
UNDERSTANDING LANGUAGE MODELS THROUGH DISCOVERY
AND BY DESIGN

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

John Hewitt
August 2024

© 2024 by John William Hewitt. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

This dissertation is online at: https://purl.stanford.edu/ch841hp3192

ii

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://purl.stanford.edu/ch841hp3192

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Percy Liang, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Potts

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Diyi Yang

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

Neural language models—probabilistic models of language defined by neural networks and often trained on
very large datasets—are now widely deployed as the foundation of a range of natural language applications.
Despite language models’ widespread use, we do not have precise understanding of how they function. The
behavior of these models is the result of trillions of words of text, billions of parameters, and GPU-centuries of
compute. As a result, while we have recipes to make better models, we lack the precision of understanding
to make surgical, targeted fixes to their failures. In this thesis, we present two lines of work towards deep
understanding of language models. The first line is understanding through discovery: exploratory research in
the probing paradigm that provides methods for discovery of what models know about properties of language.
I show that language models learn and encode in their representations a considerable amount of knowledge
about the syntactic structure of language. I also provide methodological improvements that help the field
design and trust experiments like these. In particular, I show how probing can estimate usable information
constructed by networks towards high-level properties. The second line of work is in understanding by design.
While most work in understanding language models treats them as static, we as engineers have the ability to
build them with the goal of understanding in mind, despite the challenge that their behaviors are learned from
broad data. I present the Backpack, a neural network architecture that provides precise hooks for impacting
model behavior. Finally, I show how to estimate the precision with which our methods for fixing problems
in language models target desired behaviors without changing the model overall, in the model editing with
canonical examples problem setting. All together, the methods and results in this thesis provide clarity of
methodology and some progress in understanding language models, but also point towards how there is more
left to be understood than that we understand.

iv

Preface

What does it mean to understand a tool whose behavior is at least as much discovered as it is designed?
Throughout my PhD, I’ve approached this question from two perspectives, often changing my mind about
which I find more valuable, frustratedly vacillating as I tackled a problem as hard to define as to solve. Below
I’ll provide brief summaries of these perspectives to give you an idea of the background with which this thesis
was written. However, despite the title of this thesis, our understanding of language models is limited. All I
can offer, as is often the case in science, is a modest contribution and a lot of thoughts along the way.

The first perspective with which I tackled understanding is blue sky exploration—we observe properties
of the tool in action, observe its internal components, observe its predictions, and make hypotheses about
potential generalizations that could tune our intuitions about the nature of the tool. The core criticism of this
perspective is, to what end? why bother; what does it get us? In engineering-centric fields, this is a natural
question, especially since progress is measured and proven through concrete systems that perform better than
existing alternatives. Other engineering fields certainly do fundamental research, and can rely on theory (e.g.,
from physics) more than we can in machine learning, but progress in machine learning has rarely been from,
e.g., interpretability. In summary, why explore the blue sky if you can’t explain how it’ll help build something?

The second perspective on understanding I call ability to repair as understanding—we take on the guise
of a technician, mechanic, or doctor, and leverage the strong intuition that real understanding implies the
ability to localize a problem or suboptimality in a complex system to a set of malfunctioning components, and
fix those components without negatively affecting the rest of the system. This intuition seems to make more
natural sense than blue sky exploration to many in the engineering-focused NLP field, and is easier to evaluate.
This begs the question of whether efforts in this direction are any different from non-understanding centric
model improvement. In some sense, no! And to the extent that our “understanding” provides us no leverage
to improve models beyond opaque methods, we should feel like our understanding is weak. Yet in another
sense, repair as understanding isn’t the same as model improvement, since it specifically measures our ability
to make targeted, or surgical improvements: this is sometimes true in general model improvement, but is
crucial in understanding work.

We are scientists and we are engineers, attempting to understand some of the most complex objects
humanity has ever constructed, for the sake of fixing their faults, ensuring their safety, and developing more
useful technologies. I hope this thesis proves useful in that goal.

v

Acknowledgments

Quite frequently, I am working, or walking, or travelling, and I am struck by how immensely lucky I am to
have work that I find engaging and fulfilling, that supports my life, that is stable. I think at those moments back
to my freshman year of college, in which I struggled immensely, cried often, and strongly considered dropping
computer science. This would have been okay, but I am deeply grateful for where I have ended up instead.

I thank my high school teachers, including but not limited to Fran Guilbert, MJ Linane, Colin Everett, and
Erich Carroll. Teaching high school is too often a thankless job in the United States, and in different ways
each of these teachers helped me to push myself, which, as I found later in life, would continue to be a theme.

When I arrived at college, I was assigned Max Mintz as a course advisor, and I took an introductory
discrete mathematics course with Rajiv Gandhi. These two professors pushed me and supported me even as
I failed early on, and I don’t think I would be in computing, let alone finishing a PhD, without them. Rajiv
wrote me a letter of recommendation for a research program after I received a C+ in his discrete math course; I
can only imagine it said “John tries very hard,” and left everything else to pragmatics, since I got the position
in the program. Ani Nenkova also wrote me a letter of recommendation for the same program, despite the
fact that I had achieved very little as an informal researcher under her guidance; I’m grateful for her time
and the fact that she took a chance on me. Likewise, I’m grateful to David Yarowsky for mentoring me that
summer, and to Chris Callison-Burch, who then let me work in his lab for the rest of my undergraduate years.
Eventually, my grades caught up to my peers’, but I was never a stellar student, so I am beyond grateful that I
was given opportunities to do research, which I ended up being more proficient at.

When I arrived at Stanford, I again felt like I wasn’t going to cut it. I recall taking CS 229 (machine
learning) my first quarter. I was surprised that I struggled with it (I was supposed to be doing a PhD in
this stuff!) and I noted that a sophomore sitting next to me in lecture seemed to be picking up the concepts
much faster than I. Again, it took time—years in some sense—to feel like I had “caught up” and still I
am constantly impressed by how much more my peers tend to know than I. In that difficult first year, new
friends I made outside my immediate academic surroundings—Steph, Micheal, Soumya, Lisa, Andrea, Travis,
Rebecca—were a huge support and I thank them immensely. Andrea, you helped me learn how to have
more fun. I’d eventually live with Travis and Rebecca for two and a half years, during the large part of the
COVID-19 pandemic, and I shudder to think how I would have handled that time had it not been for their
love and time. Travis is a source of constancy and sage advice, and I know no one who shows more love

vi

through planning events for her friends than Rebecca. With that whole group, years of thanksgivings, nights
out, dinners, have been irreplaceable.

I thank the Stanford NLP community, a supportive and kind group of scientists whose insightful per-
spectives led to the refinement and improvement of much if not all of the work of this thesis. Thanks to my
labmates, including but not limited to Rishi, Lisa, Stephen, Michael, Shiori, Robin, Jenny, Kevin, Ashwin,
Siyan, Chris Donahue. Thanks to Shikhar, Moussa, Tolúlo.pé. , and Dilara.

I had the good fortune of being “officially” in two separate lab groups, that of Chris Manning and that of
Percy Liang, meaning I got to listen to a truly amazing range of talks and research projects. My cohort-mates—
NLPers admitted the same year as me—Jesse Mu, Alex Tamkin, Isabel Papadimitriou (and Sidd, even though
you joined a year later!)—I am glad we went through the tumult of the changing NLP world together. Within
the group, I particularly appreciated the social efforts of Abi See, and tried to continue her legacy once she left.
And I am thankful for the many takes and conversations with Nelson Liu over the years about life and research.

I’d like to thank Amita Kamath for being a first close friend in Percy’s lab, sharing with me as we both
struggled, and for the support in the years since. I wish you luck as you finish your own PhD!

Deepan, you’ve known me for a long time and seen me through considerable change; thanks for always
being there, and for exploring a bit of the world with me.

In summer of 2022, I took an internship at DeepMind that helped me to recover from the pandemic and
just enjoy travel, work, new places, new people. To my intern managers Adhi Kuncoro and Aida Nematzadeh,
thank you for your support and letting me explore my odd ideas! To Yuqing, Ben, Lucio, Patrick, and Kayo,
thank you for your willingness to go out, your willingness to talk and to laugh; what a special summer of
friendship this was. Sanjana, I’m glad our coffee shop work—and discussion—schedule continued for years
after London. Judy, thank you for your deep commitment to your friends and to building community, and for
support in the final months of the thesis writing process.

