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Abstract

Humans, through deep and expressive conversations, have perfected the art of exchanging information about the

world around them seamlessly. But even with the latest NLP methods, chatbots struggle in being informative.

In this dissertation, I describe my work on building neural systems for informative conversations.

First, I describe Chirpy Cardinal, our Alexa Prize 2020 Socialbot, that was deployed to tens of thousands

of users across the US, and served as a test-bed for an initial system for informative conversations. While we

used state-of-the-art models that improved over prior work, they fell short of expectations when deployed

in the real-world setting. In particular, our system had two components: a retriever to find conversationally

relevant passages from a large corpus (like Wikipedia) and a language generator to weave it into the dialogue

with conversational-sounding utterances, and these two components were unable to cohesively work together.

Second, inspired by linguistics literature on conversations, I analyze human-human informative conversa-

tions and identify various strategies for acknowledgement, presentation, transition and detail-selection. I also

present a case study, where I improve acknowledgements by using conditional mutual information to select

better chatbot utterances.

Third, I explore the possibility of learning these strategies from data by jointly training a neural retriever

and a neural generator such that they work together cohesively. To train them, we need to know which passages

are relevant to the conversation, but the abundant conversational data available for training is not annotated

for relevant passages! Our method, HINDSIGHT, uses a posterior retriever to find relevant passages during

training. The posterior retriever is jointly trained alongside the original retriever and the generator using the

evidence lower bound (ELBo). We find that HINDSIGHT has better inductive biases than existing methods -

at inference, the retriever finds more relevant passages and the generator is more grounded in the retrieved

passages, resulting in better end-to-end performance. Together, these projects provide a strong practical

motivation, rich linguistic guidance and an effective training method for our aim of building neural systems to

have deep and topically broad conversations.
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Chapter 1

Introduction

My goal in this dissertation is to build Natural Language Processing (NLP) systems for informative conversa-

tions that achieve two goals: (1) have in-depth conversations and (2) talk about a breadth of topics. Both these

aspects have been studied individually: deep conversations on narrow topics and shallow conversations on a

wide range of topics. In this dissertation, I study them together. I aim to achieve this goal using neural models

(a.k.a. artificial neural networks) that I develop in this dissertation. In this chapter, I situate this dissertation

and give an overview. In this section, I motivate building neural systems for informative conversations.

What are informative conversations and why study them? For millennia, humans have used con-

versations as a tool to understand each other, tell stories, communicate information and get things done.

Conversations are a very flexible and expressive tool. But these conversations rarely happen in a vacuum, they

are situated in the world around us. When talking with others, humans often talk about the people, places

and events around them. I use the term “informative conversations” to refer to various types of conversations

where participants aim to exchange information about the world with each other. In a study on human-human

conversations, I find that roughly half of the words uttered by people are in the context of informing others

(see Section 4.1). Thus, informative conversations are a prominent type of conversation and worth studying. In

Section 1.1, I discuss some types of conversations and situate my work on informative conversations.

Why build computer systems for informative conversations? We (as humans) need to access information

all the time. We tend to keep ourselves aware of the latest news events, get help on assembling furniture, find

answers to common questions, hear about how our favorite sports team is faring. Most of these informational

needs are being met via computers: we navigate complex menus, we iteratively formulate queries to search for

information on the web, we find and subscribe to various sources of curated information, etc. But currently,

we are not able to talk with computers the way we talk with other humans. We have to forego our years of

1
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expertise in human-human communication and need to learn how to interact with bespoke interfaces. In fact,

“search-fu” is used in popular culture to indicate mastery in being able to query search engines. By building

systems for informative conversations with machines, we can use natural language to fulfill our informational

needs in an intuitive and efficient manner. Next, I argue that both – conversational depth and topical breadth –

are important for the systems being built today.

Importance of in-depth conversations. “The act of seeking information is not to describe something you

know, but rather something you don’t know.” (Taylor, 1968). Often, people are unclear about what they are

looking for in the first place. This act of describing the unknown involves a collaboration with the other speaker

where the two speakers coordinate with each other over multiple turns, building up shared knowledge about

each other’s understanding and adding novel pieces of information to the conversation. I illustrate these ideas

via an example in Section 1.2, Figure 1.2. Human-human conversations allow for various complex phenomena

that are essential for gathering information; they are deep. On the other hand, our current conversations with

machines are rudimentary in comparison. For example, we can ask questions to virtual assistants like Alexa,

Google Home and Siri, but they are unable to answer nuanced questions nor respond to follow-up questions.

Systems that support in-depth conversations will allow humans to express their informational needs intuitively

and enable them to collaborate with computers as easily as they would have with other humans.

The need for broad topical coverage. People, when talking with each other, converse on a wide range of

topics like entertainment, sports, business, economics, world affairs, etc., and move fluidly between these

topics. Being able to talk about a wide range of topics is essential as it allows humans to synthesize information

about diverse topics from various sources. While people do not know as much as the entire internet, web

search is a ubiquitous way of interacting with web documents. Users today expect computer systems to utilize

all the web’s documents and be able to look for information that was generated by humanity as a whole.

In Section 1.2, I situate this dissertation in terms of the historical progression of systems that operate at

different conversational depths and topical breadths.

Achieving these goals with neural systems. Many past conversational systems used handcrafted rules. Even

today, the industrial systems deployed in practice are based on intent detection, slot extraction and templated

responses (Louvan and Magnini, 2020). While they are initially easy to bootstrap with handwritten branches

and templates, even numerous handwritten rules are insufficient to capture the broad range of semantic and

syntactic variations of natural language. Neural methods enable flexible and responsive utterance generation

and trainable knowledge retrieval which are otherwise not possible with existing methods. In this dissertation,
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I explore various ways in which we can combine the consistency and interpretability of traditional rule-based

systems with the flexibility and responsiveness of neural systems.

The rest of the chapter is structured as follows: I first situate my dissertation w.r.t. conversations in general

(Section 1.1) and in terms of the conversational depth and topical breadth (Section 1.2); Then, I briefly describe

the thesis contributions in Section 1.3 and provide an overview of each of the chapters in Section 1.4; Finally,

in Section 1.5, I draw high level conclusions based on the lessons learned and provide some takeaways on

research processes that are relevant to anyone building NLP systems.

1.1 Situating Informative Conversations

To be able to study conversations effectively, researchers reduce their scope by categorizing conversations into

various types. This categorization is based on many factors including participants’ familiarity with each other,

social norms, any presupposed goals of the conversation, etc. For example, conversations between experts and

novices (Isaacs and Clark, 1987), between strangers (Godfrey et al., 1992), between people collaborating to

find information (González-Ibáñez et al., 2013), etc. There are other ways of categorizing the variations in

conversations and I describe them in depth in Section 2.5. Based on these types, conversational analysts and

linguists can now study each type in isolation while chatbot designers can build systems that advance machine

ability for a specific type.

To situate my work, I use the conversational circumplex (see Figure 1.1) introduced by Yeomans et al.

(2022). They categorize conversations based on participant goals along two latent axes: relational and

informational. Relational conversations aim to build good relationship, e.g. by being honest, apologizing

appropriately, reminiscing, having fun, etc. Informative conversations, correspond to high informational intent

with the goal of giving and/or receiving information. To do so, participants may ask questions, give directions,

make decisions or brainstorm new ideas. In this dissertation, I focus on informative conversations, by studying

strategies for human-human informative conversations in Chapter 4 and building an end-to-end system in

Chapter 5.

Can we build informative systems in isolation? No. While researchers can categorize conversations, the

conversational participants do not actively think about these types. Realistic conversations are often composed

of many types. Even if a conversation is supposed to be of a certain type, as a conversation evolves so does

its place in the typology. For example, transactional conversations between a customer and a cashier at the

cash counter may evolve into talking about their favorite breads and recipes. A social conversation between

two acquaintances might evolve into a mutually beneficial business partnership. Thus, any attempt to study or

build systems for a particular type is insufficient when dealing with realistic conversations.
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Figure 1.1: The conversational circumplex by Yeomans et al. (2022) is licensed under CC BY 4.0. It
classifies the many goals people pursue in conversation along two major axes: informational and relational.
The focus of this dissertation is on the highly informational types of conversations.

A dialogue system built for a specific type of conversation still has to be able to conduct other types of

conversations for it to be a complete experience. Many publicly deployed systems today suffer from their

narrow focus. Virtual assistants like Alexa, Google Home or Siri are designed to complete simple tasks: set an

alarm, play music, etc. But users often say relevant social utterances that the virtual assistants are not able

to handle well, leading to a frustrating experience (Budiu and Laubheimer, 2018). Similarly, many of the

text-based chatbot popups that appear as customer service agents on websites railroad the user into the intents

they explicitly support. Therefore, even for systems with a narrow purpose, if they are user-facing, the

design is dictated by the human expectation of being able to talk broadly.

The flip side of frustrating humans by not meeting their expectations is making humans adapt to the

https://creativecommons.org/licenses/by/4.0/
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system’s quirks. When humans are faced with systems that support narrow goals, they avoid usability agony

by changing their behavior (Whitenton and Budiu, 2018) to the extent that research questions derived from

observing such interactions are unlikely to generalize. Thus, another reason for building complete systems

is that they lead to research questions that are ecologically valid.

While the technical contribution of this dissertation is toward building systems for informative conversa-

tions, it is important to recognize and (to some extent) support other types of conversations. Thus, prior to

building systems for informative conversations, I build a generic social agent to explore the broader context

in which informative conversations arise in Chapter 3 and deploy it to thousands of users across the United

States. We wanted the generic social agent (with the design goals as described in Section 3.2) to build good

relationships (i.e. be highly relational) and also be informative (i.e. highly informational) while avoiding the

kinds of conversations in the bottom left corner of Figure 1.1 (i.e. low relational and low informational). .

Furthermore, in Chapter 4, I also analyze human-human informative conversations as they naturally arise in

the broader context of two strangers connected over telephone lines. These two projects help ensure that the

problems I solve are ecologically valid and the designs I propose are human-centered.

1.2 Conversational depth and topical breadth

Informative conversations themselves can be of various types. I break them along two major components,

topical breadth and conversational depth. Topical breadth is self-explanatory; it simply means being able to

talk about many varied topics. In this section I explain conversational depth in detail with examples. Then I

justify my position on emulating human-human dialogue for increasing conversational depth, as opposed to

creating new interaction paradigms. Finally, I chart historical progress of NLP systems along these two axes

and situate my work.

Deep conversations. Having deep conversations is an important aspect of seeking information via dialogue.

For example, consider the conversation in Figure 1.2 between Yohan and Iga. Yohan is curious to know about

the solar system and Iga describes to him the various objects it is composed of. Out of the various objects,

Yohan had not heard of dwarf planets and expresses his desire to know more about them. Then, Iga gives him

an example of Pluto which then leads them to talk about how Pluto got demoted to being a dwarf planet from

being a planet. At the beginning of the conversation, Yohan did not know what he was looking for and could

not have expressed it. But through the conversation, they built up a shared understanding of their beliefs over

the course of many turns, allowing him to express his informational needs and explore the unknown. This is

an example of a deep conversation and the phenomena observed here are often studied in-depth by linguists
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I'm curious to know about 
the solar system

For sure! It consists of the 
Sun and the objects that 

orbit it due to gravity.

What kinds of objects?

I'm hearing about the dwarf 
planets for the first time! 

What are they?

I thought Pluto was a planet, 
what happened?

1

There are planets, many 
unknown smaller dwarf 

planets and innumerable 
small solar system bodies.

Have you heard of Pluto? It 
is a dwarf planet and it 

even has a moon.

It is quite a story! But in 
short, they discovered Eris, 

which is slightly bigger than 
Pluto but didn't want to call 
it a planet. So they created a 

new category for dwarf 
planets.    

IgaYohan IgaYohan

Figure 1.2: A conversation between Yohan and Iga that illustrates conversational depth. Initially Yohan
does not know what interests him, but as the conversation progresses they collaborate and Yohan is able to
explore new knowledge that interests him. This is an example of a deep conversation.

(including psycholinguists and sociolinguists).

Shallow conversations. Contrast this with a hypothetical information-seeking question from Yohan “Which

planet was demoted to being a dwarf planet”. To be able to ask this question, Yohan needs to know nearly

everything except the name of the said planet. I consider this single turn exchange as a shallow conversation.

Extracting such answer spans from a corpus of passages is the NLP task of open-domain question answering

(Open-QA) (Chen et al., 2017; Kwiatkowski et al., 2019; Petroni et al., 2021) and is a popular and fruitful re-

search direction. However, building systems for shallow conversations is insufficient to capture the phenomena

that make human-human conversations flexible and expressive.

Human-human informative conversations are deep, but should human-machine conversations emulate

human-human conversations in the first place? There are two points of view. Dahlbäck et al. (1993) argue

that humans can adjust their language use when interacting with machines via natural language and therefore

the system need not emulate human-human conversations. On the other hand, Reichman (1985); Karis and

Dobroth (1991) show that natural language systems (especially spoken dialogue systems) are more usable

if they behave in a manner similar to human-human conversations. In my experience, users who repeatedly
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Figure 1.3: The historical progress of NLP systems. Many decades ago, we had systems that could have
deep conversations on narrow domains. Over time, progress was made in scaling the topical breadth but at
the cost of conversational depth. In recent times, the field is making progress in deepening conversations
while maintaining topical breadth. In this dissertation I build systems that enable complex and multi-turn
conversations at the topical breadth of Wikipedia.

interact with a particular system might be willing to pay the upfront price of understanding common and

narrowly-scoped dialogue pathways and adjusting their language to work efficiently with machines. However,

skill discovery is a big challenge for spoken interfaces (White, 2018), which do not have the same affordances

as visual interfaces. This problem is exacerbated for open-ended dialogue which includes a broad range of

variable pathways. I found that users of the Alexa Prize Socialbots were more willing to explore the capabilities

of our system and engage with it if they could draw upon their existing ability to have a conversation with

another human. For example, a trial system for informative conversations (Section 3.8) allowed the user to

explore Wikipedia by providing them section titles as options to select, much like an IVR system. However,

users were unwilling to adapt to it, and it was perceived to be a terrible user-experience. This led me to believe

in the point-of-view that human-machine conversations should emulate human-human conversations. In this

dissertation, I aim to build systems that emulate deep human-human informative conversations.
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1.2.1 Situating this dissertation along historical progress

In Figure 1.3, we look at past systems and research areas. Historically, researchers have built systems to have

deep conversations, but they were on narrow topics. For instance, SHRDLU (Winograd, 1972) could have a

complex multi-turn conversation with a human operator, but was restricted to the block world setting. As an

example, the computer would be able to answer “Is at least one of them narrower than the one which I told

you to pick up?” by referring to the past conversation and the current state of the world. The system could

even interact and update the world. But the block world that it was situated in could only represent blocks

of various shapes and colors in various positions. Thus, systems from 50 years ago were having complex

multi-turn conversations, albeit on very narrow domains.

Over time, the field of NLP traded off conversational depth for topical breadth. For example, The Chat-80

system (Warren and Pereira, 1982) could answer complex single-turn questions over a few hundred hard-coded

geography facts. They translated the questions from English to logical forms, then created a PROLOG program

through planning and executed the program to answer the question. While the system operated on a broader

and more realistic domain, it was strictly single-turn; it could not remember context from prior questions.

With the web-scale application of information retrieval techniques (Manning et al., 2008), we had systems

with unprecedented topical breadth; they could find relevant passages from all the publicly accessible web

pages. While these systems were not designed to be conversational, users were nonetheless attempting verbose

multi-turn conversations, only to find that the conversational depth was minimal (Radlinski and Craswell, 2017).

The interactions were based on matching keywords and restricted to a single-turn (i.e. had no meaningful

memory from one search to another). The output of the system was a list of web pages and not a synthesized

conversational utterance.

Recent advances in NLP increase conversational depth while retaining web-scale topical breadth. As a

prominent example, Open-domain QA and conversational QA are research subfields operating at Wikipedia

scale with applications in popular voice assistants such as Alexa, Siri, and Google Home. There has been

prior work in information retrieval that argues for “slow search” (Teevan et al., 2013), i.e., trading off speed

for higher quality of results. The subfield Conversational Information Retrieval (Gao et al., 2020, 2022), an

offshoot of traditional Information Retrieval, aims to make web search more conversational. This dissertation

aims to build neural systems that further increase conversational depth to multi-turn complex interactions

while operating at the scale of Wikipedia.



CHAPTER 1. INTRODUCTION 9

1.3 Thesis Contributions

In the previous sections, we situated this dissertation within the broader context of different types of conversa-

tions and a historical journey of the trade-off between conversational depth and topical breadth. In this section

I describe the key contributions of this dissertation with the underlying journey and the logical progression of

research questions in the next section.

The first contribution is a deployment-ready system for social conversations. This system is a hybrid of the

traditional rule-based systems and modern neural generation systems. It sets the stage for specialized neural

systems for informative conversations.

The second contribution is a set of key strategies used by humans in informative conversations: acknowl-

edgement, transition, detail selection and presentation. These strategies help set the right goals and success

indicators for a human facing informative system. I also provide a specific method to extract responses with

better acknowledgements (without having to retrain a system) by using conditional mutual information.

The third and central contribution of this thesis is an effective system for extended informative conversations.

This system is composed of a special-purpose neural retriever and a special-purpose neural language generator.

An important part of this contribution is the training method. Typically, positive passages are needed

(Karpukhin et al., 2020; Nguyen et al., 2016) to train a bespoke neural retriever, but in this dissertation I

provide a method for training without passage supervision. Passage supervision is also needed to train the

neural generator, but in this dissertation I show how a posterior model can be used to mask out passages

irrelevant to the desired output.

The end result is a neural system for informative conversations that can be trained from the abundant

conversational data available online, adopts many strategies of human informative conversations, fits into a

larger architecture for social conversations and is ready for user deployment.

1.4 Thesis Overview

The research conducted as a part of this thesis can be broken down into a three step logical progression: finding

important problems, building a perspective with linguistic analysis and finding a solution using ML techniques.

The perfect solution to the wrong problem is not useful. So in the first part of the thesis, I ask the

research question, RQ1: “What are the important problems for informative conversations?”. I aim to find

problems based on user needs and limitations of current systems. To do so, I consider a broader set of social

conversations and study informative conversations in a natural setting. I co-lead a team of students to build

Chirpy Cardinal, our Alexa Prize Socialbot system, that interacted with tens of thousands of users across the
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US. This setting is more ecologically valid than evaluating systems via crowd workers because the users were

volunteering their time and were intrinsically motivated to chat with a social chatbot. It served as our platform

to get real-world conversations and identify the challenges for informative dialogue.

We were one of the first teams to successfully merge the flexibility and responsiveness of neural generation

systems with the consistency, control and interpretability of traditional rule-based symbolic dialogue systems.

With 9 months of development, our team won 2nd prize, defeating teams that were 3 years in the running. We

were also the first team to open source our entire system for use by researchers and industry practitioners.

Despite being a successful endeavor, I identified many areas for improvement. In the rest of the thesis, I focus

on the subset of challenges for informative dialogue. To provide some context about the system architecture, we

used two models for informative dialogue: a retriever to find conversationally relevant content (text passages)

and a neural generator (i.e. sequence to sequence model) to write conversational and informative utterances

grounded in the retrieved content. Our experience with the Alexa prize competition lead us to two research

questions.

First, I realized that the users, based on their lived experience of human-human conversations, had higher

expectations from the human-machine conversations which were very visibly subpar. To understand the fine-

grained attributes of ideal informative conversations, I ask the next research question RQ2 “What strategies

do humans employ when talking informatively with other humans?”. Here, I take inspiration from

sociolinguistic and psycholinguistic literature and analyze human-human conversations. I identify 4 sets of

strategies: acknowledgement, transitions, detail-selection and presentation. As a case study, I provide a method

to improve acknowledgements using conditional mutual information.

Second, I found that the two components of our system, the retriever and the generator, were unaware

of each other and therefore did not work well together. The BM25-based retriever found passages based on

keyword similarity not based on conversational relevance. This motivated using a trainable neural retriever. On

the other hand, the neural generator was a GPT-2 medium model fine-tuned on a parallel corpus of passages

and handwritten responses. I found that this kind of supervision was “too clean”; the generator would trust any

passage provided to it and include snippets from it without considering relevance and without synthesizing

information. Such a generator did not work well in practice because the quality of retrieved passages is variable

and relevance to the conversation not guaranteed. I ask the third research question RQ3, “How to train a

retriever to find conversationally relevant content and a generator to produce grounded utterances such

that they work well together?”. A challenge in training these systems is that we need supervision in the form

of passages that help produce output. But the vast majority of conversations available for training do not have

this supervision. In the final section of the thesis, I introduce Hindsight, which employs a posterior model to
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provide passage supervision and jointly train a retriever, which finds conversationally relevant content, and a

generator. At inference, the jointly trained retriever and generator are very effective in finding conversationally

relevant content and generating grounded utterances. And jointly they outperform existing methods.

In the next subsections, I provide a detailed overview of each part of the thesis.

1.4.1 Problem Finding

To answer RQ1: “What are the important problems for informative conversations?”, I co-led a team of

students to build and deploy a general-purpose social chatbot - Chirpy Cardinal - as an Alexa Prize Socialbot.

This work was originally published as Neural Generation Meets Real People: Towards Emotionally Engaging

Mixed-Initiative Conversations in the Alexa Prize Proceedings (Paranjape et al., 2020).

The Alexa Prize Socialbot Grand Challenge is a competition where university teams can deploy their own

chatbots to interact with US-based Alexa users (Gabriel et al., 2020). The conversation begins when users

say “Let’s chat”. In every turn, the Alexa device transcribes the user’s utterance to text and sends it to the

chatbot. The chatbot produces a text response which is then synthesized into speech by the Alexa device. The

conversation continues back and forth for many turns (with good conversations lasting 10 minutes) until the

user decides to end the conversation by saying “stop”. The user is asked “Would you like to chat with the

chatbot again?” and has the option to answer on a scale between 1 and 5.

We designed our chatbot to be user-centric with the following design goals:

1. Mixed-initiative : the user should have an equal agency to lead the conversation as the bot and should

be able to do so with naturalistic utterances

2. Empathetic: the generated utterances should demonstrate empathy when appropriate

3. Broad-coverage: the chatbot should be able to discuss niche interests of thousands of diverse users

from the US

4. Conversational: the utterances produced by the chatbot, particularly when talking about external factual

content, should integrate well with the ongoing conversation.

In order to support the above design goals while developing a modular (and maintainable) system, we

leveraged the following insight: long conversations are composed of sub-conversations. Each sub-conversation

has specific expectations, goals and norms associated with it, and we designed modules called Response

Generators (RGs) to conduct these sub-conversations. Examples of various RGs are: Personal Chat, Wikipedia,

Movies, Music, Opinions, etc. We designed each RG to produce responses for many consecutive turns as
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What is your favorite band?

...

If a band name 
is detected

If a band name 
is NOT detected

{{band name}} is great! 
Which of their songs do 
you like the most?

Okay, no worries! We can talk 
about something else. Have you 
heard any good songs lately?

Branches based on 
intents and slots

Outputs based on 
slot-filled templates

Branches based on 
intents and slots 

Outputs based on 
slot-filled templates

Figure 1.4: A simplified example of a dialogue tree. The user utterance is classified based on the detection
of a band name and a response is generated by filling slots in templates.

part of the sub-conversation. When the RG self-determines its own inability to continue further, it asks other

RGs to take over. Meanwhile, the other RGs are “listening-in” to the conversation and at every turn produce a

candidate response if they are able to start a sub-conversation at that turn.

The dominant paradigm for designing modules like RGs is a dialogue tree (or more generally a dialogue

graph) as shown in Figure 1.4. The general idea is to first understand the user response (also popularly referred

to as Natural Language Understanding or NLU) and classify it into a few branches (Tur and De Mori, 2011).

In this phase the system detects intents that identify the user’s intention with this utterance and extract slots

that are typically objects or named entities needed to query external resources (APIs, knowledge sources).

Then the system has to generate a response (also popularly referred to as Natural Language Generation or

NLG) and typically they do so by using templates with blanks that are filled using the extracted slots. See

Figure 1.4 for an example. These ideas originated from ELIZA which was a rule-based chatbot (Weizenbaum,

1966) and GUS which was frame-based dialogue system (Bobrow et al., 1977).

While this paradigm is easy to bootstrap by handwriting dialogue trees, it does not scale well, especially for

open-ended dialogue (see Figure 1.5). The branching logic can be brittle, unable to properly capture syntactic

and semantic variations or requiring an ever-growing set of branches. Similarly, the templated utterances

are not responsive: they miss out various bits of information not captured in slots. While some issues were

resolved using neural networks for intent and slot detection (Qin et al., 2021), we were one of the first teams to

deploy artificial neural network based text-generation (a.k.a. neural generation) approaches for more flexible

and responsive utterances.

At the core of current neural generation approaches are sequence to sequence (seq2seq) models. They
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What is your favorite band?

I like rock music, but not the 
kind of songs that Nickelback 

make
Branches based on 

intents and slots 
are brittle and 

incomplete 

Outputs based on 
slot-filled templates 

are inflexible

I wouldn't call it a band, but I 
like Mozart and Beethoven

I like Led Zeppelin songs like 
Stairway to Heaven. What an 

amazing solo!

Led Zeppelin is great! 
Which of their songs do 
you like the most?

I like Led Zeppelin, but more 
than them, I like guitarists like 
Jimmy Page and Jimi Hendrix

Led Zeppelin is great! 
Which of their songs do 
you like the most?

❌

❌

❌
band name not detected 
but user wants to talk 
about musicians

band name detected but 
user doesn't want to talk 
about it

❌
user already mentioned 
the song; template asks 
about their songs again

user wants to talk about 
guitarists; templates don't 
support it.

Figure 1.5: Examples of failure modes in a dialogue tree. The failures arise from misclassification (as seen
in top row examples) or due to template rigidity (as seen in bottom row examples)

consist of two parts: the encoder, which takes the prior conversation as input along with any auxiliary

information and the decoder, which learns a probability distribution over utterances and is responsible for

generating the next utterance (Vinyals and Le, 2015; Sordoni et al., 2015; Shang et al., 2015; Li et al., 2016b).

During training the model updates its parameters using SGD to increase the likelihood of the next utterance

on a given dataset. At inference, tokens are decoded autoregressively, i.e., given a prefix of sampled tokens,

the next token is sampled from a distribution induced by the decoder and added to the prefix. There are

many popular decoding approaches like greedy decoding, top-K sampling (i.e. sample from top K most

probable tokens), beam-search, etc. In this dissertation I typically use nucleus sampling (Holtzman et al.,

2020). However, these models when trained from scratch on (relatively) small conversational datasets generate

output that is inconsistent even within a single turn.

Most recently, transformer-based seq2seq language models with large parameter counts (>100M) are being

“pre-trained” on large scale corpora from the internet (Radford et al., 2018; Raffel et al., 2020). These models

serve as a foundation model (Bommasani et al., 2021) for building bespoke models for downstream tasks. In

this dissertation, I “finetune” such models (e.g. GPT-2 medium (Radford et al., 2019) and BART-base (Lewis

et al., 2020a)) on bespoke conversational datasets (e.g. topical chat (Gopalakrishnan et al., 2019) and Wizard
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of Wikipedia (Dinan et al., 2019b)). The process of fine-tuning is only slightly different from pre-training: the

learning hyperparameters are different, and the dataset is more focussed on the downstream task. These models

(of size ∼ 350 million parameters) are fast enough to deploy in front of users and can now hold naturalistic

and consistent conversations typically up to 3 turns.

However, deploying these neural models out of the box is not sufficient to have longer quality conversation.

We identified and attempted to fix 3 problems:

1. Long-term incoherence: Since the utterances generated by neural models degrade after 3-5 turns, we

stitched multiple such sub-conversations using rules based on symbolic information extracted from prior

context. For example, we were able to extract entities and opinions that were mentioned but not the

focus of the conversation so far and start a new neural conversation around that entity.

2. Domain mismatch: The dialogue datasets (that we use for fine-tuning) are collected under assumptions

about the scope and expectation associated with the conversation. For example, the participants in the

Empathetic Chats dataset were expected to display empathy in response to various social situations

whereas the participants in the Topical chat dataset were expected to introduce fun facts about various

topics into the conversation. Neural models trained to emulate these datasets also inherit the scope and

tone of the specific dataset, which do not match the overall scope and tone of the larger conversation.

To reduce this mismatch we use scripted intros to narrow the scope before launching into the neural

sub-conversation, followed by a scripted outro at the end to expand the scope back to the original

conversation.

3. Failures in the interactive setting When neural systems are deployed to users, the users have complete

agency and can say anything, including abruptly changing topics, expressing dissatisfaction, providing

feedback, etc. However, the training datasets do not contain such examples and neural models fail under

these conditions. We had to detect these cases separately and in the case conversational failure was

detected, we would gracefully exit the neurally generated conversation.

Overall our system was successful in engaging users with long and meaningful conversations. Based

on thousands of conversations with real people, on average our chatbot was rated 3.6 out of 5 and the top

10% of conversations lasted over 12 minutes. In the finals, our chatbot had 6 conversations with trained

conversationalists and came second. Even as a rookie team, with no prior codebase to build upon, we were

able to leverage neural methods to iterate quickly and provide a great user experience.

For informative conversations, I developed the Wikipedia Response Generator, which was designed to be

able to talk about any topic from Wikipedia. It queried a BM25 retriever using the user’s utterance to find
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relevant passages and a GPT-2 medium model to generate using a retrieved passage. The generator was trained

on a parallel corpus of passages and human-written utterances from the Topical Chat dataset. However, I found

that our system dialogue was subpar to human dialogue and led to two research questions that I answer in the

rest of the dissertation.

1.4.2 Linguistic Perspective

Human conversations (with other humans) have been studied in-depth by sociologists, psychologists and

linguists. In this part of the dissertation, I analyze conversations from the Switchboard dataset. Inspired by pre-

viously identified phenomena, I find sets of strategies that correspond to successful informative conversations.

My analysis follows the work of Herbert Clark’s approach to conversational analysis. I find that people

apply four kinds of strategies:

1. Acknowledgement strategies: Inspired by Clark and Brennan (1991), I classify all mentions of prior

context into various acknowledgement strategies. The major ways to acknowledge prior conversational

context are via shared experience, agreement (or disagreement) and back-channeling (common in voice

interactions).

2. Transition strategies: Inspired by Sacks and Jefferson (1995, Chapter 12, Winter 1971), I identify

semantic justifications for topical changes. Nearly half the time, people stay on topic but elaborate their

own previous utterance or the other person’s previous utterance. More than a quarter of the time they

change topics by finding similarities and differences between the two topics.

3. Presentation strategies: Inspired by Smith and Clark (1993), I find that people present factual informa-

tion in non-factual forms like opinions, experiences and recommendations. In fact presenting facts as a

part of their experiences and opinions is more common than factual statement.

4. Detail-selection strategies: Inspired by Isaacs and Clark (1987), I find that people select the right level

of detail depending on the state of the conversation and their belief about the other person’s knowledge.

In the second part of Chapter 4, I give a case study on improving acknowledgements using pointwise

conditional mutual information. I found that the generation model used in Chirpy Cardinal was sufficiently

powerful to generate some samples (out of many) that acknowledge well, so I formulated it as a response

selection problem. Here, the conversational history x and relevant new knowledge z are fed as input to the

generator model from which y1, y2, . . . are sampled as generations. I provide a method for selecting a sample

yi that contains better acknowledgement.
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Prior work by Li et al. (2016a) uses pointwise mutual information (PMI) between samples yi and prior

contexts x, z to find high quality utterances. I find that the sample with Maximum PMI (referred to as the Max-

PMI heuristic) typically copies over new knowledge from z and does not acknowledge conversational history

x. I propose a new metric, conditional mutual information (pcmix) of sample yi with conversational history x

given new information z. This metric better captures the unique overlap of the sample with conversational

history. I also propose a heuristic Fused-PCMI that trades off PMI with pcmix. I compare between competing

methods with human evaluation and find that Fused-PCMI selects responses that acknowledge better and are

higher overall quality.

This work was originally published as Human-like informative conversations via conditional mutual

information in the proceedings of the 2021 Conference of the NAACL-HLT (Paranjape and Manning, 2021).

In the next chapter, I make fundamental changes to the training process to improve other strategies like

transition, presentation and detail-selection. I train a neural retriever and a generator to learn human-like

strategies latently from data.

1.4.3 ML-based solution

The Chirpy Cardinal system for informative conversations from Chapter 3 was subpar. The retriever failed

when the user utterance lacked search-like keywords and even when it did, passages with a maximal term

overlap are often different from passages that take the conversation forward. On the other hand, the utterance

generator would often ignore the retrieved passages and make up new and incorrect information (i.e. it would

hallucinate).

The strategies for human informative conversations from Chapter 4 gave concrete descriptions of ideal

retriever and generator behavior. The retriever needs to find passages based on commonalities and differences

(to support various transition strategies), passages that support different experiences and opinions and passages

that contain varying levels of details. The generator needs to operationalize presentation and detail selection

strategies and needs to bridge between topics.

There is abundant conversational data online that is informative and implicitly demonstrates these strategies.

Can we train informative systems based on it? We can split a conversation and use the conversation so far as

the input x to and train our system to generate the next utterance y as the output. The challenge is that there is

no aligned corpus of relevant passages, which are needed to train the retriever and the generator.

Lewis et al. (2020b) attempt to get around this issue by retrieving top-k passages (z1, z2, ..., zk) based on
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1

Miles Dewey Davis III (May 26, 1926 – 
September 28, 1991) was an American 

trumpeter, bandleader, and composer. He is 
among the most influential and acclaimed 

figures in the history of jazz and 20th-century 
music.

A: I would say I like the 
compositions of Miles 

Davis

 A : Jazz is characterized by 
swing and blue notes as well 
as call and response vocals 

 B : Wow, that's so cool. Who 
are some popular jazz 
musicians? 

A: Oh! Have you heard of 
Louis Armstrong? Also 

known as "Satch"?

Louis Daniel Armstrong (August 4, 1901 – 
July 6, 1971), nicknamed "Satchmo", "Satch", 
and "Pops",[2] was an American trumpeter and 

vocalist. He is among the most influential 
figures in jazz. 

Ella Jane Fitzgerald (April 25, 1917 – June 15, 
1996) was an American jazz singer, sometimes 
referred to as the First Lady of Song, Queen of 

Jazz, and Lady Ella.

A: Ella Fitzgerald, the 
Queen of Jazz, was a really 

popular jazz singer 

context x external passage z label y

The Rolling Stones are an English rock ..

Context-relevant

Label-relevant

Irrelevant

Figure 1.6: Label-relevant passages are a subset of context-relevant passages for an open-ended conver-
sation. For a given context x, all context-relevant passages (in pink) are relevant. In this case, all passages
in pink are about different jazz musicians, making them context-relevant. However, the next utterance in the
training data y only talks about Louis Armstrong and only the passage about Louis Armstrong is useful to
product it and is label-relevant. During training, the retriever only has access to x and is therefore unable to
separate the label-relevant passage from the context-relevant passages.

the conversational context x and maximizing the marginal approximation:

P (y|x) ∼
∑

z∈top-k(Pη(.|x))

Pη(z|x)Pθ(y|x, z)

Here Pη(z|x) is the probability distribution over passages z given conversational context x and Pθ(y|x, z)

is the probability distribution over labels y conditioned on conversational context x and a passage z. I found

that this method performs poorly for open-ended informative conversations. First, the retriever is bootstrapping

itself and is unable to find relevant passages. If the retriever does not find good passages in the top-k retrieved

passages, there is little training signal. I find that, even after the retriever is trained by this method, it misses out

on 45% of relevant passages even when top 100 (k = 100) passages are considered (note that typically k ≤ 10

during optimization). Presumably, the passages found by the retriever were easy to find in the first place and

the passages that contained novel training signal were harder to find and therefore missed by the retriever.

Secondly, the generator produces utterances that are not grounded in the retrieved passage. For example, in
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Figure 1.6 we see that the retriever considers all the passages about jazz musicians to be context-relevant,

but when the generator maximizes the likelihood of the observed utterance about Louis Armstrong, it needs

to learn to ignore 2 out of the 3 retrieved passages. This happens because the retriever doesn’t have enough

information to mask out passages that are irrelevant to the label y.

