathering trajectories offline and subsequently employing

LLMs to filter this data, curating a higher-quality experience for the learning agent. AlphaChip

implemented an even more direct offline approach: chip layouts were generated and evaluated, with

only high-quality layouts being retained. This inherently improved stability because the quality

of the best-known layout could only monotonically increase throughout training, providing a more

consistent signal, albeit a noisy one due to imperfect proxy costs.

Improving Reward Attribution: Granularity and Effective Episode Length: The challenge

of reward attribution, especially over long trajectories, was addressed through distinct but effective

strategies in both projects. For SWiRL, a key lesson was the power of granular feedback. By

decomposing synthetic trajectories into sub-trajectories corresponding to individual model actions

and providing step-wise rewards, we enabled significantly improved credit assignment, leading to

substantial performance gains in multi-step reasoning.

AlphaChip, in contrast, operated with a sparser reward signal, received only after all large

memory components (up to 131 in our published work) were placed. However, a critical insight here

was how problem formulation and tool use could effectively shorten the episode length from the

agent’s perspective. By focusing the RL agent on the complex task of placing large macros—the part

previously requiring human expertise—and then calling an analytic solver to rapidly place millions

of standard cells for an approximate reward calculation, we made the credit assignment problem

tractable despite the delayed primary reward.

Addressing RL Sample Inefficiency: Inductive Biases and Data Scaling: Finally, tackling

RL’s notorious sample inefficiency yielded lessons in both architectural design and data generation.

With AlphaChip, the discovery of an architecture with the right inductive bias—our novel edge-based

graph neural network—proved transformative. This allowed the agent to generalize effectively across

different chip blocks, even from an extremely small dataset (our “large” dataset contained only 20

blocks). As a result, AlphaChip is approximately 100 times more sample efficient than prior methods

like Simulated Annealing (SA).

SWiRL offered a complementary lesson: if a model struggles with sample inefficiency, one direct

approach is to generate more samples. We found that scaling the generation of synthetic trajectories

consistently improved performance at all tested scales. Importantly, these improvements generalized

across different tasks and tools, highlighting the power of abundant, targeted synthetic data for

CHAPTER 7. CONCLUSIONS 122

overcoming sample limitations in LLM-based agents.

These experiences across chip design and language modeling highlight that while RL presents

significant challenges, thoughtful application of techniques in representation learning, problem

formulation, reward shaping, and data generation can lead to robust and impactful solutions.

Progress in Natural Language Processing (NLP) is fueled by computational power, making

advancements in systems and chip design direct catalysts for the field’s evolution. Reinforcement

learning (RL) is playing an increasingly pivotal role in shaping both advanced NLP applications and

the computer systems they run on. I predict an accelerating convergence between RL, LLMs, and

chip design. Ultimately, as LLMs are themselves complex computer systems, the next generation of

intelligent agents will likely emerge from this powerful intersection.

Bibliography

[1] hMETIS, Hypergraph and Circuit Partitioning Manual. Available at

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download, accessed on December 9,

2020.

[2] RePlAce Software, The OpenROAD Project. Available at https://github.com/The-OpenROAD-

Project/RePlAce, commit from January 9, 2020.

[3] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and

Mohammad Alizadeh. Learning Generalizable Device Placement Algorithms for Distributed

Machine Learning. In Advances in Neural Information Processing Systems, volume 32, pages

3981–3991, 2019.

[4] Charu C. Aggarwal. Neural Networks and Deep Learning, A Textbook. Springer International

Publishing AG, 2018.

[5] Anthony Agnesina, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta, Austin Jiao, Ben

Keller, Brucek Khailany, and Haoxing Ren. AutoDMP: Automated DREAMPlace-based Macro

Placement. ISPD, 2023.

[6] Ameya Agnihotri, Satoshi Ono, and Patrick Madden. Recursive Bisection Placement: Feng

Shui 5.0 Implementation Details. In Proceedings of the International Symposium on Physical

Design, pages 230–232, 01 2005.

[7] Tutu Ajayi, Vidya A. Chhabria, Mateus Fogaça, Soheil Hashemi, Abdelrahman Hosny, An-

drew B. Kahng, Minsoo Kim, Jeongsup Lee, Uday Mallappa, and Marina Neseem et al. Toward

an Open-Source Digital Flow: First Learnings from the OpenROAD Project. In Proceedings of

the 56th Annual Design Automation Conference 2019, DAC ’19, New York, NY, USA, 2019.

Association for Computing Machinery.

[8] C. J. Alpert, L. W. Hagen, and A. B. Kahng. A hybrid multilevel/genetic approach for circuit

partitioning. In Proceedings of APCCAS’96 - Asia Pacific Conference on Circuits and Systems,

pages 298–301, 1996.

123

BIBLIOGRAPHY 124

[9] Charles Alpert, Andrew Kahng, Gi-Joon Nam, Sherief Reda, and Paul Villarrubia. A Semi-

Persistent Clustering Technique for VLSI Circuit Placement. In Proceedings of the 2005

International Symposium on Physical Design, ISPD ’05, pages 200–207, New York, NY, USA,

2005. Association for Computing Machinery.

[10] C.J. Alpert, AE Caldwell, T.F. Chan, D.J.-H Huang, Andrew Kahng, Igor Markov, and

M. Moroz. Analytical engines are unnecessary in top-down partitioning-based placement. VLSI

Design, 10, 07 2002.

[11] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay.

NeurIPS, 2018.

[12] Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku. 2024. Available at https://www-

cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf.

[13] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep

reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[14] B. Aslam, F. Amjad, and C. C. Zou. Optimal Roadside Units Placement in Urban Areas for

Vehicular Networks. In 2012 IEEE Symposium on Computers and Communications (ISCC),

pages 000423–000429, 2012.

[15] No authors listed. Stronger baselines for evaluating deep reinforcement learning in chip

placement, Scan of a document with no publication date. https://shorturl.at/DRKP8.

[16] Azalia Mirhoseini* and Anna Goldie* and Mustafa Yazgan and Joe Jiang and Ebrahim Songhori

and Shen Wang and Young-Joon Lee and Eric Johnson and Omkar Pathak and Sungmin Bae

and Azade Nazi and Jiwoo Pak and Andy Tong and Kavya Srinivasa and William Hang and

Emre Tuncer and Anand Babu and Quoc V. Le and James Laudon and Richard Ho and Roger

Carpenter and Jeff Dean. Chip Placement with Deep Reinforcement Learning. arXiv preprint,

2020.