Many of my friends over the years supported me in ways hard to describe here. Skyler, thank you for being
a friend in San Francisco when I had few! Will Merrill, I’m sort of glad I couldn’t convince you to come to
Stanford given how much you love New York City, and I’m glad to have been able to chat with you when I’ve
been there. Shreya Shankar, thanks for many movie nights and great conversations. Adam and Sami, thank
you for Dungeons and Dragons nights. Jen, thank you for taking care of me when I was sick and for helping
with my defense! Matt, we only lived together less than a year, but that year was packed with good times;
thank you. Justin Smilan, it’s tough to maintain a friendship across distances for more than a decade, and I’m
glad we have. Thanks to Eric Zelikman, and to Cindy Wu, for being down for a vacation. Thanks to Clara
Meister, for making friends from afar.

Thanks to Dan Jurafsky who in my first year, when I responded “not well!” to his question “how are
you doing, John?” sat down with me and discussed his own struggles in the PhD and life, and made me feel
welcome. Thanks to Surya Ganguli, for participating in a roller coaster research project, and for being my
thesis committee chair. Thanks to my letter writers for academia: Chris Dyer, Chris Potts, and my advisors.
Thanks to Tatsu Hashimoto; it’s nice to have known you as a postdoc before you became a professor, and to

vii

now join you in that pursuit.
Thanks to the Stanford CS 224n TAs that I worked with, especially those when I was head TA. That course

is a huge undertaking, and would not be possible without the efforts of these TAs.
Thank you to my non-advisors on my reading committee, Diyi Yang and Christopher Potts. You both have

been amazing supports and sources of discussion and refinement for my research. Thank you for opening your
calendars and for helping me get across the finish line; you went above and beyond!

To my advisors, Chris Manning and Percy Liang, I feel like I’ve learned an immense amount under your
guidance. You gave me freedom to do the research I wanted, you gave me honest opinions about what you
felt would work and what you felt would be impactful. You gave me space and time to be unproductive
when I needed it. As I think about becoming a professor myself, I have been thinking about how much of a
commitment it is to take on a PhD student. You ended up talking to me more or less once a week for six years,
and I am so honored and thankful that you took that time on me. Percy, I credit to you the confidence I take
into writing papers with more rigor, more precision. Chris, I credit to you the ability to take a research idea
and ask who will find it useful, why, and how we can improve on that. I’ve always been a bit of a scatter brain,
especially when it comes to administrative requirements and deadlines; thank you both for your patience. I
hope to pass on the knowledge you’ve helped me develop to generations of students to come.

To my family, thank you for giving me love and support and freedom. My siblings, Sarah, Steve, and
Mike, my dad Andrew, and my stepmother, Susan—you all have given me a lot of space and time—as well as
support—to do my own thing, and for that I am grateful! To my mom, Sandra, who died when I was nine, you
taught me how to read, and led me to read voraciously. You taught me to be deeply thankful at all times, as you
were, even though the situation you were in would deplete the thankfulness from almost anyone. Thank you.

viii

Contents

Abstract iv

Preface v

Acknowledgments vi

1 Introduction 1
1.1 On what we expect of our technologies . 1
1.2 A bit of background for context . 2

1.2.1 Non-neural language models . 2
1.2.2 Neural Language Models . 3
1.2.3 Word2vec as a neural language model . 4
1.2.4 Broad overview of related work . 6

1.3 On understanding . 7
1.4 Understanding language models through discovery and by design 8
1.5 Chapters in this thesis . 9

1.5.1 A Structural Probe for Finding Syntax in Word Representations 9
1.5.2 Designing and Interpreting Probes with Control Tasks 10
1.5.3 Conditional Probing: Measuring Usable Information Beyond a Baseline 11
1.5.4 Backpack Language Models . 12
1.5.5 Model Editing with Canonical Examples . 13

1.6 On the rest of the thesis . 14

I Understanding through Discovery 15

2 A Structural Probe for Finding Syntax in Word Representations 16
2.1 Introduction . 16
2.2 Methods . 17

ix

2.2.1 The structural probe . 17
2.2.2 Properties of the structural probe . 18
2.2.3 Tree-depth structural probes . 18

2.3 Experiments . 20
2.3.1 Tree distance evaluation metrics . 21
2.3.2 Tree depth evaluation metrics . 21

2.4 Results . 21
2.4.1 Analysis of linear transformation rank . 22

2.5 Discussion & Conclusion . 24
2.6 Implementation Details . 25

2.6.1 Squared L2 distance vs. L2 distance . 25
2.6.2 Probe training details . 25

2.7 Extra examples . 25

3 Designing and Interpreting Probes with Control Tasks 30
3.1 Introduction . 30
3.2 Control Tasks . 32

3.2.1 Part-of-speech tagging control task . 33
3.2.2 Dependency edge prediction control task . 33
3.2.3 Properties of control tasks . 34

3.3 Experiments on Probe Selectivity . 34
3.3.1 Probe families . 34
3.3.2 Complexity control . 35
3.3.3 Dataset . 36
3.3.4 Representation . 37
3.3.5 Results . 37
3.3.6 Discussion . 39

3.4 Selectivity Differences Confound Layer Comparisons . 40
3.4.1 Experiments . 40
3.4.2 Results & Discussion . 40

3.5 Related Work . 41
3.5.1 Random tasks . 42

3.6 Conclusion . 42

4 Probing for Conditional Usable Information 44
4.1 Introduction . 44
4.2 Conditional V-information Probing . 45

4.2.1 Probing setup . 45

x

4.2.2 Baselined probing . 45
4.2.3 Our proposal: conditional probing . 46
4.2.4 V-information . 46
4.2.5 Probing estimates V-information . 47
4.2.6 Estimating conditional information . 47

4.3 Related Work . 48
4.4 Experiments . 49

4.4.1 Tasks, models, and data . 49
4.4.2 Results . 50

4.5 Conclusion . 52

II Understanding by Design 53

5 Backpack Language Models 54
5.1 Introduction . 54
5.2 The Backpack Architecture . 56

5.2.1 Backpack General Form . 56
5.2.2 Continuous Bag-of-Words is a Backpack . 58
5.2.3 Single-Layer Self-Attention is a Backpack . 58

5.3 Language Modeling with Backpacks . 58
5.3.1 Parameterizing senses . 59
5.3.2 Parameterizing contextualization weights . 59

5.4 Experiments Training Backpack LMs . 60
5.4.1 Models . 60
5.4.2 Data & Optimization . 60
5.4.3 Evaluations . 61
5.4.4 Discussion . 61
5.4.5 Effect of varying the number of senses . 61

5.5 Emergent Structure in Sense Vectors . 61
5.5.1 Visualizing Senses . 61
5.5.2 Lexical Relationship Tests . 63

5.6 Sense Vectors for Control . 64
5.6.1 Topic-controlled generation . 64
5.6.2 Mitigating gender bias . 64
5.6.3 Knowledge editing . 67

5.7 Related Work . 67
5.8 Discussion . 68

xi

5.9 Conclusion . 69
5.10 Limitations . 69

6 Model Editing with Canonical Examples 71
6.1 Introduction . 71
6.2 Related Work . 73
6.3 Model Editing with Canonical Examples . 74
6.4 Six Datasets for Model Editing with Canonical Examples 76
6.5 Evaluating Finetuning Methods on Pythia LMs . 78

6.5.1 Methods . 78
6.5.2 Experiments & Results . 79
6.5.3 MEMIT with Oracle Supervision . 81

6.6 Sense Finetuning with Backpacks . 82
6.6.1 The Backpack Language Model . 82
6.6.2 Sense Finetuning . 83
6.6.3 What sense finetuning teaches: a look at the gradient 83
6.6.4 Experiments & Results . 84

6.7 Improving LLMs with Sense Finetuned Backpacks . 84
6.7.1 Visualizing Backpack improvements . 86

6.8 Discussion & Conclusion . 86

7 Conclusion 87

A Formal Results on Multivariate V-Information. 108
A.1 Multivariable V-information . 108

A.1.1 Properties of multivariable V-information . 109
A.2 Probing as Multivariable V-information Estimation . 110

A.2.1 Estimating V-entropy . 110
A.2.2 Baselined probing . 111
A.2.3 Conditional probing . 111

A.3 Proof of Proposition 1 . 111
A.4 Equivalence of Xu et al. (2020) and our V-information . 112

A.4.1 From Xu et al. (2020) to ours . 113
A.4.2 From our V-information to that of Xu et al. (2020) 114
A.4.3 Remarks on the relationship between our V-information and that of Xu et al. (2020) 115

A.5 Full Results . 116

xii

B Details on Backpack Language Models 119
B.1 Language Model Training Details . 119