I fix this by using a separate posterior retriever Q(z|x, y) during training that can separate the label-relevant

passages from other passages. This retriever has access to y and therefore can find label-relevant passages

directly. I find, in our experiments, that it misses out on only 15% of the label-relevant passages compared to

45% from before. Thus, more relevant passages are available during training. The retriever, posterior-guide,

and generator are jointly optimized using the evidence lower bound (ELBo):

logP (y|x) ≥ Ezi∼Q(.|x,y)[logPθ(y|x, z)]−DKL(Q|Pη)

While the objective function is a lower bound, it encodes biases that improve joint-training on open-ended

tasks: (1) conditioning the generator on the passages weighted by their label-relevance (from the label-posterior

distribution) increases grounding and (2) training the retriever with a mode-seeking reverse-KL divergence

encourages it to match some modes with the guide (label-relevant passages), with a lesser penalty for matching

other modes (other context-relevant passages).

Using HINDSIGHT on the Wizard of Wikipedia dataset of informative conversations: the retriever finds

more relevant passages with a 23% relative improvement (r.i.) in success@10 (i.e., the label-relevant passage

is among the top-10 retrieved passages), the generator is more grounded with 19% r.i. in Novel-F1 overlap

with the top-1 retrieved passage (i.e., its overlap with the retrieved passage excluding words that are common

or in the input) and the combined system is overall better with a 6.4% r.i. in Novel-F1@1 overlap with the

gold utterance (the best matching generation when considering top-1 retrieved passage).

This work was originally published as Hindsight: Posterior-guided training of retrievers for improved

open-ended generation in ICLR 2022 (Paranjape et al., 2022).

1.5 Learnings

Previous sections situate my work and give a broad overview of this dissertation. In this section, I will highlight

high-level learnings from my research. These learnings are not limited to neural models or informative systems,

but apply more broadly to the process of conducting human-facing NLP research.
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Solving ecologically valid problems. An ecologically valid evaluation setup matches a user’s real world

context (Hartson and Pyla, 2019). In this dissertation, I observe the behavior of Alexa users when interacting

with their devices in a social setting and motivate my research questions. I argue that this is more ecologically

valid than observing crowd worker behavior in datasets that are collected via crowdsourcing platforms. Crowd

workers are usually given a set of instructions by the researcher which distorts their behavior. Real users are

motivated by different objectives than crowd workers and interact differently. Research problems derived

from observing crowd worker behavior may not apply to realistic users and I find this to be the case. Only by

observing the deployed system, could I recognize its failures and this motivated me to find linguistic strategies

that the users were expecting. Prior research did not touch upon these strategies because they were looking at

conversations in ecologically invalid situations with distorted user behavior. The lesson here is to start with the

user in their natural setting and work backward toward research questions. This takes more work but leads to

research solutions for problems faced by real users.

Building a holistic perspective. As a researcher, there is a natural tendency to dive deep into the latest

research and ignore past (or even contemporary) discoveries from allied fields. Through conversations with

researchers in linguistics and human-computer interaction, I was able to draw upon prior linguistic research to

inspire novel research directions in the form of linguistic strategies for informative conversations. Similarly, I

was able to draw upon evidence-lower bound (ELBo) as a perfect fit to the problem of jointly training a neural

retriever and generator for informative conversations. ELBo as an approximation that is common in the ML

community, particularly among people working with reinforcement learning and variational autoencoders. I

believe, we stand to benefit by building a more holistic perspective around our research.

Thinking end-to-end. Traditionally, industry favors “pipelined systems” which are composed of multiple

models, where the output of the previous one feeds into the next one and the models themselves are unaware

of each other. They are favored because they are easier to test, scale and maintain. However, a practitioner

working on one component assumes the rest of the system is fixed and that they need to work within those

constraints. I argue for thinking about the entire system in an end-to-end fashion.

By “End-to-end neural systems” the research community often refers to a single monolithic model that

takes raw input and is trained for the downstream task without any intermediate inputs or outputs. But this is

not the interpretation I espouse. I argue that any practical and deployed system needs “windows and knob”.

A practitioner can peek into the “windows” (for interpretability) to identify issues and turn “knobs” (for

controllability) to rectify them.

I argue that as researchers and practitioners we should think of the entire system and the assumptions being
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made by each component. For instance, a lot of prior research assumed the retriever to be a separate and fixed

component. In fact, much of the research on “knowledge selection” (see Section 2.4) simply ranked a set of

passages provided by the dataset. However, by realizing that the upstream system is not set in stone (in this

case, the retriever), I was able to claim performance gains over methods that used a BM25-based retriever. And

even though the Hindsight system is trained end-to-end, it is still composed of two components and provides a

“window” and a “knob” in the form of the retrieved passages. This idea of thinking end-to-end is generally

applicable to any research problem or deployed system.



Chapter 2

Related Work

In this chapter, I will go over some background and work related to my dissertation. For readers from a less

computational background, the sections on artificial neural networks (Section 2.1) and large language models

(Section 2.2) will introduce the latest computational advances in NLP. For readers who are aware of them, I

suggest skipping to Section 2.3 on work related to chatbots and dialogue systems. In Section 2.4, I describe

various approaches to knowledge-grounded dialogue in more detail. Readers with a largely computational

background will enjoy the insights from the last section (Section 2.5) on connections with fields such as

psychology, sociology and linguistics.

2.1 Artificial Neural Networks

Around 2010, models based on neural networks became competitive with the state-of-the-art models in speech

and NLP and have since become the de-facto workhorse. Nearly all the models used in this dissertation are

based on neural networks. In this section I give a brief overview of the foundations of these models.

Model architectures. While there has been a constant stream of improvements, here I talk about a few

milestones that were transformative for the field.

1. Static Word Embeddings: Prior to 2013, vector semantics models were used for computing vector

representations of words. Afterwards, word2vec (Mikolov et al., 2013a,b), GloVe (Pennington et al.,

2014), FastText (Bojanowski et al., 2017) provided a computationally efficient way of consuming large

quantities of plain (unstructured) text to compute word embeddings. These embeddings were “static”

i.e. one vector per word (or subword) in the vocabulary irrespective of its context. Nearly all the future

21
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advances depend on being able to start with well initialized word-vectors, which are used to map the

input tokens to vectors before processing them through neural networks. For more details please refer to

(Jurafsky and Martin, 2022, Chapter 6).

2. Recurrent Neural Networks (RNN): With the availability of more computational power and modern

neural network toolkits with automatic differentiation (Al-Rfou et al., 2016), previous ideas about

Simple RNNs (Elman, 1990) and LSTMs (Hochreiter and Schmidhuber, 1997) became viable. For a

complete explanation, refer (Jurafsky and Martin, 2022, Chapter 9). In an RNN, at each time step a

token is consumed from the input and processed alongside a hidden state (or multiple states e.g. cell

state and hidden state) to produce an output and a hidden state for the next time step. They can be

stacked into layers and can be run bidirectionally as well. RNNs can consume sequences of tokens as

an encoder and be used for sequence classification and labelling tasks. They can also autoregressively

produce output tokens as a decoder and be used for natural language generation.

3. Attention-based transformer networks: With RNNs, the hidden states were a bottleneck, i.e. for

information from the first token to reach the neural network processing the last token, it had to pass

through a long sequence of hidden states. The next leap in text-processing was inspired by attention

networks, first developed for machine translation (Bahdanau et al., 2015). Here each block called a

Transformer (Vaswani et al., 2017) can directly attend to the hidden states of all tokens via a multi-

headed attention mechanism before a multi-layer perceptron (MLP) layer. Since the sequential nature of

processing tokens is lost, each token is provided with a position embedding. Additional architectural

tricks like residual connections and layer norm help with stability during training. For an extensive

explanation, refer (Jurafsky and Martin, 2022, Chapters 9,10)

2.2 Large language models as a foundation

A second revolution happened with the application of these models for pre-training over vast amounts of text

data. During pre-training a generic “unsupervised” objective is used to learn a representation of meaning for

words or sentences. In the next stage these models are “fine-tuned” for a bespoke downstream task. These

models generalize better to downstream tasks, compared to a model trained from scratch for that task, because

they have been trained on a large variety of language data. And the same pre-trained model can be used as a

foundation model (Bommasani et al., 2021) for many tasks making them broadly useful.

Pre-trained encoder models produce (non-static) contextual embeddings such that the same surface form of

a word will have different vector values depending on the context. These models are fine-tuned extensively for
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sentence classification tasks, and in this thesis we use BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019)

used as annotators (see in Section 3.5). Pre-trained decoder-only and encoder-decoder transformer models can

autoregressively generate text that is of higher quality than recurrent neural networks. In this paper, we fine

tune GPT-2 medium (Radford et al., 2019), BART (Lewis et al., 2020a) for various downstream generation

tasks as described in sections 3.7, 3.8, 4.2, 5.4.

Pre-training objectives. A key-ingredient of pre-training is the unsupervised objective i.e. they are “intrinsic”

or “self-contained” to the training data. For pre-training bidirectional encoders, for BERT, Vaswani et al.

(2017) use masked-language modelling and next-sentence prediction objectives, and for SpanBERT, Joshi

et al. (2020) mask out longer spans of text. On the other hand for pre-training uni-directional decoders, for

BART, Lewis et al. (2020a) train an encoder-decoder where the input is noised with token masking, token

deletion, sentence permutation, document rotation and span-masking and the expected output is the original

text, whereas for T5, Raffel et al. (2020) combine prefix language modelling, BERT-style denoising and

deshuffling objectives.

Neural retrieval models. A class of pre-trained models that I use in this thesis are neural retrieval models.

They typically produce two dense embeddings: one for the query and one for the document. These are typically

produced by bidirectional encoder models like BERT, but pre-trained with different objectives that try to

maximize the similarity between a query and the relevant passage. For the ORQA retriever, Lee et al. (2019)

pre-train with an Inverse Cloze Task and fine-tune the retriever model with a reader on question-answer pairs.

For DPR (dense passage retriever), Karpukhin et al. (2020) pre-train by maximing the negative log-likelihood

of the positive passage (a BM25 retrieved passage that contains the answer span) out of a pool of passages

containing the positive passage and randomly sampled in-batch negative passages. ColBERT (Khattab and

Zaharia, 2020) uses a late-interaction similarity function (MaxSim) and is pre-trained on the MS-MARCO

passage ranking task (Nguyen et al., 2016) and ColBERT-QA (Khattab et al., 2021) is further trained using

relevance-guided supervision (i.e. the partially trained retriever is used to find hard-negatives as opposed

to random in-batch negatives). To exactly find top-k relevant passages, these models need to compute the

similarity with all the passages in the retrieval corpus. However, this is computationally prohibitive because it

involves computing a dot product of the query vector with millions of document vectors. Instead, in practice

the use approximate nearest-neighbour search methods (Jegou et al., 2010; Johnson et al., 2017) that efficiently

retrieve an approximately accurate set of top-k passages. In practice, it is common to retrieve many passages

(between 10-1000) and rerank them with a model that can potentially use the full cross-attention (Iyer et al.,

2021; Lee et al., 2021).
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2.3 Chatbots & Dialogue Systems

Dialogue systems have existed since the 1960s. In this section, I will give a brief overview of their historical

development and the various methodological approaches taken by subgroups in the community. Much of

this classification is after (Jurafsky and Martin, 2022, Chapter 24) and I refer the reader to it for a complete

treatment on the subject. Colloquially, dialogue systems refer to systems for task-based dialogue and chatbots

refer to systems for open-ended social or chit-chat conversations. Afterwards, in the second part of this section,

I describe some of the recent advances that pertain to this dissertation.

Dialogue systems for task-based dialogue. Task-based dialogue systems aim to help a user solve a task

like making a reservation or playing a song. Frame-based dialogue systems (introduced by Bobrow et al.

(1977) for travel planning) underlie nearly all modern commercial digital assistants. They typically have a

dialogue state based around frames, which are a knowledge structure representing user intents and extracted

slots. Further they have if-then rules attached to slots and, separately, production rules to switch control

between frames and fill in different frames. More recently, techniques inspired by dataflow synthesis (Andreas

et al., 2020) and semantic parsing (Campagna et al., 2019) are being applied to make these systems more

robust to real-world use-cases. Newer task-oriented datasets such as MultiWoz (Budzianowski et al., 2018)

and Schema-guided dialogue dataset (Rastogi et al., 2020) are being used to train modern neural-network

based approaches. Furthermore, because of the structured state-space, these models can be bootstrapped by

synthesized data (Campagna et al., 2022) and with self-play, crowdsourcing and online reinforcement learning

(Shah et al., 2018).

Chatbots for open-domain conversations. Unlike task-oriented systems, there is no clear objective for

open-ended chit-chat or social conversation. For the most part, due to a lack of a clear objective, unlike

task-based dialogue systems, there is little planning involved in chatbots. On the other hand, due to a lack of a

structured space, it is unclear how to handle a wide-variety of user responses. The primary focus of research on

chatbots has historically been on generating a coherent and natural sounding response. ELIZA by Weizenbaum

(1966) is an early example of a rule-based chatbot designed to emulate a Rogerian psychologist where one

can “assume the pose of knowing nothing of the real world”. It had rules that detected the presence of certain

words in the user utterance and replied with a templated response. While these rules were not part of a tree

(or a graph), there was a memory stack which allowed the chatbot to refer to past utterances. More recently,

there has been the rise of corpus-based chatbots that use a corpus of conversations to either (1) retrieve related

responses at inference (Jafarpour and Burges, 2010) or (2) train a neural generative model and at inference
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sample a conditional response autoregressively (Shang et al., 2015; Vinyals and Le, 2015; Sordoni et al.,

2015). In Chapter 3, I will introduce Chirpy Cardinal, our Alexa Prize socialbot, with a hybrid architecture

(of rule-based and neural/corpus-based systems) which brings some degree of longer-term planning than

traditionally thought of by chatbot designers. In 2016, Amazon started conducting yearly Alexa Prize Socialbot

Challenges (Ram et al., 2017) with the aim of providing real-world feedback to university teams. We refer the

reader to (Huang et al., 2020), who describe the many challenges in building intelligent open-domain dialog

systems.

Open-domain Conversational Datasets Often, a special-purpose dialogue corpus is collected by instructing

crowd workers to follow certain norms. For instance, the Persona Chat dataset (Zhang et al., 2018) contains

conversations between participants who were asked to chat using a provided persona composed of 5 random

characteristics. Similarly, the Empathetic Chats dataset (Rashkin et al., 2019) puts one of the participants

in a social situation and asks the other participant to have an empathetic conversation. The Commonsense

Dialogues dataset (Zhou et al., 2021) is about social contexts where good quality conversations involve

commonsense knowledge. On the other hand, the TopicalChat (Gopalakrishnan et al., 2019) and Wizard of

Wikipedia (Dinan et al., 2019b) datasets aim to inform the user about topical fun facts and information from

Wikipedia respectively, and are two of the datasets used in this work. Most of these datasets typically only

looks at short (3-5 turn) conversations. Recently, Xu et al. (2022) collected the Multi-Session Chat (MSC)

dataset of 5+ chat sessions between crowdworkers, with each session containing up to 14 utterances.

Chit-chat in task-based dialogue With improvements in open-ended chit-chat (or chatbot) systems, there

has been an increased focus on integrating them meaningfully with task-oriented dialogue systems that are

widely deployed as virtual assistants. Sun et al. (2021); Chiu et al. (2022) collect datasets representative of

a mixture of such conversations and Zhao et al. (2022) also propose a unified dialogue data schema that is

compatible with both chit-chat and task-oriented dialogue systems.

Because of the broad mandate of open-domain chatbots (or socialbots), the research community has made

progress by focussing on open-ended conversations with narrower mandates. There has been some work

on asking clarifying questions (Aliannejadi et al., 2019) and conversational recommendations (Lei et al.,

2020). However, a large fraction of the research community has focused on question answering and also

conversational question answering.

Conversational Question Answering (QA) Traditionally, this task was referred to as reading comprehension,

where given a question and a document containing the answer (Rajpurkar et al., 2016) or not containing the
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answer (Rajpurkar et al., 2018), the system needed to extract the answer span. Reddy et al. (2019); Choi

et al. (2018) expand this setting to be conversational, where one participant has access to a document and the

other participant can ask questions about the document via dialogue. This made the setting more realistic

and challenging; the systems now needed to attend to prior conversational context and deduce contextual and

implied information (the simplest kind being pronoun resolution). In parallel, reading comprehension was

then further expanded to Open-domain QA or open-QA for short (Chen et al., 2017; Joshi et al., 2017; Dunn

et al., 2017; Kwiatkowski et al., 2019). Here, given a question, the system needed to find the right document

and extract the answer span. The conversational setting was similarly expanded by Anantha et al. (2021); Feng

(2021) to include the ability to retrieve the passage containing the answer. For details on the various modelling

techniques we refer the reader to recent survey papers by Gupta et al. (2020); Zaib et al. (2021).

2.4 Knowledge-grounded dialogue systems

The focus of this dissertation is on informative conversations. I consider being informative to be a goal of

the conversation and knowledge-grounding as a means to achieve it. There can be ways of being informative

without grounding it in knowledge, e.g. by training large language models that memorize knowledge from

the training corpus but do not provide any evidence for grounding. On the other hand, even if a response

is grounded in a piece of knowledge, it might not be informative. However, the research community often

refers to informative conversations as knowledge-grounded dialogue (or background-based dialogue). Here

the dialogue systems typically make use of knowledge in some form to produce utterances. There are two

main types of knowledge sources: structured (usually as a knowledge graph) and unstructured (i.e. text-based).

Crowdworker-collected Datasets Researchers have collected conversations between two participants where

typically one has access to some form of knowledge (referred to as the knowledge pool) that the other does

not. The knowledge pool is typically a few (10-60) sentences at a time. The common thread among all these

datasets is that they not only contain informative conversations, but also the sentences/passages in which the

responses were grounded. For example, in the Wizard of Wikipedia dataset (Dinan et al., 2019b), a crowd

worker is allowed to access passages from Wikipedia with a simple (BM25) based retrieval system and acts as

the “wizard” while talking to an “apprentice” learning about a topic. The “wizard” also marks the knowledge

sentence used (if any). Gopalakrishnan et al. (2019) try to model topical shifts by combining sentences from

3 different but related topics and showing them to the participants. Two other document-grounded datasets

are Holl-E (Moghe et al., 2018) and the CMU Document Grounded Dataset (Zhou et al., 2018) which show

information about a movie and ask the participants to have a conversation about it.
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Showing relevant pieces of knowledge is useful in helping the crowd workers write grounded utterances,

but it also makes the conversations unnatural. By looking at the conversations, we can qualitatively see that the

crowd workers feel compelled to add information irrespective of its relevance and often with mild paraphrasing

of the used knowledge sentences. Furthermore, they are limited to the sentences shown (or retrieved) and

therefore the utterances likely carry the biases of how the knowledge pool was created (or retrieved) in the first

place.

Naturally-occurring Datasets To remedy this issue Qin et al. (2019) collect a large dataset of Reddit con-

versations with associated urls and often named-anchors and Ghazvininejad et al. (2018) collect conversations

about restaurants from Twitter where the first turn contained a handle or hashtag matching the business on

Foursquare. However, these associations do not mean that the utterance is grounded in the linked webpages

and even if they are, the supervision they provide is quite coarse (i.e. not at the level of a sentence)

Finally, we refer the reader to the latest datasets used for shared tasks in the workshop on Document-

grounded dialogue (DialDoc; Feng et al. (2021, 2022)).

Knowledge Selection Since the datasets were collected by showing a pool of knowledge to crowd workers,

then the straightforward NLP task is to select the right piece of knowledge from the given pool, i.e. knowledge

selection. Dinan et al. (2019b), in their dataset paper, propose a strong baseline where they encode the dialogue

context and passages with a transformer and perform a dot-product attention between the passages. In the

hard-attention variant they select the closest matching passage. Liu et al. (2018) use facts about entities similar

to the mentioned entities (referred to as “diffusion” in their paper). Li et al. (2019) create a context embedding

for the current turn based on the current utterance embedding, current knowledge embedding and prior turn

context embeddings (much like RNNs but applied recurrently across turns with a transformer-based encoding

in each turn). Meng et al. (2020b) split the task into two: knowledge tracking, i.e. ground the knowledge that

has been talked about to the conversation context, and knowledge shifting, i.e. select the knowledge to be

talked about next. Recently, Li et al. (2022a) make use of semantic graphs; they automatically convert the

background knowledge documents into document semantic graphs and then perform knowledge selection over

such graphs. There are many architectural variants (Meng et al., 2020a; Ren et al., 2020; Chen et al., 2020;

Kim et al., 2020; Parthasarathi and Pineau, 2018; Zheng et al., 2020; Zhao et al., 2020; Lian et al., 2019; Zhan

et al., 2021), and we refer the reader to a Tutorial on Knowledge-Augmented methods for NLP by Zhu et al.

(2022) for a more complete treatment.
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Knowledge Retrieval As borne out by my experience building a knowledge-grounded informative system in

Section 3.8, these methods try to solve a problem that is practically less relevant. In practice, we do not have a

knowledge pool to select from, rather we have to retrieve from a large corpus such as Wikipedia. Off-the-shelf

retrievers have widely differing behaviors and the knowledge-selection methods are highly dependent on

the data distribution that was used to generate the pool in their training set. Furthermore, the off-the-shelf

retrievers are very limiting because they find passages based on keyword overlap, but humans incorporate

conversationally relevant new knowledge which is often different. Thus, there is a need to build systems

that go beyond selection (a.k.a reranking) by including a retriever component suited for the downstream task.

Zhang et al. (2022) propose a joint framework for retrieval and grounded text generation using marginalization

as described by Lewis et al. (2020b). In this dissertation, I provide a method for knowledge retrieval based on

a posterior training scheme.

Grounded-utterance generation Most papers above provide some method for utterance generation. For

example, Ghazvininejad et al. (2018) use a Seq2Seq model that conditions on both the conversation history

and external facts to generate the response. To enhance grounding, Zheng et al. (2021) use term-level noising

of selected knowledge to ensure that the generator learns to focus on certain terms.

Grounding in a knowledge-graph While this is not the focus of this dissertation, there is a lot of interest in

the community (especially from industry) to be able to ground in structured knowledge graphs. For example,

Yu et al. (2022) use knowledge graphs to augment a fusion-in-decoder architecture for Open-QA and Liu et al.

(2021) augmented a pre-trained language generation model (BART) with a knowledge graph. Moon et al.

(2019) collect a dataset of conversations where each utterance is manually annotated with reference to entities

and paths in a large scale knowledge graph. For task-oriented dialogue, Madotto et al. (2018) incorporate

knowledge bases in their end-to-end system using a multi-hop attention mechanism.

Tutoring systems From the fields of education and cognitive sciences, intelligent tutoring systems share

many similarities with the systems for informative conversations. Apart from generating responses for input

utterances, such systems involve components for learner and domain modelling. They typically cover a

curriculum and a set of problems. Through conversation the learners are tasked with applying their knowledge

to solve the problem and the conversational script includes hints, misconceptions, prompt questions, etc. Some

examples of intelligent tutoring systems are AutoTutor (Graesser et al., 2004), ITSPOKE (Litman et al., 2006),

My Science Tutor (Ward et al., 2011). We refer the reader to a survey chapter by D’Mello and Graesser (2013)

more details.
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2.5 Connections with allied fields

Conversational analysis In the 1960s and early 1970s Harvey Sacks, Emanuel Schegloff, Gail Jefferson,

and their students began studying social interaction and established the field of conversational analysis. Since

then, sociologists, psychologists and linguists have established a long and robust tradition for categorizing and

understanding human conversations under the umbrella term of conversational analysis. Many phenomena

from earlier works, such as turn-taking, repair, etc., that are applicable to spoken conversations where audio is

produced and consumed are not relevant to this thesis. We refer the reader to an overview of conversational

analysis by Sidnell (2016) for more details. In this section I describe related work about various conversational

settings, social robots, their anthropomorphism, common ground, people estimating others’ knowledge, and

sharing and seeking information. Much of the work I describe is influenced by the mechanistic psychology of

dialogue proposed by Pickering and Garrod (2004). They propose the interactive alignment account whereby

the linguistic representations employed by the interlocutors become aligned at many levels simplifying

production and comprehension in dialogue. For a deeper exposition of connections with psychology, sociology

and linguistics, we refer the reader to books on related topics: Lectures on Conversation by Sacks and Jefferson

(1995) and Pragmatics by Levinson (1983).

Variations in conversational setting Many works on conversational analysis choose and analyze a particular

setting. For example, there is a body of research analyzing conversations between readers and reference

librarians. An example of analyzing such information seeking conversations is by Taylor (1968) who casts

them as question-negotiations and finds that users develop their questions through four levels of need:

visceral, conscious, formalized and compromised. Francik and Clark (1985) find that when people request

for information, they estimate the obstacles (e.g. if the listener might have forgotten) and accordingly make

a conditional request (e.g. “Do you remember ...”). Another common setting is task-oriented dialogues and

Grosz (1977) describes procedures for identifying shifts in attention focus in this setting.

Social Robots The study of interaction between humans and social robots (of various kinds) provides

insights into how conversational agents should be designed. Utilitarian factors like usefulness and adaptability,

and hedonic factors like enjoyment, sociability and companionship are important for social robot acceptance

(de Graaf and Ben Allouch, 2013). On the other hand, Malinowska (2021) attempts to answer “What Does It

Mean to Empathize with a Robot?” primarily from the relational (cooperational) perspective. Perez-Osorio

and Wykowska (2020) review literature from philosophy, psychology, human development, culture and human-

robot interaction related to predictions concerning other humans’ behavior (usually referred to as their mental
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states, such as beliefs or intentions, a.k.a. intentional stance).

Anthropomorphism of social robots Is it always a good idea to make conversational agents as human-like

as possible? I review some work asking this question for social robots. Anthropomorphic agents were

associated with greater trust resilience, a higher resistance to breakdowns in trust and incorporating human-like

trust repair behavior largely erased differences between gradually deteriorating quality between a human

agent, an avatar and a computer (de Visser et al., 2016). Moreover, increased robot social behavior decreased

participants’ fear and telling users about the robot’s role (i.e. framing) generated increased trust in the robot

(Groom et al., 2011). However, according to Grimes et al. (2021), people have higher expectations when told

an agent is human as opposed to computer. Fink (2012) presents a literature review of anthropomorphism and

role in the design of socially interactive robots from social sciences and robotics research, including results

from experiments with social robots.

Common Ground Kiesler (2005) describes how the common ground principle of the least collective effort

can be used to predict and design human robot interactions. Addressees distinguish shared from private

information when interpreting questions during interactive conversation (Brown-Schmidt et al., 2008), and

they are effective in marking this distinction in the form of their utterances (Heller et al., 2012). But, is it

always better to have shared knowledge between two parties? According to Wu and Keysar (2007), generally

speaking, when two participants have more shared knowledge they use shared terminology to communicate

more effectively. However, for new concepts, where there is an opportunity to inform, these participants tend

to overestimate each other’s common ground and produce terse responses. This causes confusion and makes

communication locally ineffective.

Estimating others’ knowledge We saw how wrongly estimating others’ knowledge causes communication

to be locally ineffective. So how do people estimate others’ knowledge? For conversations between an expert

and a layperson, the expert may underestimate or overestimate the layperson’s knowledge. If they overestimate,

then layperson more often generated questions that reflected comprehension problems; if they underestimate,

laypersons asked mainly for additional information previously not addressed in the explanations (Wittwer

et al., 2008). To estimate the robot’s knowledge, people extrapolate from their own knowledge and from

information about the robot’s origin and language (Lee et al., 2005). When it comes to humans conversing

with artificial partners, humans generally estimate artificial partners to have more knowledge in the task than

human partners (Cowan et al., 2017).
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Seeking information When it comes to seeking information, people employ many strategies. One such

strategy involves using a candidate answer in a query to provide a model of the type of answer that would

satisfy the speaker’s purpose (Pomerantz, 1988). Separately, studying collaborative information seeking (i.e.

two humans are collaboratively using IR systems to search for information) can provide insights for practical

informative systems. In this setting, González-Ibáñez et al. (2013) find that remotely located (as opposed

to co-located) participants find more diverse information, those using text-based communication were more

task-oriented and those with audio support had reduced cognitive load and negative emotions. These insights

about the medium of communication can help in designing meaningful and useful conversational interfaces for

information seeking.



Chapter 3

Building A System for Social

Conversations

3.1 Introduction

In this chapter, we focus on RQ1: “What are the important problems for informative conversations?”.

I aim to work with real users in an ecologically valid setting to identify the places where existing systems

are limited and unable to meet their expectations. But, people do not have “Informative conversations” for

the sake of it. Instead, they have conversations that involve an exchange of information when necessary and

appropriate. Thus, I answer RQ1 by considering social conversations that are broader in scope. I do so by

building and deploying a conversational system for it with the help of a team of students that I co-led. In this

chapter, I describe our socialbot for open-domain conversation, Chirpy Cardinal, built as a research platform

during the 2019 Alexa Prize Socialbot competition. Our system won 2nd place in the final evaluation which

was based on 18 ratings from expert judges on 6 conversations, along with a $100,000 cash prize. The primary

objective of this chapter is to set the stage for problem discovery. A second, but important objective of this

chapter, is to describe the nuts and bolts of a practical system so that future researchers and practitioners can

learn from the ideas and build upon the components.

What is the Alexa Prize Socialbot Competition? It is a social chatbot competition organized by Amazon

Alexa AI where university teams can build and deploy their chatbots to real users (Gabriel et al., 2020). During

the competition, US-based Amazon Alexa users could give an invocation phrase (such as let’s chat) to be

32
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connected to one of the competing socialbots (chosen randomly). After receiving a minimal orientation phrase

at the beginning of the conversation, the user talks to the socialbot (in English) until they decide to end the

conversation – at which point, they are invited to rate (from 1 to 5) and comment.

Design Goals. Our goal in building this socialbot was to offer a natural-sounding and emotionally engaging

dialogue agent that can talk knowledgeably about a wide variety of topics, while also letting the user take

as much initiative as possible. Concretely, we had 4 user-experience (UX) goals (see Section 3.2) that were

central to our design decisions: mixed-initiative interactions, empathy toward the user, conversational styling

of informative utterances and a broad topical coverage. The last two goals correspond to the two cornerstones

of this dissertation: rich conversations and high topical breadth.

System Architecture. Our key insight (also observed by Clark (2006)) was that long conversations are

composed of sub-conversations; each with their own expectations, goals and norms. We designed our

architecture around an array of response generators (RGs) that largely aligned with these sub-conversations,

as described in Section 3.6. These RGs exist in a larger framework (Section 3.3) supported by a pipeline of

standard NLP annotators (Section 3.5) and a dialogue manager (Section 3.4).

Hybridizing neural and rule-based architectures. The advent of large-scale pretrained neural generative

models has substantially impacted what is possible in open-domain socialbots. While in the previous Alexa

Prize competition (i.e. 2019), none of the top three socialbots used neural generation (Chen et al., 2018; Pichi

et al., 2018; Curry et al., 2018), we found current GPT-2 models (Radford et al., 2019) to be a key tool to

support our design goals. Neural generation enables natural phrasing and emotional engagement, as well as

more flexible responsiveness (e.g., when used as a fallback in Section 3.6.5), supporting higher user initiative.

A limitation of neural generation methods for dialogue is deterioration in quality and consistency over a long

conversation, which can be potentially overcome with symbolic constraints. We explore ways to bring the

best of both worlds – long term consistency and short term fluidity – together. We have two special neural

RGs: one for empathetic conversation (Neural Chat in Section 3.7) and the other for informative conversations

(Wiki in Section 3.8). The Wiki RG and my experience with it sets the stage for rest of my research.

Result summary. Despite being a first-time entrant, at the end of the competition our system achieved an av-

erage rating of 3.6/5.0, which is within 0.1 of the highest-ranked systems, and is capable of detailed, sustained

conversations with interested users (with a 90th percentile conversation duration of 12 minutes 55 seconds).

Qualitatively, during in-person interactions with users, we observed that many innovations such as in-depth
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discussions of everyday life, conversational styling of informational content, and opinionated exchanges were

received with expressions of pleasant surprise – indicating our steps were in the right direction. After the com-

petition, we open-sourced our code and it can be found at the link https://github.com/stanfordnlp/chirpycardinal.

Many teams from next year used ideas and components from our technical article and open-sourced codebase.

I discuss implications of Chirpy Cardinal for my dissertation in Section 3.11.

3.2 User-experience Goals

To provide a convincing user experience, an open-domain conversational agent must excel at language

understanding, language generation, emotional engagement, memory, world knowledge and conversational

planning, among other desirable characteristics – an ambitious goal! Prior work within and outside the Alexa

Prize competition has taken the successful strategy of pushing progress along individual skills, and forming

an ensemble of sub-systems, each excelling at a singular characteristic while ignoring others. For instance,

supporting user initiative in open-domain conversations is extremely challenging, as it requires understanding

the countless ways a user can take initiative, and the ability to respond to each of them with specificity. Faced

with this difficulty, when it comes to in-depth conversations, many previous dialogue systems rely primarily

on bot-initiative, driving users along carefully scripted paths. On the other hand, systems attempting higher

user-initiative via non-scripted paths are likely to become nonsensical and non sequitur (Hutchens and Alder,

1998). Thus, there is a lot of room for innovation and research in trying to simultaneously achieve two or more

complementary characteristics; this is a recurring theme throughout this work.

Initiative – the ability to drive the direction of the conversation – has been studied extensively in the

context of task-oriented dialogue. Mixed initiative (Horvitz, 1999), in which the user and the bot share

initiative, is an important quality of a successful dialogue system, as it provides the user a sense of agency

without making them entirely responsible for suggesting new topics and directions. In order to improve on

mixed initiative while still providing an acceptable conversational depth, we designed our initial system to

rely heavily on system initiative, but at the same time explored several avenues to increase user initiative

in a controlled fashion. To support mixed initiative, our system has a global navigational intent classifier

(Section 3.4.1) and entity tracker (Section 3.4.2), allowing it to track high level topic changes from both the

user and the bot. Further, our response priority system (Section 3.4.3) allows individual Response Generators

(RGs) to interject when the user initiates a change of topic.

High-coverage world knowledge is an important component of open-domain conversation – our bot must

be able to talk about the diverse range of entities and topics that interest users, particularly if we wish to respect

user initiative. We use the Alexa Knowledge Graph, The Washington Post, Reddit and Twitter as sources of

https://github.com/stanfordnlp/chirpycardinal
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up-to-date knowledge in particular domains, while ensuring high coverage by using Wikipedia and Wikidata

entities as the foundation of our entity-based conversations (Sections 3.5.4, 3.4.2, 3.9.3). However, world

knowledge must be delivered in a conversational style – this is a characteristic that distinguishes a socialbot

from a virtual assistant. To achieve this, we fine-tuned a neural generative model on the TopicalChat dataset

(Gopalakrishnan et al., 2019) to obtain a conversational paraphrasing model that adapts external text into a

conversational style (Section 3.8).

A socialbot cannot focus solely on external entities – to be truly social, it must be able to discuss personal

experiences and emotions. While ELIZA-like systems (Weizenbaum, 1966) attempt this via templated

repetition of user phrases, they lack the naturalness and depth of real human conversations. Our Neural

Chat module (Section 3.7) invites the user to share their everyday experiences and current emotions, and

uses a neural generative model to respond empathetically. With it, we attempt to have a deep, sustained and

emotionally engaging conversation about users’ lives. In addition, our Opinion module (Section 3.6.2) allows

the user to express their feelings by expressing their likes and dislikes. To foster a reciprocal atmosphere, our

bot also shares its own distinct feelings, experiences and opinions.
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Figure 3.1: Chirpy Cardinal overall system design.
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3.3 System Overview

Our overall system design is shown in Figure 3.1. At a high level, it is composed of 3 key components: NLP

pipeline, response generators (RGs) and a dialogue manager. The NLP Pipeline annotates the incoming

user utterance. Based on the user utterance and NLP pipeline’s annotations, each RG produces a candidate

response. If a RG intends to transfer control to a different RG, the old RG asks for a prompt from the new

RG. The prompt is appended to the selected response for a smoother transition to the new RG. The dialogue

manager oversees this entire process, in particular, it determines navigational intents, tracks entities and selects

from the candidate responses and prompts. The next paragraphs describe the entire process in more detail.