[17] Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello,

Michal Valko, and Rémi Munos. A General Theoretical Paradigm to Understand Learning

from Human Preferences. PMLR, 2023.

[18] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,

Anna Chen, Anna Goldie, Azalia Mirhoseini, and Cameron McKinnon et al. Constitutional AI:

Harmlessness from AI Feedback. arXiv, 2022.

[19] Thomas D. Barrett, William R. Clements, Jakob N. Foerster, and Alex I. Lvovsky. Exploratory

Combinatorial Optimization with Reinforcement Learning. AAAI, 2020.

BIBLIOGRAPHY 125

[20] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and

Cybernetics, SMC-13(5):834–846, 1983.

[21] Richard Bellman. Dynamic programming, 1957.

[22] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural

Combinatorial Optimization with Reinforcement Learning. ICLR, 2017.

[23] Binjie Yan, Lin Xu, Zefang Yu, Mingye Xie, Wei Ran, Jingsheng Gao, Yuzhuo Fu, Ting Liu.

Learning to Floorplan like Human Experts via Reinforcement Learning. DATE, 2024.

[24] U. Brenner, M. Struzyna, and J. Vygen. BonnPlace: Placement of Leading-Edge Chips by

Advanced Combinatorial Algorithms. Trans. Comp.-Aided Des. Integ. Cir. Sys., 27(9):1607–

1620, September 2008.

[25] Melvin A. Breuer. A Class of Min-Cut Placement Algorithms. In Proceedings of the 14th

Design Automation Conference, DAC 1977, pages 284–290. IEEE Press, 1977.

[26] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally

connected networks on graphs, 2013.

[27] Ismail S. Bustany, David Chinnery, Joseph R. Shinnerl, and Vladimir Yutsis. Benchmarks with

Fence Regions and Routing Blockages for Detailed-Routing-Driven Placement. ISPD, 2015.

[28] Rina Diane Caballar. Q&A: Here’s How AI Will Change Chip Design. IEEE Spectrum, 2023.

[29] Cadence. Reinforcement Learning. Available at https://www.cadence.com

/en_US/home/explore/reinforcement-learning.html; Accessed: 2024-11-10.

[30] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov, and A. Zelikovsky. On wirelength

estimations for row-based placement. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 18(9):1265–1278, 1999.

[31] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Improved algorithms for hypergraph biparti-

tioning. In Proceedings 2000. Design Automation Conference. (IEEE Cat. No.00CH37106),

pages 661–666, 2000.

[32] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier

Rando, Rachel Freedman, Tomasz Korbak, David Lindner, and Pedro Freire et al. Open

Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback,

2023.

BIBLIOGRAPHY 126

[33] A. Chakraborty, A. Kumar, and D. Z. Pan. Regplace: A high quality open-source placement

framework for structured asics. In 2009 46th ACM/IEEE Design Automation Conference,

pages 442–447, 2009.

[34] Hongyu Chen, Chung-Kuan Cheng, Nan-Chi Chou, Andrew B. Kahng, John F. MacDonald,

Peter Suaris, Bo Yao, and Zhengyong Zhu. An algebraic multigrid solver for analytical placement

with layout based clustering. In DAC ’03: Proceedings of the 40th annual Design Automation

Conference, DAC 2003, pages 794–799, New York, NY, USA, 2003. Association for Computing

Machinery.

[35] Shiqi Chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern, Siyang Gao, Pengfei Liu, and Junxian

He. Felm: Benchmarking factuality evaluation of large language models, 2023.

[36] T. Chen, Z. Jiang, T. Hsu, H. Chen, and Y. Chang. NTUplace3: An Analytical Placer

for Large-Scale Mixed-Size Designs With Preplaced Blocks and Density Constraints. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(7):1228–1240,

July 2008.

[37] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang.

A High-Quality Mixed-Size Analytical Placer Considering Preplaced Blocks and Density

Constraints. In Proceedings of the 2006 IEEE/ACM International Conference on Computer-

Aided Design, pages 187–192. Association for Computing Machinery, 2006.

[38] Wenhu Chen, Xinyi Wang, and William Yang Wang. A dataset for answering time-sensitive

questions, 2021.

[39] Chung-Kuan Cheng, Andrew B. Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang.

Assessment of Reinforcement Learning for Macro Placement. ISPD, 2023.

[40] Chung-Kuan Cheng and Ernest S. Kuh. Module placement based on resistive network opti-

mization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

3(3):218–225, July 1984.

[41] Qinyuan Cheng, Tianxiang Sun, Wenwei Zhang, Siyin Wang, Xiangyang Liu, Mozhi Zhang, Jun-

liang He, Mianqiu Huang, Zhangyue Yin, Kai Chen, and Xipeng Qiu. Evaluating Hallucinations

in Chinese Large Language Models.

[42] Ruoyu Cheng and Junchi Yan. On Joint Learning for Solving Placement and Routing in Chip

Design. NeurIPS, 2021.

[43] Christopher Cherniak, Zekeria Mokhtarzada, Raul Rodriguez-Esteban, and Kelly Changizi.

Global Optimization of Cerebral Cortex Layout. Proceedings of the National Academy of

Sciences, 101(4):1081–1086, 2004.

BIBLIOGRAPHY 127

[44] Animesh Basak Chowdhury, Marco Romanelli, Benjamin Tan, Ramesh Karri, and Siddharth

Garg. Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization. ICLR,

2024.

[45] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.

Deep reinforcement learning from human preferences, 2023.

[46] Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,

Quoc V. Le, Sergey Levine, and Yi Ma. SFT Memorizes, RL Generalizes: A Comparative

Study of Foundation Model Post-training, 2025.

[47] James Chuang and Pedro Gil. Boost chip design with AI: How Synopsys

DSO.ai on AWS Delivers Lower Power and Faster Time-to-Market. Available

at https://aws.amazon.com/blogs/apn/boost-chip-design-with-ai-how-synopsys-dso-ai-on-aws-

delivers-lower-power-and-faster-time-to-market; Accessed: 2024-11-10.