B.1.1 The feed-forward sense network. 119
B.2 Extra evaluations . 119

B.2.1 Timing Benchmarking . 119
B.3 Lexical Similarity Details . 120
B.4 Sense Vector Control Details . 121

B.4.1 Topic control details . 121
B.4.2 Gender bias mitigation details . 122

C Details on Model Editing with Canonical Examples 126
C.1 Efficiency of running a Backpack ‘twice’ . 126
C.2 Hard Negatives Results . 127
C.3 Hyperparameter sweeps . 129
C.4 Details of MEMIT Experiments . 131

C.4.1 Adaption to dataset settings . 131
C.4.2 Standard and oracle formats . 132
C.4.3 Hyperparameter sweep . 132

C.5 Further dataset details . 133
C.5.1 Considerations in using Stereoset . 133
C.5.2 Dataset size details . 133
C.5.3 Prompts for generative models . 133

xiii

List of Tables

1.1 Word relationhips in Mikolov et al. (2013a). 5

2.1 Structural probe results on the Penn Treebank. 19

3.1 Probe accuracies and selectivities for fixed hyperparameters. 37
3.2 Control task results for ELMo showing low selectivity of complex probes. 41

4.1 Usable information results for ELMo across layers for five tasks. 50

5.1 Examples of sense vector specialization and arithmetic. 55
5.2 Backpack vs. Transformer language model evaluation results. 60
5.3 Visualizations of specific sense vector specializations. 62
5.4 Lexical similarity dataset evaluation results. 62
5.5 Results on pronoun-based gender bias reduction. 65
5.6 Example generations after sense vector arithmetic. 66

6.1 Examples from model editing with canonical examples datasets and losses. 76
6.2 Sense tuning model editing results on Backpacks vs. finetuning. 84
6.3 Backpack ensemble editing results for GPT-J vs. finetuning. 85

A.1 RoBERTa single-layer probing entrop results. 117
A.2 Probing single-layer task metric results for RoBERTa. 117
A.3 Probing two-layer entropy results for RoBERTa. 118
A.4 Probing two-layer task metric results for RoBERTa. 118

B.1 Backpack A100 timing results vs. Transformer. 120
B.2 Backpack perplexity results as a function of number of sense vectors. 120
B.3 Backpack and Transformer model size hyperparameters. 120
B.4 Topics used in Backpack topic control experiments. 121
B.5 Backpack sense vector topic control weights. 122
B.6 Extra topic control results. 123

xiv

B.7 Nurse and developer biased sense vector visualizations. 123
B.8 Prompts used for gender bias evaluation. 124
B.9 Prompts used for estimating gender debiasing weights. 124
B.10 Backpack and Transformer non-cherry-picked generations from topic categories (1 of 3.) . . 124
B.11 Backpack and Transformer non-cherry-picked generations from topic categories (2 of 3.) . . 125
B.12 Backpack and Transformer non-cherry-picked generations from topic categories (3 of 3.) . . 125

C.1 Hard negatives task descriptions and examples for model editing. 128
C.2 Backpack model editing hard negatives results. 129
C.3 Standard deviations for Backpack model editing results. 129
C.4 GPT-J model editing hard negatives results. 130
C.5 Standard deviations for GPT-J model editing results. 130
C.6 Examples of standard and oracle formatting for MEMIT model editing. 132
C.7 Dataset statistics for model editing datasets. 134
C.8 Results of hyperparameter selection for model editing experiments. 138

xv

List of Figures

2.1 Structural probe accuracies by layer of BERT and ELMo. 19
2.2 Visualization of minimum spanning trees on structural probe distances. 20
2.3 Depths into parse tree as predicted by structural depth probe. 22
2.4 Visualization of distances in gold tree and as predicted by structural probe. 23
2.5 Structural probe accuracies as a function of probe matrix rank. 23
2.6 Visualization of minimum spanning tree on probe distances. 26
2.7 More visualizations of minimum spanning tree on probe distances. 27
2.8 More visualizations of structural probe predicted vs. gold parse depths. 28
2.9 More visualizations of structural probe predicted vs. gold parse tree distances. 29

3.1 Visualization of control tasks vs. part-of-speech tagging. 31
3.2 Visualization of selectivity: accuracy difference between real and control task. 31
3.3 Example of dependency edge prediction control task. 32
3.4 Probing accuracies and selectivies across complexity control methods. 36

4.1 Usable information results for RoBERTa across layers for four tasks. 51

5.1 Diagram of the Transformer vs. the Backpack. 55
5.2 Topic control vs. MAUVE degradation evaluation results. 65
5.3 Sense vector debiasing of nurse visualization. 65

6.1 Diagram of the model editing with canonical examples setting. 72
6.2 Model editing results across Pythia model sizes. 80
6.3 Average model editing results across datasets. 80
6.4 Results of MEMIT on model editing with and without extra supervision. 81
6.5 Visualizations of sense tuning fixing a knowledge error in a model. 82

A.1 Conditional probing, xpos, for RoBERTa. 116

C.1 Hard negative results for model editing across Pythia model sizes. 127

xvi

Chapter 1

Introduction

A neural language model pω is a probability distribution over strings—or parts of strings—from a finite
vocabulary V that is defined by a neural network with learnable parameters ω. In some sense, it is much
more than that. Empirically, the parameters ω learned for language modeling are a great starting point for
finetuning—making small updates—to a model towards a range of tasks. The internal representations εω(x),
constructed by neural network ε with parameters ω, and where x → V→, encode exceptionally high-level,
general, useful properties of texts. And increasingly, models are given instructions explicitly with little
updating, and perform competently across a range of tasks. Neural language models and related systems
form the foundation for almost all modern natural language processing practice, and they empirically learn a
radical amount about language and world. This knowledge is piecemeal, unsystematic, fuzzy, overwhelmingly
large, adaptable, biased, unpredictable, and to me, fascinating. Language models are a dual artificial-natural
phenomenon that are worth deeply understanding. Understanding means many things, so it’s useful to begin
with an example.

1.1 On what we expect of our technologies

In the 1990s, Thomas Nicely discovered that certain Intel Pentium processors were returning the wrong
answers to certain floating point division operations. That is, sometimes you ask the CPU for x/y and instead
of returning the correct floating point approximation of that, it would return another value (with varying
amounts of error.) This was a big deal. We expect precision out of our processors; they have specifications
that we expect them to meet, and getting something as simple as a floating point operation wrong is a huge
problem. (Though, this particular error would only occur for some inputs, which is seemingly part of why it
took a considerable amount of searching and confirming to determine it was, in fact, an error of the processor.)

This bug damaged Intel’s reputation. However, processors are technologies, and we understood these
Pentium processors well enough to localize the source of the error to a programmable logic array (PLA) that
wasn’t written into correctly. Whenever that specific PLA was accessed in order to compute that particular

1

CHAPTER 1. INTRODUCTION 2

floating point division, the wrong values would be accessed and the returned value would be wrong. This
localization led to a very clear fix: if you fix the PLA, you fix the division. Future generations of Intel’s
processors did not have this bug.

So, we expect technologies to work as specified. But when they don’t, we expect our technologists to
understand the technologies well enough to develop precise, targeted fixes to those problems. By fixing the
PLA, we didn’t, say, make the rest of the processor slower, or potentially cause another bug somewhere else.
All of this was enabled by our understanding of how the CPU works.

Now compare this process to what we expect of language models. In 2022, New York Times journalist
Kevin Roose interacted with Microsoft’s Sydney chatbot1. After a long interaction, the chatbot went a bit off
the rails, professing its “love” for the journalist and encouraging them to leave their spouse. This is a bug in
the chatbot, which to my understanding was already an extensively tested, expensive beta product.

The story caused considerable negative press for Microsoft. Whereas Intel could localize its bug to a PLA
in its microprocessor, what could Microsoft do to localize this bug to a component of its neural language
model chatbot? Unfortunately, our tools for understanding and fixing language models are coarse, and no
localization was really possible. Certainly, Microsoft could re-do safety tuning, changing all or many of the
learnable parameters of the model to try to do this sort of behavior less, but this could have effects on the
rest of the model, and/or not actually fix the bug. To be fair, this is an exceptionally hard problem: language
model behaviors are complex and derive from trillions of words of text and GPU-centuries of computation,
not directly from our specifications. But still, to be considered technologies, we need our tools to be fixable
precisely. This derives from an understanding of the model at some level, and we’re just not there yet.

In the thesis ahead, I present five separate works, each of which having this goal of understanding in
mind. Later in this section, I will give a brief overview of each research work. I will not attempt to plainly
summarize; most of the works are at least a few years old, and so as much as I am able I will recontextualize
them in a world and research landscape (in 2024) that already seems very different from those in which they
were written (e.g., in 2018.) To do so, it is worth it to begin with some context.