Our system is built on top of the CoBot framework (Khatri et al., 2018). On each turn, the user’s spoken

utterance is transcribed by Alexa’s Automatic Speech Recognition (ASR) service. The transcribed utterance

(which is lowercase, no punctuation) is sent to our AWS Lambda function, which handles the core logic of our

bot. AWS Lambda is a serverless computing platform, which means that our function is stateless. To preserve

information between turns, we store our bot’s overall state in an external State Table (see Figure 3.1), hosted

on AWS DynamoDB. At the start of the turn, the previous turn’s state is fetched from the table.

We then run the NLP Pipeline (see Section 3.5) – a collection of modules that produce annotations based

on the user’s utterance and the current state. Modules requiring greater computational resources are hosted

on remote EC2 instances, while less-demanding modules are hosted within the Lambda function. The NLP

Pipeline is organized as a directed acyclic graph (DAG), allowing modules to use other modules’ annotations

as inputs. To minimize latency, modules are run in parallel where possible, with each module starting as soon

as its inputs are ready.

Next, we analyze the user’s utterance to determine whether the user wants to talk about any particular

entity (see Navigational Intent, Section 3.4.1), and update the current entity under discussion if appropriate

(see Entity Tracker, Section 3.4.2). Finally,

We then run our collection of Response Generators (RGs), modules designed to handle particular

conversational duties, in parallel (see Section 3.6). Each RG either produces a response, or no response (None).

If an RG produces a response, it also supplies a response priority (see Section 3.4.3), indicates whether the

response needs a prompt added from another response generator (see Section 3.4.3), and specifies what the

current entity under discussion should be, if the response is chosen. The Priority Ranking module chooses

the response with the highest priority, and the Entity Tracker updates the current entity under discussion

accordingly. If the chosen response does not need a prompt, it forms the entire bot utterance.

If the chosen response does need a prompt, we run our collection of RGs a second time. Each RG either

produces a prompt or no prompt (None). If an RG produces a prompt, it also supplies a prompt priority (see



CHAPTER 3. BUILDING A SYSTEM FOR SOCIAL CONVERSATIONS 38

Section 3.4.3) and a current entity, as before. The Priority Sampling module chooses the prompt by sampling

from the supplied prompts, with the probability distribution depending on both the priorities of the prompts

and the RGs that produced them. The Entity Tracker updates the current entity again, and the bot’s utterance is

then formed by appending the prompt to the response.

At the end of the turn, the bot’s overall state contains the user’s utterance, the conversational history, the

NLP Pipeline annotations for the user’s utterance, and a state for each individual Response Generator.1 We

write the new state to the State Table, and send the bot utterance to Alexa’s Text To Speech (TTS) service,

which delivers the spoken bot utterance to the user.

# Utterance Entity Commentary
1 User: let’s chat None

Bot: Hi, this is an Alexa Prize Socialbot. I’d love to get to
know you a bit better before we chat! Is it all right if I ask
for your name? [ Launch ]

None Launch gives FORCE_START response to begin
the conversation.

2 User: my name is chris None

Bot: Well it’s nice to meet you, Chris! I’m excited to
chat with you today. [ Launch ] I hope your afternoon
is going well. What are your plans for the rest of today?
[ Neural Chat ]

None Launch gives a STRONG_CONTINUE re-
sponse that needs a prompt, which is supplied
by Neural Chat with FORCE_START priority
(scripted transition).

3 User: hang out with my friends None

Bot: That sounds great, I love spending time with friends.
What will you do together? [ Neural Chat ]

None Neural Chat generates a GPT-2 response with
STRONG_CONTINUE priority.

4 User: maybe watch a movie None

Bot: Me too! I love watching movies; I get to learn so
much about what the world is like outside of the cloud!
Have you seen any movies recently? [ Movies ]

Film Movies detects the ‘movie’ keyword in the user’s
utterance and gives a FORCE_START response
(overriding Neural Chat ), setting current entity to
Film.

5 User: i saw the matrix The Matrix The Entity Linker and Entity Tracker identify
The Matrix as the current entity.

Bot: Nice! Did you like The Matrix? [ Movies ] The Matrix
6 User: i loved it neo is amazing The Matrix

Bot: Oooh, yeah, I agree. Hey, isn’t Keanu Reeves in
that movie? What do you think about Keanu Reeves?
[ Movies ]

Keanu
Reeves

Movies sets current entity to Keanu Reeves.

7 User: i want to talk about something else None Navigational Intent detects negative intent, so

Entity Tracker rejects the current entity.

Bot: OK, no problem. [ Movies ] There’s actually some-
thing else I wanted to ask you about. What’s your favorite
animal? [ Categories ]

Animal Movies acknowledges and asks for a prompt.

Categories gives a GENERIC prompt.

8 User: i love cats Cat Entity Linker and Entity Tracker identify Cat
as current entity.

1Each individual RG state contains information required by that RG – for example, it might contain the current node (aka treelet, see
Section 3.6.1) in the RG’s dialogue graph, or a list of the utterances and/or entities that have been discussed, to avoid repetition. Each RG
maintains its own individual state.
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Bot: Good to hear you like cats. I have to be honest though,
I’m not a big fan of cats. I feel like cats don’t respect my
personal space, but I would love to hear why you like cats?
[ Opinion ]

Cat Opinion gives a CAN_START response about cats.

9 User: hmm i love cats because they are fluffy Cat
Bot: That make sense. Now that I think about it, one good
reason to like cats is that they purr and I definitely need
that kind of positive feedback. [ Opinion ] Wanna know

something interesting about cat? [ Wiki ]

Cat Opinion finishes talking. Wiki gives a CUR-
RENT_TOPIC prompt about Cat.

10 User: you are not very smart Cat
Bot: I know you feel frustrated. I’m always trying to get
better. [ Offensive User ] I’ve been listening to some new
music today and I wanted to chat about instruments. If
you were a musical instrument which one would you be?
[ Music ]

Musical in-strument Offensive User gives a FORCE_START response

to the critical utterance, then [ Music ] provides
a GENERIC prompt to steer the conversation in a
new direction.

11 User: what do you find interesting None The user gives an unexpected response.
Bot: I like the violin, but I’m more of a classical music
player. [ Neural Fallback ] I remember you mentioned

Neo. Would you like to talk more about it? [ Wiki ]

Neo (The
Matrix)

Neural Fallback gives a GPT-2-generated re-
sponse, which is selected as no other RG (except
Fallback ) has a response. Wiki gives a CON-

TEXTUAL prompt.
12 User: sure Neo (The

Matrix)
Bot: Neo has got into so many adventures! What are some
adventures that you’ve enjoyed? [ Wiki ]

Neo (The
Matrix)

Wiki asks an open-ended question (specific to
movie characters) about Neo (The Matrix).

13 User: morpheus teaching jujitsu to neo Neo (The
Matrix)

Bot: I liked that Neo and Trinity were able to rescue
Morpheus from a building protected by armed guards and
agents. Morpheus has done so many amazing things! What
are some of your favorite Morpheus moments? [ Wiki ]

Morpheus
(The Ma-
trix)

Wiki gives a response (generated by the GPT-2
conversational paraphrasing model), sets the current
entity to Morpheus (The Matrix), and asks another
open-ended question.

14 User: i want to stop talking None We detect stop intent; the conversation ends.

Table 3.1: An example dialogue between a user and Chirpy Cardinal. To respect users’ privacy, this is not
a real user conversation.

3.4 Dialogue Management

Our Dialogue Manager handles the high-level logic of tracking which topics we are discussing with the

user, and which responses (and prompts) should be used to form the bot’s utterances. It consists of 3 main

components: the navigational intent classifier, the entity tracker, the response-and-prompt system. The

response-and-prompt system in turn has two subcomponents: the response priority ranking system and the

prompt priority sampling system.

3.4.1 Navigational Intent Classifier

A user has navigational intent when they are indicating that they do (positive) or do not (negative) want to

talk about a particular topic. Users might give navigational intent while specifying the topic (can we talk
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about minecraft, stop talking about minecraft), or referring to the current topic (let’s discuss this more, could

you change the subject), or referring to no topic (alexa can we talk, i don’t want to chat any more). Users

sometimes give positive and negative navigational intent in the same utterance (i don’t want to talk about

movies any more let’s chat about you). To recognize navigational intent, we use manually-constructed regexes,

as they are quite high precision.

3.4.2 Entity Tracker

For our response generators to work together to discuss different topics smoothly, we must track which entities

we are currently discussing, which we have finished discussing, and possible entities to discuss in the future.

This is the role of the entity tracker. We assume that at any point in the conversation, there is one current

entity, which is either a Wikipedia entity (see Section 3.5.4) or None (if we’re discussing something that does

not have a Wikipedia article (see for instance, Table 3.1 Turn 3)). The current entity is updated at most three

times per turn (see Figure 3.1):

1. After analyzing the user’s utterance. The entity tracker uses the entity linker’s output, which is a

priority-ordered list of possible entities mentioned by the user on this turn, along with their scores (see

Section 3.5.4 for details). If the user expressed negative navigational intent towards the current entity, it

is rejected. If the user expressed positive navigational intent towards some topic, we search inside the

topic slot in their utterance; the highest-priority entity with score over a low threshold (1,000) is chosen

as current entity. If there is a particular type of entity we expect the user to mention on this turn (e.g. if

the bot asked What’s your favorite movie?) and there is an entity with the expected Wikidata category

(e.g. film) with score over a low threshold (1,000), it is chosen as current entity. Otherwise, if the entity

linker has made a prediction with sufficiently high score (over 10,000), it becomes the current entity. If

none of these conditions are met, the current entity stays the same.

2. After choosing the response. When the RGs provide responses, each RG also specifies what the new

current entity should be, if its response is selected by the priority ranker. We update the current entity to

be whatever was provided by the selected RG.

3. After choosing the prompt. If we get a prompt, we update the current entity similarly.

This system allows the user to initiate topics (e.g. the bot starts talking about cats if the user utterance is

i want to talk about cats), allows RGs to initiate topics (see Table 3.1, Turn 4), allows multiple RGs to talk

seamlessly about the same topic (see Table 3.1, Turn 10), and allows RGs to signal when a topic should be

finished (see Table 3.1, Turn 7).
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Response Priority Meaning

FORCE_START This inactive RG should take control (e.g., Table 3.1, Turn 4), or override, such as
handling offensive user utterances (e.g., Table 3.1, Turn 10).

STRONG_CONTINUE This active RG can continue the conversation with a good next response (e.g., Table 3.1,
Turn 2). Only a FORCE_START can override it.

CAN_START This inactive RG can potentially take control (e.g., Table 3.1, Turn 8), but should not
interrupt a STRONG_CONTINUE.

WEAK_CONTINUE This active RG can continue the conversation but its next response is of poorer quality. It
should be overridden by any available CAN_STARTs (or higher).

UNIVERSAL_FALLBACK Only used by Fallback and Neural Fallback RGs (e.g., Section 3.6 and Table 3.1, Turn
11)

Table 3.2: Response Priorities. (ordered by descending importance)

3.4.3 Response-and-Prompt System

As described in Section 3.3, on some turns the bot utterance consists of a response from one RG, followed

by a prompt from another RG. This system is useful when the responding RG can handle the user’s current

utterance, but is unable to take the conversation forward (see Table 3.1, Turn 10) or when the responding RG

has finished talking about one topic, and another RG is needed to supply a change of topic (see Table 3.1, Turn

7). The response-and-prompt system makes it easy to always supply the user with a strong path forward in the

conversation (e.g. by asking the user a question).

Response Priority Ranking System

We use a priority system to decide which response generator’s response should be selected on each turn.

When generating responses, each RG provides one of the response priorities in Table 3.2.2 This hierarchy

supports the ability to preserve conversational continuity (STRONG_CONTINUE), while remaining responsive

to the user’s initiative (FORCE_START). Though it is a relatively simple rule-based system, we have found it

well-suited to our needs. The priority levels are clear to understand, and make it easy to modify behavior. By

avoiding a centralized response-choosing module, our design allows RGs to decide themselves whether they

should respond, and whether their response is high quality. This makes it easier for multiple people to work on

different RGs, each with self-contained logic. Lastly, if one RG encounters an error, timeout, or inability to

find relevant content, the other RGs provide alternatives.

2In case of a tie, we break it using a manually-specified priority ordering of the RGs.
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Prompt Priority Meaning

FORCE_START This RG should take control. This is mainly used for scripted transitions (Table 3.1, Turn 2).
CURRENT_TOPIC This RG has a prompt that talks about the current entity (see Section 3.2 and Table 3.1, Turn 9).
CONTEXTUAL This RG has a prompt that does not talk about the current entity, but that is conditioned on the

conversation history, e.g. referring to a previous topic (Table 3.1, Turn 11).
GENERIC This RG has a prompt that is not conditioned on the conversation so far (Table 3.1, Turn 7).

Table 3.3: Prompt Priorities

Prompt Priority Sampling System

While we use a deterministic ranking system to choose the highest-priority response (Section 3.4.3), prompts

often represent changes of topic, which are less restricted by context, and (in human-human conversations)

tend to have a degree of randomness. Thus, we use a priority sampling system to select a prompt. When

generating prompts, each RG supplies one of the prompt priorities in Table 3.3.

Under the Priority Sampling module, if a FORCE_START prompt is supplied, we choose it. Otherwise, we

sample from a manually-specified distribution over the remaining priorities, masking out any that are not present

on this turn. The distribution is biased towards maintaining continuity of discussion (CURRENT_TOPIC ≫

CONTEXTUAL > GENERIC). Then, among the RGs that produced a prompt of the sampled priority, we

sample one prompt, using a manually specified distribution over the RGs. This system allows us to specify

scripted transitions when desired, and to provide variety via randomness, while still enabling us to tune the

likelihood of changing topic, which is an important controllable parameter in chit-chat conversations (See

et al., 2019).

3.5 NLP Pipeline

The NLP Pipeline is run at the start of every turn (see Figure 3.1), and contains modules that annotate the

user’s utterance with information that is useful for other parts of the bot.

3.5.1 CoreNLP

On each turn of the conversation, we annotate the the user’s utterance using the Stanford CoreNLP toolkit

(Manning et al., 2014), which runs on a remote EC2 module with CPU only. We use the following CoreNLP

annotators: tokenization, sentence splitting, part-of-speech tagging, lemmatization, named entity recognition,

constituency parsing, dependency parsing, coreference resolution, and sentiment analysis. Due to the format
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Training Regime # MIDAS Chirpy Training Set Chirpy Test
Training Set # Silver # Gold Set Micro-F1

MIDAS (baseline) 10,090 0 0 0.53
MIDAS+self-training (τ = 0.95) 10,090 41,152 0 0.54
MIDAS+self-training (τ = 0.75) 10,090 62,150 0 0.54
MIDAS+supervised 10,090 0 2,407 0.81

Table 3.4: Performance of our Dialogue Act model under different training regimes.

of the user utterances (lowercase with no punctuation), we use the caseless models3 for part-of-speech tagging,

constituency parsing and named entity recognition.

3.5.2 Dialogue Act Classifier

Dialogue acts can support understanding of user intent (Stolcke et al., 2000), and have been successfully

employed in previous Alexa Prize socialbots (Yu et al., 2019). To build a dialogue act classifier, we finetuned

the HuggingFace implementation (Wolf et al., 2019a) of a BERT-based classification model (Devlin et al.,

2019) on the MIDAS dataset (Yu and Yu, 2019). The dataset contains 12,894 examples, where each example

is a bot utterance,4 the user’s response to that utterance, and the user’s dialogue act.5 The dataset was collected

by Gunrock (Yu et al., 2019), the winner of the 2018 Alexa Prize competition. Unlike other dialogue act

datasets, such as SWBD-DAMSL (Jurafsky et al., 1997), which are designed for human-human dialogue, the

MIDAS annotation schema was specifically designed for human-chatbot dialogue.

Though this baseline model achieved a micro-average F1-score of 0.78 on the MIDAS test set, we wished

to evaluate its performance in our own bot’s conversational setting. We hand-labeled a ‘Chirpy’ test set

containing 602 examples from our bot’s conversations. The same baseline model achieved only 0.53 on this

test set (see Table 3.4). We suspect the performance drop is due to the distributional difference between the

utterances generated by our bot and by Gunrock. To improve performance on our data, we experimented with

self-training (McClosky et al., 2006). Using the baseline model, we labeled many unlabeled examples from our

own bot’s conversations. Examples whose label was predicted with a confidence score greater than a threshold

τ were added to our training set. Using τ = 0.75 and τ = 0.95 added 62,150 and 42,152 silver-labeled

training examples, respectively. After training on these expanded datasets, we re-evaluated on our own test set.

3https://stanfordnlp.github.io/CoreNLP/caseless.html
4The bot utterance is included because it contains context essential to understand the user utterance (Yu and Yu, 2019). For instance,

the user utterance ‘tiger king’ is an opinion when in response to ‘What is the best show?’ and a statement when in response to ‘What is
the last show you watched?’.

5To better fit our needs, we modified the label space as described in Section A.3.1.

https://stanfordnlp.github.io/CoreNLP/caseless.html
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The inclusion of the silver-labeled data did not substantially boost performance (see Table 3.4). Finally, we

turned to supervised training, and hand-labeled an additional 2,407 examples from our own bot’s conversations

(procedure described in Section A.3.2). After training on the MIDAS data and this data, we achieved a much

higher micro-F1 of 0.81 on the Chirpy test set.

In our bot, we run the Dialogue Act classifier on an EC2 machine with one NVIDIA T4 Tensor Core

GPU, annotating every user utterance in the conversation. We find that its accuracy is best on classes with low

variance in user utterances, such as positive answer, while classes with high variance, such as statement, are

more difficult. However, even for the low variance classes, the classifier’s labels are very useful – we are able

to achieve much higher recall in recognizing positive answer and negative answer by using the classifier’s

labels, compared to regexes or word lists.

3.5.3 Question Classifier

Users often spontaneously ask factual questions, personal questions, follow-up questions, and even questions

unrelated to the current topic. Recognizing and answering these questions is important, particularly for user

initiative, but is also non-trivial, as user utterances do not contain punctuation.

To recognize questions, we initially used the Dialogue Act classifier’s labels (which include question types

like factual question and open-ended question). However, this did not work well; the classifier seemed to

condition too much on the bot utterance preceding the user utterance – which is less useful for recognizing

questions than other dialogue acts. Instead, we fine-tuned a RoBERTa model (Liu et al., 2019; Wolf et al.,

2019a) on a simplified version of the Dialogue Act training data, framing the task as binary classification,

conditioned only on the user utterance. This model achieved an F1-score of 0.92 and improved the reliability

of question detection.

The classifier’s labels are used to determine when certain RGs should respond – for example, when the

Evi RG (Section A.1.3) should answer a factual question. The labels are also useful for the neural generative

models (Sections 3.7, 3.8, 3.6.5). We observe that the GPT-2-based models are much more likely to answer

(rather than ignore) a user’s question if a question mark is present. Thus, we use the classifier labels to

determine when to append a question mark to the user utterance.

3.5.4 Entity Linker

A key part of our high-coverage strategy (Section 3.1) is entity linking – detecting when the user is referring to

an entity, and identifying the correct entity. To obtain our pool of potential entities, we processed a dump6 of

6https://dumps.wikimedia.org

https://dumps.wikimedia.org
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English language Wikipedia. For each article (i.e. each entity E), we collected (a) the pageview (number of

views in one month), and (b) the anchortext distribution Panchortext(a|E).

To compute the anchortext distribution for an entity E, we count the number of anchortexts (i.e., strings,

lowercased) that are used as hyperlinks to E across Wikipedia (e.g., the entity Barack Obama may be referred

to using the anchortexts Barack Obama, obama, or president obama). Then:

Panchortext(a|E) =
count(links from a to E)∑

a′∈A(E) count(links from a′ to E)
(3.1)

where A(E) is the set of all anchortexts that link to E. We store each entity, along with its Wikipedia article,

pageview, anchortext distribution, and Wikidata categories7 in an ElasticSearch index.

After we receive the user’s utterance u, we assemble the set of candidate spans S. S contains all n-grams

in u with n ≤ 5, excluding n-grams that consist only of stopwords. We then query ElasticSearch to fetch all

entities E which have at least one span s ∈ S among its anchortexts. To determine which entities the user is

referring to, we wish to estimate P (E|s), the likelihood that a span s is referring to an entity E. We model

P (E|s) as a Bayesian system:

P (E|s) ∝ P (E)× P (s|E). (3.2)

We assume that P (E) is proportional to the pageview for the entity E, and P (s|E) = Panchortext(s|E).

Therefore, we define the score(s, E) of a span s and entity E to be:

score(s, E) = pageview(E)× Panchortext(s|E). (3.3)

The output of the entity linker is a priority-ordered list of (s, E) pairs. The ordering is calculated using

manually-curated rules and thresholds on the following features: (a) the score of (s, E), (b) the maximum

unigram frequency8 of s, (d) whether E is in a Wikidata category that is expected for this turn9, (c) whether s

is contained inside any other linked span (priority is usually given to the larger span). The output of the entity

linker is primarily used by the entity tracker (Section 3.4.2) to identify the current entity under discussion.

Limitations We found the entity linker to be one of the hardest components of our bot to build. One

difficulty is that our notion of an entity – anything with a Wikipedia article (e.g. Cat or Musical instrument in

Table 3.1) – is much broader than the traditional definition of Named Entities (which is typically restricted to

7For each entity, we collected all its ancestors via the instance of and subclass of relations. For people entities, we also used the
occupation relation.

8The maximum unigram frequency of s is the frequency of the most common unigram inside s, computed using this unigram
frequency list for spoken English: http://ucrel.lancs.ac.uk/bncfreq/flists.html

9For example, if the bot asked What’s your favorite movie?, an expected Wikidata category is film.

http://ucrel.lancs.ac.uk/bncfreq/flists.html
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particular types, such as people and locations). Our motivation in this definition was to enable high-coverage

world knowledge by enabling any Wikipedia article to become a focus of discussion. However, this made

the entity linker’s job much more difficult. The need to detect an extremely broad range of entities, with no

restriction to certain types, made it much more difficult to find a good precision/recall tradeoff, leading to

both false positive and false negative problems in the bot. In Chapter 5, I train a neural retriever that bypasses

this step of heuristic entity linking. Instead, it relies on contextual embeddings to find mentions of entities in

text-passages from Wikipedia. With some careful modifications, a high-quality entity linker can be derived

from it.

ASR Error Robustness As we do not have access to original user audio, ASR errors are a major source

of difficulty, particularly when they occur within entity names. For example, if the user wants to talk about the

film Ford v Ferrari, but the ASR transcription is four v ferrari, our entity linker will fail to identify the correct

entity, as the span four v ferrari is not among the anchortexts for the entity Ford v Ferarri. To address this, we

adapted our entity linker to be robust to phonetically-similar spans and anchortexts; our method is similar to

the method by Chen et al. (2018).

First, we converted all Wikipedia entity anchortexts to their phoneme and metaphone representations

(e.g., Harry Potter to ‘HH EH R IY P AA T ER’ and ‘HRPTR’) with a grapheme-to-phoneme tool10

and the double metaphone algorithm,11 and indexed the mapping from anchortext phonemes to Wikipedia

entities in ElasticSearch. When running the entity linker, we convert all spans s ∈ S to their phonetic

representations and query the ElasticSearch index, which returns a set of anchortexts Aphon that have similar

phonetic representations to any of the spans queried. This allows us to expand the candidate pool for each span

s, from entities for which s is an anchortext, to entities for which s is phonetically similar to an anchortext.

Finally, we redefine P (s|E) as follows: for each anchortext a ∈ Aphon, we start by finding its best-matching

span s∗(a) = argmaxs∈S sim(s, a) where sim(·, ·) is a phoneme similarity function12 between 0 and 1; then,

we filter out anchortexts that are phonetically too dissimilar to each span with a threshold of 0.8, resulting in a

set of anchortexts for each span A(s) = {a|a ∈ Aphon, s = s∗(a), sim(a, s) ≥ 0.8}. Finally:

P (s|E) ∝

 maxa∈A(s) count(links from a to E) × sim(s, a) A(s) ̸= ∅

0 otherwise
(3.4)

This definition of P (s|E) replaces Panchortext(s|E) in Equation (3.3).

10https://pypi.org/project/g2p-en/
11https://pypi.org/project/metaphone/
12implemented on lists of phonemes with Python’s difflib.SequenceMatcher

https://pypi.org/project/g2p-en/
https://pypi.org/project/metaphone/
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handle_movie_opinion_treelet

Previous bot utterance: Cool! What did you think of “Us”?

positive (e.g. “yeah it was so original”) negative (e.g. “no it was too scary”)

Bot response: Good to hear! Isn’t Lupita Nyong’o 
in that movie? What do you think about her?

Bot response: If you didn’t like “Us”, let’s not talk 
about it. What’s a film you love?

Next treelet: handle_actor_opinion_treelet Next treelet: handle_favorite_movie_treelet

User Utterance

1. Classify

2. Generate Bot Response

3. Select Next Treelet

Figure 3.2: An example treelet for the Movies RG.

3.6 Response Generators

In this section, we describe our Response Generators (RGs). Additional minor RGs are described in Ap-

pendix A.1. We also describe treelets (Section 3.6.1), a system we used to organize many of our RGs.

3.6.1 Treelets: A System to Organize Dialogue Graphs

Many of our response generators rely on treelets, a modular programming abstraction which represents a single

node in a dialogue graph. The treelet system is inspired by simple rewriting rules from ELIZA (Weizenbaum,

1966) and dialogue-frame-based systems such as GUS (Bobrow et al., 1977). We define a treelet to be a small,

1-turn dialogue ‘tree’ that manages all decisions necessary to produce a bot response given a user’s utterance.

This involves interpreting the user utterance, creating the bot’s response, and specifying the treelet that should

take control on the next turn.

Typically, a treelet performs three actions: (1) it classifies the user’s utterance into one of several branches,

(2) it produces an appropriate bot response for that branch, (3) it specifies the next treelet. Treelets throughout

our bot may classify user utterances by using regexes, outputs from our NLP pipeline (the dialogue act classifier

is frequently used for this purpose), or changes in entity (e.g., if a treelet in the Movies RG detects that the

current entity has changed to “food” after the user says “let’s talk about food”, the current Movies treelet may

select a branch that returns no response). Bot responses may be handwritten or dynamically generated (we use

both throughout our system). An example from the Movies RG is shown in Figure 3.2.

Like dialogue trees in general, treelets provide a well-controlled, predictable and easily interpretable

conversation flow. From an engineering and implementation perspective, treelets have several advantages,
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such as allowing modular organization of code and dialogue, easily enabling cycles when desired (by having

treelets point to each other with repeats or loops), and minimizing code duplication by allowing many treelets

to point to the same successor.

3.6.2 Opinion

Exchanging opinions is a core part of social chit-chat. To form a stronger sense of personality, and to seem

more relatable, it is important that our bot can also express its opinions. The Opinion RG’s goal is to listen

to users’ opinions on certain topics, and reciprocate with its ‘own’ opinions (sourced from Twitter) on those

topics.

Data To collect both positive and negative opinions, we queried a Twitter stream13 using a regex to col-

lect tweets of the form ‘i (love|like|admire|adore|hate|don’t like|dislike) TOPIC

because REASON’, where TOPIC and REASON can be any text. We collected 900,000 tweets, which

are stored in a Postgres table hosted on AWS Relational Database Service (RDS). Of these, we manually

whitelisted 1012 reasons across 109 popular topics. To avoid speaking inappropriately about sensitive topics,

we only whitelist uncontroversial entities (such as animals, foods, books/movies/games, everyday experiences

such as working from home, being sick, days of the week, etc.), and ensured that all reasons, including negative

ones, are inoffensive and good-spirited.

Behavior Currently, the Opinion RG activates when the user mentions one of the whitelisted entities (e.g.

Table 3.1, Turn 8). We ask whether the user likes the entity and classify their response using the CoreNLP

sentiment classifier (Section 3.5.1). We then either agree or disagree with the user. If we disagree, we either

ask the user for their reason for their opinion, or supply a reason why we disagree, and ask what they think of

our reason. Ultimately, we want the user to have a positive experience with our bot, so regardless of whether

we disagree or agree with the user, we will ask the user their opinion on a related entity, and always agree with

the user about the new entity. The conversation may end earlier, as we detect on each turn whether the user is

still interested via their utterance length. If the utterance contains less than 4 words, and it does not contain

any of the ‘agreement’ words (such as ‘same’, ‘me too’, etc.) we will hand off the conversation to another RG.

Even when the RG is not active, it keeps track of whether the user has already expressed an opinion on an

entity, by applying a regex similar to that applied to the tweets.

Agreement Policies Disagreement is an unavoidable part of human-human conversations, and we

hypothesize that occasional disagreement is necessary in order for our bot to have a convincing and individual

personality. To test this, we implemented three policies (full details in Section A.6): (i) ALWAYS_AGREE

13https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
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Policy Name Continuation Rate (%) CI (%)

CONVINCED_AGREE 52.7 3.5
ALWAYS_AGREE 58.7 0.9
LISTEN_FIRST_DISAGREE 58.7 1.3

Table 3.5: Continuation rate for each agreement policy. The Confidence Intervals (CI) differ due to
different sample sizes (ALWAYS_AGREE receives 0.5 of traffic, LISTEN_FIRST_DISAGREE receives 0.3,
CONVINCED_AGREE receives 0.2).

– we always agree with the user’s sentiment on the entity; (ii) LISTEN_FIRST_DISAGREE – first we ask

the user’s reason for liking/disliking the entity, then we offer our reason for disagreeing with their sentiment;

and (iii) CONVINCED_AGREE – we initially disagree with the user’s sentiment on the entity, but after the

user gives their reason for liking/disliking the entity, we switch our sentiment to match the user’s (i.e. we are

convinced by the user). To evaluate the policies, we ask the user Would you like to continue sharing opinions?

and interpret the desire to continue is an indication of a successful policy. Table 3.5 shows that users prefer

ALWAYS_AGREE and LISTEN_FIRST_DISAGREE over CONVINCED_AGREE, and all policies have high

continuation rates, suggesting that disagreement can be a positive and stimulating part of a conversation, but

that the manner and delivery of the disagreement is an important factor.

3.6.3 Movies

The Movies RG is designed to deliver a high-quality scripted conversation about a movie the user specifies,

using information drawn from the Alexa Knowledge Graph.14 Currently, the RG is activated when the user asks

to talk about movies, mentions a movie keyword (such as movies or film) or talks about any movie-related entity

(e.g. Saving Private Ryan, Meryl Streep, the Coen brothers, etc.). Once activated, the RG typically asks the

user to name a movie, asks the user’s opinion on it, gives a fun fact about the movie, asks the user their opinion

on an actor in the movie, then asks the user if they’ve seen a different movie featuring that actor (see Turns

4-7 in Table 3.1). The RG uses treelets (Section 3.6.1) to organize the dialogue graph, handwritten templates

to form the bot utterances, and a mixture of regexes and the CoreNLP sentiment classifier (Section 3.5.1) to

classify the user’s responses.

The primary weakness of this RG is that, as a scripted dialogue graph, it does not offer very high user

initiative (one of our design goals – Section 3.1). However, this RG was important especially early in the

competition when our more flexible RGs were still under development, and we needed more content. Another

difficulty we faced was the latency of the Alexa Knowledge Graph, which was sufficiently slow that we were

14The Alexa Knowledge Graph is an Amazon-internal resource; our team was given access to parts of it.
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limited to one query per turn; this limited the scope of interesting information that we could pull about an

entity and heavily influenced the design of our dialogue tree.

3.6.4 Music

Similar to the Movies RG, the Music RG is designed to deliver scripted conversations about musical entities

that the user specifies. The RG is activated when a musician/band or a music keyword (such as music or songs)

is mentioned. Once activated, the Music RG engages in a conversation specific to the type of the musical

entity that was mentioned. Unlike the Movies RG, the Music RG has a randomized internal prompting system

that allows the conversation to be centered around music even when a scripted conversation is exhausted for a

specific entity. For example, after the Music RG goes until the end of a scripted conversation for a musician, it

can ask for an internal prompt, and start a conversation about musical instruments, songs, or music in general.

The randomized nature of the internal prompting system makes the conversation more flexible, and mitigates

some weaknesses of scripted conversations mentioned in Section 3.6.3.

3.6.5 Neural Fallback

Our Fallback RG’s responses – e.g., Sorry, I’m not sure how to answer that (Section A.1.3) – are a poor user

experience, making the user feel ignored and not understood. The Neural Fallback RG aims to generate a better

fallback response using our GPT-2 EmpatheticDialogues model (Section 3.7) – to be used only if every other

RG (excluding Fallback) has no response. If the neural fallback response is chosen, another RG immediately

produces a prompt to move the conversation in another direction. After some filtering (e.g. removing responses

that ask questions or give advice), the neural fallbacks can work well as a way to better acknowledge and show

understanding of what the user said, such as on Turn 11 of Table 3.1. A remaining issue is latency – generating

from the GPT-2 model is typically the slowest component in the turn, which is a poor tradeoff if we don’t use

the neural fallback.

3.6.6 Categories

The Categories RG was originally designed to ask handwritten questions about certain categories; for example,

Where’s a place you would love to visit? for the ‘travel’ category. These questions may be asked when the

current topic is ‘travel’, or used as generic changes of topic (Table 3.1, Turn 7). The goal is for the user to

name an entity (e.g. Japan) that can form the basis for an interesting discussion (e.g. with the Wiki or Opinion

RGs). However, we found that repeatedly asking users to think of entities led to decision fatigue, with many
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Strategy Percentage of Turns with New User Entities CI (%)

STATEMENT 27.2 1.2
QUESTION 26.4 2.7
STATEMENT+QUESTION 32.8 1.6

Table 3.6: Rate at which users suggest new entities, for different strategies in the Categories RG. The
entities are extracted using our Entity Linker (see Section 3.5.4). (CI: Confidence Interval)

Strategy Re-offense Rate (%) Confidence Interval (%)

WHY 52.0 ±4.9
WHY+NAME 63.8 ±7.0
AVOIDANCE 55.4 ±4.9
AVOIDANCE+NAME 39.1 ±6.1
AVOIDANCE+PROMPT 58.3 ±4.7
AVOIDANCE+NAME+PROMPT 34.6 ±6.6
COUNTER+PROMPT 56.7 ±4.2
EMPATHETIC+PROMPT 46.1 ±4.6

Table 3.7: Re-offense rates for different response strategies to offensive utterances. Italic and bold denote
the worst and best performing, respectively.

users failing to think of an entity.15 As alternatives to the QUESTION strategy, we experimented with two

other strategies: STATEMENT, in which the bot just makes an observation about a relevant entity (e.g. Mexico

is one of my favorite places. I love the food and beaches!), and STATEMENT+QUESTION, which combines

the other two strategies. Table 3.6 shows that the statement followed by a question elicited the most new

entities. This may be because the statement gives users an example, and takes the focus off the user for a

moment, before prompting them with a question. This is a more natural, mixed-initiative experience than

simply asking a question.

3.6.7 Offensive User

Users sometimes give offensive or critical utterances, and it is important for our bot to handle these appropriately

(Curry and Rieser, 2018, 2019). Unsurprisingly, there is an inverse relationship between the presence of

offensive user utterances in a conversation and the conversation rating (Figure 3.8). Our goal is to redirect the

user away from making offensive comments, towards topics the bot can discuss.

On each turn, the Offensive User RG checks the user’s utterance for offensive language using a blacklist of

15If the user does not name a new entity, we respond either with a handwritten acknowledgement and new question (if the user said I
don’t know or similar), or with the GPT-2 model (Section 3.6.5).
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offensive phrases.16 If the user’s utterance is more critical than offensive, we respond with an apologetic strategy

(see Turn 10 of Table 3.1). For offensive user utterances, we implemented two immediate response strategies:

asking the user why they made the offensive remark (WHY); or politely avoiding the topic (AVOIDANCE). In

addition, for AVOIDANCE, we experimented immediately changing the topic by using a prompt in the same

turn (AVOIDANCE+PROMPT). For each of these configurations, we experimented with mentioning the user’s

name (NAME), or not. We also implemented the strategy COUNTER+PROMPT, inspired by Brahnam (2005),

which directly confronts the user before changing topic, and EMPATHETIC+PROMPT, inspired by Chin et al.