[48] Chung-Kuan Cheng, Andrew B. Kahng, Ilgweon Kang, Lutong Wang. RePlAce: Advancing

Solution Quality and Routability Validation in Global Placement. In IEEE Trans. Comput.

Aided Des. Integrated Circ. Syst., 2019.

[49] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and

John Schulman. Training Verifiers to Solve Math Word Problems, 2021.

[50] J. P. Cohoon and W. D. Paris. Genetic placement. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 6(6):956–964, November 1987.

[51] Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan,

Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo

Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou,

and Ning Ding. Process Reinforcement through Implicit Rewards, 2025.

[52] David Z. Pan, Lars Liebmann, Bei Yu, Xiaoqing Xu, and Yibo Lin. Pushing multiple patterning

in sub-10nm: Are we ready? DAC, 2015.

[53] DeepSeek-AI and others. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-

ment learning. arXiv preprint arXiv:2501.12948, 2025.

[54] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks

on graphs with fast localized spectral filtering, 2016.

[55] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-

ment learning, 2019.

BIBLIOGRAPHY 128

[56] A. E. Dunlop and B. W. Kernighan. A Procedure for Placement of Standard-Cell VLSI Circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 4(1):92–98,

1985.

[57] Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald Clark, Christopher Ré, and Azalia

Mirhoseini. CodeMonkeys: Scaling Test-Time Compute for Software Engineering, 2025.

[58] H. Esbensen. A genetic algorithm for macro cell placement. In Proceedings EURO-DAC ’92:

European Design Automation Conference, pages 52–57, Sep. 1992.

[59] Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. KTO:

Model Alignment as Prospect Theoretic Optimization, 2024.

[60] James Ferguson, Matt Gardner, Hannaneh Hajishirzi, Tushar Khot, and Pradeep Dasigi. Iirc:

A dataset of incomplete information reading comprehension questions, 2020.

[61] Charles M. Fiduccia and Robert M. Mattheyses. A Linear-Time Heuristic for Improving

Network Partitions. In 19th Design Automation Conference, pages 175–181, June 1982.

[62] Florian Zaruba and Luca Benini. The Cost of Application-Class Processing: Energy and Per-

formance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology.

In VLSI Syst., 2019.

[63] Mateus Fogaca, A. B. Kahng, E. Monteiro, R. Reis, Lutong Wang, and M. Woo. On the supe-

riority of modularity-based clustering for determining placement-relevant clusters. Integration:

The VLSI Journal, 74:32–44, 2020.

[64] Mateus Fogaça, Andrew B. Kahng, Ricardo Reis, and Lutong Wang. Finding placement-relevant

clusters with fast modularity-based clustering. In Proceedings of the 24th Asia and South

Pacific Design Automation Conference, ASPDAC 2019, pages 569–576, New York, NY, USA,

2019. Association for Computing Machinery.

[65] Karl Freund. AI Is Reshaping Chip Design. But Where Will It End? Available

at https://www.forbes.com/sites/karlfreund/2023/12/19/ai-is-reshaping-chip-design-but-where-

will-it-end/; Accessed: 2024-11-10.

[66] Fu-Chieh Chang, Yu-Wei Tseng, Ya-Wen Yu, Ssu-Rui Lee, Alexandru Cioba, I-Lun Tseng,

Da-shan Shiu, Jhih-Wei Hsu, Cheng-Yuan Wang, Chien-Yi Yang, Ren-Chu Wang, Yao-Wen

Chang, Tai-Chen Chen, and Tung-Chieh Chen. Flexible chip placement via reinforcement

learning: late breaking results. DAC, 2023.

[67] C. Gallicchio and A. Micheli. Graph echo state networks. In The 2010 International Joint

Conference on Neural Networks (IJCNN), pages 1–8, July 2010.

BIBLIOGRAPHY 129

[68] Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard Mella, Quentin Carbonneaux, Taco

Cohen, and Gabriel Synnaeve. RLEF: Grounding Code LLMs in Execution Feedback with

Reinforcement Learning, 2025.

[69] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett

Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, and Soroosh Mariooryad et al. Gemini

1.5: Unlocking multimodal understanding across millions of tokens of context, 2024.

[70] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya

Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, and Pouya Tafti et

al. Gemma: Open Models Based on Gemini Research and Technology, 2024.

[71] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya

Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, and

Johan Ferret et al. Gemma 2: Improving Open Language Models at a Practical Size, 2024.

[72] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did

aristotle use a laptop? a question answering benchmark with implicit reasoning strategies,

2021.

[73] Anna Goldie and Azalia Mirhoseini. Nature Peer Review Files. https://static-content.

springer.com/esm/art%3A10.1038%2Fs41586-021-03544-w/MediaObjects/41586_2021_

3544_MOESM1_ESM.pdf, 2020.

[74] Anna Goldie and Azalia Mirhoseini. How AlphaChip transformed computer chip design. In

Google DeepMind Blog, 2024.

[75] Anna Goldie, Azalia Mirhoseini, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen

Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong,

Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger

Carpenter, and Jeff Dean. Addendum: A Graph Placement Methodology for Fast Chip Design.

Nature, 2024.

[76] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,

pages 729–734 vol. 2, July 2005.

[77] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, and Alex Vaughan et al. The

Llama 3 Herd of Models, 2024.

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03544-w/MediaObjects/41586_2021_3544_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03544-w/MediaObjects/41586_2021_3544_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03544-w/MediaObjects/41586_2021_3544_MOESM1_ESM.pdf

BIBLIOGRAPHY 130

[78] Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan

Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao,

Lionel Ni, and Jian Guo. A Survey on LLM-as-a-Judge, 2025.

[79] Sergio Guadarrama, Summer Yue, Toby Boyd, Joe Wenjie Jiang, Ebrahim Songhori, Terence

Tam, Anna Goldie, and Azalia Mirhoseini. Circuit Training: An open-source framework for

generating chip floor plans with distributed deep reinforcement learning. https://github.

com/google_research/circuit_training, 2021.

[80] Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts,

Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang

Macherey, Arnaud Doucet, Orhan Firat, and Nando de Freitas. Reinforced Self-Training

(ReST) for Language Modeling, 2023.

[81] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor, 2018.

[82] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured

data, 2015.