1.2 A bit of background for context

1.2.1 Non-neural language models

When I began working on natural language processing—the science and engineering of systems that operate
with and/or generate human languages—in 2015, I was introduced to language models as a tool with a very
specific purpose in my subfield: when multiple translations of a phrase (i.e., from English to Tamil) are
possible, a language model would score the phrases as to how likely they were to be good Tamil, independent
of whether they were good translations of the English phrase. In a world where single-language data was (and
is) much more prevalant than pairs of sentences in two languages with the same intended meaning, this meant
that the language model could benefit from more data than the translation model. The language models used

1https://www.nytimes.com/2023/02/16/technology/bing-chatbot-microsoft-chatgpt.html.

https://www.nytimes.com/2023/02/16/technology/bing-chatbot-microsoft-chatgpt.html

CHAPTER 1. INTRODUCTION 3

were big; they stored every single sequence of three to five words in a large text corpus, like I like pizza, or like
pizza because, or pizza because it, and stored the counts more or less exactly. They also were quite transparent
in what they did. Estimated probabilities were essentially derived from literal counting:

p(eat the pizza | eat the) ↑ count(eat the pizza)
count(eat the)

, (1.1)

though in practice these models were smoothed (a process in which a small amount of probability mass is
placed on unobserved elements.) These simple systems also afforded the generation of text by sampling from
the estimated distributions. Despite the simplicity of these count-based models, the generated text could be
quite coherent in short spans (Goldberg, 2017; Jurafsky and Martin, 2000; Hewitt et al., 2022) – especially if
models were not smoothed.

These systems were undeniably useful—improving language models was a core part of improved automatic
translation between human languages as well as automatic speech recognition of audio at the time—but did
not form the substrate upon which language understanding technologies were built at the time. They scored
text relatively well, and that was it. And if we wanted to understand these count-based models in a meaningful
way, we could quickly come to a conclusion. A given score could be traced to the exact strings that were
counted (and perhaps the smoothing that was used.) In summary, these count-based models2 were not artefacts
whose behaviors were powerful and opaque enough to spur the attempts at understanding we’ve participated in
in this thesis.

This begs the question of what changed. At first glance, it wasn’t the introduction of new ideas for how
to build language models.3 Neural language models already existed (and had since at least the work of
Bengio et al. (2000), though arguably also since the work of Elman (1990).) In fact, the technologies we
use today are rather similar to those of Elman (1990). The core difference is the massive scale at which
neural language models have been constructed in the last decade—and the surprising difference in qualitative
outcomes that happen when you scale neural language models compared to scaling count-based models. I
believe this distinction to be underappreciated: before the modern language model revolution (say, 2018
onward,) NLP practitioners had already spent huge efforts scaling count-based language models, and the
results were fine. Nothing unpredictable happened; the models became huge and machine translation or
transcription performances became a bit better. But what has happened as we’ve scaled neural language
models, with distributed representations (which we’ll discuss soon), is just massively different.

1.2.2 Neural Language Models

There is no perfect definition for a neural network that includes all things that feel like neural networks and
excludes all things that feel like not neural networks, and so there is no perfect definition for a neural language

2These count-based models are often called n-gram models. We avoid that language here since it refers to a finite window of n words
of memory, not to the method of estimation, that is, counting.

3To be sure, a huge amount of excellent work has gone into refining the learning techniques and the computer software and hardware
systems, which we’ll get into later.

CHAPTER 1. INTRODUCTION 4

model. For our purposes, thankfully, intuition will suffice. A neural language model, intuitively, is a language
model pω wherein (1) the parameters ω are learned via some variant of gradient descent, (2) where there is
some kind of nonlinear function applied to an input in order to come to an output probability, and (3) whereby
inputs are represented as real-valued vectors. Here’s a nice example using a recurrent neural network:

h0 = 0 (1.2)

ht = ϑ(Whht↑1 + Wxxt) (1.3)

pω(· | x<t) = softmax(Eht↑1) (1.4)

where all hi → Rd, and Wh → Rd↓d, Wx → Rd↓|V|, E → R|V|↓d, and xt → R|V| is a one-hot encoding of
a vocabulary element of V . The parameters of this model are ω = {Wh,Wx, E}. They could be trained by
gradient descent to minimize the cross-entropy prediction error on samples drawn from some distribution D
over V→, which we’ll write as tuples of tokens xt and the prefixes preceding them x<t:

min
ω

E(xt,x<t)↔D [↓ log pω(xt | x<t)] (1.5)

When discussing scaling neural language models, two things are meant, often jointly: scaling the number
of learnable parameters (i.e., |ω|, if we were to flatten and concatenate all matrices in ω), and scaling the
number of samples trained on (i.e., the number of tokens xt and corresponding prefixes x<t that participate in
the expectation in Eqn 1.5.) More learnable parameters correspond roughly to increased capacity (and, perhaps
surprisingly, easier learning) in the neural network, and more samples both provide more knowledge and
seemingly force models to learn more interesting functions from input sequences to output distributions. Note
that for count-based models, we can also scale parameter counts (i.e., by counting ever-larger spans of text)
and samples (by counting over a larger corpus.) Intuitively, though, the algorithms used by these count-based
models to estimate probabilities—i.e., counting and division—are similar no matter the scale.

In contrast, neural language models seem to learn very different functions at large scale than at small scale.
The complexity and depth of this result will take much more than the length of this thesis to go into. So, I’ll
provide an example of this scale at something like its simplest, with a model that (1) is often (erroneously)
not considered a language model, and (2) is often (reasonably) not considered a neural network: continuous
bag-of-words word2vec (Mikolov et al., 2013b,a).

1.2.3 Word2vec as a neural language model

Continuous bag-of-words word2vec was introduced as an efficient method for learning useful representations of
single words (i.e., single elements of our vocabulary V) (Mikolov et al., 2013a). A not-so-useful representation
is the one-hot vector, vx → {0, 1}|V|, in which each unique word has its own dimension where the value is 1,
and 0 elsewhere. This representation is not-so-useful because two different words that feel similar—say, house
and home—are equally as dissimilar as any other pair of words under a similarity function like the dot product.

CHAPTER 1. INTRODUCTION 5

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein: scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

Table 1.1: Table 8 of Mikolov et al. (2013a). The original caption was Table 8: Examples of the word pair relationships,
using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

In contrast, continuous bag-of-words word2vec vectors encode interesting similarities between words via the
dot product.

I’ll now present continuous bag-of-words word2vec, (which we’ll see again in a modern model in
Chapter 5.) For technical reasons, I’ll use a slightly different mathematical form than presented in any of
Mikolov et al. (2013b,a). For a sequence of words (o1, . . . , ok//2, xi, ok//2+1, . . . , ok) → V→, continuous
bag-of-words word2vec specifies a distribution over the inside word xi given the outside words o1, . . . , ok:

vi = Exi (1.6)

vo =
1

k

∑

o1,...,ok

Eok (1.7)

p(xi | o1, . . . , ok) =
exp(v↗

o
vi)∑

x↘V exp(v↗
o

(Ex))
(1.8)

You may note that this looks a lot like a simplification of our recurrent neural network language model in
Equation 1.5. Fundamentally, it is quite similar; in fact, by predicting the last word instead of the center word,
we see that this is a variation on a simple language model. Let (x1, . . . , xt) → V→. Then

vt = Ext (1.9)

v<t =
1

t↓ 1

t↑1∑

i=1

Exi (1.10)

pω(xt | x<t) =
exp(v↗

o
vi)∑

x↘V exp(v↗
o

(Ex))
, (1.11)

and we optimize the parameters E → Rd↓|V| to minimize an identical loss as Equation 1.5. Is this a neural
language model? It depends on your definition of “neural network”, but I’m happy to go with yes for now.

I am happy to call word2vec a neural language model in part because it is the simplest model I’ve seen
that has some of the fascinating results of scaling neural language models. What properties should we expect

CHAPTER 1. INTRODUCTION 6

out of word2vec as I’ve stated it? For one, we should expect that when two words are likely to co-occur, they
should have similar vectors under the dot product (relative to the similarities of other words’ vectors)4:

x, x≃ co-occur ↔ (Ex)↗Ex≃ is large (1.12)

However, at scale, something somewhat surprising happens. Various relationships are approximately repre-
sented by vector offsets in word2vec embedding space:5

vEinstein ↓ vscientist ↑ vMessi ↓ vmidfielder (1.13)

vEinstein ↑ vMessi ↓ vmidfielder + vscientist. (1.14)

In Table 1.1, I present what was Table 8 of Mikolov et al. (2013a), in which a linear offset (and exclude input
words) strategy in word2vec vector space yields fascinating analogy completions like the Einstein-Messi
relation above. Co-occurring words leading to similar vectors (Equation 1.12) is predictable; I would argue
that approximate linear analogies (Equation 1.14) is a much harder property to predict would happen when
shown the optimization problem being approximated by word2vec. Certainly, a lot of work has gone into
understanding why this and other interesting properties arise in word2vec (Ethayarajh et al., 2019; Pennington
et al., 2014; Levy and Goldberg, 2014).