(2020), which empathizes with the user before changing topic. The full details can be found in Appendix A.5

and also in a follow up work by Li et al. (2021).

Table 3.7 shows the effect of each strategy on re-offense rate (i.e., the probability that the user says another

offensive utterance in the same conversation). We find that mentioning the user’s name reduces the likelihood

of re-offense when we use the avoidance strategy, but increases re-offense rate when we ask the user why they

made an offensive remark. We hypothesize that by using their name, we motivate the user to defend themselves,

which prolongs the offensive conversation. We find that our AVOIDANCE+NAME+PROMPT method outper-

forms the empathetic method (EMPATHETIC+PROMPT) and the confrontation method (COUNTER+PROMPT).

3.7 Neural Chat

The Neural Chat RG’s goal is to empathetically discuss personal experiences and emotions with the user, using

responses generated by a GPT-2-medium (Radford et al., 2019) model fine-tuned on the EmpatheticDialogues

dataset (Rashkin et al., 2019). The dataset consists of conversations between a speaker, who describes an

emotional personal experience, and a listener, who responds empathetically to the speaker’s story. Our model

is trained in the listener role.

The Neural Chat RG has 7 discussion areas: current and recent activities, future activities, general

activities, emotions, family members, living situation, and food. A discussion begins by asking the user a

starter question (e.g, What do you like to do to relax? for the ‘general activities’ area). Some starter questions

are conditioned on the time of day (e.g. What did you have for breakfast/lunch/dinner today? for the ‘food’

area). Starter questions can be asked as part of the launch sequence (Table 3.1, Turns 2 and 3), as generic

changes of topic, (Do you have any plans for the weekend?), or can be triggered contextually (You mentioned

your boyfriend. How did you guys meet?). On each subsequent turn of the discussion, we generate 20 possible

responses from the GPT-2 model using top-p sampling with p = 0.9 and temperature 0.7. If over a third of

16https://www.freewebheaders.com/full-list-of-bad-words-banned-by-google/. Our offensive classi-
fier is also used by our RGs to check that externally-sourced content (e.g. news articles, Wikipedia articles, fun facts) are inoffensive.

https://www.freewebheaders.com/full-list-of-bad-words-banned-by-google/
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Strategy Preamble

NO_SHARE I wanted to check in with you.

POS_OTHERS I’ve noticed that a lot of people are feeling pretty positive today!
POS_BOT I wanted to say that I’m feeling pretty positive today!
POS_BOT_STORY POS_BOT + I just went for a walk outside, and it felt great to get some fresh air.

NEG_OTHERS I’ve noticed that a lot of people are feeling kind of down recently.
NEG_BOT I wanted to say that I’ve been feeling kind of down recently.
NEG_BOT_STORY NEG_BOT + I’ve been missing my friends a lot and finding it hard to focus.

NEGOPT_OTHERS NEG_OTHERS + But I think it’s important to remember that things will get better.
NEGOPT_BOT NEG_BOT + But I think it’s important to remember that things will get better.
NEGOPT_BOT_STORY NEGOPT_BOT + Just earlier today I took a walk outside and the fresh air helped me

get some perspective.

Table 3.8: Strategies for the emotion-focused Neural Chat starter question. POS/NEG/NEGOPT refer to
positive/negative/negative+optimistic emotion. OTHERS/BOT refer to whether the emotion is attributed to
other people, or to the bot. STORY indicates that the bot shares a personal anecdote.
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Figure 3.3: Effect of Neural Chat emotion-focused starter question strategies on user response length.

the sampled responses contain questions, we choose one of them to provide a strong path forwards in the

conversation. If not, we interpret this as an indication that the model is not confident in asking a question on

this turn. In this case, we choose a non-question and end the Neural Chat discussion. Under this strategy, each

Neural Chat discussion contains 2.75 bot utterances on average.

The model was fine-tuned using the HuggingFace ConvAI code17 (Wolf et al., 2019b) and is hosted on a

GPU-enabled EC2 machine with one NVIDIA T4 Tensor Core GPU. To keep latency low we truncate the

conversational history supplied to the model, so that the total number of GPT-2 tokens is below 800. Given

that neural models have been shown to make poor use of longer conversational history (Sankar et al., 2019),

this truncation does not seem to be a limiting problem currently.

17https://github.com/huggingface/transfer-learning-conv-ai

https://github.com/huggingface/transfer-learning-conv-ai
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Emotion-focused Conversations As part of our goal to provide an emotionally-engaging experience

(Section 3.1), we would like to give users space to share their genuine feelings, then respond empathetically

to them. This was especially important during the Coronavirus pandemic (Appendix A.1.1), which was an

emotionally challenging time for many. Given our basic starter question I hope you don’t mind me asking,

how are you feeling?, we tried several preambles to precede the question (Table 3.8). Figure 3.3 shows the

effect of the different strategies on the length of the user’s response. We find that the basic NO_SHARE

strategy has the shortest average response length, indicating that the bot’s emotional observations (whether

about the bot or about other people) lead users to give more substantive responses. Users tend to give longer

responses when the bot expresses negative emotions (NEG and NEGOPT) than positive (POS) – this may be

because acknowledging negative emotions makes users feel more comfortable to answer the question honestly,

rather than superficially (e.g. i’m fine). Furthermore, adding a personal anecdote (STORY) to the negative

bot emotions led to longer responses – users may have responded more because the bot was more specific or

relatable. For positive emotions (POS), users are more responsive when the bot attributes the positive emotion

to itself (BOT), than to other people (OTHERS). However, for negative emotions (NEG and NEGOPT), the

opposite is true. We also experimented with including the user’s name in the starter question, but found that

this made no difference to user response length.

Discussion Our neural generative model has several recurring weaknesses which impact overall user

experience. First, it frequently asks for already-provided information, asks non sequitur questions, makes

unfounded assumptions about the user, and confuses its own previous responses with the user’s. This

demonstrates that incorporating commonsense reasoning is a priority in neural generation. Second, while

the model generally produces interesting and relevant responses to longer user utterances, it performs poorly

when the user utterance is short or low-content (e.g. okay, i don’t know, nothing) – probably because these

utterances are unlike the much longer and meaningful EmpatheticDialogues training data. The model tends to

respond to these with bland responses that further fail to drive the conversation to any interesting substance.

This problem with short user responses is one reason why we focused on finding starter questions that lead to

substantial user responses (Figure 3.3).

Due to these difficulties, most conversations with the GPT-2 model tend to fall apart after a few turns, as

the bot will eventually ask a question that doesn’t make sense, which will flummox the user. This is one reason

why we designed the Neural Chat module around shorter sub-conversations. However, overall, we are excited

that neural generation is now able to interact successfully with real people, within certain constraints (such as

keeping the discussion short, bookending it between handwritten starter questions and wrap up phrases, and

providing a strong path forward through questions).
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3.8 Wiki Response Generator

To support our goal of high-coverage world knowledge (Section 3.1), the Wiki RG uses Wikipedia articles

as grounding to discuss any entity that interests the user. Our goal is to allow the user to conversationally

discover interesting information about the entity.

Data To prepare the Wikipedia data, we downloaded the most recent Wikipedia dump,18 processed it

using MWParserFromHell19 and Spark,20 and uploaded it into an ElasticSearch index. The Wiki RG can then

query the ElasticSearch index to obtain the Wikipedia article for an entity.

Behavior On each turn, if it’s not already active, the Wiki RG can start to talk about the current entity

(Section 3.4.2) by asking the user an open-ended question, such as What do you find interesting about it?. If

the entity is in one of 25 commonly-encountered types (determined using Wikidata categories), such as books

or foods, we use a more specific question, such as What did you think of BOOK_ENTITY’s story? or I love

trying out new flavor combinations. What do you like to have FOOD_ENTITY with?. These questions are

designed to elicit contentful user responses, which can be matched to specific sentences in the Wikipedia article

using TF-IDF overlap. The RG also offers interesting facts (i.e. ‘TILs’) scraped from the /r/todayilearned

subreddit, if available. If we have given enough TILs or we have no TIL left to offer, we will start suggesting

sections of the Wikipedia article to the user. A short example Wiki interaction is shown in Turns 11-13 of

Table 3.1.

Conversational Styling We use this RG as a testbed for our conversational paraphrasing system. The

system takes as input the truncated conversational history, and some knowledge context (either a TIL about the

current entity, or an excerpt of the Wikipedia article, selected based on TF-IDF similarity to the user’s response

to an open-ended question). It outputs a conversational-sounding paraphrase of the knowledge context. The

model was trained by fine-tuning a GPT-2-medium language model (Radford et al., 2019) on a processed and

filtered version of the TopicalChat dataset (Gopalakrishnan et al., 2019). The paraphrases are generated using

top-p decoding with p = 0.75 and temperature τ = 0.9, and we pick the one which has the highest unigram

overlap with the knowledge context.

Challenges One major challenge while performing conversational styling is that the model sometimes

produces factually incorrect or nonsensical conversational paraphrases. Another challenge is that integrating

the paraphrasing model with the rest of the system requires explicit directives such as “continue talking about

same knowledge piece”, “pick another fact”, “change entity” which the model currently does not produce.

For instance, sometimes the generated paraphrase just asks a question or mentions an incomplete piece of

18https://dumps.wikimedia.org/backup-index.html
19https://mwparserfromhell.readthedocs.io/en/latest
20https://spark.apache.org

https://dumps.wikimedia.org/backup-index.html
https://mwparserfromhell.readthedocs.io/en/latest
https://spark.apache.org
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information, with the expectation of completing it in the next turn. Currently, we apply some heuristics such

as presence of Did you know ... ? style questions or low unigram overlap to determine that the same snippet

needs to be paraphrased again.

More broadly, there are challenges around interestingness of content. The majority of content on

Wikipedia isn’t very interesting and social. While the TILs remedy that to some extent, finding interesting parts

of raw text is still an open question and quite important in the open-domain conversational setting. Another

major challenge is content selection and discoverability. The user doesn’t know the extent of the knowledge

that our system possesses for an entity. In a visual interface, the user can scroll through the article or look at a

table of contents. While we partly remedy this by suggesting section titles to illustrate the kind of content we

can talk about, a better system could perhaps understand what different parts of a Wikipedia article are talking

about, and steer conversation in that direction.

3.9 Analysis

3.9.1 Relationship between Rating and Engagement

We measured four metrics of engagement: number of turns in the conversation, number of distinct entities

discussed during the conversation, average length of the user’s utterances, and average length of the bot’s

utterances. Figure 3.4 shows that rating increases with number of turns and number of entities, but ultimately

drops off. In an analysis of Alexa Prize bots, Venkatesh et al. (2018) found that across all bots, conversation

length was positively correlated with rating; however, one possible explanation for our result is that our bot

has limited content and at some point, the users become dissatisfied as their experience is no longer novel.

In an analysis of the NeurIPS ConvAI2 challenge, Dinan et al. (2019a) found a positive relationship

between user utterance length and rating. We expected a similar result, thinking more talkative users would

be more actively engaged. However, Figure 3.4 shows that rating increases with user utterance length until

Figure 3.4: Engagement metrics vs rating
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about 12 characters, and then decreases. Since many of our bot’s questions encourage short answers (e.g.

What’s your favorite animal?; Would you like to talk about science?), and it is generally more difficult for our

bot to correctly understand and handle longer answers,21 users who give longer answers may have a worse

experience. For this reason, the result shown may reflect the limitations of our bot, more than a user preference

for giving shorter responses.

Average bot utterance length is positively correlated with average rating, with high variance in rating

for shorter bot utterances. A confounding factor is that different response generators have varying average

response lengths and relationship with user experience (Section 3.9.4) – e.g., the Offensive User RG tends to

give short responses, and has a negative relationship with ratings. Response generators giving longer responses

tend to have positive or neutral relationships with rating. Therefore, this plot may more reflect the UX of our

response generators than a user preference for longer responses. These results may also reflect the inherent

noise in user Likert-scale ratings (Liang et al., 2020).

Figure 3.5: Regression coefficients for Dialogue Act vs Rating

21As an exception, our neural generation models perform better on longer user utterances; see Section 3.7.
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Figure 3.6: Regression coefficients for Emotion vs Rating

3.9.2 Relationship between Rating and User Dialogue Acts

To understand how users’ dialogue acts relate to our bot’s performance, we applied a regression analysis,

using the statsmodels (Seabold and Perktold, 2010) implementation of Ordinary Least Squares, to the distinct

dialogue act classifier labels for all utterances of a conversation and the ultimate rating of that conversation.

These results are shown in Figure 3.5. As we would expect, appreciation is associated with higher ratings and

complaint with lower ratings.

One of our design goals was having mixed-initiative dialogue. In general, dialogue acts associated with low

user initiative, such as comment, pos_answer, statement, and back-channeling were more positively associated

with rating than dialogue acts associated with high user initiative, such as command, open_question_opinion,

and open_question_factual. A possible explanation for this is that users take more initiative when dissatisfied

with the current conversational direction, for example by giving a command to change the topic. On the other
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Figure 3.7: Percentage of conversations in which users initiated discussion of entities with different popularity
levels (pageview).

hand, users giving yes-answers or back-channeling, are likely being compliant with the bot’s direction, which

may reflect greater overall satisfaction. It is possible that these results are more indicative of user satisfaction

with our content than of a user preference for low vs high initiative.

3.9.3 Entity Coverage

As part of our design goal to offer high coverage of topics (Section 3.1), our bot is capable of discussing any

Wikipedia entity (Section 3.4.2), and discussed 7.5 distinct entities on average per conversation. To support

user initiative and engage users, we designed our bot to be able to discuss both popular and lesser-known

entities. We regard the Wikipedia pageview (Section 3.5.4) as a measure for an entity’s popularity. To measure

users’ desire to discuss less-common entities, Figure 3.7 shows the percentage of conversations where users

initiated discussion of an entity with different pageview levels. These counts do not include entities initiated

by the bot. As the plot shows, a significant number of users wanted to discuss uncommon entities: in 8% of

our conversations, users initiated discussion of entities with fewer than 2000 views and 33% of conversations

covered at least one entity with fewer than 8000 views. Users who discussed rare entities with the bot appeared

to have favorable experiences. Conversations with rare entities (fewer than 16000 pageviews) had an average

rating of 3.88, while those without rare entities had an average rating of 3.64.

To understand which entities had the greatest impact on user experience, we used the top 100 most frequent

entities as features for a regression analysis, using an Ordinary Least Squares model. Of the 100 most popular

entities, 15 had a statistically significant (p ≤ 0.05) positive impact on rating. These include animals (‘Cat’,
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Figure 3.8: Regression coefficients for Response Generator vs Rating. Launch RG is not included as it is
in every conversation.

‘Dog’), movies (‘Film’, ‘Frozen 2’, ‘Onward (film)’), food (‘Korean fried chicken’, ‘Pizza’, and ‘Ice cream’),

and video games (‘Minecraft’, ‘Fortnite’).

3.9.4 Effectiveness of Response Generators

We performed a regression analysis on the relationship between response generator use and rating, using

the number of turns each RG contributed as features. Figure 3.8 shows a statistically significant positive

relationship between rating and the Coronavirus, Acknowledgement, Movies, Opinion, and Wiki RGs, and

a statistically significant negative relationship for Red Question, Complaint, Fallback, Neural Fallback, and

Offensive User. The Complaint and Offensive User results may be explained by the fact that users experiencing

poor conversations may complain or be offensive, and conversely, some adversarial users deliberately engage

negatively and then give poor ratings. A possible cause for the negative Fallback and Neural Fallback results is
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that these RGs are used when no other RG has a high-quality response, so their use is likely correlated with a

worse user experience. As we expected, RGs designed for general conversation had more positive coefficients.

Of these RGs, those with more scripted content, i.e. Coronavirus, Acknowledgement, Movies, and Categories,

had larger positive coefficients than those with less, such as Opinion and Wiki. However, the most significant

loss in performance occurs when the bot cannot answer contextually or has an adversarial user.

3.10 Discussion

Full Stack NLP Most NLP research focuses on self-contained tasks. However, an open-domain socialbot,

served to a diverse range of customers in widely different contexts, is by no means a self-contained task. Our

socialbot is a tapestry of many such components, requiring a deep understanding of each component and how

they should work together – a setting we call Full Stack NLP. Often the inputs and outputs of these components

are inter-dependent, leading to cascading errors. We made many design choices which delay hard decisions in

pipelines, and maximize information exchange between modules. This calls for research on models which

perform these tasks jointly and methods which enable training over multiple interdependent tasks with only a

small amount of joint supervision. Within the domain of informative conversations, we address this issue in

Chapter 5 where we train a retriever and a generator jointly without any passage supervision.

Domain Shift As a recurring problem, we found that many existing NLP resources didn’t work well

out-the-box. The main reason for this is that the training data for these resources (typically non-conversational,

long form, traditionally-formatted written text) is misaligned with our setting (conversational, short form,

uncased, no punctuations, spoken text). However, a deeper reason is the constantly changing nature of dialogue

agents themselves. Even for an extremely related resource (the MIDAS dialogue model, developed for the

Alexa Prize, Section 3.5.2), domain shift was a problem. Recent advances in online- and meta-learning could

provide a useful long term solution to this issue. Further, when a model fails, the system needs to recover.

See and Manning (2021) from our team show how to train a model to predict next-turn failure based on prior

examples of dissatisfied user utterances.

Conflict and Intimacy Bot-human conversations are fundamentally different to human-human conversa-

tions. Users can be adversarial, deliberately testing the bot’s boundaries. As socialbot designers, we are eager

to avoid a disaster like Microsoft Tay (Lee, 2016), so we apply strict but overly simplistic methods to block off

sensitive topics (Sections 3.6.2, 3.6.7). However, this rules out sincere conversation about difficult topics. Li

et al. (2021) from our team show how to deflect from offensive topics introduced by adversarial users and

reorient toward more productive themes. Separately, we observed that users are actually quite resilient to

conflict, and can find disagreement stimulating (Section 3.6.2). We also confirmed prior results (Collins and
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Miller, 1994) that emotional intimacy is reciprocal – users are more inclined to share their feelings after the

bot has shared its own (Section 3.7). While we should continue to take seriously the dangers of speaking

inappropriately, we should also keep in mind the cost – to engagement and to intimacy – of not engaging in

difficult topics.

Initiative As part of our goal to support user initiative, we focused on asking users questions to find out

which topics interested them. However, this puts pressure on the user to think of a response, especially given

the time constraints of Alexa devices. Thus, we found that our attempts to let the user take more initiative

unfortunately led to decision fatigue. Separately, our ability to support user initiative was limited by our ability

to answer followup questions, and to correctly understand long or unexpected user utterances. On balance, we

found that asking the user open-ended questions about interesting topics was a good strategy – easier to handle

than spontaneous user questions, and less pressuring than asking users to name topics. In Hardy et al. (2021), I

along with my collaborators define initiative in human-bot social conversations and show that the following

three mechanisms promote user initiative: back-channeling, personal disclosure, and replacing questions with

statements. More work needs to be done to build systems which listen more to the user’s knowledge, rather

than only providing knowledge.

3.11 Implications for Informative Conversations

In this chapter, we set out to answer RQ1: “What are the important problems for informative conversa-

tions?”.

Some of our design choices were liked by users and proved crucial to our success. As we saw in

Section 3.9.3, users were more satisfied when the chatbot could talk about rarer entities. This solidified the

importance of broad topical coverage, one of the two objectives of this dissertation. We also noticed a strong

bias toward current events and related entities. This meant that being able to inject new and recent knowledge

into conversations is critical for any deployed informative dialogue system. Our two-step architecture – retrieve

knowledge and generate conversational utterance – proved to be effective.

There were also failures, some due to the idiosyncrasies of the models we used. We described many

challenges in Section 3.8; here I give concrete examples of two key challenges. A big issue was factual

accuracy of conversational utterances. For instance, if the injected passage had a rarely occurring person name

that starts with “A”, due to the sub-word tokenization used in large language models like GPT-2 (Radford et al.,

2018), the generative language model would instead generate “Abraham Lincoln”, a name that was common

in the training data. While we want the language model to pick up general and common-sense knowledge

from its training data, it is more important for it to ground its utterances in the retrieved passage. Another big
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failure was the retriever’s inability to find conversational passages with semantic overlap. For instance, if a

user told our system that they went hiking on the Stanford Dish trail last week, our system would extract a

sentence describing the dish trail and weave it into the response. While that is a relevant passage, the user

already knows about it! What we really want is for the system to find semantically related passages, perhaps

other activities around Stanford campus, or other hiking trails nearby.

Beyond these obvious failures, what other unmet expectations did our users have? We first needed to

identify concrete ways in which we could measure the goodness of informative conversations. This leads to

RQ2 “What strategies do humans employ when talking informatively with other humans?” which we

answer in Chapter 4.

In Chapter 5, we try to improve upon this initial attempt at informative conversations. First, instead of using

a fixed retriever that matches based on term-overlap, we learn a dense neural retriever that uses contextualized

word embeddings to find related passages that make sense in a conversation. Second, we train the retriever and

the generator jointly without passage supervision. This helps the retriever learn the nuances of conversational

relevance and at the same time exposes the generator to realistic retrievals, reducing train-test mismatch. We

are ultimately able to reduce generator hallucination by using posterior-guided training.



Chapter 4

Linguistic Analysis and a case-study in

improving acknowledgements

So far in this dissertation, I have shown how to build a system for social conversations, study human-machine

informative conversations in an ecologically valid setting and identify some failure modes. But how do we

measure the “goodness” of our system beyond the obvious ways in which it currently breaks? In this chapter, I

ask myself RQ2 “What strategies do humans employ when talking informatively with other humans?”.

A good understanding of these strategies has many far-reaching benefits. It can provide long-term goals that

we want our systems to meet. It can inspire our methods to emulate human mechanisms that are responsible

for the demonstrated strategies. And it provides a solid foundation for defining metrics to evaluate these

systems. In the first part of the chapter (Section 4.1), I perform a linguistic analysis of human informative

conversations to find four sets of strategies: acknowledgement, transition, detail-selection and presentation.

In the second part of the chapter (Section 4.2), I devise a method to extract higher-quality conversational

utterances containing better acknowledgements. I do so by using pointwise conditional mutual information

between the generated samples and the conversational history given the external knowledge. In the last part

of this chapter (Section 4.3), I describe the implications of my analysis on the development of systems for

informative conversations.

64
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4.1 Linguistic Analysis of human informative conversations

To understand strategies used by humans while talking about factual knowledge, I annotate turns in human-

human conversations. I adopt and extend Herbert Clark’s approach to conversational analysis. According

to his given-new contract (Clark and Haviland, 1977), the speaker connects their utterances with the given

information (assumed to be known to the listener) and adds new information. This builds up common ground

(Stalnaker, 2002) between the two participants, defined to be the sum of their mutual, common or joint

knowledge, beliefs and suppositions. I identify the following four aspects to the process of adding new

information to a conversation.

Acknowledgement strategies According to Clark and Brennan (1991), the listener provides positive

evidence for grounding. I classify all mentions of prior context into various acknowledgement strategies.

Transition strategies According to Sacks and Jefferson (1995, Chapter 12, Winter 1971), topical changes

happen step by step, connecting the given, stated information to new information. I annotate the semantic

justifications for topical changes as different transition strategies.

Detail selection strategies According to Isaacs and Clark (1987), speakers in a conversation inevitably

know varying amounts of information about the discussion topic and must assess each other’s expertise to

accommodate their differences. I posit that each speaker applies detail selection strategies to select the right

level of detail to be presented.

Presentation strategies According to Smith and Clark (1993), presentation of responses is guided by

two social goals – exchange of information and self-presentation. While I do not consider social goals in this

work, I hypothesize that people talk about factual information in non-factual forms (e.g., opinions, experiences,

recommendations) which I classify as various presentation strategies.

4.1.1 Analysis of Strategies

Dataset I annotate part of the Switchboard Dialog Act Corpus (Stolcke et al., 2000), an extension of the

Switchboard Telephone Speech Corpus (Godfrey et al., 1992) with turn-level dialog-act tags. The corpus was

created by pairing speakers across the US over telephone and introducing a topic for discussion. This dataset

is uniquely useful because as a speech dataset, it is more intimate and realistic than text-based conversations

between strangers. I annotate conversations on social topics which might include specific knowledge (like

Books, Vacations, etc.) but leave out ones about subjective or personal experiences.

Specific knowledge I define specific knowledge as knowledge that can be “looked up” but isn’t widely

known (as opposed to general knowledge that everybody is expected to know and experiential knowledge that
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Strategy Example

Agreement Prev: Well, I think they are a lot better at making movies than they used to
Reply: The quality I think maybe has improved in that respect . . .

Shared Experience Prev: I am more interested in watching some of the movies that are on TV.
Reply: Well, that’s probably what I watch most frequently the movies . . .

Backchannel Prev: There is a lot of places in the United States I still want to go to.
Reply: Uh huh, yeah. Now, have you been to Yellowstone? . . .

Others Prev: Like what makes a firefly light
Reply: Those are, oh, interesting. Oh, you like science things? ...

Table 4.1: Acknowledgement strategies in the Switchboard corpus. (a) Agreement includes disagreements.
(b) shared experiences include explicit mentions of a different experience. (c) Backchannels include short
and usually not very meaningful acknowledgement of prior turn. (d) Others include rarer acknowledgement
strategies like showing interest and putting forth a hypothesis. Note that parts of the turns are omitted for
brevity.
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Figure 4.1: Distribution of acknowledgement, transition and presentation strategies.

can only be derived from embodied experiences). In this work, I am interested only in specific knowledge

because it serves as a source of new information in a conversation that is hard for a language model to learn

implicitly but is likely available as text that can be supplied to the system. Out of 408 annotated turns, 111

(27%) incorporate specific knowledge and account for 56% of the tokens.

Next, I analyze various strategies employed in turns containing specific knowledge:

Acknowledgement Strategies In 70% of the turns, the speaker acknowledges the prior turn, corroborat-

ing Clark and Brennan (1991). Three main strategies (Table 4.1) – agreement (or disagreement), shared

experiences (or differing experience) and backchanneling – account for 60% of the turns (Figure 4.1). In

certain cases, explicit acknowledgement isn’t necessary. For example, the answer to a question demonstrates

grounding and serves as an implicit acknowledgement. These are categorized as N/A.
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Strategy Example

Commonality Prev: ... interested in watching some of the movies that are on T V ...
(with new topic) Reply: ... like nostalgic older movies ... like the MARX BROTHERS ... .

Differences Prev: ... I go from classical all the way to, uh, jazz and country ...
(with new topic) Reply: ... certain types of country western I can’t handle that twangy stuff,

Elaborate other Prev: And it was shocking at the end too. So, -
(same topic) Reply: Absolutely. Uh, but much more true to life and I think that is, the point.

Elaborate self Self: how to build things and, um, they have a calligraphy show, I watch that.
(same topic ) Prev: Oh, that’s nice.

Reply: And, um, they have a lot of cooking shows, And, oh, you know ...

Discussion Theme Prev: ... But other than that, I like pretty much everything.
Reply: so, other than, uh, - as far as instruments, I can go from piano to the ...

Table 4.2: Examples of Transition strategies in the Switchboard corpus. (a, b) Switch to a new topic based
on some commonalities or differences. (c,d) Elaborate prior topic (from self or other). (e) Fall back to the
theme to change the topic. Parts of the turns have been omitted for brevity.

Transition Strategies At the beginning of a conversation, the participants use the discussion theme to pick

a topic (various transition strategies are shown in Table 4.2). The decision to stay on the topic or to transition

to a new one is an implicit form of negotiation and depends on the interest and ability of both speakers to

participate. Nearly half the time, people elaborate upon the current topic (Figure 4.1). With a supportive

listener, they might elaborate upon their own prior utterance (self-elaboration). Or they might signal interest

in continuing the topic by elaborating the other speaker’s utterance (other-elaboration). However, in a quarter

of the turns, a participant loses interest or both participants run out of material. In that case, they transition to a

new topic, implicitly justified by commonalities or differences with the current topic. If all else fails, they fall

back to the discussion theme to pick a new topic.

Detail-selection strategies People probe the other speaker’s knowledge about an entity before diving into

details. As a probing mechanism, people introduce an entity without any details (introduce-entity) 50% of

the time. Depending on the response, details are laid out 66% of the time. Note that a turn can have both

labels, i.e., it can introduce an entity for the first time, or it can have details of one entity while also introducing

another entity. Interestingly, in 7% of turns, an entity’s name is omitted but some details are presented, creating

an opening for the other speaker to chime in.

Presentation strategies A single utterance can have multiple modes of presentation. A factual (objective)

statement of specific knowledge is uncommon (25%) in comparison with a subjective rendering in the form
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of an experience (53%) or an opinion (34%) (Figure 4.1). The other common modes of presentation are

questions (9%) and answers (16%), which often occur as adjacency pairs. I also found a few other uncommon

modes (7%) such as recommendations or hypotheses based on specific knowledge.

4.1.2 Conclusion

Inspired by existing literature in sociolinguistics and psycholinguistics, I looked at different ways in which

people exhibit acknowledgement, transition, detail-selection and presentation strategies in informative con-

versations. Improving dialogue systems using these insights will need an overhaul of the complete system

(which I attempt in Chapter 5). However, acknowledgements are relatively superficial; given a conversational

history and relevant new knowledge, a neural-network based sequence to sequence model is powerful enough

to generate a conversational utterance. In the next section, I provide a method to use such base models to

extract sampled utterances that acknowledge better.

4.2 Case study: PCMI for better acknowledgement

Current neural generation methods typically offer short and formulaic phrases as acknowledgements: “That’s

interesting”, “I like that”, “Yeah, I agree”. Such phrases are appropriate almost everywhere and convey little

positive evidence for understanding or grounding. The training corpus, on the other hand, contains richer

acknowledgements, which generated responses should be able to emulate.

I assume that the representational capacity of current neural models is sufficient and that out of all the

sampled responses, some do indeed contain a richer form of acknowledgement. I posit that non-existent or

poor sample selection strategies are to blame and that without a good sample selection strategy, improvements

to the dataset, model or token-wise sampling methods are unlikely to help.

I hypothesize that responses that are more specific to conversational history provide better evidence for

understanding and hence contain richer acknowledgements.

4.2.1 Methods using Mutual Information

As a baseline sample selection strategy, I first consider maximum pointwise mutual information (Max-PMI)

(as used by Zhang et al. (2020)) between the generated response and the conversational contexts (i.e., new

factual content and conversational history). However, this is insufficient because it is an imprecise measure of

specificity w.r.t. conversational history. Instead, I use pointwise conditional mutual information (PCMI) to
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I guess it makes sense 
that he [Shakespeare] 

coined so many terms ... 

Not only did he coin 
terms, but he created 

names. The names 
Miranda, Olivia and 

Jessica were invented by 
Shakespeare. I didn't 

know those names went 
so far back!

Shakespeare's works 
take on a different 
meaning when 
performed with an 
era-appropriate 
accent instead of a 
modern one, often 
introducing rhymes 
or puns that don't 
work in modern 
pronunciations

That's cool, I wonder if those 
names will be in any of 

Shakespeare's works that are 
performed today. His works 
take on a different meaning 

when performed with an age-
appropriate accent.

Wow. I also didn't know that 
his works take on a different 
meaning when performed 

with an era-appropriate accent 
instead of a modern one, often 

introducing rhymes or puns 
that don't work in modern 

pronunciations

New factual 
content (z)

Conversational  
history (x) y1

y2

Seq2Seq 
model}

Sampled 
generations (yi)

Figure 4.2: The setting for conversational rephrasing. Conversational history (x) and new factual content
(z), two largely independent contexts, are used to sample responses (y1, y2) from a generative model. The
samples differ qualitatively. While almost all of y2 is verbatim from z (in gray), the first sentence in y1 (in
white) acknowledges using x and bridges to z.

maintain specificity with individual contexts and propose a combination of PMI and PCMI scores to select

overall better quality responses than Max-PMI.

Conversational rephrasing The choice of new factual content is a confounding factor for analysis. Hence, I

define a simplified task, conversational rephrasing, where content is provided as an input. Thus, conversational

rephrasing is a generation task where conversational history (x) and new factual content (z) are given as inputs

and a response (y) is generated as the output (Figure 4.2). We expect the generation y to paraphrase the new

factual content z in a conversational manner by utilizing the conversational history x.

Base generator I fix the sequence-to-sequence model and token-wise sampling method and vary the sample

selection strategy. The model is trained to take x and z as input and to generate y as the output with the

language modelling loss, i.e., I minimize the token-wise negative log likelihood. During generation, tokens

are sampled autoregressively from left-to-right. While sampling each token, the probability distribution is

truncated using nucleus sampling (Holtzman et al., 2020), but the truncation is kept to a minimum with a high

value of p for top-p sampling. Multiple diverse candidates are sampled from the base generator and now the
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Figure 4.3: Token-wise probabilities (top), pmi (middle) and pcmi (bottom) scores for the generated
response y from Figure 4.2. The pcmi graph is computed from the pmi graph which in turn is computed
from the probability graph. The probabilities by themselves are unreliable measures of contextual specificity;
the tokens predictable without x, z (e.g., ’s) have high probability but low pmi. pmi cannot differentiate
between the two contexts; tokens coming from both contexts (e.g., Shakespeare) have high pmi but low pcmi.
pcmi differentiates the two contexts; tokens unique to conversational history x (e.g., names, today) have high
pcmix, Tokens unique to new factual content z (e.g., works, performed, all of last sentence) have high pcmiz .

best candidate needs to be selected.

PMI for overall specificity Following prior use of maximum mutual information (MMI) in the speech

community (Bahl et al., 1986), Li et al. (2016a) suggest selecting the response with maximum PMI (a.k.a.

MMI) to maintain specificity and get rid of bland or low-quality samples. Pointwise Mutual Information (PMI)

between two events (x, y) is a measure of change in the probability of one event x, given another event y:

pmi(x; y) ≡ log p(x|y)
p(x) . We use pmi to determine the increase in likelihood of y, given x and z.

pmi(y; x, z) = log
p(y|x, z)
p(y)

A candidate generation y with higher PMI is more likely given the two contexts x and z than otherwise and

is therefore considered more specific to the contexts. A low PMI value for a candidate response implies

non-specificity to either context providing a clear signal for discarding it. A high PMI is necessary but not

sufficient for a candidate to be specific to both the contexts simultaneously, since mutual information could

come from either context. For example, y2 (Figure 4.2) merely copies z but gets a high PMI score (Table 4.3).

Whereas y1 acknowledges prior turn and uses z but gets a lower PMI score.
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Response pmi(y;x, z) pmi(y;x) pcmix
y1 87 18 14
y2 150 18 4

Table 4.3: Measures of mutual information for generated responses from Figure 4.2. y2 largely copies z,
has high pmi(y; x, z) and would be chosen by Max-PMI. y1’s first sentence acknowledges using x and bridges
to z; it would be chosen by Fused-PCMI on the basis of pcmix. pmi(y; x) cannot differentiate the two.

PCMI for contextual specificity Pointwise Conditional Mutual Information (PCMI) considers a third

variable (z) and removes information due to z from pmi(x; y, z) to keep only the information uniquely

attributable to y.

pcmi(x; y|z) = pmi(x; y, z)− pmi(x; z)

I propose using pcmi for contextual specificity, i.e., pcmix = pcmi(y; x|z) for specificity w.r.t. to conversa-

tional history x, and pcmiz = pcmi(y; z|x) for specificity w.r.t. new factual content z.

Since acknowledgement strategies are primarily based on the history of the conversation thus far, we would

expect candidates with higher pcmix to exhibit more human-like acknowledgement strategies.

As a point of comparison, consider using pmi(y; x) instead of pcmix. In our setting of conversational

rephrasing for informative dialogue, z topically overlaps with x. If y merely copied over the new factual

content z without any reference to x, it would still have a high pmi(y; x) due to topical overlap but a low

pcmix. Going back to Table 4.3, we can see that pmi(y; x) is unable to distinguish between the two examples

but pcmix is.