[83] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan

Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is

predictable, empirically, 2017.

[84] Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing

a multi-hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott,

Nuria Bel, and Chengqing Zong, editors, Proceedings of the 28th International Conference

on Computational Linguistics, pages 6609–6625, Barcelona, Spain (Online), December 2020.

International Committee on Computational Linguistics.

[85] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom

Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia

Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent

Sifre. Training compute-optimal large language models, 2022.

[86] M. Hsu, Y. Chang, and V. Balabanov. TSV-aware analytical placement for 3D IC designs. In

2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 664–669, June

2011.

https://github.com/google_research/circuit_training
https://github.com/google_research/circuit_training

BIBLIOGRAPHY 131

[87] Bo Hu and Malgorzata Marek-Sadowska. Multilevel fixed-point-addition-based VLSI placement.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(8):1188–

1203, Aug 2005.

[88] Yu-Hung Huang, Zhiyao Xie, Guan-Qi Fang, Tao-Chun Yu, Haoxing Ren, Shao-Yun Fang,

Yiran Chen, and Jiang Hu. Routability-Driven Macro Placement with Embedded CNN-Based

Prediction Model. In Design, Automation & Test in Europe Conference & Exhibition, DATE

2019, pages 180–185. IEEE, 2019.

[89] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine.

How to train your robot with deep reinforcement learning: lessons we have learned. The

International Journal of Robotics Research, 40(4–5):698–721, January 2021.

[90] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on

Machine Learning, pages 448–456, 2015.

[91] Alex Irpan. Deep reinforcement learning doesn’t work yet. https://www.alexirpan.com/

2018/02/14/rl-hard.html, 2018.

[92] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:

Model-based policy optimization, 2019.

[93] Zixuan Jiang, Ebrahim Songhori, Shen Wang, Anna Goldie, Azalia Mirhoseini, Joe Jiang,

Young-Joon Lee, and David Z. Pan. Delving into Macro Placement with Reinforcement Learning.

MLCAD, 2021.

[94] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and

Karthik Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues?,

2024.

[95] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale

distantly supervised challenge dataset for reading comprehension, 2017.

[96] A. B. Kahng and Qinke Wang. Implementation and extensibility of an analytic placer. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(5):734–747,

2005.

[97] A. B. Kahng, S. Reda, and Qinke Wang. Architecture and details of a high quality, large-scale

analytical placer. In ICCAD-2005. IEEE/ACM International Conference on Computer-Aided

Design, pages 891–898, Nov 2005.

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

BIBLIOGRAPHY 132

[98] A. B. Kahng and Q. Wang. An analytic placer for mixed-size placement and timing-driven

placement. In IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-

2004., pages 565–572, 2004.

[99] Andrew B. Kahng. Futures for partitioning in physical design (tutorial). In Proceedings of the

1998 International Symposium on Physical Design, ISPD ’98, pages 190–193, New York, NY,

USA, 1998. Association for Computing Machinery.

[100] Andrew B. Kahng. Machine learning applications in physical design: Recent results and

directions. In Proceedings of the 2018 International Symposium on Physical Design, ISPD ’18,

pages 68–73, New York, NY, USA, 2018. Association for Computing Machinery.

[101] Andrew B. Kahng. Reducing time and effort in ic implementation: A roadmap of challenges

and solutions. In Proceedings of the 55th Annual Design Automation Conference, DAC ’18,

New York, NY, USA, 2018. Association for Computing Machinery.

[102] Andrew B. Kahng, Jens Lienig, Igor L. Markov, and Jin Hu. VLSI Physical Design: From

Graph Partitioning to Timing Closure. Springer Dordrecht, 2011.

[103] Andrew B. Kahng and Sherief Reda. A tale of two nets: Studies of wirelength progression in

physical design. In Proceedings of the 2006 International Workshop on System-Level Interconnect

Prediction, SLIP ’06, pages 17–24, New York, NY, USA, 2006. Association for Computing

Machinery.

[104] Andrew B. Kahng and Xu Xu. Accurate pseudo-constructive wirelength and congestion

estimation. In Proceedings of the 2003 International Workshop on System-Level Interconnect

Prediction, SLIP ’03, pages 61–68, New York, NY, USA, 2003. Association for Computing

Machinery.

[105] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad

Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,

Ryan Sepassi, George Tucker, and Henryk Michalewski. Model-based reinforcement learning

for atari, 2024.

[106] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language

Models, 2020.

[107] G. Karypis and V. Kumar. Hmetis: a hypergraph partitioning package. 1998.

[108] George Karypis and Vipin Kumar. hMETIS: A Hypergraph Partitioning Package. Manual,

1998. Available at https://course.ece.cmu.edu/ ee760/760docs/hMetisManual.pdf.

BIBLIOGRAPHY 133

[109] Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Yu,

Dragomir Radev, Noah A. Smith, Yejin Choi, and Kentaro Inui. Realtime qa: What’s the

answer right now?, 2024.

[110] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning Combinatorial

Optimization Algorithms over Graphs. In Advances in Neural Information Processing Systems,

volume 30, pages 6348–6358, 2017.

[111] M. Kim, D. Lee, and I. L. Markov. SimPL: An Effective Placement Algorithm. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(1):50–60, 2012.

[112] M.-C. Kim and I. L. Markov. ComPLx: A Competitive Primal-dual Lagrange Optimization

for Global Placement. In Design Automation Conference 2012, pages 747–755, June 2012.

[113] Myung-Chul Kim, Jin Hu, Dong-Jin Lee, and Igor L. Markov. A simplr method for routability-

driven placement. In Proceedings of the International Conference on Computer-Aided Design,

ICCAD ’11, page 67–73. IEEE Press, 2011.

[114] Myung-Chul Kim, Natarajan Viswanathan, Charles J. Alpert, Igor L. Markov, and Shyam

Ramji. MAPLE: Multilevel Adaptive Placement for Mixed-Size Designs. In Proceedings of the

2012 ACM International Symposium on International Symposium on Physical Design, ISPD

2012, pages 193–200. Association for Computing Machinery, 2012.

[115] Najoung Kim, Phu Mon Htut, Samuel R. Bowman, and Jackson Petty. (QA)2: Question

answering with questionable assumptions. In Proceedings of the 61st Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). Association for

Computational Linguistics, 2023.