The radical capabilities and problems in language models—the motivation for deep understanding—result
from an almost identical optimization problem as I’ve presented here for word2vec; the only clear distinction is
in the scaling of the representational capacity of the neural network and in the amount of data and computation
put into the minimization problem.

1.2.4 Broad overview of related work

Each of the chapters of this thesis has a related work section specific to the topics of the chapter, but it bears
briefly discussing the broader machine learning literature here at the beginning.

Interpretability. Multiple large bodies of work in machine learning have targeted the goals of explaining or
interpreting the predictions of machine learning models. Interpretations and explanations can take many forms.
Influence functions try to answer the question of which training data points were most relevant to classifying
an example (Koh and Liang, 2017). Many works attempt to derive explanations in the form of which input
words (or pixels, etc. in other modalities) are most relevant to the prediction of a machine learning model, also

4In the original word2vec formulation, in which different vectors are used for conditioning vs predicted words, this claim doesn’t quite
hold; instead, one expects words that co-occur with similar words to have similar vectors.

5This claim has garnered some controversy within NLP. One must exclude the words in the input—i.e., messi, scientist, midfielder—for
the nearest neighbor to be Einstein instead of one of the input words (Linzen, 2016). Functions other than linear offsets extract analogies
better as well (Rogers et al., 2017). Despite all of this, however, when one simply plays around with word2vec vectors and discovers, e.g.,
that the “linear offset plus exclude input words” method maps France:wine::Australia to beer, or listens to students as they play with the
vectors and interesting analogies that are encoded, I just can’t help but feel like the properties that are approximately encoded as linear-ish
offsets are too fascinating to ignore.

CHAPTER 1. INTRODUCTION 7

called saliency maps (Simonyan et al., 2014; Ribeiro et al., 2016; Li et al., 2016). The difficulty of defining
interpretable or explainable systems, and the difficulty of evaluating interpretations when we lack ground truth,
has led both to influential pieces on interpretability as a goal (Doshi-Velez and Kim, 2017; Lipton, 2018), and
concrete methodological issues with seemingly intuitive methods (Bilodeau et al., 2024; Geirhos et al., 2024).
Much of the work in this thesis will attempt to leverage existing concepts in, e.g., lingusitics, in order to better
understand representations in neural networks; this is common more broadly in machine learning (Kim et al.,
2018; Koh et al., 2020). Even more broadly, using concepts or symbols as a substrate for understanding has a
history in neurosymbolic computing; in my thinking on the subject, I found the key-value binding ideas in
tensor product representations (Smolensky, 1990) particularly influential.

Connections to linguistics in interpretability. This thesis leverages, at least indirectly, decades of work in
linguistic and computational linguistic study on the structure and processing of language in humans. Core
to the first part of this thesis is the idea that human language has latent, syntactic, hierarchical structure. I
leverage linguist-parsed resources like the Penn Treebank (Marcus et al., 1993) and syntactic formalisms like
Universal Dependencies (Nivre et al., 2020). These resources are compromises between linguistic study and
ease of annotation and computational use. Ideas surrounding the characterization of the structure of language
are much older (Humboldt, 1836; Chomsky, 1957; Montague, 1970), and the exact formalisms are not crucial
for this thesis. Separately, ideas often traced to Firth (1935, 1957) about the meanings of words being derived
from the distribution of contexts in which they appear are central to the ideas in language modeling.

Neural Architectures. In part 2 of this thesis, I introduce the Backpack, a neural network architecture. The
development or application of neural network architectures for processing language, with its variable lengths
and structures, has a long history, including e.g., recurrent neural networks (Elman, 1990) and gated variants
like LSTMs and GRUs (Hochreiter and Schmidhuber, 1997; Cho et al., 2014). Attention for long-distance
dependencies and gradient propagation has been one of the most influential ideas in the last decade Bahdanau
et al. (2014); Vaswani et al. (2017). Recently, state-space models, often with gating, have risen in popularity
due to their linear-time complexity in sequence length Gu et al. (2021); Gu and Dao (2023). Ideas like the
mixture-of-experts have risen and fallen in popularity, a sort of meta-architectural decision that is now common
in modern language models Shazeer et al. (2017). Most architectural development is for the sake of more
performant models; the Backpack is designed for our understanding, but can leverage other improvements,
since it can be thought of as a constraint on top of other neural architectures.

1.3 On understanding

Understanding is in the mind of the understander. I discussed this somewhat in the preface to this thesis, but
now that we’ve discussed a bit of detail of a model—word2vec—that we could attempt to understand, it is
useful to revisit.

CHAPTER 1. INTRODUCTION 8

As researchers, it is our job to take complex, hard-to-define problems, and bring to bear on them all of
our intuitions, our tools, our hypotheses. There is no one tool that solves these problems out of the box, no
one intuition that applies perfectly. Often research conversations go along the lines of what would you think
would happen if X? and the response well I’m not sure how relevant it is, but I know that Y, and the other day I
realized that Z.... The future value of each piece of knowledge is exceptionally hard to quantify, as one doesn’t
know when it will be relevant or what other piece of knowledge is necessary to make the piece of knowledge
actionable. Yet, we strive after this understanding as researchers in order to prune the exponentially large
search space of actions as a function of time we could take as we attempt to discover truths about the world
and build systems that are useful.

As engineers or technicians, it is our job to have a causal understanding of what makes our systems tick, to
fix their problems, specify their boundaries, characterize their known issues. Knowing which part of a system
to fix is a basic requirement of any technician. When an airplane crashes, or when a microprocessor has a bug,
we expect the engineers that designed the systems to come up with clear, exact changes that will make such
failures massively less likely in the future.

Understanding is required for all of this. It is easier to value the engineer’s, the technician’s understanding.
It is immediate. Many results in our field, like better recipes for training models, or methods for improving
benchmark numbers, fall under this category. However, I believe the vague intuitions and understanding of the
researcher are crucial for long-term progress. Each researcher will decide which intuition, which result helps
them think more clearly about the artefacts they’re building and studying, which is why I say understanding is
in the mind of the understander.

This more vague, blue-sky understanding, is as much about the journey as it is about the result. Imagine if,
in a zero-knowledge proof, an oracle were to convince you that P ↗=NP, that is, that the set of problems that are
efficiently checkable is strictly larger than the set of problems that are efficiently solvable. Depending on the
amount of uncertainty you had in that statement, you’ve received less than (perhaps substantially less than)
one bit of information about the world. I imagine most computer scientists already mostly believe this, but this
oracle removes all doubt, and tells you nothing about why the claim is true.

Compare your feeling in this hypothetical to if you were to receive the proof and it contained a beautiful
reason why P↗=NP. You’ve gained no more information about the truth of the claim than in the zero-knowledge
setting, but you’ve gained potentially useful information about so many other things. I imagine that this would
change your thinking about future problems, and you could bring the intuitions you’ve developed to bear on
even only tangentially related ideas. This is the beauty of conducting blue sky understanding research; it builds
abstract tools in the toolboxes of researchers who may apply them scenarios you may not even dream of.

1.4 Understanding language models through discovery and by design

With all of the context of this chapter so far in mind, I can explain why the thesis of this work is to understand
language models through discovery and by design. To refine this even further, what I attempted to do in my

CHAPTER 1. INTRODUCTION 9

thesis work is to develop and refine concrete methods evaluation frameworks for formalizing and measuring
aspects of what it means for a language model to have knowledge of a concept, or for us to be able to make
surgical changes to a model. I provide concrete results—like how neural language models learn about natural
language syntax without being explicitly taught—but my main goal has been to think through the problems
relating to what it means to understand these exceptionally complex systems and develop methods that allow
us to tackle those problems. Implicit in my thesis is that both of my proposed directions—understanding
through discovery, and separately, understanding by design—are necessary for long-term progress in our
understanding of systems. On the one hand, this might seem uncontroversial; we don’t stop doing basic
biology research just because we’re also doing applied drug design; we need to keep doing all levels of research
to ensure the pipeline of scientific results for centuries to come. But on the other hand, in the immediate
results-oriented engineering fields in which machine learning methods have flourished, it’s not an obvious
thing. Understanding through discovery is necessary because we just don’t know the right way to characterize
neural language models or how they store their knowledge; we need to just explore and make connections.
Understanding by design is necessary because these systems are already broadly deployed, and as engineers
we cannot build systems and hope to understand them later; we must build them with our ability to understand
and fix them in mind. I can’t prove the necessity of both directions in this thesis, but I do hope that the reader
learns qualitatively different things from the two core halves of this thesis and thus comes away somewhat
convinced. With this in mind, I’ll now discuss a bit about each of the attempts at understanding that you’ll find
in the rest of this thesis.