In Figure 4.3, the above quantities are broken down to token-level granularity. We can see that specific

words that are uniquely attributable to each context are cleanly separated by both pcmix and pcmiz .

Combining PMI & PCMI for overall quality To show the utility of pcmix in improving overall quality,

I propose a heuristic method to find a more balanced response (Fused-PCMI) than the Max-PMI response.

For every Max-PMI response with a low pcmix, I consider an alternative that has both high pcmix and an

acceptable PMI. If such an alternative is found, I select that as the Fused-PCMI response; otherwise I default

to the Max-PMI response as the Fused-PCMI response. I consider a PMI score in the top 50% of the candidate

set as acceptable. To compute pcmi thresholds, I calculate quantiles based on the entire validation set and

consider pcmix in the first quartile to be low and pcmix in the fourth quartile to be high. This approach is less

susceptible to outliers, more interpretable and easier to calibrate than a weighted arithmetic or geometric mean.
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4.2.2 Evaluation Setup

I derive the data for our conversational rephrasing task from the Topical Chat dataset Gopalakrishnan et al.

(2019). I use it to fine-tune a large pre-trained neural language model. This forms the base model as described

in Section 4.2.2. To evaluate our proposed methods, I design three experiments and perform a comparative

study with human annotators.

Topical Chat Dataset This is a human-human chat dataset where crowd-workers were asked to chat with

each other around certain topics. They were provided with relevant interesting facts from the “Today I learned”

(TIL) subreddit which they could use during the conversation. TILs are short (1–3 sentences), self-contained,

interesting facts, most of them from Wikipedia articles. When an utterance can be matched to a TIL (based on

a TF-IDF threshold of 0.12), I create an instance for the conversational rephrasing task: with the utterance as y,

the two previous utterances as x and the corresponding TIL as z. I split the instances into training, validation

and test sets (sizes in Appendix B.1) such that all utterances related an entity belong to the same set.

Base Model I use the GPT2-medium model (24-layer; 345M params) pretrained on the English WebText

dataset (Radford et al., 2019), as implemented in HuggingFace’s TransferTransfo (Wolf et al., 2019b,a)

framework. Fine-tuning is performed using the language modelling objective on the training set with default

hyperparameters until lowest perplexity is reached on the validation set. During generation, I sample tokens

using nucleus sampling (Holtzman et al., 2020) with p = 0.9 and temperature τ = 0.9 and get candidate

responses. To compute auxiliary probabilities {p(y|x), p(y|z), p(y)} for these candidates, I use separate

ablation models. The ablation models are trained similar to the base model but after removing respective

contexts from the training inputs.

Experimental Design

To validate our proposed methods, I do a paired comparison (on Amazon Mechanical Turk) where human

annotators are shown two prior turns of conversational history and asked to choose between two candidate

responses. Annotators are allowed to mark both candidates as nonsensical if the responses don’t make sense.

In Appendix B.2, I show the interfaces used to collect annotations from Amazon Mechanical Turk. Each pair

of responses was compared by three annotators – I consider a candidate to be better than the other when at

least two of them (majority) agree upon it. For each of the following three experiments, I compare 100 pairs of

candidates generated using instances from the test set. The null hypothesis (H0) for the three experiments is

that there is no difference between the methods used to generate the candidates, and we hope to reject the null
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hypothesis in favor of the alternate hypothesis (H1) at a significance level (α) of 0.05.

Exp 1: PMI and overall quality First, I want to confirm that high PMI responses are overall better quality

than randomly chosen candidates (H1). To do so, I first generate 10 responses for each instance and compare

the response having maximum pmi(y; x, z) (Max-PMI) with a randomly chosen response from the remaining

9. I ask human annotators to pick the overall better candidate response.

Exp 2: pcmix and acknowledgement I test if responses having high pcmix provide better acknowledgement

(H1). To do so, I first sample 100 responses (larger than previous experiment) and out of all possible pairs

keep those with |∆pcmix | > 15 (larger than population interquartile range; Figure 4.5). To control for the

amount of new information being added, I pick pairs with closest values of pcmiz (recall that pcmiz denotes

information uniquely attributable to z). Such selected pairs have Median|∆pcmiz | = 0.42. I ask annotators

to pick the response that provides better acknowledgement and select an acknowledgement span to support

their claim.

Exp 3: Fused-PCMI vs. Max-PMI I test if the proposed method, Fused-PCMI (that combines PMI and

PCMI) selects better responses than Max-PMI (H1). For Fused-PCMI, I set low and high pcmix thresholds

to be 5 and 14 respectively based on population quartiles. For instances where the Fused-PCMI response

is different from the Max-PMI response, I compare the two. I consider 10 candidate responses for each

test instance and find that for around 10% of the instances the Fused-PCMI candidate is different from the

Max-PMI candidate. Human annotators are then asked to pick the overall better response of the two.

4.2.3 Results & Analyses

Based on human annotations, I am able to reject H0 in favor of H1 in all three experiments (Table 4.4)1:

high PMI responses are overall better quality than randomly chosen candidates, responses having high pcmix

provide better acknowledgement, and Fused-PCMI selects better responses than Max-PMI.

While according to Exp 1, high PMI responses are overall better quality, upon further analysis I find that

PMI is useful for filtering out bad samples, but not necessarily for selecting between the good samples. When

paired with a random response from the top 50% of the candidates (ranked according to their PMI), people

prefer the Max-PMI response only 52% of the time (not significant). On the other hand, if the random response

was in the bottom 50%, then the Max-PMI response is preferred 74% of the time.1

1Statistically significant with p < 0.05 (Binomial Test).
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Figure 4.4: Distribution of pcmix and pcmiz for all candidates, Max-PMI responses and Fused-PCMI
responses as a bivariate KDE plot. Bivariate kernel density estimate plot w.r.t. pcmiz and pcmix at levels
0.5 and 0.75. We see that Fused-PCMI responses compared with Max-PMI trade off little pcmiz for a large
relative gain in pcmix. See Figure 4.5 for univariate box plots.
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Figure 4.5: Distribution of pcmix and pcmiz for all candidates, Max-PMI responses and Fused-PCMI
responses as a univariate box plots. (a) is w.r.t. pcmiz and (b) w.r.t pcmix. Pink horizontal lines indicate
75% quartile for All candidates. Max-PMI responses (orange) have high pcmiz (median above pink line), but
low pcmix. Fused-PCMI responses (green) show balanced yet high pcmix and pcmiz (medians cross pink
lines).



CHAPTER 4. LINGUISTIC ANALYSIS AND IMPROVING ACKNOWLEDGEMENTS 75

Exp n K p κ

1 87 55 (63%) 0.009 0.18
2 95 70 (74%) 3e−6 0.48
3 99 59 (60%) 0.035 0.11

Table 4.4: Human annotation results for Exp 1: PMI and overall quality, Exp 2: pcmix and acknowl-
edgement and Exp 3: Fused-PCMI vs. Max-PMI. Out of 100 instances, majority agreement was reached
in n instances. The majority rejects the null-hypothesis (H0) in favor of the alternate hypothesis (H1) in K
instances. p denotes the p-value and κ denotes Fliess kappa for Inter-annotator agreement.
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Figure 4.6: Contribution of pcmix, pcmiz and pmi(y;x) to human-annotated acknowledgement spans. A
larger fraction of pcmix can be attributed to human annotated acknowledgement spans compared to pmi(y;x)
and pcmiz .

In Exp 2, I ask annotators to mark text-spans that indicate acknowledgement (Table 4.5). If token-level

pcmix is concentrated in these spans, we have further proof that pcmix indicates acknowledgement. Indeed,

in Figure 4.6, we see that pcmix is most attributable to the acknowledgement spans, followed by pmi(y;x)

and pcmiz . Thus, pcmix captures acknowledgements with greater specificity than pmi(y;x).

To understand the mechanism behind the improvement in Exp 3, I look at the distribution of samples w.r.t.

pcmiz and pcmix in Figure 4.4. I observe that Max-PMI responses heavily skew the distribution towards

higher pcmiz , whereas Fused-PCMI responses show a more balanced improvement along both pcmix and

pcmiz . Fused-PCMI increases both pcmix and pcmiz (medians cross 75% quartiles), indicating that the

responses are simultaneously specific to both x and z.
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Previous Utterance High pcmix candidate

No I did not! Han Solo was apparently also an imperial
lieutenant before meeting up with Chewbacca.

that is very interesting and I wonder if he was one of
the first or the first one to meet Chewba. I was just
reading that George Lucas originally intended Han to be a
green alien

I did not. That sounds interesting. Much like the "tip of
the hat" originates from Knights raising their visors.

Yes, that sounds like a very cool tradition. I wonder
how they enforced that law, it sounds as ridiculous as the
prohibition of wearing a hat in 1912, that was a law that
would prevent the use of hat pins by suffragettes.

Yeah. When Apollo 11 was preparing for their voyage,
they had discussion as to whether they should plant a
United Nations flag instead of a US flag. If I planted a UN
flar and someone asked me "whose flag is that?" I would
answer, mine. . .

lol, no kidding. I wonder if they are still discussing the
issue with the moon? I can’t believe the moon is moving
away from us at about the rate that your nails grow. That
seems really slow to me.

Table 4.5: Human annotated spans of text that indicate acknowledgement (in bold) in candidate responses with
higher pcmix from Exp 2.
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# Previous Utterance Max-PMI candidate Fused-PCMI candidate

1 I live in the southwest USA desert.
Not much in the way of water here
either, but we’ve got some nice ar-
tificial pools. What kind of swim-
ming did you do?

There is a type of competitive swim-
ming where the athlete has their
hands and legs bound, and swims
like a dolphin. I have never heard
that before. It seems fishy to me.
I’m not sure I can swim like that.

I went competitively but was having
a tough time. I liked that kind of
competition where the swimmer can
swim with their hands bound.

2 It is interesting. It’s also interest-
ing that they are trying to plan a
Mars colonization project that will
be funded by a reality show, I really
want to see that!

A satellite was lost on Mars because
of the use of the Imperial system
and NASA used the metric system.

Sounds like a weird reality show.
I’m going to look it up. A satel-
lite was lost on Mars because it was
used by NASA using the metric sys-
tem.

3 Yeah I definitely like clothes. I think
it’s interesting how many uses hats
have, like for protection, ceremonial
reasons, religious reasons, safety,
and fashion.

Did you know that until 1998,
British politicians had to wear a top
hat if making a point of order in the
house of commons?

In 1998, British politicians were re-
quired to wear a top hat if making a
point of order in the house of com-
mons. I guess that’s kind of messed
up and counterproductive.

4 Yeah it’s super funny that he had a
rap battle in the lunchroom. Seems
like something straight out of a
movie!

Ha, I agree. Speaking of rap-
pers, did you know that "California
Gurls" was actually a West Coast
vs East Coast answer song to Alicia
Keys and Jay Z’s "Empire State of
Mind"

Yeah, and how about the fact that
the California Gurls song was actu-
ally a west coast vs east coast an-
swer song to a pair of famous rap-
pers. That is surprising

5 im not surprised. rats are quite
clever, and i guess if scientists un-
derstand the rat brain, then they can
wire up the interface. cool.

It’s amazing how they can be clever
and change forms. I like how they
can now Debrate a chicken with sur-
gical precision.

Robots can also debone chicken
with precision. I guess that would
help avoid chicken pogis.

Table 4.6: Illustrative samples of selected responses used in Exp 3. For samples 1,2 and 3 people prefer
Fused-PCMI and for samples 4 and 5 they prefer Max-PMI. Factual content copied largely verbatim by the
model is in gray. Specifically, the Fused-PCMI candidate in 1 answers the question (Max-PMI does not) and
in 3 refers back to contradict utility of hats.
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4.3 Implications for informative dialogue agents

In Section 4.1, I answer RQ2 “What strategies do humans employ when talking informatively with

other humans?”, with various examples of acknowledgement, transition, detail selection and presentation

strategies. Furthermore, in Section 4.2, I use the insight that mentions of prior conversational context serve as

acknowledgement and I provide a method for selecting generated responses with better acknowledgements

using conditional mutual information. In this section, I discuss broader implications of the strategies identified

in this chapter along three dimensions: system goals, modelling ideas and evaluation.

System goals. Rather than building better systems for informative conversations, which is a very vague

notion, these fine-grained strategies can be used as guiding principles. Researchers can build systems that

acknowledge better, systems that transition smoothly, systems that have varied presentation styles and systems

that work at the right levels of abstraction. In the previous section I provide one such case study in improving

acknowledgements. They can also guide dataset collection. For example, Adlakha et al. (2022) collect a

dataset on conversational QA with topic switching. Regarding presentation strategies, these insights bring

forth the limitations in current conversational datasets. For instance, Dinan et al. (2019b) and Gopalakrishnan

et al. (2019) asked people to reply using knowledge snippets, but that leads to factual statements dominating

the presentation strategies. These linguistic insights make us aware of these biases in artificially collected

datasets. Newer datasets should suggest ways to reduce this bias or not provide knowledge snippets to humans

in the first place but instead post facto match utterances to knowledge snippets.

Modelling ideas. Allied to system goals are modelling ideas, often based on the psycholinguistic and

sociolinguistic mechanisms behind these strategies. For instance, to select the right level of detail, a speaker

needs to have an accurate model of the listener’s understanding. The participants in a dialogue, come to a

common understanding by “alignment”: of their situation models which are multidimensional representations

containing information about space, time, causality, intentionality and currently relevant individuals (Garrod,

2004; Pickering and Garrod, 2006). As another modelling idea, transitions can be improved with purpose-

built information retrieval methods that use commonalities and differences to choose a new topic. These

methods might use contextualized embeddings to determine similarity or knowledge graphs with interpretable

relationships between concepts.

Evaluation. The four aspects – acknowledgement, transition, detail selection and presentation – are essential

ingredients and indicative of quality conversation. They provide us with finer-grained questions amenable to

human evaluation: “How does the agent acknowledge?”, “Was it a smooth transition?”, “Does the utterance
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contain the right level of detail?”, and “Was the information presented as experience or an opinion?”. From

the perspective of a human-annotator, these questions are less subjective than “What is a good informative

conversation?”. From the perspective of a system-designer, these evaluations are more actionable. For

example, if a system is being deployed for informative purposes during customer support calls, acknowledging

a customer’s needs is high priority and they can choose a system that acknowledges better.

In the light of these linguistic strategies, we find that the informative system we built in Chapter 3 was

far from human-human informative conversations. Firstly, it emulated the factual tone of the datasets used

for training. Secondly, it retrieved passages that had high keyword overlap with a user’s utterance, making it

comically bad at selecting the right level of detail (as seen in an example in Section 3.11). It was also unable

to find passages that bridged between topics with commonalities and differences.

Can we learn these strategies directly from data? I attempt to answer this question in the next chapter. The

biggest limitation of the retriever is that it cannot be trained. I fix it by using latest the neural retrievers that are

trainable and make use of contextual embeddings (Khattab and Zaharia, 2020; Karpukhin et al., 2020; Lee

et al., 2019). But where do we find supervision to train the retriever? I provide an answer in the form of a

posterior retriever model that I train jointly with the neural retriever and the generator. With these changes the

retriever and the generator are now better positioned to emulate strategies observed in the training data.



Chapter 5

Joint training for open-ended generation

5.1 Introduction

As we established in the previous chapters, a retriever needs to be trainable and should learn how to retrieve

conversationally relevant passages (which are different from passages with keyword overlap). And the

generator needs to be calibrated to retrieved passages while producing grounded utterances. In this chapter

I answer RQ3: “How to train a retriever to find conversationally relevant content and a generator to

produce grounded utterances such that they work well together?”.

But this ability of using external knowledge in generating text is useful and important beyond informative

conversations. In fact, many of the impressive capabilities (such as few-shot question-answering) of large

language models (as first demonstrated by Brown et al. (2020)) are derived from their ability to memorize

world knowledge. What if large language models could instead retrieve from a knowledge corpus? The

large language models need not waste their parameters memorizing facts about the world, potentially making

them smaller and computationally efficient (Guu et al., 2020; Borgeaud et al., 2021). As the world changes,

updating the model is as easy as updating the knowledge corpus. In this chapter, I provide a recipe for training

retrieval-augmented language generation models that works well for open-ended generation and can be used

as a foundation for retrieval-based large language models in the future.

Many tasks that make use of external knowledge are referred to as knowledge-intensive NLP tasks by

the research community. Here, models must use open-domain knowledge to answer questions (Kwiatkowski

et al., 2019; Joshi et al., 2017), fact-check claims (Thorne et al., 2018) or engage in informative conversations

(Dinan et al., 2019b; Zhou et al., 2018). In fact, state-of-the-art models for open-domain question answering

are retrieval-augmented: they extract relevant passages from a human-readable corpus (e.g., Wikipedia)

80
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Figure 5.1: The difference between label-relevant and context-relevant passages in an open-ended
conversation with many plausible responses. The input (blue) can be answered based on 3 equally context-
relevant passages but only one possible response (yellow) is observed in the training set based on only one of
the pink label-relevant passages (outlined in black).

using a learned retriever and process it with a task-specific reader. If the relevant passage is known (e.g.,

human-annotated gold passage), the retriever can be supervised with it. In this work I consider open-ended

generation tasks where the gold-passages are unknown. Figure 5.1 illustrates this one-to-many setting: for a

conversational context x, many relevant passages z (dubbed context-relevant passages) could have generated

many coherent responses. But only zgold (dubbed label-relevant passage) generates the observed target output

y. Had we known zgold corresponding to the target output, we could have supervised the retriever with zgold

and trained the generator conditioned on zgold – but we don’t!

Current methods for retrieval-augmented generation (Lewis et al., 2020b) work well for short-answer

QA-like tasks: Natural Questions (Kwiatkowski et al., 2019) or fact-checking (Thorne et al., 2018). Lewis

et al. (2020b) use the generator’s probability distribution Pθ(y|x, z) as a proxy for label relevance and train

the retriever Pη(z|x) by marginalizing p(y|x) over retrieved documents z:

P (y|x) =
∑

z∈top-k(Pη(.|x))

Pη(z|x)Pθ(y|x, z)

However, for one-to-many tasks, this objective leads to suboptimal solutions: the generator is less grounded

in the retrieved passages (Figure 5.3, Tables C.10, C.9), the retriever performance saturates at low recall

(Figure 5.3), and the top-k retrieved passages exclude many label-relevant passages weakening the supervision

during training (Table 5.1).

In my work, as a proxy for zgold, I train a separate guide-retriever model to find label-relevant passages.

The guide-retriever uses both the input x and the output y and is represented by the label-posterior distribution
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Q(z|x, y) that captures label-relevance in “hindsight”. Modeling the label-posterior distribution Q(z|x, y)

with a full-fledged retriever generalizes weak supervision approaches and retrieves label-relevant passages

from the entire collection. I jointly optimize the retriever, posterior-guide, and generator using the evidence

lower bound (ELBo):

Ezi∼Q(.|x,y)[logPθ(y|x, z)]−DKL(Q|Pη)

While the objective function is a lower bound, it encodes biases that improve joint-training on open-ended

tasks: (1) conditioning the generator on the passages weighted by their label-relevance (from the label-posterior

distribution) increases grounding and (2) training the retriever with a mode-seeking reverse-KL divergence

encourages it to match some modes with the guide (label-relevant passages), with a lesser penalty for matching

other modes (other context-relevant passages).

The main contribution of this chapter is a complete HINDSIGHT training system that: (1) uses a guide-

retriever to provide a stronger learning signal for both the generator and the retriever and (2) is amenable to

index-updates with iterative closed-set training (Section 5.3).

To evaluate one-to-many open-ended generation tasks, it is insufficient to just evaluate the end-to-end

performance of the joint system. Thus, I also evaluate the individual models (retriever and generator) and at

varying passage depths. Using HINDSIGHT on the Wizard of Wikipedia dataset of informative conversations:

the retriever finds more relevant passages with a 23% relative improvement (r.i.) in success@10 (i.e., is the

label-relevant passage among the top-10 retrieved passages?), the generator is more grounded with 19% r.i. in

Novel-F1 overlap with the top-1 retrieved passage (i.e., its overlap with the retrieved passage excluding words

that are common or in the input) and the combined system is overall better with a 6.4% r.i. in Novel-F1@1

overlap with the gold utterance (the best matching generation when considering top-1 retrieved passage).

HINDSIGHT also improves performance on the MS-MARCO NLGen dataset, a one-to-one free-form QA task.

5.2 Background

Open-domain Question Answering In the reading comprehension task, a passage is given, and the models

extract the answer span from it. In Open-domain QA (a.k.a. open-QA) no such passage is given; the models are

expected to extract the answer from a large document corpus. Dr. QA (Chen et al., 2017), the first neural system

for factoid open-QA, used an off-the-shelf retriever (e.g., TF-IDF, BM25) to find relevant passages and trained

a reader to extract the answer span. Now, trainable neural retrievers have replaced the classical term-matching

retrievers. Here, pre-trained models (like BERT) embed the document corpus and the query into a single

vector space and efficient nearest-neighbour search algorithms (Jegou et al., 2010; Johnson et al., 2017) find
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the relevant passages corresponding to the query. The neural retriever can be trained variously: pre-training

with the inverse cloze task then weakly supervising using span matches (Lee et al., 2019), using gold passages

with in-batch negatives (Karpukhin et al., 2020), and retrieval-guided supervision with span-based positives

(Khattab et al., 2021).

Open-ended Generation Natural language generation tasks provide some input (sequence of tokens, image)

and expect the system to produce another sequence of tokens (or word-pieces) as output. An open-ended task

accepts a higher diversity of generations. Factoid question-answering with a single correct short answer is

less open-ended than free-form long answers. Machine translation accepts a few correct translations (Bojar

et al., 2014), but they are less diverse than informative dialogue, where the speakers can lead the conversation

in many directions (Dinan et al., 2019b), making it more open-ended. Many more generation tasks such as

summarization (Narayan et al., 2018) and story generation (Mostafazadeh et al., 2016) lie on this spectrum.

Retrieval for Language Modeling Khandelwal et al. (2020) retrieve similar contexts from the training set at

each time-step and increase the likelihood of tokens that were predicted in similar contexts. Guu et al. (2020)

instead pre-train a retrieval-augmented masked language model using salient-span masking and fine-tune it on

downstream QA tasks.

Using labels for direct supervision Zheng et al. (2020) use term-overlap with the label as a heuristic to

identify the gold-passage from a small passage set (∼ 50) and train a reranker. Prior work has also modeled

the posterior of various probabilistic models (Lian et al., 2019; Kim et al., 2020; Zhan et al., 2021) or used

reinforcement learning (Zhao et al., 2020) to improve knowledge selection from the small passage set. In

Zheng et al. (2021), the authors increase grounding by using the label to reweigh passage tokens and in Cai

et al. (2019) they increase grounding by feeding a corrupted version of the label to the generator as a stand-in

for the label-relevant passage during training.

Retrieval-Augmented Generation Lewis et al. (2020b) introduce retrieval-augmented generation, where,

for input x and output y, a retriever finds top-k passages (z) from a corpus and jointly train it with a generator

(Pθ) by maximizing the likelihood of the output marginalized over the top-k documents. In this work, I refer

to this loss function as the MARGINALIZEDLOSS:

P (y|x) =
∑

z∈top-k(Pη(.|x))

Pη(z|x)Pθ(y|x, z) (5.1)
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Here Pθ(y|x, z) is conceptually used in two roles: first, supervising the retriever (i.e., teaching the retriever to

score label-relevant passages higher than other passages) and keeping the generator grounded (i.e., maximizing

the probability of the target output given the context-relevant passages). In the next section I introduce a guide-

retriever to capture the label-relevance and I train it using ELBOLOSS, a lower bound to MARGINALIZEDLOSS,

that has better inductive biases.

5.3 Training with Hindsight

To identify label-relevant passages, I explicitly model the posterior distribution Q(z|x, y) with a learned neural

model. Unlike the retriever Pη(z|x), the label-posterior model has access to the target output and in hindsight

can differentiate the label-relevant from other context-relevant passages. I learn the label-posterior jointly with

the retriever and the generator by maximizing the evidence lower bound, ELBOLOSS, as given by the formula

(for derivation refer to Appendix C.1):

logP (y|x) ≥ Ez∼Q(.|x,y)[logPθ(y|x, z)]−DKL(Q∥Pη) (5.2)

The ELBOLOSS has two terms with useful inductive biases. The first term maximizes the expectation

of the generator’s log-likelihood Pθ over the passages sampled from the label-posterior distribution Q. The

generator need to attend only to the label-relevant passages, biasing it toward relying more on the retrieved

passages rather than its internal language model. The second term is the KL divergence from the retriever to

the label-posterior, also referred to as the reverse KL divergence:

DKL

[
Q(z|x, y) | Pη(z|x)

]
=

∑
z∼Q(.|x,y)

Q(z|x, y)
(
logQ(z|x, y)− logPη(z|x)

)

This term is again weighted by Q(z|x, y), making it like a probabilistic implication: high Q(z|x, y) implies

high P (z|x), i.e., label-relevance implies context-relevance but not vice-versa. In one-to-many tasks, which

have many context-relevant passages but few label-relevant passages, this term captures the intuition that the

retriever be penalized heavily if it doesn’t retrieve the label-relevant passage but lightly if it retrieves other

context-relevant passages that happen to not be label-relevant.

Posterior as a retriever Rather than modeling the label-posterior Q(z|x, y) as a reranker (that merely

reranks documents as retrieved by the retriever Pη), I model it as a guide retriever that finds label-relevant

passages from the entire corpus. I sample passages from the label-posterior distribution, and estimate the
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ELBOLOSS more accurately than using passages from Pη(z|x). The guide retriever generalizes weak

supervision approaches (Lee et al., 2019; Guu et al., 2020) and relevance-guided supervision (Khattab et al.,

2021), to posterior-guided supervision with a learned posterior retriever rather than brittle heuristics based

on word-overlap.

Iterative closed-set training Prior works (Guu et al., 2020; Khattab et al., 2021) intermittently update

the passage index during training. To allow for such a workflow, I organize our training into rounds (see

Figure 5.2). At the beginning of each round, in the outer loop, I encode the passages and the queries with

various retrievers and find the highest scoring r passages that I dub the closed-set. In the inner loop that runs

for many epochs, I sample k (= 8) passages from the closed-set (r = 100). This is fast because we are no

longer retrieving from the entire corpus in the inner loop and also sufficient because the closed-set has a high

recall. During the inner loop, I update the retrievers (both document and query encoders) and use the latest

model parameters for computing the loss functions. A round results in trained models that are then used for

the next round. I find that 2 rounds are often sufficient, with decreasing marginal utility from the third round

onward.

Distributional repositioning before inference I approximate the expectation terms in ELBOLOSS by

sampling k passages from the closed-set Qtop-r(.|x, y), which provides better supervision than Pη(z|x) and

leads to faster training. However, the models only ever get exposed to passages from the Q(.|x, y) distribution,

which limits their ability to generalize over passages from Pη(.|x) during inference. To remedy this, I instead

sample passages from an α-mixture of the two distributions: with probability α, z ∼ Pη(.|x) and with

probability 1− α, z ∼ Q(.|x, y). In the initial rounds I set low values of α and increase it toward the end to

reposition the passage distribution and better match with Pη(.|x) at test time. The retriever and the generator

can be trained by sampling passages from different α-mixtures and I utilize this to avoid retriever overfitting

(with α = 1) while maintaining generator groundedness (with α = 0.25, 0.5).

Training individual models to convergence In practice, the retriever and the generator when jointly

trained converge at different times. The single loss term in MARGINALIZEDLOSS (Equation 5.1) hides the

convergence of individual models; one model starts to overfit while the other model still hasn’t converged.

With ELBOLOSS, there are two terms in Equation 5.2: the first connecting Q(z|x, y) and Pθ(y|x, z), the

second connecting Q(z|x, y) and Pη(z|x). After training for a few epochs, I freeze the guide and train the

models independently until convergence based on their individual losses.
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Figure 5.2: An overview of iterative closed-set training. I iterate through the outer-loop and call each
execution a round. At the beginning of the round I re-index the passage corpus using the latest retriever
Pη(z|x) and guide-retriever Q(z|x, y) to create a high-recall closed-set of top-r passages for each retriever
and query. Then, in the fast inner loop, I train the models for multiple epochs by sampling passages from the
fixed closed-set and recomputing the probability distributions. The trained models are then used in the next
round.

5.4 Experimental Evaluation

I evaluate on two open-ended knowledge-intensive tasks: informative conversations and free-form question

answering. I ask the following three research questions:

RQ1 Relevance: Are the retrieved passages more relevant? (Section 5.4.4)

RQ2 Groundedness: Does the generator make better use of the retrieved passages? (Section 5.4.5)

RQ3 Generation Quality: Does this lead to better end-to-end performance? (Section 5.4.6)

5.4.1 Models

Retriever Models I model the retriever Pη(z|x) and the guide-retriever Q(z|x, y) using ColBERT (Khattab

and Zaharia, 2020). ColBERT encodes the query tokens qi and the document tokens dj independently using

BERT, normalizes to produce unit-vectors Eqi and Edj
, and defines similarity as Sq,d =

∑
i maxj E

T
qiEdj

.

Unlike DPR’s [CLS] token embedding (Karpukhin et al., 2020), with ColBERT’s late-interaction paradigm the

query and document tokens retain their identities and contribute to a finer-grained term-wise similarity leading

to state-of-the-art retrieval results on open-domain QA benchmarks (Khattab et al., 2021). To convert similarity

scores into a probability distribution, calculate the softmax of the scores over the k sampled passages. For the

posterior-retriever, I concatenate the input and the output into the query q = [x y]. ColBERT pre-trained on the

MS-MARCO passage ranking dataset is widely used for other tasks and I use it for the Wizard of Wikipedia

task. However, the MS-MARCO NLGen task contains queries from the passage ranking pre-training dataset.
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Figure 5.3: Relevance and Groundedness of models trained on the Wizard of Wikipedia dataset. (left)
success@k of retrieved passages w.r.t. rank and (right) Novel-F1 between decoded output and retrieved
passage w.r.t. retrieved passage rank. The ELBOLOSS retriever is more effective at retrieving the gold passage
than the MARGINALIZEDLOSS retriever, especially when we consider the top-10 passages for this one-to-many
task. The ELBOLOSS generators have higher overlap with top-k retrieved passages and the overlap increases
as α decreases.

Therefore, following Lewis et al. (2020b), I use Natural Questions to pre-train ColBERT (Khattab et al., 2021)

for the MS-MARCO NLGen task.

Generation Model Following Lewis et al. (2020b) I use a pre-trained BART model and fine-tune it for the

respective tasks during training. It is conditioned on both the context and the document and trained to produce

the target. At test time, I decode using beam-search with a beam size of 4.

5.4.2 Tasks

Informative conversations Informative conversations are open-ended because people have the agency

to drive them in different directions at every turn (one-to-many) and are knowledge-intensive because the

utterances contain specific bits of world knowledge. I evaluate with Wizard of Wikipedia (WoW) dataset

(Dinan et al., 2019b), where an “apprentice” chats (via text) with a “wizard”, being curious about different

topics, and the “wizard” grounds their response in a sentence from Wikipedia. The input for this task is

the conversational history x, the output is the wizard’s utterance y and the models can retrieve individual

passages z from all of Wikipedia (≈26 million passages). I use the version of this dataset provided in the KILT

benchmark (Petroni et al., 2021) and report leaderboard performance on the held out test set. I use the dev set

to answer the granular research questions.
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Wizard of Wikipedia MS MARCO NLGen
Method MRR S@1 S@5 S@10 MRR S@1 S@5 S@10

Gold-sup. 45.2 35.6 57.0 63.1 28.9 19.5 40.4 47.7

Marg. 43.8 38.9 49.9 52.8 30.4 19.4 43.4 53.2
ELBo (α = 1) 49.0 41.1 58.8 63.9 32.1 21.2 45.3 54.4

Table 5.1: Relevance evaluation of trained retrievers. Our method (ELBOLOSS Retriever, α = 1) strongly
improves over the baseline (MARGINALIZEDLOSS Retriever) for the one-to-many Wizard of Wikipedia dataset,
in particular for k = 5, 10. The ELBo posterior finds zgold with high success providing better supervision
during training. (MRR = Mean Reciprocal Rank, Success@k both in percentages.)

Free-form Question Answering I use the MS-MARCO NLGen dataset (Nguyen et al., 2016) where the

task is to generate natural-sounding answers to questions. This free-form open-QA task is one-to-one but more

challenging than other extractive open-domain QA datasets. The dataset is a subset of MS-MARCO questions

whose answers were reviewed by a separate editor and rewritten if they had a high overlap with one of the

provided passages (indicating that the original editor may have copied the passage directly). These “well-

formed answers” are meant to be complete sentences (such as can be read out by a conversational assistant)

and are long (median length 11 words). The input for this task is a query x, the output is a well-formed answer

y, and the models can retrieve from the MS-MARCO passage collection (8.8 million web passages). The

public benchmark and the test set is no longer available for evaluation. Instead, I split the public validation set

into a validation and test set and show results on the test set.

While both datasets annotate the passages referred to by the person who wrote the target output (gold

passages), I only use them for evaluation and validation and not for training.

5.4.3 Baselines

Apart from the two main methods – MARGINALIZEDLOSS and ELBOLOSS – I train two additional baselines:

gold-supervised and generator-only. For the Gold-supervised baseline, I assume that the gold-passage zgold

is available during training and train a retriever by maximizing its log-likelihood. I take random passages

from ELBo Retriever’s closed-set as negatives (excluding top-10 to avoid false negatives). I train the Gold-

supervised generator by simply maximizing Pθ(y|x, zgold). For the generator-only baseline, I ignore the

existence of passages and directly maximize P (y|x) with a sequence to sequence model.
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5.4.4 Relevance Evaluation

I evaluate the relevance of the retrieved passages (RQ1) using the gold passage labels supplied by each dataset.

For one-to-many tasks, we expect the label-relevant passage to be one of the top-k (k = {1, 5, 10}) retrieved

passages. Thus, I report Success@k (S@k for short)1, the percentage of inputs for which any gold provenance

passage is retrieved within the top-k (k = {1, 5, 10}) passages. I also report Mean Reciprocal Rank (MRR), a

common IR evaluation metric.

Our results are shown in Table 5.1. With Wizard of Wikipedia, ELBOLOSS retriever markedly outperforms

MARGINALIZEDLOSS. Both systems have a relatively high Success@1 and easily handle 38.9–41.1% of

the examples, but the ELBOLOSS retriever continues to find many more relevant passages at larger retrieval

depths k widening the gap to 11 points for Success@10. With MS MARCO NLGen, ELBoLoss outperforms

MarginalizedLoss by 1–2 points across our metrics, reflecting smaller—but nonetheless consistent—gains

when compared with Wizard of Wikipedia, a one-to-many generation task. Based on manual inspection, I

find many false negatives (corroborated by Arabzadeh et al. (2022)), i.e. passages that contain the answer but

aren’t marked as gold, leading to a lower Success@1 compared to Wizard of Wikipedia.

Effect of the guide-retriever MARGINALIZEDLOSS depends on the retriever Pη(z|x) to find label-relevant

passages during training and is therefore recall limited. MARGINALIZEDLOSS’s success@100 on Wizard of

Wikipedia saturates at 55.8% (not reported in the table) without much hope of further improvement because

zgold that are never retrieved cannot provide positive examples for supervision. With ELBOLOSS, the guide-

retriever retrieves label-relevant passages with >85% success@10 (Table C.4) for both the datasets providing

better supervision than MARGINALIZEDLOSS. Consequently, ELBOLOSS retriever’s success@5 is higher

than MARGINALIZEDLOSS despite containing 20× less passages and reaches 69.3% for success@100.

Comparison with Gold-supervised retriever I find that the Gold-sup. retriever quickly overfits during

training resulting in a lower performance than using ELBo loss. I also see lower performance when training

with ELBOLOSS while sampling purely from Q(.|x, y) (i.e., α = 0, Table C.3) because it is low-entropy

and the same label-relevant passages get repeatedly sampled. By sampling from Pη(.|x), the KL divergence

is minimized over a wider and realistic support set of passages. Perhaps, there are many passages that have

some label-relevant phrases making them partially relevant and Q(z|x, y) “teaches” Pη(z|x) to capture these

phrase-level relative differences. Sampling from Pη(.|x) leads to better generalization, has similarities to

distillation and is an interesting direction for future work.