[116] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. ICLR, 2017.

[117] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

[118] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science,

220(4598):671–680, 1983.

[119] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,

Chris Alberti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee,

Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le,

and Slav Petrov. Natural questions: a benchmark for question answering research. Transactions

of the Association of Computational Linguistics, 2019.

BIBLIOGRAPHY 134

[120] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze

Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya

Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord,

Chris Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh

Hajishirzi. Tulu 3: Pushing Frontiers in Open Language Model Post-Training, 2025.

[121] Jack Lanchantin, Angelica Chen, Shehzaad Dhuliawala, Ping Yu, Jason Weston, Sainbayar

Sukhbaatar, and Ilia Kulikov. Diverse Preference Optimization, 2025.

[122] John Langford and Tong Zhang. The Epoch-Greedy Algorithm for Multi-armed Bandits with

Side Information. In Advances in Neural Information Processing Systems, volume 20, pages

817–824, 2008.

[123] Courtney Laster. Declaration of Courtney Laster. Superior Court of California, County of Santa

Clara, 2024. Declared Under Penalty of Perjury on June 29, 2022 in Los Angeles, California,

Electronically Filed by Superior Court of CA, County of Santa Clara, on 6/30/2022 6:44PM.

This document is publicly available. To access it, navigate to https://portal.scscourt.org/search;

enter 22CV398683 in the first box entitled ‘CASE NUMBER SEARCH’; check the I-am-not-a-

robot-box (if you are in fact human); click ‘Search’; click on the middle tab entitled ‘EVENTS’;

navigate to page 12 (the final tab at the bottom); and in the row with the comment ‘Declaration

of Courtney Laster...’, click on the PDF icon in the final ‘Documents’ column.

[124] Jen-Wei Lee, Yi-Ying Liao, Te-Wei Chen, Yu-Hsiu Lin, Chia-Wei Chen, Chun-Ku Ting,

Sheng-Tai Tseng, Ronald Kuo-Hua Ho, Hsin-Chuan Kuo, Chun-Chieh Wang, Ming-Fang Tsai,

Chun-Chih Yang, Tai-Lai Tung, and Da-Shan Shiu. A Learning-Based Algorithm for Early

Floorplan With Flexible Blocks. In 2022 IEEE Asian Solid-State Circuits Conference, 2022.

[125] Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R. Cole, Kai Hui,

Michael Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai Meher Karthik Duddu, Gustavo Her-

nandez Abrego, Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Prateek Jain, Siddhartha Reddy

Jonnalagadda, Ming-Wei Chang, and Iftekhar Naim. Gecko: Versatile Text Embeddings

Distilled from Large Language Models, 2024.

[126] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,

Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,

Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,

Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,

Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level

code generation with AlphaCode. Science, 378(6624):1092–1097, 2022.

[127] Yuxi Li. Deep reinforcement learning: An overview, 2018.

BIBLIOGRAPHY 135

[128] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,

Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step, 2023.

[129] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How Models Mimic

Human Falsehoods, 2022.

[130] Tao Lin, Chris Chu, Joseph R. Shinnerl, Ismail Bustany, and Ivailo Nedelchev. POLAR: Place-

ment Based on Novel Rough Legalization and Refinement. In Proceedings of the International

Conference on Computer-Aided Design, pages 357–362. IEEE Press, 2013.

[131] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z. Pan. Dream-

place: Deep learning toolkit-enabled gpu acceleration for modern vlsi placement. In Proceedings

of the 56th Annual Design Automation Conference 2019, DAC ’19, New York, NY, USA, 2019.

Association for Computing Machinery.

[132] Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek Khailany, and

David Z. Pan. DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern

VLSI Placement. ICCAD, 2021.

[133] Guanlin Liu, Kaixuan Ji, Renjie Zheng, Zheng Wu, Chen Dun, Quanquan Gu, and Lin Yan.

Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function

Optimization. arXiv, 2024.

[134] Adam Liška, Tomáš Kočiský, Elena Gribovskaya, Tayfun Terzi, Eren Sezener, Devang Agrawal,

Cyprien de Masson d’Autume, Tim Scholtes, Manzil Zaheer, Susannah Young, Ellen Gilsenan-

McMahon, Sophia Austin, Phil Blunsom, and Angeliki Lazaridou. Streamingqa: A benchmark

for adaptation to new knowledge over time in question answering models, 2022.

[135] J. Lu, H. Zhuang, P. Chen, H. Chang, C. Chang, Y. Wong, L. Sha, D. Huang, Y. Luo, C. Teng,

and C. Cheng. ePlace-MS: Electrostatics-Based Placement for Mixed-Size Circuits. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(5):685–698,

2015.

[136] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang, Chin-Chi

Teng, and Chung-Kuan Cheng. ePlace: Electrostatics-Based Placement Using Fast Fourier

Transform and Nesterov’s Method. ACM Trans. Des. Autom. Electron. Syst., 20(2), 2015.

[137] Jingwei Lu, Hao Zhuang, Ilgweon Kang, Pengwen Chen, and Chung-Kuan Cheng. Eplace-3d:

Electrostatics based placement for 3d-ics. In International Symposium on Physical Design.

Association for Computing Machinery, 2016.

BIBLIOGRAPHY 136

[138] Tao Luo and D. Z. Pan. DPlace2.0: A stable and efficient analytical placement based on

diffusion. In 2008 Asia and South Pacific Design Automation Conference, pages 346–351,

March 2008.

[139] I. L. Markov, J. Hu, and M. Kim. Progress and Challenges in VLSI Placement Research.

Proceedings of the IEEE, 103(11):1985–2003, 2015.

[140] Igor Markov. The False Dawn: Reevaluating Google’s Reinforcement Learning for IC Macro

Placement. Communications of the ACM, 2023.

[141] Igor Markov. Reevaluating Google’s Reinforcement Learning for IC Macro Placement. Com-

munications of the ACM, 2024.

[142] Jan Medlock and Alison P. Galvani. Optimizing Influenza Vaccine Distribution. Science,

325(5948):1705–1708, 2009.

[143] Yu Meng, Mengzhou Xia, and Danqi Chen. SimPO: Simple Preference Optimization with a

Reference-Free Reward, 2024.