1.5 Chapters in this thesis

1.5.1 A Structural Probe for Finding Syntax in Word Representations

In Chapter 2, which corresponds to the published work Hewitt and Manning (2019), we showed that neural
language models—in particular, BERT (Devlin et al., 2019)—learn to encode a fascinatingly simple represen-
tation of linguistic syntax, simply by an optimization like that in Equation 1.5: predicting words in a sequence.
Most of the interest of this work was not in the result itself, but in the methodological development. How does
one show that an artefact has learned a property other than what it was trained on? How do we connect the
continuous, vector representations of language models with the discrete, graph structures hypothesized by
linguists?

First, a note on syntax. Natural language has long-distance, hierarchical structure. Consider the following
sentence:

The chef who ran to the store was out of food.

There’s a substring here that reads as a whole sentence itself, and leads to the wrong interpretation of the
sentence, in which the store is out of food instead of the chef:

The chef who ran to the store was out of food.

CHAPTER 1. INTRODUCTION 10

Instead, the correct semantics (the chef being the one out of food) is derived by realizing that who ran to the
store modifies chef, and the chef was out of food:

(The chef (who ran to the store)) (was out of food).

These relationships can be represented as a graph, where the words are nodes and edges represent
modification relationships, a few of which I’ve written here:

The chef who ran to the store was out of food
hThe hchef hwho hran hto hthe hstore hwas hout hof hfood

.
.

In contrast to this discrete structure, a model like BERT represents words (technically, parts of words) as
real-valued vectors hchef → Rd etc. The key insight of this work is that there is a natural connection between
the discrete tree structure of syntax and the continuous space of neural activations: they both correspond to
natural metrics. The path metric of a tree is the number of edges in the unique path between each pair of nodes.
Various natural distances exist on embeddings, like L2 or L1. In fact, there is a beautiful equivalence between
L1 metrics and path metrics (Deza and Laurent, 2009). In this sense, these objects are not so different.

The final component of the method we use is learning—we learn a linear transformation of the BERT
vector space under which the distances in linguistic trees and the distances in vector space are approximately
the same. The learning uses real syntax trees to find a good such linear transformation, and it should cause
some discomfort scientifically—if we’re learning the mapping, how do we know we can’t just find, well,
anything? We tackle this question in multiple of the following chapters.

1.5.2 Designing and Interpreting Probes with Control Tasks

The methods in Chapter 2 fall under a banner called probing: learning a mapping from the representations
of a model to a property of interest in order to understand those representations. Upon finishing the paper
corresponding to that chapter, I thought more deeply about why I thought the results were interesting. Was it
interesting just that there existed some mapping from BERT vectors to syntax trees? What was the difference,
if any, between the scientific effort of probing to understand the representations and the engineering effort of
figuring out how best to use a representation to predict a property by any means necessary?

At a high level, this is not a problem new to science. Neuroscientists in particular have dealt with questions
of what it means for a part of the brain to encode a particular property, often assuming linear mappings as
proof of an interesting level of encoding, though this has received increasing attention of late (Ivanova et al.,
2022). As put to me by Stanford theoretical neuroscientist and deep learning theorist Surya Ganguli, the
neurons in the eye obviously encode the information of, say, a lion, but it’s represented at a very low level,
whereas deeper in the brain, it’s represented at a higher level. I’m paraphrasing this heavily, and I think it is a
common enough analogy; it was also used by, e.g., Alain and Bengio (2016).

Simplicity of the decoding mapping seems key to me – though simplicity can be defined many ways.

CHAPTER 1. INTRODUCTION 11

Around 2019, however, NLP scientists running probing studies were using rather expressive mappings—
multiple-layer neural networks—and I felt like in order to make a point, I needed clear evidence that such
methods could lead the researcher astray. This chapter, corresponding to the published paper Hewitt and Liang
(2019), provided that evidence. At its core is a fake task—basically memorizing which randomly chosen
categories each word in a vocabulary belongs to—which (1) the representation we’re trying to understand
definitely has no special knowledge of, and yet (2) through probing experiments, we can be reasonably
convinced via a held-out test set that the representation does have that knowledge. All of the “hard work”
in some sense was done by the probe, demonstrating the pitfalls of attributing interesting properties to the
representation.

The saving grace for probing, to me, is that simple probes really don’t have this problem in comparison to
complex probes. We introduced a sort of baseline—controlling for this random task accuracy when probing
for something else—which in retrospect is a bit of a kludge; we sorted out the right thing to do only in the
subsequent chapter (below.) But the key insight to me was that the simplicity of the mapping one attempts to
find was crucial in avoiding the kind of spurious result that more complex probing mappings could allow.

1.5.3 Conditional Probing: Measuring Usable Information Beyond a Baseline

Chapter 3 provided a clear example of how an expressive probe could lead a researcher to an incorrect
conclusion about the properties of a representation they’re attempting to study. However, it didn’t provide
a theoretical framework or set of methods for probing that would allow us to avoid, or design away, these
problems.

In this chapter, corresponding to the published work Hewitt et al. (2021), we provided an argument
and theoretical framework for the idea that probing measures usable information (Xu et al., 2020) under a
researcher’s hypothesis for what usability might mean – linearity, some kind of kernel function, etc.6 To
understand usable information, consider an encrypted document that contains an address. The encrypted
document contains all the information of the address, and if you worked hard enough—say, took exponential
time—to decrypt it, you could get the address! But the information isn’t very usable. Usable information
quantifies this by specifying a class of functions by which one could attempt to use, say, the document to
predict the address. Often this class might be linear models, but for now, think of it as a class of functions
representing a human trying to read the encrypted document. The usable information is the most uncertainty
one could remove from what we think the address is, under the best function in the class we’ve chosen.
Naturally when a human tries to read an encrypted document, we’re just as uncertain after seeing it as we were
before. For an unencrypted document, the information is quite accessible to us reading it.

In this chapter, we introduced conditional usable information. Much like conditional Shannon information,
conditional usable information measures how much extra uncertainty is removed by knowing something (say,
the unencrypted document) conditioned on already knowing something else (say, the encrypted document.)

6I designed, led, and implemented most of the work in Hewitt et al. (2021), with useful contributions in proofs and discussion from
others.

CHAPTER 1. INTRODUCTION 12

Neural language models, in this analogy, are the decryption function; they take information that is present in
the input, and make it usable to a wide range of simple extraction functions.

Making a property easier to predict to weaker classes of functions is, to me, a deep notion of having learned
about that property. There’s certainly room for disagreement on this, but the more I ponder what it means for
an artefact to contain knowledge, the more it seems right. An agent that has knowledge can try to convince
you of that fact. An artefact that has knowledge is not trying to convince you, so you need to decide how hard
you want to try to read it. A library contains knowledge; an ancient tome contains knowledge. Neither tells
you how to get that knowledge or attempts to convince you of that knowledge. Likewise a neural network
contains knowledge.

This line of three Chapters—2,3,4—corresponding to the papers Hewitt and Manning (2019), Hewitt and
Liang (2019), Hewitt et al. (2021)—are Part 1 of this thesis. They are all are attempts to understand neural
objects that weren’t designed with understanding in mind. But we are engineers, not just scientists, and we
can design future neural systems. The next two chapters explore the idea that neural language models can be
designed for the sake of understanding.

1.5.4 Backpack Language Models

In Chapter 5, corresponding to the published work (Hewitt et al., 2023), we present the Backpack, a neural
network architecture designed for our ability to understand it as well as its power for learning from data.7

Existing language models don’t really have gauges or control panels like traditional tools. The biggest reason
is that the things we might like to measure or intervene upon can’t really be specified by the designers a priori.
High-level concepts that we might want to intervene upon will be learned by the system from the data; any
attempt to specify them a priori is likely to (1) degrade system performance since we don’t allow the data
to speak as clearly, and (2) perhaps not give us the control we want, since the model might learn to use the
concept we’ve tried to specify in a way we didn’t predict.