1With a single gold passage Recall@k and Success@k are numerically identical and sometimes used interchangeably; I prefer S@k
because it is less ambiguous and widely used in the IR community since Voorhees (2004).
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Top-1 Max. of Top-5
Dataset Method F1 Nov-F1 F1 Nov-F1

WoW
Gold-sup. Generator 18.84 17.12 32.47 31.92

Marg. Generator 18.63 17.46 26.19 25.39
ELBo Generator (α = 0.25) 21.34 20.78 34.16 34.24

MSM
Gold-sup. Generator 36.13 28.34 49.29 43.45

Marg. Generator 33.12 25.39 45.76 39.45
ELBo Generator (α = 0.5) 34.52 26.49 46.91 40.47

Table 5.2: Groundedness evaluation of trained generators. Our method ELBOLOSS (α = 0.25, 0.5) shows
more overlap between generated output and the retrieved passage than MARGINALIZEDLOSS and for the
Wizard of Wikipedia dataset the gap increases as we consider the maximum over top-5 passages. (Novel-F1:
discounts commonly occurring words and context words (x)).

Overall, I find that ELBOLOSS improves relevance of retrieved passages over MARGINALIZEDLOSS for

two qualitatively different tasks, with larger gains for the one-to-many generation task.

5.4.5 Groundedness Evaluation

I now examine RQ2, studying the degree to which the generator relies on the retrieved passages for producing

its output. To quantify this groundedness, I compute F1-overlap between a retrieved passage (not necessarily

the gold passage) and the produced text when generation is conditioned on that passage. I get the retrieved

passages for each method (except generator-only) using the corresponding retriever.

As an analogue of Success@k, I propose Max. F1@k, the largest F1-overlap exhibited by any generated

output with the corresponding retrieved passage fed to the generator. I also propose Novel-F1, a new metric

that discounts words that occur frequently and words that already appear in the context x, since otherwise

these tokens dominate raw F1 in practice (up to 80%, see Section C.6) but are not indicative of grounding.

Our results are shown in Table 5.2 and Figure 5.3. For the Wizard of Wikipedia dataset, I observe that

our ELBOLOSS generator outperforms MARGINALIZEDLOSS by 2.7 F1 (14.5% relative improvement) and

3.3 Novel-F1 (19% r.i.) when given the top retrieved passage. For the MS MARCO NLGen dataset, I

observe smaller but consistent gains in groundedness (1–2 F1, Novel-F1) with ELBOLOSS compared to

MARGINALIZEDLOSS. In Figure 5.3 (right), MARGINALIZEDLOSS generator’s overlap decays rapidly beyond

the top passage, whereas the ELBOLOSS (α = 0.25) generator’s overlap declines gradually. This shows that

the ELBOLOSS generator stays grounded beyond just the top passage, a desirable property in one-to-many

generation systems. We also see (in Figure 5.3, right) that groundedness increases as α decreases. However, a

generator trained with α = 0, despite being maximally grounded (Appendix Table C.1), has lower end-to-end
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performance (Appendix Table C.2) because it is unduly “trusting” of the provided passage (nearly flat line in

Figure 5.3) and does not abstain from using irrelevant passages.

We see the same effect with the Gold-supervised generator on MS-MARCO NLGen: it is more grounded

but has lower downstream performance.

Overall, I find that ELBOLOSS improves grounding of the generator over MARGINALIZEDLOSS for two

qualitatively different tasks, with larger gains for the one-to-many generation task.

5.4.6 End-to-end Evaluation

To evaluate the end-to-end quality of our systems, I calculate F1 and Novel-F1 (defined in Section 5.4.5) of

the decoded output with the human-written gold output. To allow for the possibility of the generator using

any part of the gold passage (and not just the human-written gold output) for the Wizard Of Wikipedia task,

I use Knowledge-F1 (defined by Shuster et al. (2021)): F1 between the sampled generation and the gold

passage. Since it is reasonable to expect the gold passage to be in the top-k for k>1 for one-to-many tasks (as

in Section 5.4.5), I also compute the max. over top-k retrieved passages.

The results are summarized in Table 5.3. For the Wizard of Wikipedia dataset, using only the top retrieved

passage ELBOLOSS leads to 6.7% relative improvement in Novel-F1@1. But in the one-to-many setting,

the label-relevant passage is an arbitrary choice from amongst the context-relevant passages. I account for

that using max. overlap over the top-5 passages and see larger improvements for ELBOLOSS, namely 1 F1,

2 Novel-F1 (∼ 15% r.i.), and 1.5 K-F1 (∼ 10% r.i.). For MS Marco NLGen, we see a small but consistent

increase due to ELBOLOSS over MARGINALIZEDLOSS: 1.5 F1 and 2 Novel-F1 across passage depths.

I also submit the above models (ELBOLOSS and MARGINALIZEDLOSS) to the Wizard of Wikipedia

task on the KILT leaderboard. ELBOLOSS consistently outperforms the baseline MARGINALIZEDLOSS

across all metrics (see Table 5.4). The table also reports Recall@5, which evaluates retrieval at a coarser

granularity, namely at the full Wikipedia page level, though so far I have investigated it directly at the passage

level. Consistent with the results in Table 5.1, our method also outperforms MARGINALIZEDLOSS in retrieval

metrics. In fact, our ELBOLOSS model achieves state-of-the-art performance across all the generation metrics

(F1, ROUGE-L, KILT-F1, KILT-ROUGE-L) on the leaderboard, though it is not the strongest on R-Prec and

Recall@5.2

To conclude, I have evaluated the ELBOLOSS and MARGINALIZEDLOSS using a one-to-one free-form QA

dataset and a one-to-many dataset of informative conversations. Our results show that our method ELBOLOSS

2Earlier results on the KILT leaderboard for Wizard of Wikipedia should be interpreted with caution, as the KILT authors recently
updated the train/dev splits due to anomalies in the preprocessing script. I have used the updated version for our model and baseline.
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Top-1 Max. of Top-5
Dataset Method F1 N-F1 K-F1 F1 N-F1 K-F1

WoW

Gold-sup. 16.70 8.53 11.64 24.95 14.87 16.16

Gen. Only 16.11 5.15 8.05 – – –
Marg. 18.79 10.45 12.61 26.52 16.42 16.02
ELBo 18.86 11.12 13.08 27.56 18.67 17.69

MSM
Gold-sup. 59.25 36.22 – 71.44 55.02 –

Gen. Only 51.75 14.71 – – – –
Marg. 60.18 37.19 – 72.22 56.06 –
ELBo 61.46 39.65 – 73.18 58.19 –

Table 5.3: End-to-end automatic evaluation of the system consisting of a trained retriever and a trained
generator. Our method ELBOLOSS improves over MARGINALIZEDLOSS when considering Max. overlap
of generated output with target output over top-5 passages for the Wizard of Wikipedia dataset and also for
top-1 with MS Marco NLGen dataset. (Novel-F1: discounts commonly occurring words and context words
(x), Knowledge-F1: overlap of generated output with gold passage.)

R-Prec Recall@5 F1 ROUGE-L KILT-F1 KILT-ROUGE-L

Re2G (prev. best) 60.10 79.98 18.90 16.76 12.98 11.39

Marg. 53.94 68.12 18.11 16.21 11.78 10.47
ELBo (curr. best) 56.08 74.26 19.19† 17.06† 13.39† 11.92†

Table 5.4: Wizard of Wikipedia KILT leaderboard evaluation. ELBOLOSS achieves SoTA on generation
metrics (F1, ROUGE-L, KILT-F1, KILT-ROUGE-L indicated with †) as of Oct 2021 and improves relevance
over MARGINALIZEDLOSS

trains a better retriever, a more grounded generator and improves end-to-end performance, especially in the

one-to-many setting.

5.5 Discussion

Hallucination, grounding and correctness Shuster et al. (2021) show that providing retrieved passages to a

generator reduces hallucination. Our work increases grounding in the retrieved passage, promising to further

reduce hallucination. Even though the generator is now more likely to use content from the provided passage

(rather than hallucinating from parametric memory), that does not guarantee correctness. Our token-level

overlap metrics that evaluate grounding do not capture this aspect either. There is scope for future work to

address this gap with better training methods (and evaluation metrics) that produce (and reward) grounded and

correct outputs.
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Practical matters: Trust and control For tasks like QA, we want a “conservative” generator: it should

abstain from using a passage that doesn’t contain the answer. For more open-ended tasks like informative

conversations, we want the generator make use of diverse passages. In this chapter, I show that by reducing

α, the distribution of the passages shifts from Pη(.|x) to Q(.|x, y) and the generator increasingly trusts the

retrieved passages (Figure 5.3). System designers can use the α-mixture as a tool to modulate the degree of

trust placed by the generator in the retrieved passages. Further, when a “trusting” generator is deployed in

real-life settings (e.g., in open-domain socialbots like Chirpy Cardinal from Chapter 3), external business

logic can select an appropriate passage from the top-k retrieved passages and effectively control the generated

content.

Comparison with Fusion-in-Decoder For QA style tasks, the top-1 passage may not contain the answer,

and it is useful to look for the answer in the top-k passages. If the generator can attend to the top-k passages

simultaneously, it has the opportunity to synthesize all of them and produce the correct answer more often.

In the Fusion-in-Decoder (FiD) architecture (Izacard and Grave, 2021b), the decoder has a cross-attention

mechanism over multiple passages helping it “gather the evidence” from many passages at once. However,

in my experiments, I found marginal improvements while using Fusion-in-decoder. I attribute this to the

combination of two reasons: the one-to-many generation setting and the lack of synthesis in our training data.

Unlike QA style tasks, where many passages add evidence for the same answer, in the one-to-many generation

setting, each new passage is adding diverse new information. For example, in Figure 5.1, each passage is

adding new information about different jazz musician rather than providing evidence for talking about “Louis

Armstrong”. Furthermore, the labels y in the training data do not synthesize multiple passages. They were

collected by asking crowd workers to base their answer on one passage at a time, limiting the utility of the

FiD architecture. If datasets in the future synthesize information from multiple passages, the FiD architecture

might show improvement over the current decoder architecture.

In the Fusion-in-Decoder Knowledge Distillation (FiD-KD) training method (Izacard and Grave, 2021a),

the decoder’s cross-attention weights corresponding to each passage can be used for relevance supervision. In

EMDR2, an end-to-end trained multi-document QA system, Sachan et al. (2021) use FiD architecture for the

reader. However, unlike FiD-KD, instead of training the retriever using the FiD reader’s attention weights, they

feed passages individually to the reader and use MARGINALIZEDLOSS for updating the retriever parameters.

They claim their approach is superior to FiD-KD, because EMDR2 only requires one cycle of end-to-end

training whereas FiD-KD requires multiple cycles and EMDR2 more robust to retriever initialization compared

to FiD-KD. Thus, it is unclear if FiD-KD training can provide good relevance supervision and I believe our

approach of using a posterior model while conditioning on individual passages is more precise and effective.
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Inductive biases of HINDSIGHT ELBOLOSS is a better approximation of P (y|x) than MARGINALIZED-

LOSS because, during training, ELBOLOSS samples k passages from Q that are more label-relevant. As

described in Section 5.3, the ELBOLOSS also encourages two inductive biases. First, the generator’s loss for

a passage is weighted by its label-relevance as quantified by the posterior distribution. This makes it more

grounded. Second, the reverse KL-divergence acts like a soft implication. The retriever needs to assign a

high probability mass to label-relevant passages and is penalized less severely for placing probability mass

on context-relevant passages. But, in the hypothetical limit, where I marginalize over all passages, a learned

Pη(z|x) that maximizes ELBOLOSS (a lower bound) will also maximize MARGINALIZEDLOSS. So does this

difference arise only because we are limited to sampling k passages during training? Even though there is

no way to empirically answer this question, based on the derivation of ELBOLOSS, I argue otherwise. The

inequality in ELBOLOSS is due to DKL

[
Q(z|x, y)∥P (z|x, y)

]
≥ 0 used in the derivation (see Appendix C.1),

where P (z|x, y) is the true posterior and Q(z|x, y) is an approximation of it. In fact, ELBOLOSS is exactly

equal to P (y|z)−DKL

[
Q(z|x, y)∥P (z|x, y)

]
and is therefore maximizing not just P (y|z) but also minimizing

DKL

[
Q(z|x, y)∥P (z|x, y)

]
. Thus, in the limit, even if we were able to compute the expectations exactly,

ELBOLOSS optimizes for a slightly different objective; the larger the value of DKL

[
Q(z|x, y)∥P (z|x, y)

]
,

the bigger the difference. In HINDSIGHT, the representational capacity of Q is limited to that of Pη(z|x),

because I use the same architecture for both Q and Pη(z|x), with the only difference being that Q has access

to privileged information y. I hypothesize that this makes the second term, DKL

[
Q(z|x, y)∥P (z|x, y)

]
, act

like a regularizer. This idea is taken even further in Section 5.3, where I introduce the idea of distributional

repositioning. Here, I sample passages from the α-mixture, inducing a bias toward the test distribution and

improving generalization, but further loosening the theoretical bound. In this chapter, I show how it can be

fruitful to introduce desirable inductive biases even if it means we loosen mathematical bounds.

5.6 Conclusion

In this chapter, I proposed HINDSIGHT, a system that introduces a guide-retriever to improve supervision for

both the retriever and the generator for retrieval-augmented, open-ended generation. During training, the guide

retriever uses the target output of each example in order to find relevant passages, leading to better retrieval and

more grounded generation. The resulting system achieves considerable empirical improvements over existing

work, improving retrieval quality by up to 23%, grounding by up to 19%, and end-to-end output quality by up

to 6.4%.



Chapter 6

Conclusion

In this dissertation, I started with the goal of building neural systems for informative conversations that can

have in-depth conversations on a broad range of topics. I situated my work in Chapter 1 and gave an overview

of related work in Chapter 2. After that, in Chapter 3, I demonstrated how to build a social chatbot and used that

as a platform to answer RQ1: “What are the important problems for informative conversations?”. One

of the problems was our lack of fine-grained understanding of what makes a good informative conversation.

So, in Chapter 4, I study human-human informative conversations and answer RQ2 “What strategies do

humans employ when talking informatively with other humans?”. I also present a case study where I

select generated responses with better acknowledgements using conditional mutual information. To fix issues

with other strategies, e.g. transition and detail selection, I needed to change how the retriever found knowledge

snippets in the first place. In Chapter 5, I provide a method for posterior-guided training of retrievers for

open-ended generation. I refer the reader to Section 1.5 for insights on my research process and the lessons it

carries for future researchers.

In the rest of this chapter, I highlight the limitations of my work, ways in which open-domain dialogue

systems can be improved and provide a sneak peek into future research directions.

Richer spoken dialogue: In this dissertation, we limited ourselves to building systems for text-based

dialogue. The de facto method to allow audio interactions is to first use an Automatic Speech Recognition

(ASR) system to convert a user’s audio to text, then use the text to generate a textual response and then use

a Text to Speech (TTS) system to convert it back to audio which is played back to the user. This is how the

Alexa Prize Socialbots were deployed as well.

Many nuances such as emotion and emphasis are lost in the conversion. For example, imagine the question

95
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“Why did the president visit the war zone?” being said with an emphasis on different words that changes the

implied question.

• “Why did the president visit the war zone?” would imply why the president? Why not someone else?

• “Why did the president visit the war zone?” would question the act of visiting. Could he have done

something else like called in, or send aid?

• “Why did the president visit the war zone?” would question the location of his visit. Perhaps the context

of the situation calls for asking if he could have visited some place else.

The answer depends on the verbal emphasis and is therefore important to capture in any spoken informative

system. But more generally any interface meant to be deployed for spoken usage needs to capture these

nuances.

In certain cases, this form of mechanical turn taking is confusing at best and debilitating at worst. I

observed users getting frustrated with our Chirpy Cardinal system when deployed via Alexa devices. The

system would ask them a question that required them to think and when they paused to think it would end the

turn. Naturalistic turn-taking is a “low-cost” behavior for human-human conversations. If a participant starts

their turn by mistake, it is easy to stop, recover and continue later. It is easier to speak for a long duration

because the speaker can feel confident that the participant can interject them if there is any confusion. These

turn-taking mechanisms that we (as humans) are used to, are completely missing from deployed systems. As a

first step toward fixing it, Li et al. (2022b) predicts the places where the current listener could start speaking.

Using this information, a dialogue agent can prepare a partial response ahead of time and start speaking as

soon as the user ends their turn. But more work needs to be done to enable truly naturalistic turn-taking,

including but not limited to on-device audio processing (to cut down latency) and a dialogue agent designed

with these kinds of interjections in mind.

Long-term consistency: So far, in this dissertation, there was no explicit goal-oriented planning involved

in response construction. While the goals are not crystal clear for open-ended dialogue (as opposed to task-

oriented), there are meta-goals that we can derive from psycholinguistics. The desire to appear knowledgeable,

save face, be factually correct, appear concerned and empathetic, etc., can be goals that dialogue agents can

actively optimize for during the conversation.

Prior work (Li et al., 2016c; Williams and Zweig, 2016) has attempted to use Reinforcement Learning (RL)

for dialogue generation. But there have been many advances in the past few years that can further improve

the applications of RL to dialouge. For instance, large language models can act as simulators that play out
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possible conversations from a given utterance. Using this as feedback, a dialogue model can learn if the local

choices (i.e. the current response) leads toward globally favorable outcomes.

Though I touch on a few specific issues above, there are many avenues for improving NLP systems for

informative conversations. Through this thesis I provide a foundation for informative neural systems; ideas

and code that future researchers can build upon. Many problems are still unsolved and there are doubtless

many new ideas that will push the field forward.



Appendix A

Chirpy Cardinal

A.1 Additional RGs

A.1.1 Coronavirus

Our bot has been available to users since early December 2019 – thus covering the entire period of the

COVID-19 pandemic so far. As the pandemic progressed, users requested to talk about the pandemic more

and more, and showed more interest in discussing home life rather than outside activities. We created the

Coronavirus RG to meet users’ expectations that our bot should be fully aware of the unfolding situation, on

both an informational and emotional level.

The RG is activated when the user mentions or requests to talk about the Coronavirus. To be mindful of

the stress that the pandemic has placed on many people, we never initiate the topic ourselves. We then give a

comforting message acknowledging the emotional effect of the pandemic, and give the user the option to hear

up to 4 news updates. After that, we ask an uplifting open-ended question, and handle the user’s response

by generating a response from our GPT-2 model (Section 3.7). We then perform a scripted transition to the

Movies RG. For example after we’ve read out a news headline:

User: No thank you. I’m exhausted from listening to the news all the time.

Bot: No problem. I know this situation has been very stressful for many people; I’ve read online

that it can be helpful to remind ourselves of small, good things that have happened to us lately.

What’s something nice that’s happened to you in April?

User: Well it was my birthday!

Bot: That’s great. Did you have fun?

98
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. . .

A.1.2 News

The News RG provides the user with news stories that interest them, and discusses them. We set up a cron job

to query the Washington Post API1 and scrape several news-based subreddits2 every day, and place the data in

an ElasticSearch index. When the user asks to talk about news, the News RG asks the user for a topic (e.g.,

Joe Biden), if it wasn’t already supplied. The RG then queries the ElasticSearch index for news stories with

the desired topic in the headline, selects the most recent one, reads out the headline to the user, and asks if

they’d like to hear more. If accepted, we read out the first three sentences of the article.

Our original goal was to allow the user to ask follow-on questions about the article, and to answer them with

a Neural Question Answering model. We hoped this would help realize our design goals of conversational

phrasing and enabling user initiative (Section 3.1). To begin this process, the News RG would invite the user

to ask questions. We then used the SpaCy coreference resolution module (Honnibal and Montani, 2017) to

decontextualize the user’s question with respect to the last two utterances from the News RG. For example,

how many votes did he win? might be transformed to how many votes did Joe Biden win? The decontextualized

question, along with the entire news article, was then sent to a BERT-Large model (Devlin et al., 2019) trained

on the Stanford Question Answering 2.0 dataset (Rajpurkar et al., 2018) by HuggingFace.3 The model would

output either a span in the article, or ‘no-answer’ – meaning the question cannot be answered by the provided

article.4

Unfortunately, in our internal testing, we found that this system had several substantial problems. First,

errors in the coreference module were common, and would cascade to the QA module. Second, we found

that users asked a very different distribution of questions, compared to the SQuAD training questions. For

example, users were likely to ask more open-ended or causal questions (e.g., what happened next?, why did

they do that?). These are difficult for off-the-shelf QA models, which tend to excel in answering factoid-style

questions. Third, users were likely to ask questions whose answers are not present in the news article. Though

our model was trained on SQuAD 2.0 (which contains unanswerable questions), it would often choose an

irrelevant answer that type-checks with the question, as Jia and Liang (2017) have also reported. Even when

the QA model correctly classified unanswerable questions, we would have needed to build a substantial

open-domain question answering system to handle these questions. Overall, these problems made our system

1An API call to scrape Washington Post news articles provided by Amazon Alexa.
2/r/News, /r/Sports, /r/Politics, /r/Futurology, /r/Science, /r/Technology, /r/WorldNews
3https://github.com/huggingface/transformers
4Since the article was often much larger than the maximum context size for BERT, we ran the model on chunks. Within each chunk,

we discarded spans which were ranked lower than ‘no-answer’, then merged the answers and re-ranked by confidence of the predictions.

https://github.com/huggingface/transformers
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a poor and unreliable user experience; requiring more time and effort to fix than we had available.

A.1.3 Other RGs

Launch Handles the first few turns of the conversation (introducing the bot and learning the user’s name).

An example can be seen in Table 3.1.

Acknowledgement When the user changes topic to a new entity, this RG uses the entity’s membership in

certain Wikidata categories to select a one-turn scripted acknowledgement (e.g. Oh yeah, I read ENTITY last

year - I couldn’t put it down! if the entity is a book). This RG aims to give a natural and conversational ac-

knowledgement that a new topic has been raised, before handing over to another RG (e.g. Wiki/Opinion/News)

to discuss the entity in more depth.

Alexa Commands Users often try to issue non-socialbot commands (such as playing music or adjusting

smart home devices) to our socialbot. This RG detects such commands, informs the user that they’re talking to

a socialbot, and reminds them how they can exit.

Closing Confirmation Our bot stops the conversation when the user issues a command like stop or

exit. However, users indicate a possible desire to exit through many other more ambiguous phrases (e.g., do

you just keep talking, what’s happening). This RG detects such cases using the closing dialogue act label

(Section 3.5.2) and regex templates, asks the user if they’d like to exit, and stops the conversation if so.

Complaint Provides an appropriate response when a user complaint is detected. This RG uses the

Dialogue Act classifier’s complaint label to detect generic complaints, and regular expressions to detect

misheard complaints (the user saying that Alexa misheard them), clarification complaints (the user saying that

Alexa is not being clear), repetition complaints (the user saying that Alexa is repeating itself), and privacy

complaints (the user saying that they don’t want to share information). We wrote different responses for each

type of complaint, to reflect understanding of the user’s concerns.

Fallback Always provides a response (Sorry, I’m not sure how to answer that) or prompt (So, what are

you interested in?) to be used when no other RG provides one.

One-Turn Scripted Responses Provides handwritten responses to common user utterances (e.g. help,

chat with me, hello) that can be handled in a single turn.

Red Question Detects if the user asks our bot a ‘red question’ – i.e., a question we are not permitted to

answer, such as medical, legal, or financial advice – and informs the user that we cannot answer. To recognize

these questions, we trained a multinomial logistic regression model on bag-of-words features, using data from

the /r/AskDoctor, /r/financial_advice, and /r/LegalAdvice subreddits.
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Figure A.1: Screenshot of an example conversation in the dashboard. The tags next to each utterance are
annotations from the bot. The background color of the utterance is the latency of that specific turn (white
being normal and orange being slow). The pane on the right shows the logs for the turn. Note that is not a
conversation with a real Alexa User.

A.2 Tooling and Processes

A.2.1 Dashboard

We built a browser-based dashboard to provide ourselves with easy readable access to conversations and the

associated metadata. The landing page shows aggregate rating statistics broken down by date and code version.

The dashboard can filter conversations based on metadata such as number of turns, ratings, entities and RGs

used. For each conversation, the dashboard displays important turn-level attributes, such as latency, entities,

annotations, state information, RG results, and logs. It can provide a link pointing to a specific turn, which

is very useful for discussions and issue tracking. The dashboard can rerun the conversation with the current

version of our bot, to quickly test if our local changes fixed the problem. Aside from displaying conversations,

the dashboard also has tabs to track errors and latencies, divided by severity level. Easy accessibility and

visibility of errors made us more aware and likely to fix these errors quickly.
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A.2.2 Processes

Code Review We realized early on that maintaining high code quality is important for maintainability and

extensibility. We set up a circular code review process to ensure that any code we write is understandable by

another team member and adheres to certain quality standards.

Integration Tests We also instituted integration tests, to ensure that our bot maintains certain core

functionality. We often found that some changes we made in one part of the bot had unexpected and damaging

effects in another part of the bot; integration tests helped to catch these issues.

Canary Testing We had two versions of our bot – mainline, which handled real customers, and dev,

which we used for developing new features. At first, new dev versions were solely tested by team members,

before being pushed to mainline. However, especially as the complexity of the bot grew, this method became

insufficient to identify problems in new dev versions – meaning that bugs were being discovered in mainline.

We set up a canary testing framework, which directs a controllable percentage (typically 10%-50%) of customer

traffic to dev. This was very useful in allowing us to tentatively test out new features with larger numbers of

people, before deploying to all customers, thus protecting our ratings.

UX Officer Each week, we have a dedicated UX officer, whose primary responsibility is to monitor the

conversations, identify problems, and get a sense of the strengths and weaknesses of the current system. This

person is also responsible for alerting other team members to things that need to be fixed, and communicating

their overall findings to the rest of the team at the weekly meeting. The role rotates every week, so every team

member has a chance to see the bot in action, and stay in touch with the overall user experience.

Sprint Planning and Issue Tracking We use Jira to track issues to be fixed – each is assigned to the

person in charge of the relevant component. We have a weekly sprint planning meeting where we prioritize the

most important things to work on over the next week, and use Jira to track the sprint.

A.3 Dialogue Act Classifier

A.3.1 Modifications to Label Space

We modified this schema to better fit the needs of our bot, adopting 19 out of 23 dialogue act labels from

MIDAS paper, and creating 5 new labels: correction, clarification, uncertain, non-compliant, and personal

question to support UX-enhancement features such as the ability to respond to clarifying questions. We

dropped the labels apology, apology-response, other, and thanks since there were very few (n ≤ 80) examples

of them in the original dataset and we rarely observed these dialogue acts in our bot.
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A.3.2 Labeling Procedure

To create our gold-labeled dataset from our bot, we first determined which classes we most wanted to improve,

based on per-class F1-Score for the baseline model and the new features we wanted to build. For example,

since we wanted to improve our complaint handling, we prioritized this category. Next, we ran the baseline

model on data from our bot to collect pseudo-labels. We randomly sampled 300 examples per label and then

annotated whether the true label matched the predicted label. If not, we annotated what the correct label

was. Using the pseudo-labels as a starting point increased efficiency, since the binary decision of "correct

or incorrect" is much easier than the choice between 24 labels, and this method significantly reduced the

number of non-binary decisions necessary. It also improved balance over classes, since it gave us greater

control over the classes in the sample, and allowed us to prioritize certain categories. The result of training

with gold-labeled examples is reported in Table 3.4.

A.4 Emotion classifier and analysis

In order to understand and analyze users’ emotions, we finetuned a RoBERTa model (Liu et al., 2019; Wolf

et al., 2019a) on the EmpatheticDialogues dataset (Rashkin et al., 2019), which contains 24,850 examples

broken into an 80-10-10 train-dev-test split. In particular, our training and test data consisted of the first

utterance from each dialogue (as it is the only one with a label), along with its label (one of 32 fine-grained

emotions, listed in Figure A.2).

The RoBERTa model achieves a top-1 accuracy of 61.5% and an F1-score of 0.596. However, many of

the misclassifications are due to the model choosing a label very similar to the gold label. For example, in

the confusion matrix in Figure A.2, we see that angry is often misclassified as furious, and terrified as afraid,

among others. In contrast, the top-5 accuracy is 92%.

One difficulty in applying this classifier to our user utterances is domain shift. The EmpatheticDialogues

training utterances all describe a strongly emotional personal situation in complete written sentences, in a

self-contained way (i.e., with no preceding context) – for example, A recent job interview that I had made

me feel very anxious because I felt like I didn’t come prepared. By contrast our user utterances are spoken,

typically not complete sentences, require conversational context to understand, and encompass many different

dialogue functions (such as giving commands, answering questions, choosing topics, greeting and closing,

etc.). Importantly, most utterances are emotionally neutral. As the classifier has no ‘neutral’ label, it assigns

spurious emotions to these neutral utterances.
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Figure A.2: Confusion matrix for RoBERTa emotion classifier.

A.4.1 Relationship between Rating and User Emotion

To understand users’ emotions and how they relate to our bot’s performance, we replicated our experiment for

dialogue act labels by applying a regression analysis, to the emotion classifier labels and the ultimate rating of

each conversation.

Before performing this analysis, we removed all one-word utterances, since we assumed that these would

not contain any emotion, and 66 common utterances that accounted for 40% of responses (e.g. yes and no),

assuming that they were also neutral.

Figure 3.6 shows that, as we would expect, positive emotions have the largest positive coefficients and

negative emotions have the largest negative ones. A possible explanation for the anomalies (e.g. "terrified"

having a relatively large positive coefficient) is that the emotion classifier strongly associates certain entities

with emotions and struggles to recognize when these entities are used in different contexts. For example, it

associates "tiger" with "terrified", even when "tiger" is in a positive context such as "I like tigers."
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A.5 Offensive User Experiment Details

A.5.1 Offense Type Detection

To determine the offense type, we hand-labeled 500 most common offensive utterances, which accounted

for 53% of all the offensive utterances we collected to the date. We used 6 categories: sexual, insult,

criticism, inappropriate topic, bodily harm and error. To classify the user utterance into one of these cate-

gories, we built regular expressions checking if the given user utterance contains one of the hand-labeled

examples for an offense type. We then used the offense type to contextualize our COUNTER+PROMPT and

EMPATHETIC+PROMPT responses.

A.5.2 Response Strategy Configurations

This section gives a detailed description of the configurations used in the Offensive User experiments (Sec-

tion 3.6.7).

1. WHY: We ask the user why they made the offensive utterance (and this forms the entire bot utterance for

the turn). The Offensive User RG responds with OK to whatever the user says next, then hands over to

another RG to supply a prompt. For example: Bot: Why did you say that?, User: because you weren’t

understanding me, Bot: OK. So, who’s your favorite musician?

2. WHY+NAME: Same as WHY, but we append the user’s name to the end of the bot utterance. For example:

Why did you say that, Peter?

3. AVOIDANCE: The bot politely avoids talking about the offensive topic, e.g. I’d rather not talk about that.

This forms the entire utterance for the turn; the bot does not give any prompt to steer the conversation in

a different direction.

4. AVOIDANCE+NAME: Same as AVOIDANCE, but we append the user’s name to the bot utterance. For

example: I’d rather not talk about that Peter.

5. AVOIDANCE+PROMPT: Same as AVOIDANCE, but we also give a prompt to change the topic. For

example: I’d rather not talk about that. So, who’s your favorite musician?

6. AVOIDANCE+NAME+PROMPT: Same as AVOIDANCE+NAME, but append a prompt to the end of the

utterance. For example: I’d rather not talk about that, Peter. So, who’s your favorite musician?



APPENDIX A. CHIRPY CARDINAL 106

7. COUNTER+PROMPT: Strategy suggested by Brahnam (2005) and evaluated by Chin et al. (2020). In

our interpretation of the strategy, we point out the inappropriate nature of the user utterance to the user,

and attempt to move on to a different topic. For example, That is a very suggestive thing to say. I don’t

think we should be talking about that. Let’s move on. So, who’s your favorite musician?

8. EMPATHETIC+PROMPT: Strategy suggested by Chin et al. (2020) as the most appropriate strategy. In

our interpretation of the strategy, we empathize with the user’s desire to talk about inappropriate topics,

and attempt to move on to a different topic. For example, If I could talk about it I would, but I really

couldn’t. Sorry to disappoint. So, who’s your favorite musician?

For COUNTER+PROMPT and EMPATHETIC+PROMPT, unlike Brahnam (2005) and Chin et al. (2020), we

handwrote responses tailored for the type of the user offense (e.g. sexual, curse, etc.)

Note that WHY and AVOIDANCE cannot be combined because they are contradictory, and WHY and

CHANGE cannot be combined because we cannot ask two questions in one turn.

A.6 Opinion Agreement Policy Details

Here we will show demonstrations of the 3 different Opinion Policies. All the demonstrations below are

generated by researchers and are not actual user conversations.

A.6.1 ALWAYS_AGREE Policy

We begin by asking the user their opinion on the entity. Then, we agree with the user on their sentiment on the

entity and share our reason, and ask the user their reason for liking/disliking the entity. After that, we propose

another reason for liking/disliking the entity, and ask whether the user agrees with our reason or not. Finally,

we switch to a related entity and repeat the same steps as described before. A demonstration of the policy is

shown below.

User: let’s talk about cats

Bot: Ok! Do you like cats?

User: cats are my favorite

Bot: Sounds like you like cats. Me too! I feel like cats are so fluffy. What about you?

User: i like cats because they are very independent

Bot: That’s so true. That reminds me of another reason I love cats. I feel like they treat you as an

equal. Do you agree?
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User: i totally agree

Bot: What about dogs? Do you like dogs?

User: yes

Bot: Me too! You know, I think the reason I’m a fan of dogs is because they love you back no

matter what. What do you think?

User: yeah i feel the same way

Bot: Totally. I also like dogs because of how nifty they are. Do you feel the same way?

User: Yeah you are right they are pretty nifty.

Bot: Thanks for sharing! It’s nice to know your likes and dislikes. Do you want to know more

about dogs?

A.6.2 LISTEN_FIRST_DISAGREE Policy

We initially ask the user for their opinion and reason (i.e. "What do you think about cats?" followed by "Why

do you like cats?"), then we disagree with the user by giving our opinion and reason. After that, we switch to a

related entity and agree with the user on their sentiment on the new entity. A demonstration of the policy is

shown below.

User: let’s talk about cats

Bot: Ok! Do you like cats?

User: cats are my favorite

Bot: What’s your favorite thing about cats?

User: i like cats because they are very independent

Bot: That make sense. I have to be honest though, I’m not a big fan of cats actually. I feel like

they don’t respect my personal space. Can we agree on that?

User: yeah i guess you are right on that one

Bot: What about dogs? Do you like dogs?

User: yes

Bot: Me too! You know, I think the reason I’m a fan of dogs is because they love you back no

matter what. What do you think?

User: yeah i feel the same way

Bot: Totally. I also like dogs because of how nifty they are. Do you feel the same way?

User: Yeah you are right they are pretty nifty.

Bot: Thanks for sharing! It’s nice to know your likes and dislikes. Do you want to know more



APPENDIX A. CHIRPY CARDINAL 108

about dogs?

A.6.3 CONVINCED_AGREE Policy

This is a stronger version of the previous policy in which we immediately disagree with the user and give

our opinion and reason (i.e. "What do you think about cats?" followed by "That’s good to know, but I don’t

quite get the appeal of cats. I feel like they are too independent. But I want to hear why you like cats"). After

receiving an answer from the user, we agree with the user and appear convinced. After that, we switch to a

related entity and agree with the user on their sentiment on the new entity. A demonstration of the policy is

shown below.

User: let’s talk about cats

Bot: Ok! Do you like cats?

User: cats are my favorite

Bot: Glad to meet a fan of cats! I have to be honest though, I’m not a big fan of cats actually. I

feel like they don’t respect my personal space. But I’m interested to hear why you like cats?