[144] Rod Metcalfe. Machine Learning-Driven Full-Flow Chip Design Automation. Cadence, 2022.

[145] D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control, 1968.

[146] Marvin Minsky. Steps toward Artificial Intelligence, 1961.

[147] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean. A

Hierarchical Model for Device Placement. In ICLR, 2018.

[148] Azalia Mirhoseini*, Anna Goldie*, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean. A

Hierarchical Model for Device Placement. In Proceedings of the International Conference on

Learning Representations, 2018.

[149] Azalia Mirhoseini*, Anna Goldie*, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen

Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong,

Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger

Carpenter, and Jeff Dean. A Graph Placement Methodology for Fast Chip Design. Nature,

2021.

[150] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,

Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device Placement Opti-

mization with Reinforcement Learning. In ICML, 2017.

[151] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,

Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device Placement Opti-

mization with Reinforcement Learning, 2017.

BIBLIOGRAPHY 137

[152] V. Mnih, K. Kavukcuoglu, and D. et al. Silver. Human-level control through deep reinforcement

learning. Nature 518, 529–533, 2015.

[153] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lill-

icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning, 2016.

[154] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

[155] Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann

Machines. In Proceedings of the International Conference on Machine Learning, pages 807–814,

2010.

[156] W. Naylor, R. Donelly, and L. Sha. Non-linear Optimization System And Method For

Wire Length And Delay Optimization For An Automatic Electric Circuit Placer. In Patent

US6301693B1, 2001.

[157] Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. GAP: Generalizable

Approximate Graph Partitioning Framework, 2019.

[158] Bernd Obermeier, Hans Ranke, and Frank M. Johannes. Kraftwerk: A Versatile Placement

Approach. In Proceedings of the 2005 International Symposium on Physical Design, pages

242–244. Association for Computing Machinery, 2005.

[159] MacroPlacement Repo. https://github.com/TILOS-AI-Institute/MacroPlacement.

[160] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

[161] OpenAI. ChatGPT, 2024.

[162] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, and Shyamal Anadkat et

al. GPT-4 Technical Report, 2024.

[163] Jon Orwant. Declaration of Jon Orwant. Superior Court of California, County of Santa

Clara, 2022. Declared Under Penalty of Perjury on June 30, 2022 in Brookline, Massachusetts,

Electronically Filed by Superior Court of CA, County of Santa Clara, on 6/30/2022 6:44PM,

Publicly Available at https://portal.scscourt.org/, Case Number 22CV398683.

[164] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,

Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,

https://github.com/TILOS-AI-Institute/MacroPlacement
https://blog.openai.com/openai-five/

BIBLIOGRAPHY 138

Jan Leike, and Ryan Lowe. Training language models to follow instructions with human

feedback, 2022.

[165] Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and

Oriol Vinyals. Reinforced genetic algorithm learning for optimizing computation graphs. In

Proceedings of International Conference on Learning Representations, 2020.

[166] Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, Olivier

Pietquin, and Laura Toni. A survey of temporal credit assignment in deep reinforcement

learning, 2024.

[167] Peng Qi, Haejun Lee, Oghenetegiri "TG" Sido, and Christopher D. Manning. Answering

Open-Domain Questions of Varying Reasoning Steps from Text, 2021.

[168] Peng Qi, Haejun Lee, Oghenetegiri "TG" Sido, and Christopher D. Manning. Answering

Open-Domain Questions of Varying Reasoning Steps from Text, 2021.

[169] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and

Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward

Model. NeurIPS, 2023.

[170] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+

questions for machine comprehension of text, 2016.

[171] Tiernan Ray. AI on the bench: Cadence offers machine learning to smooth chip design.

ZDNet, 08/02/2021. Available at https://www.zdnet.com/article/ai-on-the-bench-cadence-

offers-machine-learning-to-smooth-chip-design; Accessed: 2024-11-10.

[172] Jim Gao Richard Evans. DeepMind AI Reduces Google Data Cen-

tre Cooling Bill by 40%. https://deepmind.google/discover/blog/

deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/, 2016.

[173] Jarrod A. Roy, David A. Papa, and Igor L. Markov. Capo: Congestion-Driven Placement

for Standard-cell and RTL Netlists with Incremental Capability, pages 97–133. Springer US,

Boston, MA, 2007.

[174] G. Rummery and Mahesan Niranjan. On-line q-learning using connectionist systems. Technical

Report CUED/F-INFENG/TR 166, 11 1994.

[175] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of

Research and Development, 3(3):210–229, 1959.

[176] Majid Sarrafzadeh, Maogang Wang, and Xiaojian Yang. Dragon: A Placement Framework,

pages 57–89. Springer US, Boston, MA, 2003.

https://deepmind.google/discover/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/
https://deepmind.google/discover/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/

BIBLIOGRAPHY 139

[177] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural

network model. IEEE Transactions on Neural Networks, 20(1):61–80, Jan 2009.

[178] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust

region policy optimization, 2015.

[179] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal

policy optimization algorithms, 2017.

[180] Carl M. Sechen and Alberto Luigi Sangiovanni-Vincentelli. TimberWolf3.2: A New Standard

Cell Placement and Global Routing Package. In DAC, pages 432–439. IEEE Computer Society

Press, 1986.

[181] Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar.

RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold,

2024.

[182] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo

Villalobos. Compute Trends Across Three Eras of Machine Learning. In 2022 International

Joint Conference on Neural Networks (IJCNN), page 1–8. IEEE, July 2022.

[183] K. Shahookar and P. Mazumder. VLSI Cell Placement Techniques. ACM Comput. Surv.,

23(2):143–220, 1991.

[184] Khushro D Shahookar and Pinaki Mazumder. Vlsi cell placement techniques, 1991.

[185] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,

Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of

Mathematical Reasoning in Open Language Models, 2024.

[186] D. Silver, A. Huang, and C. Maddison. Mastering the game of go with deep neural networks

and tree search. Nature, 2016.

[187] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,

Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general

reinforcement learning algorithm, 2017.

[188] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game

of Go without human knowledge. Nature, 550(7676):354–359, 2017.

BIBLIOGRAPHY 140

[189] Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia,

Peter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex

Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Elsayed, Hanie

Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington,

Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao,

Maxwell L. Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian,

Yamini Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel.

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models, 2024.