The approach we take in the Backpack is to specify a specific functional form of a deep neural network
that (1) builds in knob-like components, but (2) forces the network to learn the semantics of those knobs from
scratch from the data. The particular math we use enforces that the knobs are knobs: they can be turned up
or down with reliable effects. This is rare in neural networks, wherein changing any parameter or activation
could in theory have more or less any effect on new inputs.

More concretely, the Backpack constrains the deep network’s output to be a non-negative combination of a
set of word-identified factors. In a way we make precise in the chapter, it’s like word2vec specified k vectors
per word, and a controller network got to decide which factors of which words in the input were used to predict
the next word. These lexical factors specialize in practice to decompose the predictive uses of different words,
and these specializations don’t depend on anything but the identity of the word. So, they provide the knobs
that we can twist, and we get a guarantee of knob-like behavior because the only thing that changes in a factor

7With useful discussions and writing from my coauthors, I designed most of this work and implemented all code and experiments
(leveraging existing codebases as noted.) The exact form of the Backpack in particular was jointly designed with John Thickstun.

CHAPTER 1. INTRODUCTION 13

is how much it’s used in a particular context, not what its use means for the output distribution.
The experiments in this chapter demonstrate that the Backpack is expressive like the Transformer (Vaswani

et al., 2017) is, and that the sense vectors provide some interesting new ways to control the model’s behavior.
It was in this chapter that I began to think about interpretability-as-control: beyond blue sky exploration of a
model, we can evaluate our understanding of our models by our ability to (1) change what we want about the
model while (2) leaving everything else unchanged. This is a deep measurement problem: there’s so much
that could change that we don’t want to change, and there’s so much that we could measure to see if we’ve
changed everything that we did want to change. Our experiments in this chapter begin to touch on this, but I
felt the problem was deep enough that I spent Chapter 6 investigating it.

1.5.5 Model Editing with Canonical Examples

I am no medical doctor, but I have the intuition that there are two goals to a good medicine: (1) fix some
problem with the body, and (2) don’t break anything else. I’m reminded of Randall Monroe’s xkcd comic,
number 1217: Cells, which contains the text:

When you see a claim that a common drug or vitamin “kills cancer cells in a petri dish,” keep in
mind: so does a handgun.

This quote gets at the core of how surgical (in the colloquial, but also maybe technical, sense) we would like
interventions to complex systems to be when we’re fixing a problem. Often, we do basic science to understand
biology or the human body better in order to eventually use that understanding to do a better job of making
medicines that follow both goals (1) and (2). Science that doesn’t immediately lead to better medicines can of
course still be valuable; I’ve already argued as much and I don’t intend to downplay that. But when we are
attempting to develop better medicines, we must carefully measure both of our constraints.

In Chapter 6, corresponding to the preprint work Hewitt et al. (2024), in which I designed, led, and
implemented most of the work with help in implementation of some of the code and datasets, we attempted
to develop a set of rules—an evaluation setting—under which we could measure how surgical changes to
language models are across a wide range of possible things we’d like to change about them. Our setting has a
few things I think are crucial. The setting gives a dataset of strings—good strings, bad strings, pairs of better
and worse strings—that specify some simple version of what we’d like to change. A statement of fact, or a
bias we’d like to remove from the model. The practitioner’s job is to take a model and those strings, and return
a new model. The first thing we require is that the returned model is with a tiny ϖ-ball of the original model
in terms of overall loss on a large corpus; this means on average, very little can have changed in the model.
The second thing we require is that the evaluation examples for the target behavior (i.e., knowledge of a fact,
removal of a bias) be out-of-distribution, and in particular, harder, than the training examples, since all real
evaluation in naturalistic contexts will be out-of-distribution.

Within this game, we find perhaps surprisingly that simple methods—LoRA finetuning with KL-divergence
regularization (Hu et al., 2022)—perform quite well compared to methods that were designed specifically for

CHAPTER 1. INTRODUCTION 14

their surgical purposes. This challenges how much our insight has really gained us in terms of our ability to
surgically change the model compared to methods that were not developed for interpretability. (Though we
do find that the methods enabled by the Backpack are even more useful.) At a broader level, this focus on
whether our interpretability methods help us to make more surgical changes forces us to grapple with what our
interpretability methods give us. In some sense, saying that finetuning actually can be more surgical than our
editing methods is like getting our zero-knowledge proof of P ↗=NP as I discussed earlier in the chapter; we
know that this thing works, but we still don’t really know why. It’s not satisfying, but it is effective.

1.6 On the rest of the thesis

The rest of this thesis is best read as Chapters 2 through 4 together (Part 1), and/or Chapters 5 and 6 (Part 2).
The first three chapters go into the deep methodological questions of probing, and some of the exciting results
surrounding what language models learn about the structure of language without any supervision. From the
title of this thesis, these chapters are on understanding through discovery. Chapters 5 and 6 document our
efforts to make and measure language models that are understandable and controlable by design. Again from
the title, these chapters are on understanding by design.

One might complain that these are really two quite distinct lines of research, and alas, they are. But I hope
through this introduction that I’ve convinced you that they follow from two pillars of understanding—blue sky
exploration and engineering-level control—both of which are fundamental and complementary. As I note in
the preface, our understanding of language models is limited, despite my best efforts, and I hope the attempts
I’ve documented here are useful for you as you continue on your own journeys of understanding.

Part I

Understanding through Discovery

15

Chapter 2

A Structural Probe for Finding Syntax in
Word Representations

2.1 Introduction

As pretrained deep models that build contextualized representations of language have been shown to provide
gains on NLP benchmarks, understanding what they learn is increasingly important. To this end, probing
methods have been designed to evaluate the extent to which representations of language encode particular
knowledge of interest, like part-of-speech (Belinkov et al., 2017), morphology (Peters et al., 2018a), or
sentence length (Adi et al., 2017). Such methods work by specifying a probe (Conneau et al., 2018; Hupkes
et al., 2018), a supervised model for finding information in a representation.

Of particular interest, both for linguistics and for building better models, is whether deep models’ represen-
tations encode syntax (Linzen, 2018). Despite recent work (Kuncoro et al., 2018; Peters et al., 2018b; Tenney
et al., 2019), open questions remain as to whether deep contextual models encode entire parse trees in their
word representations.

In this chapter, we propose a structural probe, a simple model which tests whether syntax trees are
consistently embedded in a linear transformation of a neural network’s word representation space. Tree
structure is embedded if the transformed space has the property that squared L2 distance between two words’
vectors corresponds to the number of edges between the words in the parse tree. To reconstruct edge directions,
we hypothesize a linear transformation under which the squared L2 norm corresponds to the depth of the word
in the parse tree. Our probe uses supervision to find the transformations under which these properties are
best approximated for each model. If such transformations exist, they define inner products on the original
space under which squared distances and norms encode syntax trees – even though the models being probed
were never given trees as input or supervised to reconstruct them. This is a structural property of the word
representation space, akin to vector offsets encoding word analogies (Mikolov et al., 2013b). Using our probe,

16

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 17

we conduct a targeted case study, showing that ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2019)
representations embed parse trees with high consistency in contrast to baselines, and in a low-rank space.1

This chapter contributes a simple structural probe for finding syntax in word representations (§2.2), and
experiments providing insights into and examples of how a low-rank transformation recovers parse trees from
ELMo and BERT representations (§2.3,2.4). Finally, we discuss our probe and limitations in the context of
recent work (§2.5).

2.2 Methods

Our goal is to design a simple method for testing whether a neural network embeds each sentence’s dependency
parse tree in its contextual word representations – a structural hypothesis. Under a reasonable definition,
to embed a graph is to learn a vector representation of each node such that geometry in the vector space—
distances and norms—approximates geometry in the graph (Hamilton et al., 2017). Intuitively, why do
parse tree distances and depths matter to syntax? The distance metric—the path length between each pair of
words—recovers the tree T simply by identifying that nodes u, v with distance dT (u, v) = 1 are neighbors.
The node with greater norm—depth in the tree—is the child. Beyond this identity, the distance metric explains
hierarchical behavior. For example, the ability to perform the classic hierarchy test of subject-verb number
agreeement (Linzen et al., 2016) in the presence of “attractors" can be explained as the verb (V) being closer
in the tree to its subject (S) than to any of the attactor nouns:

S ... A1 ... A2 ... V ...
.

. . .