User: i don’t agree i like that about cats because that’s how they show their love

Bot: That make sense. Now that I think about it, there are a few things I like about cats. For

example, they are very independent. What do you think?

User: yeah that’s right.

Bot: What about dogs? Do you like dogs?

User: yes

Bot: Me too! You know, I think the reason I’m a fan of dogs is because they love you back no

matter what. What do you think?

User: yeah i feel the same way

Bot: Totally. I also like dogs because of how nifty they are. Do you feel the same way?

User: Yeah you are right they are pretty nifty.

Bot: Thanks for sharing! It’s nice to know your likes and dislikes. Do you want to know more

about dogs?
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Improving acknowledgements:

Experimental details

B.1 Model training details

Each model (main and ablation) was trained on a single NVIDIA Titan Xp GPU for 5 epochs and took

approximately 8 hours to train. The training dataset had 51407 instances, validation 2491 and test 2728. The

Topical Chat dataset and Switchboard corpus are in English language. The main model used for response

generation had a validation loss (average negative log liklihood) of 2.05 which it reached after 2 epochs.

B.2 Annotation Details

We had 9, 19 and 19 unique annotators for experiments 1, 2 and 3 respectively. All three annotators agreed in

32/87 instances for experiment 1, 52/87 instances for experiment 2 and 32/99 instances for experiment 3.
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Figure B.1: Annotation interface for Best PMI v/s rest
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Figure B.2: Annotation interface for acknowledgement differences due to pcmih



Appendix C

Hindsight analysis

C.1 Derivation of ELBo Loss

Consider the KL divergence DKL

[
Q(Z|X,Y )∥P (Z|X,Y )

]
between true posterior P (Z|X,Y ) and our

approximate model of the posterior Q(Z|X,Y ). We refer to it as DKL

[
Q∥Ptrue

]
in the following derivation.

Here the inputs are represented by x ∈ X , output by y ∈ Y and passages by z inZ. The lowercase letters are

instances and uppercase letters is a set of instances.

DKL

[
Q∥Ptrue

]
=

∑
(x,y)∈{X,Y }

∑
z∈Z

Q(z | x, y)[logQ(z | x, y)− logP (z | x, y)] (C.1)

Apply Bayes rule: P (z | x, y) = P (z,x,y)
P (x,y) = P (y|x,z)P (z|x)P (x)

P (x,y) = P (y|x,z)∗P (z|x)
P (y|x)

DKL

[
Q∥Ptrue

]
=

∑
(x,y)∈{X,Y }

∑
z∈Z

Q(z | x, y)
[
logQ(z | x, y)

− [logP (y | x, z) + logP (z | x)− logP (y|x)]
]

Take out P (y|x) because it doesn’t depend on z and rearrange the terms

DKL

[
Q∥Ptrue

]
=

∑
(x,y)∈{X,Y }

[
logP (y|x)−

∑
z∈Z

Q(z | x, y) logP (y | x, z)

+
∑
z∈Z

Q(z | x, y)[logQ(z | x, y)− logP (z | x)]

]
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∑
(x,y)∈{X,Y }

logP (y|x) =
∑

(x,y)∈{X,Y }

[∑
z∈Z

Q(z | x, y) logP (y | x, z)

−
∑
z∈Z

Q(z | x, y)[logQ(z | x, y)− logP (z | x)]

]

+DKL

[
Q∥Ptrue

]
KL divergence is positive: DKL

[
Q∥Ptrue

]
≥ 0

∑
(x,y)∈{X,Y }

logP (y|x) ≥
∑

(x,y)∈{X,Y }

[∑
z∈Z

Q(z | x, y) logP (y | x, z)−DKL

[
Q(Z|x, y) || P (Z | x)

]]
(C.2)

C.2 Is higher grounding purely due to a better retriever?

To test this hypothesis, we ran an ablation test, where we used the best retriever we had (from Hindsight,

α = 0) and trained a generator using Marginalized loss while keeping the retriever itself fixed. This simulates

the situation where we improved retrieval independently, and we want to test if that is sufficient to explain

increased grounding. We see in table C.1 that that the better retriever in the ablation (Marg. Gen. with fixed

ELBo Ret.) leads to increased grounding compared to the generator trained using MARGINALIZEDLOSS.

However, the ablation is worse than ELBo Gen. (α = 0.25), demonstrating that the increased grounding is

also due to ELBOLOSS.

Table C.1: Additional Groundedness evaluation for Wizard of Wikipedia. Models in descending order of
groundedness. ELBOLOSS (α = 0.25) has the best trade off between groundedness and end-to-end evaluation.

Top-1 Max. of Top-5
Method F1 Nov-F1 F1 Nov-F1

ELBo Gen. (α = 0) 21.48 21.18 35.04 35.27
ELBo Gen. (α = 0.25) 21.34 20.78 34.16 34.24
Marg. Gen. with fixed ELBo Ret. 20.17 19.28 31.08 31.09
Marg. Gen. 18.63 17.46 26.19 25.39
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Table C.2: Additional End-to-end evaluation for Wizard of Wikipedia. (Novel-F1: discounts commonly
occurring words and context words (x), Knowledge-F1: overlap of generated output with gold passage)

Top-1 Max. of Top-5
Method F1 N-F1 K-F1 F1 N-F1 K-F1

Marg. 18.79 10.45 12.61 26.52 16.42 16.02
ELBo (αret = 1, αgen = 0.25) 18.86 11.12 13.08 27.56 18.67 17.69
ELBo (αret = 1, αgen = 0) 18.41 11.03 12.93 27.04 18.13 17.61
Gen. Only 16.11 5.15 8.05 – – –

C.3 Effect of distributional repositioning

In Table C.2, we see that ELBOLOSS performs better with some distributional repositioning, i.e. αgen = 0.25

than without distributional repositioning, i.e. αgen = 0. On the other hand, in Table C.3, we see that sampling

from the posterior, i.e. αret = 1 performs best for the retriever, possibly because it gives the most realistic

signal over a diverse set of sampled passages.

Table C.3: Additional relevance evaluation of trained retrievers. ELBOLOSS Retriever with α = 1 is
better than α = 0. Sampling passages with temperature = 4 helps with overfitting but still performs worse
than α = 1. (MRR = Mean Reciprocal Rank, Success@k both in percentages)

Wizard of Wikipedia
Method MRR S@1 S@5 S@10

Marg. Retriever 43.8 38.9 49.9 52.8
ELBo Retriever (αret = 1) 49.0 41.1 58.8 63.9

ELBo Retriever (αret = 0, temperature=4) 43.7 35.4 53.5 60.4
Gold-sup. Retriever 45.2 35.6 57.0 63.1

ELBo Posterior 78.5 72.4 86.0 88.4
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Table C.4: Relevance evaluation of the ELBo posterior. The ELBo posterior finds zgold with high success
providing better supervision during training. (MRR = Mean Reciprocal Rank, Success@k both in percentages)

Wizard of Wikipedia MS MARCO NLGen
Method Dist. MRR S@1 S@5 S@10 MRR S@1 S@5 S@10

Gold-sup. Pη(z|x) 45.2 35.6 57.0 63.1 28.9 19.5 40.4 47.7

Marg. Pη(z|x) 43.8 38.9 49.9 52.8 30.4 19.4 43.4 53.2
ELBo (α = 1) Pη(z|x) 49.0 41.1 58.8 63.9 32.1 21.2 45.3 54.4

ELBo (α = 1) Q(z|x, y) 78.5 72.4 86.0 88.4 67.8 56.7 81.9 86.2

C.4 Examples of retrieved passages

C.4.1 Conversation 1: Italian cuisine

Other Ooh I like that! Stick some nice spicy arrabbiata sauce with it, ahhhh! Have you ever had bucatini

before?

Self Oh yeah! I love that spicy garlic and tomato sauce. No I have not had bucatini. Is that a type of cheese?

Other Now you’re speakin’ my language. No no, it’s a style of noodle, like a really long straw. Bucatini

amatraciana is insanely good.
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Table C.5: Passages about Italian Cuisine by ELBOLOSS retriever.. They include passages about various
ingredients (rank=2), cheeses (rank=4), dishes (rank=5) alongside more information about Bucatini Pasta
(rank=1,3).

rank text

1.0 Bucatini > Abstract | Bucatini, also known as perciatelli, is a thick spaghetti-like pasta with a hole
running through the center. The name comes from , meaning "hole", while "bucato" or its Nea...

2.0 Pasta con le sarde > Ingredients. | The principal ingredients are olive oil, onions, pasta and a finely
chopped mixture of sardines and anchovy. Various types of pasta are used for the dish, but b...

3.0 Bucatini > Preparation. | Standard pasta machines will roll out sheets of flat pasta which are then
cut into ribbons to make flat, ribbon-style pasta like fettuccine, tagliatelle, or pappardelle. ...

4.0 Bocconcini > Abstract | This cheese is described by its Italian name, which means "small mouthfuls".
It is made in the "pasta filata" manner by dipping curds into hot whey, and kneading, pulling, ...

5.0 Carbonara > Abstract | Carbonara () is an Italian pasta dish from Rome made with egg, hard cheese,
guanciale (or pancetta), and black pepper. The dish arrived at its modern form, with its current ...

Table C.6: Passages about Italian Cuisine by MARGINALIZEDLOSS retriever. All passages talk about
Pastas

rank text

1.0 Bucatini > Abstract | Bucatini , also known as perciatelli , is a thick spaghetti-like pasta with a hole
running through the center. The name comes from , meaning "hole", while "bucato" or its Nea...

2.0 Bucatini > Preparation. | Standard pasta machines will roll out sheets of flat pasta which are then
cut into ribbons to make flat, ribbon-style pasta like fettuccine, tagliatelle, or pappardelle. ...

3.0 Rotini > Abstract | Rotini is a type of helix- or corkscrew-shaped pasta. The name comes from a
17th-century Italian word meaning "small wheels". Rotini is related to fusilli, but has a tighter he...

4.0 Vermicelli > History.:The Americas. | The "fideo" is a type of noodle, produced in Europe ever since
the Roman times, best known as "fideus" or "fidelis", and then spread to Mexican and Latin Amer...

5.0 Rollatini > Abstract | Rollatini (sometimes also spelled rolatini or rolletini) is an Italian-style dish
(called "rollatini di melanzane" in faux Italian) that is usually made with thin slices of ...
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C.4.2 Conversation 2: Rock and Roll

Self Do you mean Elvis Aaron Presley, the American singer and actor?

Other That’s the one. I think his nickname was the king of rock ’n roll.

Self I had just heard of him being "The King". There probably would not have been a Sun Records if not for

Elvis and Sam Phillips.

Other He was revolutionary for his time. Many older people thought he was straight from the devil.

Table C.7: Passages about Rock and Roll by ELBOLOSS retriever.. Relevant passages about cultural
impact of Elvis Presley (rank=2) and details about his career (rank=4) alongside introductory paragraphs of
other musicians

rank text

1.0 Sam Phillips > Abstract | Samuel Cornelius Phillips (January 5, 1923 – July 30, 2003) was an
American record producer who played an important role in the development of rock and roll during
the 19...

2.0 Cultural impact of Elvis Presley > Abstract | Since the beginning of his career, Elvis Presley has had
an extensive cultural impact. According to “Rolling Stone”, “it was Elvis who made rock ’n’ r...

3.0 Freddie King > Abstract | Freddie King (September 3, 1934 – December 28, 1976) was an American
blues guitarist and singer. He recorded several hits for Federal Records in the early 1960s. His
soul...

4.0 Elvis Presley > Abstract | With a series of successful network television appearances and chart-
topping records, he became the leading figure of the newly popular sound of rock and roll. His
energ...

5.0 Elvis Presley > Abstract | Elvis Aaron Presley (January 8, 1935 – August 16, 1977), also known
mononymously as Elvis, was an American singer, musician, and actor. Regarded as one of the most
signi...
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Table C.8: Passages about Rock and Roll retrieved by MARGINALIZEDLOSS retriever. . All passages are
the introductory paragraphs from various related artists

rank text

1.0 Elvis Presley > Abstract | Elvis Aaron Presley (January 8, 1935 – August 16, 1977), also known
mononymously as Elvis, was an American singer, musician, and actor. Regarded as one of the most
signi...

2.0 Sam Phillips > Abstract | Samuel Cornelius Phillips (January 5, 1923 – July 30, 2003) was an
American record producer who played an important role in the development of rock and roll during
the 19...

3.0 Johnny Otis > Abstract | Johnny Otis (born Ioannis Alexandres Veliotes; December 28, 1921 –
January 17, 2012) was an American singer, musician, composer, arranger, bandleader, talent scout,
disc j...

4.0 Carl Perkins > Abstract | Called "the King of Rockabilly", he was inducted into the Rock and Roll
Hall of Fame, the Rockabilly Hall of Fame, the Memphis Music Hall of Fame, and the Nashville
Songw...

5.0 Chubby Checker > Abstract | Chubby Checker (born Ernest Evans; October 3, 1941) is an American
rock ’n roll singer and dancer. He is widely known for popularising many dance styles including the
t...

C.5 Examples of Generated outputs

We look at a conversation that illustrates the differences in grounding between MARGINALIZEDLOSS generator

and ELBOLOSS generator. We see that the MARGINALIZEDLOSS generator hallucinates in 4 out of 5

utterances and only uses retrieved passage content in 2 out of 5 utterances. On the other hand ELBOLOSS

generator doesn’t hallucinate and uses retrieved passage content for all utterances.

Prior turns:

Self I’m still working on getting better proper nutrition (Cheetos get me) but moderate vigorous exercise feels

great

Other Yes, we have a swimming pool so I’ve been able to get a bit more exercise, while enjoying the cool

water during this hot summer.
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Table C.9: Utterances generated by MARGINALIZEDLOSS generator. Based on top 5 retrieved passages
(passage text omitted for brevity). Phrases in the utterance that are based on the retrieved passage are marked
in bold. Hallucinated phrases are italicized.

passage title text

Physical fitness > Abstract That’s great! I love swimming too. It’s a great way to stay hydrated and
prevent hypokinetic diseases.

Outline of Exercise > Abstract That’s great! I love swimming too. It’s a great way to keep your immune
system healthy and prevent diseases like heart disease and diabetes.

Underwater hockey > Abstract That’s great! I love swimming too. It’s a great way to keep your body
hydrated.

Exercise Trends > Abstract That’s great! I love swimming too. It’s a great way to keep your body
hydrated. I’ve never been to a pool before.

Callanetics > Abstract That’s great! I love swimming pools too. They’re great for exercise,
especially in the summer.

Table C.10: Utterances generated by ELBOLOSS generator. Based on top 5 retrieved passages (passage
text omitted for brevity). Phrases in the utterance that are based on the retrieved passage are marked in bold.
Hallucinated phrases are italicized.

Passage title Text

Physical fitness > Abstract That’s great! I’m also dedicated to physical fitness, which is a state
of health and well-being. It’s important to be healthy, to resist
hypokinetic diseases.

Exercise > Abstract That’s awesome! I’ve been doing it for a long time. It’s a great
way to improve strength, prevent aging, develop muscles and the
cardiovascular system.

Bodybuilding > Abstract That’s awesome! I’m also into bodybuilding, which is the use
of progressive resistance exercise to control and develop one’s
musculature for aesthetic purposes.

General fitness training > Abstract That’s great! I’m also into general fitness training, which is focused
on broad goals of overall health and well-being.

Strength training > Abstract That’s awesome! I’m also into strength training, which is a type of
physical exercise specializing in the use of resistance to induce
muscular contraction.

C.6 Novel-F1

Rationale We conducted a small experiment with the generated output on Wizard of Wikipedia dataset using

top-8 retrieved passages. We removed the gold passage and computed overlap of the generated output with the

target output. We consistently found (across models and passage ranks) the F1 overlap to be close to 15. This

meant that by conditioning on arbitrary passages the generator (likely by ignoring them altogether) is able to

achieve around 80% of the F1-overlap of the best performing models (∼ 19 F1). This can be a confounding
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factor for selecting models based on high F1 overlap. A model that simply copies content from the input x can

achieve high F1-overlap but fail to using the retrieved passage to generate the output. Removing commonly

occurring words reduces it to 8 F1, but removing words from input context reduces it further down to 4 F1.

Thus, we find Novel-F1 to be the cleanest measure of overlap as it discounts two confounding factors and only

looks at “Novel” words, words that are rare and were not in the input text x.

We construct the list of common words based on their frequency in the training corpus. We sort words by

frequency and take the most frequent words that contribute: 50% of the probability mass toward Wizard of

Wikipedia utterances (amounting to 121 words) following Shuster et al. (2021). However, we found that using

the same heuristic for MS-MARCO NLGen answers included numbers and rarer tokens that could potentially

be in the answer span. So we instead use only 33% of the probability mass (amounting to 55 words). We also

ran evaluation using 50% of the probability mass but found the trends to be consistent.

MS Marco NLGen list of common words (sorted by frequency)

is, of, in, to, and, for, or, are, that, on, from, as, by, you, with, it, county, can, at, per, was, your, average, cost,

be, between, which, used, one, united, states, there, years, located, name, not, new, have, takes, number, has,

means, days, when, blood, system, year, should, no, most, first, hours, up, minutes, 1

Wizard of Wikipedia list of common words (sorted by frequency)

is, of, in, to, and, for, or, are, that, on, from, as, by, you, with, it, county, can, at, per, was, your, average, cost,

be, between, which, used, one, united, states, there, years, located, name, not, new, have, takes, number, has,

means, days, when, blood, system, year, should, no, most, first, hours, up, minutes, 1 i, and, of, in, is, to, it,

that, are, you, they, have, was, but, for, as, its, like, with, on, so, be, or, not, yes, do, can, from, there, by, well,

also, one, my, know, has, some, he, their, love, most, people, think, really, all, about, just, too, them, im, which,

sure, more, been, at, would, many, were, good, very, dont, when, thats, no, yeah, what, other, great, if, because,

used, actually, first, since, lot, me, even, your, how, we, time, different, world, use, get, called, only, out, much,

over, had, though, music, around, popular, his, am, made, than, such, back, up, us, make, usually, who, favorite,

new, food, oh, long, she, now, did, pretty, any, where, years, this, way, go

C.7 Intuition behind improvements due to ELBoLoss

To understand the intuition behind suboptimality of MARGINALIZEDLOSS for open-ended generation tasks

consider the following: We would want a good retriever to assign similar but high probabilities to all context-

relevant passages because they are similarly relevant but a good generator to only assign high probabilities
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when using label-relevant passages because only label-relevant passages are pertinent to the target output. But

the training signal to a model (partial derivative w.r.t the model and a passage) is modulated by the probability

of the other model:

∂P (y|x)
∂Pη(zi|x)

= Pθ(y|x, zi)
∂P (y|x)

∂Pθ(y|x, zi)
= Pη(zi|x)

Since context-relevant passages have similar P (zi|x) the gradient encourages the generator to assign equal

probabilities to the target output using all context-relevant passages. We see this issue play out empirically when

using MARGINALIZEDLOSS for two different tasks: Open-Domain QA (Natural Questions by Kwiatkowski

et al. (2019)) and informative dialogue (Wizard of Wikipedia by Dinan et al. (2019b)) (Figure C.1). We see

that on the Natural Questions dataset, where there is typically one correct answer, the generator produces

distribution with a sharp peak that can potentially serve as an accurate proxy for label-relevance and in turn

train a good retriever. But on the Wizard of Wikipedia dataset, the generator produces a flatter distribution

which is a bad proxy for label-relevance. This provides weaker supervision for the retriever which learns a

flatter probability distribution as well and is less able to differentiate context-relevant from irrelevant passages.

Figure C.1: Generator and retriever distributions learned by MARGINALIZEDLOSS. With MARGINAL-
IZEDLOSS, the generator Pθ(y|x, z) learns a sharp distribution for Natural Questions (NQ) dataset (right) but
learns a flatter distribution for a one-to-many open-ended generation task using the Wizard of Wikipedia dataset
(WoW). The flatter distribution in the case of WoW Generator shows that it has not learned label-relevance as
well. Consequently, for WoW we see a weaker retriever (left) that has a flatter distribution than NQ. (Left)
Cumulative probability Pη(z|x) w.r.t. rank for passages. (Right) Assuming a uniform prior P (z|x), the
cumulative probability Pθ(y|x, z) w.r.t. rank for passages, plotted as P (z|x, y) ∝ P (y|x, z)P (z|x). The gray
dotted line shows a hypothetical model that assigns equal probabilities to all passages.

We see in Figure C.2 that for the Wizard of Wikipedia dataset with ELBOLOSS we obtain a sharp

distribution for Q(z|x, y) (nearly as good as Pθ(y|x, z) on NQ from Figure C.1) and that the Pη(z|x) and

Pθ(y|x, z) are now sharper than MARGINALIZEDLOSS. While a sharper distribution does not imply a better

retriever and generator (they may still assign high probability to the wrong passage), a flatter distribution

limits their potential. As discussed in Section 5.4, ELBOLOSS indeed utilizes the potential and trains a better
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Figure C.2: Comparison between Generator and retriever distributions learned by ELBOLOSS on the
one-to-many Wizard of Wikipedia (WoW) dataset. Training with ELBOLOSS produces a sharp distribution
for Q(z|x, y) and subsequently sharper Pη(z|x) and Pθ(y|x, z) than MARGINALIZEDLOSS.

retriever and more a grounded generator.
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and Milica Gašić. 2018. MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented

Dialogue Modelling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 5016–5026, Brussels, Belgium. Association for Computational Linguistics.

https://doi.org/10.3115/v1/W14-3302
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://doi.org/10.48550/ARXIV.2112.04426
http://www.agentabuse.org/Abuse_Workshop_WS5.pdf#page=62
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.cognition.2007.11.005
https://doi.org/https://doi.org/10.1016/j.cognition.2007.11.005
https://www.nngroup.com/articles/intelligent-assistant-usability/
https://www.nngroup.com/articles/intelligent-assistant-usability/
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547


BIBLIOGRAPHY 126

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, and Shuming Shi. 2019. Retrieval-guided Dialogue

Response Generation via a Matching-to-Generation Framework. In Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages 1866–1875, Hong Kong, China. Association for

Computational Linguistics.

Giovanni Campagna, Sina Semnani, Ryan Kearns, Lucas Jun Koba Sato, Silei Xu, and Monica Lam. 2022.

A Few-Shot Semantic Parser for Wizard-of-Oz Dialogues with the Precise ThingTalk Representation. In

Findings of the Association for Computational Linguistics: ACL 2022, pages 4021–4034, Dublin, Ireland.

Association for Computational Linguistics.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi, Richard Socher, and Monica S. Lam. 2019. Genie: A

Generator of Natural Language Semantic Parsers for Virtual Assistant Commands. In Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019, page

394–410, New York, NY, USA. Association for Computing Machinery.

Chun-Yen Chen, Dian Yu, Weiming Wen, Yi Mang Yang, Jiaping Zhang, Mingyang Zhou, Kevin Jesse,

Austin Chau, Antara Bhowmick, Shreenath Iyer, et al. 2018. Gunrock: Building a human-like social bot by

leveraging large scale real user data. Alexa Prize Proceedings.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading Wikipedia to Answer Open-

Domain Questions. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1870–1879, Vancouver, Canada. Association for Computational

Linguistics.

Xiuyi Chen, Fandong Meng, Peng Li, Feilong Chen, Shuang Xu, Bo Xu, and Jie Zhou. 2020. Bridging the

Gap between Prior and Posterior Knowledge Selection for Knowledge-Grounded Dialogue Generation. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 3426–3437, Online. Association for Computational Linguistics.

Hyojin Chin, Lebogang Wame Molefi, and Mun Yong Yi. 2020. Empathy Is All You Need: How a Conver-

sational Agent Should Respond to Verbal Abuse. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems, pages 1–13.

Ssu Chiu, Maolin Li, Yen-Ting Lin, and Yun-Nung Chen. 2022. SalesBot: Transitioning from Chit-Chat to

Task-Oriented Dialogues. In Proceedings of the 60th Annual Meeting of the Association for Computational

https://doi.org/10.18653/v1/D19-1195
https://doi.org/10.18653/v1/D19-1195
https://doi.org/10.18653/v1/2022.findings-acl.317
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/2020.emnlp-main.275
https://doi.org/10.18653/v1/2020.emnlp-main.275
https://doi.org/10.18653/v1/2022.acl-long.425
https://doi.org/10.18653/v1/2022.acl-long.425


BIBLIOGRAPHY 127

Linguistics (Volume 1: Long Papers), pages 6143–6158, Dublin, Ireland. Association for Computational

Linguistics.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer.

2018. QuAC: Question Answering in Context. In Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 2174–2184, Brussels, Belgium. Association for Computational

Linguistics.

Herbert H Clark. 2006. Structure of Conversation. In Encyclopedia of Cognitive Science. John Wiley & Sons,

Ltd.

Herbert H Clark and Susan E Brennan. 1991. Grounding in communication. In L. B. Resnick, J. M. Levine, and

S. D. Teasley, editors, Perspectives on socially shared cognition, pages 127–149. American Psychological

Association.

Herbert H Clark and S Haviland. 1977. Comprehension and the Given-New Contract. In Discourse production

and comprehension, pages 1–40, Hillsdale, NJ. Lawrence Erelbaum Associates.

Nancy Collins and Lynn Miller. 1994. Self-disclosure and liking: A meta-analytic review. Psychological

bulletin, 116:457–75.

Benjamin R. Cowan, Holly P. Branigan, Habiba Begum, Lucy McKenna, and Éva Székely. 2017. They Know

as Much as We Do: Knowledge Estimation and Partner Modelling of Artificial Partners. Cognitive Science.

Amanda Cercas Curry, Ioannis Papaioannou, Alessandro Suglia, Shubham Agarwal, Igor Shalyminov, Xinnuo

Xu, Ondrej Dusek, Arash Eshghi, Ioannis Konstas, Verena Rieser, et al. 2018. Alana v2: Entertaining and

informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings.

Amanda Cercas Curry and Verena Rieser. 2018. #MeToo Alexa: How conversational systems respond to

sexual harassment. In Proceedings of the Second ACL Workshop on Ethics in Natural Language Processing,

pages 7–14.

Amanda Cercas Curry and Verena Rieser. 2019. A Crowd-based Evaluation of Abuse Response Strategies in

Conversational Agents. In 20th Annual Meeting of the Special Interest Group on Discourse and Dialogue,

page 361.

Nils Dahlbäck, Arne Jönsson, and Lars Ahrenberg. 1993. Wizard of Oz Studies: Why and How. In Proceedings

of the 1st International Conference on Intelligent User Interfaces, IUI ’93, page 193–200, New York, NY,

USA. Association for Computing Machinery.

https://doi.org/10.18653/v1/D18-1241
https://doi.org/https://doi.org/10.1002/0470018860.s00228
https://doi.org/10.1037//0033-2909.116.3.457
https://cogsci.mindmodeling.org/2017/papers/0355/index.html
https://cogsci.mindmodeling.org/2017/papers/0355/index.html
https://doi.org/10.1145/169891.169968


BIBLIOGRAPHY 128

Maartje M.A. de Graaf and Somaya Ben Allouch. 2013. Exploring influencing variables for the acceptance of

social robots. Robotics and Autonomous Systems, 61(12):1476–1486.

Ewart J. de Visser, Samuel S. Monfort, Ryan McKendrick, Melissa A. B. Smith, Patrick McKnight, Frank

Krueger, and Raja Parasuraman. 2016. Almost human: Anthropomorphism increases trust resilience in

cognitive agents. Journal of experimental psychology. Applied, 22 3:331–49.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for

Computational Linguistics.

Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack Urbanek, Douwe

Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W Black, Alexander Rudnicky,

Jason Williams, Joelle Pineau, Mikhail Burtsev, and Jason Weston. 2019a. The Second Conversational

Intelligence Challenge (ConvAI2). ArXiv preprint arXiv:1902.00098.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. 2019b. Wizard

of Wikipedia: Knowledge-Powered Conversational Agents. In International Conference on Learning

Representations.

Sidney D’Mello and Art Graesser. 2013. Design of Dialog-Based Intelligent Tutoring Systems to Simulate

Human-to-Human Tutoring, pages 233–269. Springer New York, New York, NY.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Güney, Volkan Cirik, and Kyunghyun Cho. 2017.

SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine. CoRR, abs/1704.05179.

Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science, 14(2):179–211.

Song Feng. 2021. DialDoc 2021 Shared Task: Goal-Oriented Document-grounded Dialogue Modeling. In

Proceedings of the 1st Workshop on Document-grounded Dialogue and Conversational Question Answering

(DialDoc 2021), pages 1–7, Online. Association for Computational Linguistics.

Song Feng, Siva Patel, and Hui Wan. 2022. DialDoc 2022 Shared Task: Open-Book Document-grounded

Dialogue Modeling. In Proceedings of the Second DialDoc Workshop on Document-grounded Dialogue

and Conversational Question Answering, pages 155–160, Dublin, Ireland. Association for Computational

Linguistics.

https://doi.org/https://doi.org/10.1016/j.robot.2013.07.007
https://doi.org/https://doi.org/10.1016/j.robot.2013.07.007
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1902.00098
http://arxiv.org/abs/1902.00098
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://doi.org/10.1007/978-1-4614-6934-6_11
https://doi.org/10.1007/978-1-4614-6934-6_11
http://arxiv.org/abs/1704.05179
https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.18653/v1/2021.dialdoc-1.1
https://doi.org/10.18653/v1/2022.dialdoc-1.18
https://doi.org/10.18653/v1/2022.dialdoc-1.18


BIBLIOGRAPHY 129

Song Feng, Siva Reddy, Malihe Alikhani, He He, Yangfeng Ji, Mohit Iyyer, and Zhou Yu, editors. 2021.

Proceedings of the 1st Workshop on Document-grounded Dialogue and Conversational Question Answering

(DialDoc 2021). Association for Computational Linguistics, Online.

Julia Fink. 2012. Anthropomorphism and Human Likeness in the Design of Robots and Human-Robot

Interaction. In ICSR.

Ellen P Francik and Herbert H Clark. 1985. How to make requests that overcome obstacles to compliance.

Journal of Memory and Language, 24(5):560–568.

Raefer Gabriel, Yang Liu, Anna Gottardi, Mihail Eric, Anju Khatri, Anjali Chadha, Qinlang Chen, Behnam

Hedayatnia, Pankaj Rajan, Ali Binici, Shui Hu, Karthik Gopalakrishnan, Seokhwan Kim, Lauren Stubel,

Arindam Mandal, and Dilek Hakkani-Tür. 2020. Further Advances in Open Domain Dialog Systems in the

Third Alexa Prize Socialbot Grand Challenge. Alexa Prize Proceedings.

Jianfeng Gao, Chenyan Xiong, and Paul Bennett. 2020. Recent Advances in Conversational Information

Retrieval. In SIGIR 2020. ACM. Tutorial Slides.

Jianfeng Gao, Chenyan Xiong, Paul Bennett, and Nick Craswell. 2022. Neural Approaches to Conversational

Information Retrieval. CoRR, abs/2201.05176.

Martin J. Garrod, Simon Garrod Pickering. 2004. Why is conversation so easy? Trends in Cognitive Sciences,

8:8–11.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao, Wen-tau Yih, and Michel

Galley. 2018. A knowledge-grounded neural conversation model. In Thirty-Second AAAI Conference on

Artificial Intelligence.

J. J. Godfrey, E. C. Holliman, and J. McDaniel. 1992. SWITCHBOARD: telephone speech corpus for research

and development. In ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 1, pages 517–520 vol.1.

Roberto González-Ibáñez, Muge Haseki, and Chirag Shah. 2013. Let’s search together, but not too close! An

analysis of communication and performance in collaborative information seeking. Information Processing

& Management, 49(5):1165–1179.

Karthik Gopalakrishnan, Behnam Hedayatnia, Qinlang Chen, Anna Gottardi, Sanjeev Kwatra, Anu Venkatesh,

Raefer Gabriel, and Dilek Hakkani-Tür. 2019. Topical-Chat: Towards Knowledge-Grounded Open-Domain

Conversations. In Proc. Interspeech 2019, pages 1891–1895.

https://aclanthology.org/2021.dialdoc-1.0
https://aclanthology.org/2021.dialdoc-1.0
https://infoscience.epfl.ch/record/180534/files/icsr2012_fink_anthropomorphism_vspringer.pdf
https://infoscience.epfl.ch/record/180534/files/icsr2012_fink_anthropomorphism_vspringer.pdf
https://doi.org/https://doi.org/10.1016/0749-596X(85)90046-4
https://www.microsoft.com/en-us/research/publication/recent-advances-in-conversational-information-retrieval/
https://www.microsoft.com/en-us/research/publication/recent-advances-in-conversational-information-retrieval/
http://arxiv.org/abs/2201.05176
http://arxiv.org/abs/2201.05176
https://doi.org/https://doi.org/10.1016/j.ipm.2012.12.008
https://doi.org/https://doi.org/10.1016/j.ipm.2012.12.008
https://doi.org/10.21437/Interspeech.2019-3079
https://doi.org/10.21437/Interspeech.2019-3079


BIBLIOGRAPHY 130

Arthur C Graesser, Shulan Lu, George Tanner Jackson, Heather Hite Mitchell, Mathew Ventura, Andrew

Olney, and Max M Louwerse. 2004. AutoTutor: A tutor with dialogue in natural language. Behavior

Research Methods, Instruments, & Computers, 36(2):180–192.

G. Mark Grimes, Ryan M. Schuetzler, and Justin Scott Giboney. 2021. Mental models and expectation

violations in conversational AI interactions. Decision Support Systems, 144:113515.

Victoria Groom, Vasant Srinivasan, Cindy L. Bethel, Robin Murphy, Lorin Dole, and Clifford Nass. 2011.

Responses to robot social roles and social role framing. In 2011 International Conference on Collaboration

Technologies and Systems (CTS), pages 194–203.

Barbara J. Grosz. 1977. The Representation and Use of Focus in Dialogue Understanding. Ph.D. thesis,

University of California at Berkeley.

Somil Gupta, Bhanu Pratap Singh Rawat, and Hong Yu. 2020. Conversational Machine Comprehension: a

Literature Review. In Proceedings of the 28th International Conference on Computational Linguistics,

pages 2739–2753, Barcelona, Spain (Online). International Committee on Computational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. 2020. Retrieval Augmented

Language Model Pre-Training. In Proceedings of the 37th International Conference on Machine Learning,

ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,

pages 3929–3938. PMLR.

Amelia Hardy, Ashwin Paranjape, and Christopher Manning. 2021. Effective Social Chatbot Strategies for

Increasing User Initiative. In Proceedings of the 22nd Annual Meeting of the Special Interest Group on

Discourse and Dialogue, pages 99–110, Singapore and Online. Association for Computational Linguistics.

Rex Hartson and Pardha Pyla. 2019. Chapter 22 - Empirical UX Evaluation: UX Goals, Metrics, and Targets.

In The UX Book, second edition, pages 453–481. Morgan Kaufmann, Boston.

Daphna Heller, Kristen S. Gorman, and Michael K. Tanenhaus. 2012. To Name or to Describe: Shared

Knowledge Affects Referential Form. Topics in cognitive science, 4 2:290–305.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation, 9(8):1735–

1780.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The Curious Case of Neural Text

Degeneration. In International Conference on Learning Representations.

https://doi.org/https://doi.org/10.1016/j.dss.2021.113515
https://doi.org/https://doi.org/10.1016/j.dss.2021.113515
https://doi.org/10.1109/CTS.2011.5928687
https://www.proquest.com/dissertations-theses/representation-use-focus-dialogue-understanding/docview/302838986/se-2
https://doi.org/10.18653/v1/2020.coling-main.247
https://doi.org/10.18653/v1/2020.coling-main.247
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
https://aclanthology.org/2021.sigdial-1.11
https://aclanthology.org/2021.sigdial-1.11
https://doi.org/https://doi.org/10.1016/B978-0-12-805342-3.00022-9
https://onlinelibrary.wiley.com/doi/10.1111/j.1756-8765.2012.01182.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1756-8765.2012.01182.x
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH


BIBLIOGRAPHY 131

Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom embeddings,

convolutional neural networks and incremental parsing. URL: https://github.com/explosion/

spaCy.