[190] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM Test-Time Compute

Optimally can be More Effective than Scaling Model Parameters. ICLR, 2024.

[191] P. Spindler, U. Schlichtmann, and F. M. Johannes. Kraftwerk2-A Fast Force-Directed Quadratic

Placement Approach Using an Accurate Net Model. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27(8):1398–1411, Aug 2008.

[192] Richard Sutton. The bitter lesson, 2019. Available at

http://www.incompleteideas.net/IncIdeas/BitterLesson.html, accessed on June 3, 2025.

[193] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford

Book, Cambridge, MA, USA, 2018.

[194] R.S. Sutton. Learning to predict by the methods of temporal differences, 1988.

[195] Synopsys. What is AI Chip Design? Available at https://www.synopsys.com/ai/what-is-ai-

chip-design.html; Accessed: 2024-11-10.

[196] Synopsys. What is Physical Synthesis. Available at https://www.synopsys.com/glossary/what-

is-physical-synthesis.html; Accessed: 2024-11-10.

[197] Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex

questions, 2018.

[198] Maolin Tang and Xin Yao. A Memetic Algorithm for VLSI Floorplanning. IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(1):62–69, 2007.

[199] Google Gemini Team. Gemini: A Family of Highly Capable Multimodal Models,

arXiv:2312.11805, 2023.

[200] Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58–68,

March 1995.

[201] Edward L. Thorndike. Animal intelligence; experimental studies. The Macmillan company,

1911.

BIBLIOGRAPHY 141

[202] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue:

Multihop Questions via Single-hop Question Composition, 2022.

[203] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue:

Multihop Questions via Single-hop Question Composition, 2022.

[204] Ren-Song Tsay, Ernest Kuh, and Chi-Ping Hsu. PROUD: A fast sea-of-gates placement

algorithm. In 25th ACM/IEEE Design Automation Conference, pages 318–323, 01 1988.

[205] J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function

approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

[206] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,

Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-

and outcome-based feedback. arXiv, 2022.

[207] Nicolas Usunier, Gabriel Synnaeve, Zeming Lin, and Soumith Chintala. Episodic Exploration

for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks. In

Proceedings of the International Conference on Learning Representations, 2017.

[208] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double

q-learning, 2015.

[209] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wo-

jtek Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo Ewalds,

Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin Dal-

ibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor

Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen,

Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy

Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaS-

tar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[210] Natarajan Viswanathan, Gi-Joon Nam, C.J. Alpert, Paul Villarrubia, Haoxing Ren, and

Chris Chu. RQL: Global Placement via Relaxed Quadratic Spreading and Linearization. In

Proceedings of Design Automation Conference, pages 453–458, 07 2007.

[211] Natarajan Viswanathan, Min Pan, and Chris Chu. FastPlace: An Efficient Multilevel Force-

Directed Placement Algorithm, pages 193–228. Springer, 01 2007.

[212] Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan

Sung, Denny Zhou, Quoc Le, and Thang Luong. FreshLLMs: Refreshing Large Language

Models with Search Engine Augmentation. ACL 2024.

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

BIBLIOGRAPHY 142

[213] Huaijie Wang, Shibo Hao, Hanze Dong, Shenao Zhang, Yilin Bao, Ziran Yang, and Yi Wu.

Offline Reinforcement Learning for LLM Multi-Step Reasoning. ICLR 2025 Workshop on

Reasoning and Planning for LLMs, 2025.

[214] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Cheng. Electronic Design Automation:

Synthesis, Verification, and Test. Morgan Kaufmann, 2009.

[215] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.

Dueling network architectures for deep reinforcement learning. PMLR, 2016.

[216] Sally Ward-Foxton. AI-Powered Chip Design Goes Mainstream. EE Times, 2023. Available at

https://www.eetimes.com/ai-powered-chip-design-goes-mainstream/; Accessed: 2024-11-10.

[217] Christopher Watkins. Learning From Delayed Rewards. Thesis (PhD), King’s College, Cam-

bridge University, 1989.

[218] Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia

Glaese, John Schulman, and William Fedus. Measuring short-form factuality in large language

models. NeurIPS, 2024.

[219] Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran,

Daiyi Peng, Ruibo Liu, Da Huang, Cosmo Du, and Quoc V. Le. Long-form factuality in large

language models, 2024.

[220] Wikipedia. Multiple Patterning, 2024. Available at

https://en.wikipedia.org/wiki/Multiple_patterning; Accessed: 2024-04-23.

[221] R.J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Mach Learn, 1992.

[222] Jian Wu, Linyi Yang, Zhen Wang, Manabu Okumura, and Yue Zhang. CofCA: A Step-Wise

Counterfactual Multi-hop QA benchmark. ICLR, 2024.

[223] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A

comprehensive survey on graph neural networks, 2019.

[224] Xie, Z., Huang, Y., Fang, G., Ren, H., Fang, S., Chen. Y., & Hu. J. RouteNet: Routability

prediction for Mixed-Size Designs Using Convolutional Neural Network. In 2018 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 1–8, 2018.

[225] Jinjun Xiong, Yiu-Chung Wong, Egino Sarto, and Lei He. Constraint driven i/o planning and

placement for chip-package co-design. In APSDAC, 2006.

BIBLIOGRAPHY 143

[226] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdi-

nov, and Christopher D. Manning. HotpotQA: A Dataset for Diverse, Explainable Multi-hop

Question Answering, 2018.

[227] Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, Ping Luo. ChiPFormer: Transferable

Chip Placement via Offline Decision Transformer. PMLR, 2023.

[228] Yao Lai, Mu Yao, Luo Ping. MaskPlace: Fast Chip Placement via Reinforced Visual Represen-

tation Learning. NeurIPS, 2022.

[229] Yi-Chen Lu, Wei-Ting Chan, Deyuan Guo, Sudipto Kundu, Vishal Khandelwal, and Sung Kyu

Lim. RL-CCD: Concurrent Clock and Data Optimization using Attention-Based Self-Supervised

Reinforcement Learning. DAC, 2023.

[230] Xinyan Velocity Yu, Sewon Min, Luke Zettlemoyer, and Hannaneh Hajishirzi. CREPE: Open-

Domain Question Answering with False Presuppositions, 2022.

[231] Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang

Zhou, and Jingren Zhou. Scaling Relationship on Learning Mathematical Reasoning with Large

Language Models, 2023.

[232] Summer Yue, Ebrahim M. Songhori, Joe Wenjie Jiang, Toby Boyd, Anna Goldie, Azalia

Mirhoseini, and Sergio Guadarrama. Scalability and Generalization of Circuit Training for

Chip Floorplanning. ISPD, 2022.

[233] Yunqi Shi, Ke Xue, Lei Song, Chao Qian. Macro Placement by Wire-Mask-Guided Black-Box

Optimization. NeurIPS, 2024.

[234] F. Zaruba and L. Benini. The Cost of Application-Class Processing: Energy and Performance

Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 27(11):2629–2640, Nov 2019.

[235] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STaR: Bootstrapping Reasoning

With Reasoning, 2022.

[236] Michael Zhang and Eunsol Choi. SituatedQA: Incorporating extra-linguistic contexts into QA.

In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors,

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,

pages 7371–7387, Online and Punta Cana, Dominican Republic, November 2021. Association

for Computational Linguistics.

[237] Muhan Zhang and Yixin Chen. Link Prediction Based on Graph Neural Networks. In Proceedings

of International Conference on Neural Information Processing, 2018.

BIBLIOGRAPHY 144

[238] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,

Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion

Stoica. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. NeurIPS Datasets and

Benchmarks, 2023.

[239] Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C. Ma, Qiumin Xu, Ming

Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirhoseini, and James Laudon. Gdp: Generalized

device placement for dataflow graphs, 2019.

[240] Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P., Xu, Q., Liu, H.. Phothilimtha, M. P.,

Wang, S., Goldie, A., Mirhoseini, A., & Laudon, J. Transferable Graph Optimizers for ML

Compilers. In Advances in Neural Information Processing Systems, 2020.

[241] Karl Ziemelis. Nature Chief Physical Sciences Editor, April 12, 2024. Personal communication,

2024.

[242] Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement Learning. In

Procceedings of International Conference on Learning Representations, 2017.

	Abstract
	Acknowledgments
	Introduction
	Reinforcement Learning for Sequential Decision-Making
	A Brief History of Reinforcement Learning
	Thesis Statement, Research Questions, and Contributions
	Overview of Dissertation
	Bibliographic Notes

	I Reinforcement Learning for Chip Design
	Placement Optimization With Reinforcement Learning
	Background
	Placement Optimization as an RL Problem
	Principles of Deep Reinforcement Learning
	Deep Reinforcement Learning for Placement Optimization
	Placement Problem Formulation
	Graph Convolutional Neural Networks
	Domain Adaptation
	Solving the Placement Objective with Policy Gradient Optimization

	Ingredients for RL Success
	Conclusion

	AlphaChip: A Graph Placement Method for Chip Design
	Background
	Introduction
	Related Work
	Chip floorplanning as a learning problem
	Designing Domain-Adaptive Policies
	Methods
	Problem Statement
	Overview of Our Approach
	Detailed Methodology
	Synthesis of the input netlist
	Selection of grid rows and columns
	Selection of macro order
	Clustering of Standard Cells
	Generation of Adjacency Matrix
	Placement of Standard Cells
	Postprocessing
	Reward
	Action Representation
	State Representation
	Enabling Transfer Learning
	Policy Network Architecture
	Policy Network Update: Training Parameters

	Empirical Evaluation
	Experimental Setup
	Open-Source Benchmark: Ariane RISC-V
	Google TPU Results: Comparing with Baseline Methods
	Domain Adaptation Results
	Learning from Larger Datasets

	Discussion
	Use in a Production Setting
	Impact of Cost Trade-offs
	Robustness to Noise
	Generalization vs. Training Data
	Insights and Visualizations
	Implications for a Broader Class of Problems

	Conclusion

	Appendices
	Early Exploration of RL Optimization Algorithms
	Exploring RL Convergence Properties
	Exploring Effect of Input Ordering
	Post-RouteOpt Validation of AlphaChip
	Comparing with Simulated Annealing

	From Scrutiny to Silicon: AlphaChip Post-Publication
	Background
	Errors in Attempted Reproduction of Our Method
	No Pre-Training Performed for RL Method
	RL Method Provided with Far Fewer Compute Resources
	RL Method Not Trained to Convergence
	Test Cases Not Representative of Modern Chips

	Transparency & Reproducibility
	AlphaChip is Fully Open-Source
	Claims They Cannot Share Their ``Open'' Test Cases

	Discussion
	Moving Forward: AlphaChip's Broader Impact
	External Perspectives from Academic and Industry Leaders
	Conclusion

	Appendices
	Other Discussions
	Inappropriate Comparison With Commercial Autoplacers
	Contrived ``Ablation'' of Initial Placement in Standard Cell Cluster Rebalancing
	Flawed Study of Correlation Between Proxy Cost and Final Metrics
	Incorrect Claim of Validation by Google Engineers

	II Reinforcement Learning for Language Modeling
	Synthetic Data Generation and Multi-Step RL
	Introduction
	Methodology
	Multi-Step Data Collection
	Step-Wise Reinforcement Learning Methodology
	Step-Wise Inference-time Evaluation

	Related Work
	Experiments
	Evaluation Datasets
	Results and Discussion

	Conclusion

	Appendices
	Prompts for Synthetic Data Generation, Filtering, and Evaluation
	Impact of Model Size on Effectiveness of SWiRL
	Error Analysis of Three LLM Judges
	Example Trajectories
	Example Ids

	Benchmarking Multi-Step Reasoning and Tool Use
	Introduction
	Data Collection
	Sourcing and Generating Queries
	Filtering and Rewriting Queries
	Generating Trajectories with Human Annotators

	Evaluation Benchmark
	LLM as a Judge
	Data Format
	Dataset Composition

	Dataset Validation and Analysis
	Dataset Validation
	Multi-Hop Nature
	Distribution Over Actions

	Rubric-Based LLM Evaluation
	Experiments
	Related Work
	Conclusion

	Appendices
	Filter and Rewrite Input Queries for Multi-Hop Search
	Summary
	Instructions
	Example 1: Accept Query
	Example 2: Rewrite Query
	Example 3: Query Rejected
	Data Collection for Multi-Hop Search & Response Generation
	Example Trajectories

	Conclusions