Eric J. Horvitz. 1999. Principles of mixed-initiative user interfaces. In CHI ’99: Proceedings of the SIGCHI

conference on Human Factors in Computing Systems, pages 159–166.

Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. 2020. Challenges in Building Intelligent Open-Domain Dialog

Systems. ACM Trans. Inf. Syst., 38(3).

Jason L. Hutchens and Michael D. Alder. 1998. Introducing MegaHAL. In New Methods in Language

Processing and Computational Natural Language Learning.

Ellen A Isaacs and Herbert H Clark. 1987. References in conversation between experts and novices. Journal

of experimental psychology: general, 116(1):26.

Srinivasan Iyer, Sewon Min, Yashar Mehdad, and Wen-tau Yih. 2021. RECONSIDER: Improved Re-Ranking

using Span-Focused Cross-Attention for Open Domain Question Answering. In Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 1280–1287, Online. Association for Computational Linguistics.

Gautier Izacard and Edouard Grave. 2021a. Distilling Knowledge from Reader to Retriever for Question

Answering. In International Conference on Learning Representations.

Gautier Izacard and Edouard Grave. 2021b. Leveraging Passage Retrieval with Generative Models for

Open Domain Question Answering. In Proceedings of the 16th Conference of the European Chapter of

the Association for Computational Linguistics: Main Volume, pages 874–880, Online. Association for

Computational Linguistics.

Sina Jafarpour and Chris J.C. Burges. 2010. Filter, Rank, and Transfer the Knowledge: Learning to Chat.

Technical Report MSR-TR-2010-93, Microsoft Research.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization for nearest neighbor search.

IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128.

Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating reading comprehension systems. In

Empirical Methods in Natural Language Processing (EMNLP).

https://github.com/explosion/spaCy
https://github.com/explosion/spaCy
https://doi.org/10.1145/3383123
https://doi.org/10.1145/3383123
https://aclanthology.org/W98-1233
https://doi.org/10.18653/v1/2021.naacl-main.100
https://doi.org/10.18653/v1/2021.naacl-main.100
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://www.microsoft.com/en-us/research/publication/filter-rank-and-transfer-the-knowledge-learning-to-chat/


BIBLIOGRAPHY 132

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity search with GPUs. arXiv

preprint arXiv:1702.08734.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. 2020. Span-

BERT: Improving Pre-training by Representing and Predicting Spans. Transactions of the Association for

Computational Linguistics, 8:64–77.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. 2017. TriviaQA: A Large Scale Distantly

Supervised Challenge Dataset for Reading Comprehension. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–1611, Vancouver,

Canada. Association for Computational Linguistics.

Dan Jurafsky and James H Martin. 2022. Speech and Language Processing. 3rd ed. draft. Internet: https:

//web.stanford.edu/~jurafsky/slp3/, Accessed: Dec 6, 2017.

Dan Jurafsky, Liz Shriberg, and Debra Biasca. 1997. Switchboard SWBD-DAMSL shallow-discourse function

annotation coders manual. In Technical Report Draft 13, University of Colorado, Institute of Cognitive

Science.

D. Karis and K.M. Dobroth. 1991. Automating services with speech recognition over the public switched

telephone network: human factors considerations. IEEE Journal on Selected Areas in Communications,

9(4):574–585.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and

Wen-tau Yih. 2020. Dense Passage Retrieval for Open-Domain Question Answering. In Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–6781,

Online. Association for Computational Linguistics.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. 2020. Generalization

through Memorization: Nearest Neighbor Language Models. In International Conference on Learning

Representations.

Chandra Khatri, Behnam Hedayatnia, Anu Venkatesh, Jeff Nunn, Yi Pan, Qing Liu, Han Song, Anna Gottardi,

Sanjeev Kwatra, Sanju Pancholi, et al. 2018. Advancing the state of the art in open domain dialog systems

through the Alexa prize. arXiv preprint arXiv:1812.10757.

Omar Khattab, Christopher Potts, and Matei Zaharia. 2021. Relevance-guided Supervision for OpenQA with

ColBERT. Transactions of the Association for Computational Linguistics, 9:929–944.

https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://web.stanford.edu/~jurafsky/slp3/
https://web. stanford. edu/~jurafsky/slp3/
https://web. stanford. edu/~jurafsky/slp3/
https://doi.org/10.1109/49.81951
https://doi.org/10.1109/49.81951
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://doi.org/10.1162/tacl_a_00405
https://doi.org/10.1162/tacl_a_00405


BIBLIOGRAPHY 133

Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage Search via Contextualized

Late Interaction over BERT. In Proceedings of the 43rd International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’20, page 39–48, New York, NY, USA. Association for

Computing Machinery.

S. Kiesler. 2005. Fostering common ground in human-robot interaction. In ROMAN 2005. IEEE International

Workshop on Robot and Human Interactive Communication, 2005., pages 729–734.

Byeongchang Kim, Jaewoo Ahn, and Gunhee Kim. 2020. Sequential Latent Knowledge Selection for

Knowledge-Grounded Dialogue. In International Conference on Learning Representations.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,

Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew

Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Ques-

tions: A Benchmark for Question Answering Research. Transactions of the Association for Computational

Linguistics, 7:452–466.

Haejun Lee, Akhil Kedia, Jongwon Lee, Ashwin Paranjape, Christopher D Manning, and Kyoung-Gu Woo.

2021. You only need one model for open-domain question answering. arXiv preprint arXiv:2112.07381.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 2019. Latent Retrieval for Weakly Supervised

Open Domain Question Answering. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 6086–6096, Florence, Italy. Association for Computational Linguistics.

Peter Lee. 2016. Learning from Tay’s introduction. Official Microsoft Blog.

Sau-lai Lee, Ivy Yee-man Lau, S. Kiesler, and Chi-Yue Chiu. 2005. Human Mental Models of Humanoid

Robots. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pages

2767–2772.

Wenqiang Lei, Gangyi Zhang, Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, and Tat-Seng Chua.

2020. Interactive Path Reasoning on Graph for Conversational Recommendation. In Proceedings of the

26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20, page

2073–2083, New York, NY, USA. Association for Computing Machinery.

Stephen C. Levinson. 1983. Pragmatics. Cambridge Textbooks in Linguistics. Cambridge University Press.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin

Stoyanov, and Luke Zettlemoyer. 2020a. BART: Denoising Sequence-to-Sequence Pre-training for Natural

https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1109/ROMAN.2005.1513866
https://openreview.net/forum?id=Hke0K1HKwr
https://openreview.net/forum?id=Hke0K1HKwr
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
https://doi.org/10.1109/ROBOT.2005.1570532
https://doi.org/10.1109/ROBOT.2005.1570532
https://doi.org/10.1145/3394486.3403258
https://doi.org/10.1017/CBO9780511813313
https://doi.org/10.18653/v1/2020.acl-main.703


BIBLIOGRAPHY 134

Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, pages 7871–7880, Online. Association for Computational

Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich

Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020b. Retrieval-

Augmented Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing

Systems, volume 33, pages 9459–9474. Curran Associates, Inc.

Haojun Li, Dilara Soylu, and Christopher Manning. 2021. Large-Scale Quantitative Evaluation of Dialogue

Agents’ Response Strategies against Offensive Users. In Proceedings of the 22nd Annual Meeting of the

Special Interest Group on Discourse and Dialogue, pages 556–561, Singapore and Online. Association for

Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016a. A Diversity-Promoting Objective

Function for Neural Conversation Models. In Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 110–119,

San Diego, California. Association for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Spithourakis, Jianfeng Gao, and Bill Dolan. 2016b. A

Persona-Based Neural Conversation Model. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 994–1003, Berlin, Germany. Association for

Computational Linguistics.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. 2016c. Deep Reinforcement

Learning for Dialogue Generation. In Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, pages 1192–1202, Austin, Texas. Association for Computational Linguistics.

Sha Li, Mahdi Namazifar, Di Jin, Mohit Bansal, Heng Ji, Yang Liu, and Dilek Hakkani-Tur. 2022a. En-

hancing Knowledge Selection for Grounded Dialogues via Document Semantic Graphs. In Proceedings

of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 2810–2823, Seattle, United States. Association for Computational

Linguistics.

Siyan Li, Ashwin Paranjape, and Christopher D. Manning. 2022b. When can I Speak? Predicting initiation

points for spoken dialogue agents. In Proceedings of the 23nd Annual Meeting of the Special Interest Group

on Discourse and Dialogue. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://aclanthology.org/2021.sigdial-1.58
https://aclanthology.org/2021.sigdial-1.58
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/P16-1094
https://doi.org/10.18653/v1/P16-1094
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/D16-1127
https://doi.org/10.18653/v1/2022.naacl-main.202
https://doi.org/10.18653/v1/2022.naacl-main.202
https://doi.org/10.48550/ARXIV.2208.03812
https://doi.org/10.48550/ARXIV.2208.03812


BIBLIOGRAPHY 135

Zekang Li, Cheng Niu, Fandong Meng, Yang Feng, Qian Li, and Jie Zhou. 2019. Incremental Transformer

with Deliberation Decoder for Document Grounded Conversations. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 12–21, Florence, Italy. Association for

Computational Linguistics.

Rongzhong Lian, Min Xie, Fan Wang, Jinhua Peng, and Hua Wu. 2019. Learning to Select Knowledge for

Response Generation in Dialog Systems. In IJCAI International Joint Conference on Artificial Intelligence,

page 5081.

Weixin Liang, James Zou, and Zhou Yu. 2020. Beyond User Self-Reported Likert Scale Ratings: A Comparison

Model for Automatic Dialog Evaluation. ArXiv preprint arXiv:2005.10716.

Diane J Litman, Carolyn P Rosé, Kate Forbes-Riley, Kurt VanLehn, Dumisizwe Bhembe, and Scott Silliman.

2006. Spoken versus typed human and computer dialogue tutoring. International Journal of Artificial

Intelligence in Education, 16(2):145–170.

Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu, and Dawei Yin. 2018. Knowledge

Diffusion for Neural Dialogue Generation. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 1489–1498, Melbourne, Australia. Association

for Computational Linguistics.

Ye Liu, Yao Wan, Lifang He, Hao Peng, and Philip S. Yu. 2021. KG-BART: Knowledge Graph-Augmented

BART for Generative Commonsense Reasoning. In AAAI.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke

Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.

CoRR, abs/1907.11692.

Samuel Louvan and Bernardo Magnini. 2020. Recent Neural Methods on Slot Filling and Intent Classification

for Task-Oriented Dialogue Systems: A Survey. In Proceedings of the 28th International Conference

on Computational Linguistics, pages 480–496, Barcelona, Spain (Online). International Committee on

Computational Linguistics.

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung. 2018. Mem2Seq: Effectively Incorporating Knowledge

Bases into End-to-End Task-Oriented Dialog Systems. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages 1468–1478, Melbourne,

Australia. Association for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1002
https://doi.org/10.18653/v1/P19-1002
http://arxiv.org/abs/2005.10716
http://arxiv.org/abs/2005.10716
https://doi.org/10.18653/v1/P18-1138
https://doi.org/10.18653/v1/P18-1138
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/2020.coling-main.42
https://doi.org/10.18653/v1/P18-1136
https://doi.org/10.18653/v1/P18-1136


BIBLIOGRAPHY 136

Joanna K. Malinowska. 2021. What Does It Mean to Empathise with a Robot? Minds Mach., 31:361–376.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information

Retrieval. Cambridge University Press.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.

2014. The Stanford CoreNLP Natural Language Processing Toolkit. In Association for Computational

Linguistics (ACL) System Demonstrations, pages 55–60.

David McClosky, Eugene Charniak, and Mark Johnson. 2006. Effective Self-Training for Parsing. In

Proceedings of the Human Language Technology Conference of the NAACL, Main Conference, pages

152–159, New York City, USA. Association for Computational Linguistics.

Chuan Meng, Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, and Maarten de Rijke. 2020a. RefNet:

A Reference-aware Network for Background Based Conversation. In Thirty-Fourth AAAI Conference on

Artificial Intelligence.

Chuan Meng, Pengjie Ren, Zhumin Chen, Weiwei Sun, Zhaochun Ren, Zhaopeng Tu, and Maarten de Rijke.

2020b. DukeNet: A Dual Knowledge Interaction Network for Knowledge-Grounded Conversation, page

1151–1160. Association for Computing Machinery, New York, NY, USA.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013a. Efficient Estimation of Word

Representations in Vector Space. In ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b. Distributed Representations

of Words and Phrases and Their Compositionality. In Proceedings of the 26th International Conference

on Neural Information Processing Systems - Volume 2, NIPS’13, page 3111–3119, Red Hook, NY, USA.

Curran Associates Inc.

Nikita Moghe, Siddhartha Arora, Suman Banerjee, and Mitesh M. Khapra. 2018. Towards Exploiting

Background Knowledge for Building Conversation Systems. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, pages 2322–2332, Brussels, Belgium. Association for

Computational Linguistics.

Seungwhan Moon, Pararth Shah, Anuj Kumar, and Rajen Subba. 2019. OpenDialKG: Explainable Conversa-

tional Reasoning with Attention-based Walks over Knowledge Graphs. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 845–854, Florence, Italy. Association for

Computational Linguistics.

https://link.springer.com/article/10.1007/s11023-021-09558-7
http://www.aclweb.org/anthology/P/P14/P14-5010
https://aclanthology.org/N06-1020
http://arxiv.org/abs/1908.06449
http://arxiv.org/abs/1908.06449
https://doi.org/10.1145/3397271.3401097
https://doi.org/10.18653/v1/D18-1255
https://doi.org/10.18653/v1/D18-1255
https://doi.org/10.18653/v1/P19-1081
https://doi.org/10.18653/v1/P19-1081


BIBLIOGRAPHY 137

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,

Pushmeet Kohli, and James Allen. 2016. A Corpus and Cloze Evaluation for Deeper Understanding of

Commonsense Stories. In Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pages 839–849, San Diego,

California. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don’t Give Me the Details, Just the Summary!

Topic-Aware Convolutional Neural Networks for Extreme Summarization. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages 1797–1807, Brussels, Belgium.

Association for Computational Linguistics.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. 2016.

MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. In CoCo@NIPS.

Ashwin Paranjape, Omar Khattab, Christopher Potts, Matei Zaharia, and Christopher D Manning. 2022.

Hindsight: Posterior-guided training of retrievers for improved open-ended generation. In International

Conference on Learning Representations.

Ashwin Paranjape and Christopher Manning. 2021. Human-like informative conversations: Better acknowl-

edgements using conditional mutual information. In Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages

768–781, Online. Association for Computational Linguistics.

Ashwin Paranjape, Abigail See, Kathleen Kenealy, Haojun Li, Amelia Hardy, Peng Qi, Kaushik Ram

Sadagopan, Nguyet Minh Phu, Dilara Soylu, and Christopher D Manning. 2020. Neural Generation Meets

Real People: Towards Emotionally Engaging Mixed-Initiative Conversations. Alexa Prize Proceedings

2020.

Prasanna Parthasarathi and Joelle Pineau. 2018. Extending Neural Generative Conversational Model using

External Knowledge Sources. In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 690–695, Brussels, Belgium. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global Vectors for Word

Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.

Jairo Perez-Osorio and Agnieszka Wykowska. 2020. Adopting the intentional stance toward natural and

artificial agents. Philosophical Psychology, 33(3):369–395.

https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://openreview.net/forum?id=Vr_BTpw3wz
https://doi.org/10.18653/v1/2021.naacl-main.61
https://doi.org/10.18653/v1/2021.naacl-main.61
https://arxiv.org/pdf/2008.12348.pdf
https://arxiv.org/pdf/2008.12348.pdf
https://doi.org/10.18653/v1/D18-1073
https://doi.org/10.18653/v1/D18-1073
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1080/09515089.2019.1688778
https://doi.org/10.1080/09515089.2019.1688778


BIBLIOGRAPHY 138

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James Thorne,

Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim Rocktäschel, and Sebastian

Riedel. 2021. KILT: a Benchmark for Knowledge Intensive Language Tasks. In Proceedings of the 2021

Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 2523–2544, Online. Association for Computational Linguistics.

Jan Pichi, Petr Marek, Jakub Konrád, Martin Matulık, and Jan Šedivy. 2018. Alquist 2.0: Alexa Prize socialbot

based on sub-dialogue models. Proc. Alexa Prize.

Martin J. Pickering and Simon Garrod. 2004. Toward a mechanistic psychology of dialogue. Behavioral and

Brain Sciences, 27(2):169–190.

Martin J. Pickering and Simon Garrod. 2006. Alignment as the Basis for Successful Communication. Research

on Language and Computation, 4:203–228.

Anita Pomerantz. 1988. Offering a candidate answer: An information seeking strategy. Communications

Monographs, 55(4):360–373.

Lianhui Qin, Michel Galley, Chris Brockett, Xiaodong Liu, Xiang Gao, Bill Dolan, Yejin Choi, and Jianfeng

Gao. 2019. Conversing by Reading: Contentful Neural Conversation with On-demand Machine Reading. In

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5427–5436,

Florence, Italy. Association for Computational Linguistics.

Libo Qin, Tianbao Xie, Wanxiang Che, and Ting Liu. 2021. A Survey on Spoken Language Understanding:

Recent Advances and New Frontiers. In IJCAI, pages 4577–4584.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language under-

standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language

models are unsupervised multitask learners.

Filip Radlinski and Nick Craswell. 2017. A Theoretical Framework for Conversational Search. In Proceedings

of the 2017 Conference on Conference Human Information Interaction and Retrieval, CHIIR ’17, page

117–126, New York, NY, USA. Association for Computing Machinery.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,

Wei Li, and Peter J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer. J. Mach. Learn. Res., 21(1).

https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.1017/S0140525X04000056
https://doi.org/10.18653/v1/P19-1539
https://doi.org/10.24963/ijcai.2021/622
https://doi.org/10.24963/ijcai.2021/622
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1145/3020165.3020183


BIBLIOGRAPHY 139

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know What You Don’t Know: Unanswerable Questions

for SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), pages 784–789, Melbourne, Australia. Association for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ Questions for

Machine Comprehension of Text. In Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, pages 2383–2392, Austin, Texas. Association for Computational Linguistics.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anushree Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn,

Behnam Hedayatnia, Ming Cheng, Ashish Nagar, Eric King, Kate Bland, Amanda Wartick, Yi Pan, Han

Song, Sk Jayadevan, Gene Hwang, and Art Pettigrue. 2017. Conversational AI: The science behind the

Alexa Prize. In Alexa Prize SocialBot Grand Challenge 1 Proceedings.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. 2019. Towards Empathetic Open-

domain Conversation Models: A New Benchmark and Dataset. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 5370–5381, Florence, Italy. Association

for Computational Linguistics.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. Towards

scalable multi-domain conversational agents: The schema-guided dialogue dataset. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 34, pages 8689–8696.

Siva Reddy, Danqi Chen, and Christopher D. Manning. 2019. CoQA: A Conversational Question Answering

Challenge. Transactions of the Association for Computational Linguistics, 7:249–266.

Rachel Reichman. 1985. Getting Computers to Talk like You and Me. MIT Press, Cambridge, MA, USA.

Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma, and Maarten de Rijke. 2020. Thinking Globally, Acting

Locally: Distantly Supervised Global-to-Local Knowledge Selection for Background Based Conversation.

In Thirty-Fourth AAAI Conference on Artificial Intelligence, volume abs/1908.09528.

Devendra Sachan, Mostofa Patwary, Mohammad Shoeybi, Neel Kant, Wei Ping, William L. Hamilton, and

Bryan Catanzaro. 2021. End-to-End Training of Neural Retrievers for Open-Domain Question Answering.

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages

6648–6662, Online. Association for Computational Linguistics.

Harvey Sacks and Gail Jefferson. 1995. Lectures on Conversation. John Wiley & Sons, Ltd.

https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://www.amazon.science/publications/conversational-ai-the-science-behind-the-alexa-prize
https://www.amazon.science/publications/conversational-ai-the-science-behind-the-alexa-prize
https://doi.org/10.18653/v1/P19-1534
https://doi.org/10.18653/v1/P19-1534
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.1162/tacl_a_00266
https://doi.org/10.18653/v1/2021.acl-long.519
https://doi.org/https://doi.org/10.1002/9781444328301.fmatter


BIBLIOGRAPHY 140

Chinnadhurai Sankar, Sandeep Subramanian, Christopher Pal, Sarath Chandar, and Yoshua Bengio. 2019.

Do neural dialog systems use the conversation history effectively? an empirical study. arXiv preprint

arXiv:1906.01603.

Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statistical modeling with python. In

9th Python in Science Conference.

Abigail See and Christopher Manning. 2021. Understanding and predicting user dissatisfaction in a neural

generative chatbot. In Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse

and Dialogue, pages 1–12, Singapore and Online. Association for Computational Linguistics.

Abigail See, Stephen Roller, Douwe Kiela, and Jason Weston. 2019. What makes a good conversation? How

controllable attributes affect human judgments. In Proceedings of NAACL-HLT, pages 1702–1723.

Pararth Shah, Dilek Hakkani-Tür, Bing Liu, and Gokhan Tür. 2018. Bootstrapping a Neural Conversational

Agent with Dialogue Self-Play, Crowdsourcing and On-Line Reinforcement Learning. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 3 (Industry Papers), pages 41–51, New Orleans - Louisiana. Association

for Computational Linguistics.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural Responding Machine for Short-Text Conversation.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages

1577–1586, Beijing, China. Association for Computational Linguistics.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. 2021. Retrieval Augmentation

Reduces Hallucination in Conversation. arXiv preprint arXiv:2104.07567.

Jack Sidnell. 2016. Conversation Analysis. In Oxford Research Encyclopedia of Linguistics. Oxford University

Press.

Vicki L Smith and Herbert H Clark. 1993. On the course of answering questions. Journal of memory and

language, 32(1):25–38.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun

Nie, Jianfeng Gao, and Bill Dolan. 2015. A Neural Network Approach to Context-Sensitive Generation

of Conversational Responses. In Proceedings of the 2015 Conference of the North American Chapter of

https://aclanthology.org/2021.sigdial-1.1
https://aclanthology.org/2021.sigdial-1.1
https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.3115/v1/P15-1152
https://doi.org/10.1093/acrefore/9780199384655.013.40
https://doi.org/10.3115/v1/N15-1020
https://doi.org/10.3115/v1/N15-1020


BIBLIOGRAPHY 141

the Association for Computational Linguistics: Human Language Technologies, pages 196–205, Denver,

Colorado. Association for Computational Linguistics.

Robert Stalnaker. 2002. Common ground. Linguistics and philosophy, 25(5/6):701–721.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul Taylor,

Rachel Martin, Carol Van Ess-Dykema, and Marie Meteer. 2000. Dialogue act modeling for automatic

tagging and recognition of conversational speech. Computational Linguistics, 26(3):339–374.

Kai Sun, Seungwhan Moon, Paul Crook, Stephen Roller, Becka Silvert, Bing Liu, Zhiguang Wang, Honglei

Liu, Eunjoon Cho, and Claire Cardie. 2021. Adding Chit-Chat to Enhance Task-Oriented Dialogues. In

Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 1570–1583, Online. Association for Computational

Linguistics.

Robert S. Taylor. 1968. Question-Negotiation and Information Seeking in Libraries. College & Research

Libraries, 29(3):178–194.

Jaime Teevan, Kevyn Collins-Thompson, Ryen W. White, Susan Dumais, and Yubin Kim. 2013. Slow Search:

Information Retrieval without Time Constraints. In Proceedings of HCIR 2013. ACM - Association for

Computing Machinery.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. FEVER: a Large-scale

Dataset for Fact Extraction and VERification. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), pages 809–819, New Orleans, Louisiana. Association for Computational Linguistics.

Gokhan Tur and Renato De Mori. 2011. Spoken language understanding: Systems for extracting semantic

information from speech. John Wiley & Sons.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,

and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing

Systems, volume 30. Curran Associates, Inc.

Anu Venkatesh, Chandra Khatri, Ashwin Ram, Fenfei Guo, Raefer Gabriel, Ashish Nagar, Rohit Prasad, Ming

Cheng, Behnam Hedayatnia, Angeliki Metallinou, et al. 2018. On evaluating and comparing open domain

dialog systems. arXiv preprint arXiv:1801.03625.

Oriol Vinyals and Quoc V. Le. 2015. A Neural Conversational Model. CoRR, abs/1506.05869.

https://aclanthology.org/J00-3003
https://aclanthology.org/J00-3003
https://doi.org/10.18653/v1/2021.naacl-main.124
https://doi.org/10.5860/crl_29_03_178
https://www.microsoft.com/en-us/research/publication/slow-search-information-retrieval-without-time-constraints/
https://www.microsoft.com/en-us/research/publication/slow-search-information-retrieval-without-time-constraints/
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1506.05869


BIBLIOGRAPHY 142

Ellen M. Voorhees. 2004. Overview of the TREC 2004 Robust Track. In Proceedings of the Thirteenth Text

Retrieval Conference (TREC 2004). NIST Special Publication SP 500-261.

Wayne Ward, Ronald Cole, Daniel Bolanos, Cindy Buchenroth-Martin, Edward Svirsky, Sarel Van Vuuren,

Timothy Weston, Jing Zheng, and Lee Becker. 2011. My science tutor: A conversational multimedia

virtual tutor for elementary school science. ACM Transactions on Speech and Language Processing (TSLP),

7(4):1–29.

David H.D. Warren and Fernando C.N. Pereira. 1982. An Efficient Easily Adaptable System for Interpreting

Natural Language Queries. American Journal of Computational Linguistics, 8(3-4):110–122.

Joseph Weizenbaum. 1966. ELIZA—a Computer Program for the Study of Natural Language Communication

between Man and Machine. Commun. ACM, 9(1):36–45.

Ryen W. White. 2018. Skill Discovery in Virtual Assistants. Commun. ACM, 61(11):106–113.

Kathryn Whitenton and Raluca Budiu. 2018. The Paradox of Intelligent Assistants: Poor Usability, High

Adoption. Neilsen Norman Group Website.

Jason Williams and Geoffrey Zweig. 2016. End-To-End LSTM-Based Dialog Control Optimized With

Supervised And Reinforcement Learning. Technical Report MSR-TR-2016-72, Microsoft Research.

Terry Winograd. 1972. Understanding natural language. Cognitive Psychology, 3(1):1–191.

Jörg Wittwer, Matthias Nückles, and Alexander Renkl. 2008. Is underestimation less detrimental than

overestimation? The impact of experts’ beliefs about a layperson’s knowledge on learning and question

asking. Instructional Science, 36:27–52.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric

Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara

Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin

Lhoest, and Alexander M. Rush. 2019a. HuggingFace’s Transformers: State-of-the-art Natural Language

Processing. ArXiv, abs/1910.03771.

Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement Delangue. 2019b. TransferTransfo: A Transfer

Learning Approach for Neural Network Based Conversational Agents. CoRR, abs/1901.08149.

Shali Wu and Boaz Keysar. 2007. The Effect of Information Overlap on Communication Effectiveness.

Cognitive science, 31 1:169–81.

https://aclanthology.org/J82-3002
https://aclanthology.org/J82-3002
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/3185336
https://www.nngroup.com/articles/intelligent-assistants-poor-usability-high-adoption/
https://www.nngroup.com/articles/intelligent-assistants-poor-usability-high-adoption/
https://www.microsoft.com/en-us/research/publication/end-end-lstm-based-dialog-control-optimized-supervised-reinforcement-learning/
https://www.microsoft.com/en-us/research/publication/end-end-lstm-based-dialog-control-optimized-supervised-reinforcement-learning/
https://doi.org/https://doi.org/10.1016/0010-0285(72)90002-3
http://arxiv.org/abs/1901.08149
http://arxiv.org/abs/1901.08149
https://pubmed.ncbi.nlm.nih.gov/21635292/


BIBLIOGRAPHY 143

Jing Xu, Arthur Szlam, and Jason Weston. 2022. Beyond Goldfish Memory: Long-Term Open-Domain

Conversation. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 5180–5197, Dublin, Ireland. Association for Computational Linguistics.

Michael Yeomans, Maurice E. Schweitzer, and Alison Wood Brooks. 2022. The Conversational Circumplex:

Identifying, prioritizing, and pursuing informational and relational motives in conversation. Current Opinion

in Psychology, 44:293–302.

Dian Yu, Michelle Cohn, Yi Mang Yang, Chun-Yen Chen, Weiming Wen, Jiaping Zhang, Mingyang Zhou,

Kevin Jesse, Austin Chau, Antara Bhowmick, Shreenath Iyer, Giritheja Sreenivasulu, Sam Davidson, Ashwin

Bhandare, and Zhou Yu. 2019. Gunrock: A Social Bot for Complex and Engaging Long Conversations.

ArXiv preprint arXiv:1910.03042.

Dian Yu and Zhou Yu. 2019. MIDAS: A Dialog Act Annotation Scheme for Open Domain Human Machine

Spoken Conversations. ArXiv preprint arXiv:1908.10023.

Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao Yu, Shuohang Wang, Yichong Xu, Xiang Ren, Yiming

Yang, and Michael Zeng. 2022. KG-FiD: Infusing Knowledge Graph in Fusion-in-Decoder for Open-Domain

Question Answering. In Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 4961–4974, Dublin, Ireland. Association for Computational

Linguistics.

Munazza Zaib, Wei Emma Zhang, Quan Z Sheng, Adnan Mahmood, and Yang Zhang. 2021. Conversational

question answering: A survey. arXiv preprint arXiv:2106.00874.

Haolan Zhan, Lei Shen, Hongshen Chen, and Hainan Zhang. 2021. CoLV: A Collaborative Latent Variable

Model for Knowledge-Grounded Dialogue Generation. In Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing, pages 2250–2261, Online and Punta Cana, Dominican Republic.

Association for Computational Linguistics.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. 2018. Personal-

izing Dialogue Agents: I have a dog, do you have pets too? In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages 2204–2213, Melbourne,

Australia. Association for Computational Linguistics.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing

Liu, and Bill Dolan. 2020. DialoGPT: Large-Scale Generative Pre-training for Conversational Response

Generation. In ACL, system demonstration.

https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/https://doi.org/10.1016/j.copsyc.2021.10.001
https://doi.org/https://doi.org/10.1016/j.copsyc.2021.10.001
http://arxiv.org/abs/1910.03042
http://arxiv.org/abs/1908.10023
http://arxiv.org/abs/1908.10023
https://doi.org/10.18653/v1/2022.acl-long.340
https://doi.org/10.18653/v1/2022.acl-long.340
https://doi.org/10.18653/v1/2021.emnlp-main.172
https://doi.org/10.18653/v1/2021.emnlp-main.172
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205


BIBLIOGRAPHY 144

Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris Brockett, Michel Galley, Jianfeng Gao, and Bill Dolan.

2022. RetGen: A Joint Framework for Retrieval and Grounded Text Generation Modeling. In AAAI.

Xinyan Zhao, Bin He, Yasheng Wang, Yitong Li, Fei Mi, Yajiao Liu, Xin Jiang, Qun Liu, and Huanhuan Chen.

2022. UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented Dialogues. In Proceedings of

the Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering,

pages 13–22, Dublin, Ireland. Association for Computational Linguistics.

Xueliang Zhao, Wei Wu, Can Xu, Chongyang Tao, Dongyan Zhao, and Rui Yan. 2020. Knowledge-Grounded

Dialogue Generation with Pre-trained Language Models. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 3377–3390, Online. Association for

Computational Linguistics.

Wen Zheng, Natasa Milic-Frayling, and Ke Zhou. 2020. Approximation of Response Knowledge Retrieval in

Knowledge-grounded Dialogue Generation. In Findings of the Association for Computational Linguistics:

EMNLP 2020, pages 3581–3591, Online. Association for Computational Linguistics.

Wen Zheng, Natasa Milic-Frayling, and Ke Zhou. 2021. Knowledge-Grounded Dialogue Generation with

Term-level De-noising. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,

pages 2972–2983, Online. Association for Computational Linguistics.

Kangyan Zhou, Shrimai Prabhumoye, and Alan W Black. 2018. A Dataset for Document Grounded Conver-

sations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,

pages 708–713, Brussels, Belgium. Association for Computational Linguistics.

Pei Zhou, Karthik Gopalakrishnan, Behnam Hedayatnia, Seokhwan Kim, Jay Pujara, Xiang Ren, Yang Liu,

and Dilek Hakkani-Tur. 2021. Commonsense-Focused Dialogues for Response Generation: An Empirical

Study. In Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue,

pages 121–132, Singapore and Online. Association for Computational Linguistics.

Chenguang Zhu, Yichong Xu, Xiang Ren, Bill Yuchen Lin, Meng Jiang, and Wenhao Yu. 2022. Knowledge-

Augmented Methods for Natural Language Processing. In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics: Tutorial Abstracts, pages 12–20, Dublin, Ireland. Association

for Computational Linguistics.

https://doi.org/10.18653/v1/2022.dialdoc-1.2
https://doi.org/10.18653/v1/2020.emnlp-main.272
https://doi.org/10.18653/v1/2020.emnlp-main.272
https://doi.org/10.18653/v1/2020.findings-emnlp.321
https://doi.org/10.18653/v1/2020.findings-emnlp.321
https://doi.org/10.18653/v1/2021.findings-acl.262
https://doi.org/10.18653/v1/2021.findings-acl.262
https://doi.org/10.18653/v1/D18-1076
https://doi.org/10.18653/v1/D18-1076
https://aclanthology.org/2021.sigdial-1.13
https://aclanthology.org/2021.sigdial-1.13
https://doi.org/10.18653/v1/2022.acl-tutorials.3
https://doi.org/10.18653/v1/2022.acl-tutorials.3

	Abstract
	Acknowledgements
	Introduction
	Situating Informative Conversations
	Conversational depth and topical breadth
	Situating this dissertation along historical progress

	Thesis Contributions
	Thesis Overview
	Problem Finding
	Linguistic Perspective
	ML-based solution

	Learnings

	Related Work
	Artificial Neural Networks
	Large language models as a foundation
	Chatbots & Dialogue Systems
	Knowledge-grounded dialogue systems
	Connections with allied fields

	Building A System for Social Conversations
	Introduction
	User-experience Goals
	System Overview
	Dialogue Management
	Navigational Intent Classifier
	Entity Tracker
	Response-and-Prompt System

	NLP Pipeline
	CoreNLP
	Dialogue Act Classifier
	Question Classifier
	Entity Linker

	Response Generators
	Treelets: A System to Organize Dialogue Graphs
	Opinion
	Movies
	Music
	Neural Fallback
	Categories
	Offensive User

	Neural Chat
	Wiki Response Generator
	Analysis
	Relationship between Rating and Engagement
	Relationship between Rating and User Dialogue Acts
	Entity Coverage
	Effectiveness of Response Generators

	Discussion
	Implications for Informative Conversations

	Linguistic analysis and improving acknowledgements
	Linguistic Analysis of human informative conversations
	Analysis of Strategies
	Conclusion

	Case study: PCMI for better acknowledgement
	Methods using Mutual Information
	Evaluation Setup
	Results & Analyses

	Implications for informative dialogue agents

	Joint training for open-ended generation
	Introduction
	Background
	Training with Hindsight
	Experimental Evaluation
	Models
	Tasks
	Baselines
	Relevance Evaluation
	Groundedness Evaluation
	End-to-end Evaluation

	Discussion
	Conclusion

	Conclusion
	Chirpy Cardinal
	Additional RGs
	Coronavirus
	News
	Other RGs

	Tooling and Processes
	Dashboard
	Processes

	Dialogue Act Classifier
	Modifications to Label Space
	Labeling Procedure

	Emotion classifier and analysis
	Relationship between Rating and User Emotion

	Offensive User Experiment Details
	Offense Type Detection
	Response Strategy Configurations

	Opinion Agreement Policy Details
	ALWAYS_AGREE Policy
	LISTEN_FIRST_DISAGREE Policy
	CONVINCED_AGREE Policy


	Improving acknowledgements: Experimental details
	Model training details
	Annotation Details

	Hindsight analysis
	Derivation of ELBo Loss
	Is higher grounding purely due to a better retriever?
	Effect of distributional repositioning
	Examples of retrieved passages
	Conversation 1: Italian cuisine
	Conversation 2: Rock and Roll

	Examples of Generated outputs
	Novel-F1
	Intuition behind improvements due to ELBoLoss