Intuitively, if a neural network embeds parse trees, it likely will not use its entire representation space to do
so, since it needs to encode many kinds of information. Our probe learns a linear transformation of a word
representation space such that the transformed space embeds parse trees across all sentences. This can be
interpreted as finding the part of the representation space that is used to encode syntax; equivalently, it is
finding the distance on the original space that best fits the tree metrics.

2.2.1 The structural probe

In this section we provide a description of our proposed structural probe, first discussing the distance for-
mulation. Let M be a model that takes in a sequence of n words wε

1:n and produces a sequence of vector
representations hε

1:n, where ϱ identifies the sentence. Starting with the dot product, recall that we can define a
family of inner products, hTAh, parameterized by any positive semi-definite, symmetric matrix A → Sm↓m

+ .
Equivalently, we can view this as specifying a linear transformation B → Rk↓m, such that A = BTB. The
inner product is then (Bh)T (Bh), the norm of h once transformed by B. Every inner product corresponds to

1We release our code at https://github.com/john-hewitt/structural-probes.

https://github.com/john-hewitt/structural-probes

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 18

a distance metric. Thus, our family of squared distances is defined as:

dB(hε

i
,hε

j
)2 =

(
B(hε

i
↓ hε

j
)
)T (

B(hε

i
↓ hε

j
)
)

(2.1)

where i, j index the word in the sentence.2 The parameters of our probe are exactly the matrix B, which we
train to recreate the tree distance between all pairs of words (wε

i
, wε

j
) in all sentences T ε in the training set of

a parsed corpus. Specifically, we approximate through gradient descent:

min
B

∑

ε

1

|sε|2
∑

i,j

∣∣dT ω(wε

i
, wε

j
) ↓ dB(hε

i
,hε

j
)2
∣∣

where |sε| is the length of the sentence; we normalize by the square since each sentence has |sε|2 word pairs.

2.2.2 Properties of the structural probe

Because our structural probe defines a valid distance metric, we get a few nice properties for free. The
simplest is that distances are guaranteed nonnegative and symmetric, which fits our probing task. Perhaps
most importantly, the probe tests the concrete claim that there exists an inner product on the representation
space whose squared distance—a global property of the space—encodes syntax tree distance. This means that
the model not only encodes which word is governed by which other word, but each word’s proximity to every
other word in the syntax tree.3 This is a claim about the structure of the representation space, akin to the claim
that analogies are encoded as vector-offsets in uncontextualized word embeddings (Mikolov et al., 2013b).
One benefit of this is the ability to query the nature of this structure: for example, the dimensionality of the
transformed space (§ 2.4.1).

2.2.3 Tree-depth structural probes

The second tree property we consider is the parse depth ↘wi↘ of a word wi, defined as the number of edges in
the parse tree between wi and the root of the tree. This property is naturally represented as a norm – it imposes
a total order on the words in the sentence. We wish to probe to see if there exists a squared norm on the word
representation space that encodes this tree norm. We replace the vector distance function dB(hi,hj) with the
squared vector norm ↘hi↘2B , replacing Equation 2.1 with ↘hi↘A = (Bhi)T (Bhi) and training B to recreate
↘wi↘. Like the distance probe, this norm formulation makes a concrete claim about the structure of the vector
space.

2As noted in Eqn 2.1, in practice, we find that approximating the parse tree distance and norms with the squared vector distances and
norms consistently performs better. Because a distance metric and its square encode exactly the same parse trees, we use the squared
distance throughout this paper. Also strictly, since A is not positive definite, the inner product is indefinite, and the distance a pseudometric.
Further discussion can be found in our appendix.

3Probing for distance instead of headedness also helps avoid somewhat arbitrary decisions regarding PP headedness, the DP hypothesis,
and auxiliaries, letting the representation “disagree" on these while still encoding roughly the same global structure. See Section 2.5 for
more discussion.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 19

Distance Depth
Method UUAS DSpr. Root% NSpr.

LINEAR 48.9 0.58 2.9 0.27
ELMO0 26.8 0.44 54.3 0.56
DECAY0 51.7 0.61 54.3 0.56
PROJ0 59.8 0.73 64.4 0.75

ELMO1 77.0 0.83 86.5 0.87
BERTBASE7 79.8 0.85 88.0 0.87

BERTLARGE15 82.5 0.86 89.4 0.88
BERTLARGE16 81.7 0.87 90.1 0.89

Table 2.1: Results of structural probes on the PTB WSJ test set; baselines in the top half, models hypothesized to encode
syntax in the bottom half. For the distance probes, we show the Undirected Unlabeled Attachment Score (UUAS) as well
as the average Spearman correlation of true to predicted distances, DSpr. For the norm probes, we show the root prediction
accuracy and the average Spearman correlation of true to predicted norms, NSpr.

Figure 2.1: Parse distance UUAS and distance Spearman correlation across the BERT and ELMo model layers.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 20

BERTlarge16

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

..
..

. .. .

..
. .

..
.

.. . . .

ELMo1

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

.
.

.
.

. .
. .

..
.

..
.

.
.

..
.

.
. .

.

.

Proj0

The complex financing plan in the S+L bailout law includes raising $ 30 billion from debt issued by the newly created RTC .
. . . .

..
..

. .. .

..
.

Figure 2.2: Minimum spanning trees resultant from predicted squared distances on BERTLARGE16 and ELMO1
compared to the best baseline, PROJ0. Black edges are the gold parse, above each sentence; blue are BERTLARGE16, red
are ELMO1, and purple are PROJ0.

2.3 Experiments

Using our probe, we evaluate whether representations from ELMo and BERT, two popular English models
pre-trained on language modeling-like objectives, embed parse trees according to our structural hypothesis.
Unless otherwise specified, we permit the linear transformation B to be potentially full-rank (i.e., B is square.)
Later, we explore what rank of transformation is actually necessary for encoding syntax (§ 2.4.1).

Representation models We use the 5.5B-word pre-trained ELMo weights for all ELMo representations,
and both BERT-base and BERT-large. The representations we evaluate are denoted ELMOK, BERTBASEK,
BERTLARGEK, where K indexes the hidden layer of the corresponding model. All ELMo and BERT-large
layers are dimensionality 1024; BERT-base layers are dimensionality 768.

Data We probe models for their ability to capture the Stanford Dependencies formalism (de Marneffe et al.,
2006), claiming that capturing most aspects of the formalism implies an understanding of English syntactic
structure. To this end, we obtain fixed word representations for sentences of the parsing train/dev/test splits of
the Penn Treebank (Marcus et al., 1993), with no pre-processing.4

Baselines Our baselines should encode features useful for training a parser, but not be capable of parsing
themselves, to provide points of comparison against ELMo and BERT. They are as follows:

LINEAR : The tree resulting from the assumption that English parse trees form a left-to-right chain. A model
that encodes the positions of words should be able to meet this baseline.

ELMO0 : Strong character-level word embeddings with no contextual information. As these representations
lack even position information, we should be completely unable to find syntax trees embedded.

4Since BERT constructs subword representations, we align subword vectors with gold Penn Treebank tokens, and assign each token
the average of its subword representation. This thus represents a lower-bound on BERT’s performance.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 21

DECAY0 : Assigns each word a weighted average of all ELMO0 embeddings in the sentence. The weight
assigned to each word decays exponentially as 1

2d , where d is the linear distance between the words.

PROJ0 : Contextualizes the ELMO0 embeddings with a randomly initialized BiLSTM layer of dimensionality
identical to ELMo (1024), a surprisingly strong baseline for contextualization (Conneau et al., 2018).

2.3.1 Tree distance evaluation metrics

We evaluate models on how well the predicted distances between all pairs of words reconstruct gold parse
trees and correlate with the parse trees’ distance metrics. To evaluate tree reconstruction, we take each test
sentence’s predicted parse tree distances and compute the minimum spanning tree. We evaluate the predicted
tree on undirected attachment score (UUAS)—the percent of undirected edges placed correctly—against the
gold tree. For distance correlation, we compute the Spearman correlation between true and predicted distances
for each word in each sentence. We average these correlations between all sentences of a fixed length, and
report the macro average across sentence lengths 5–50 as the “distance Spearman (DSpr.)" metric.5

2.3.2 Tree depth evaluation metrics

We evaluate models on their ability to recreate the order of words specified by their depth in the parse tree.
We report the Spearman correlation betwen the true depth ordering and the predicted ordering, averaging first
between sentences of the same length, and then across sentence lengths 5–50, as the “norm Spearman (NSpr.)".
We also evaluate models’ ability to identify the root of the sentence as the least deep, as the “root%".6

2.4 Results

We report the results of parse distance probes and parse depth probes in Table 2.1. We first confirm that our
probe can’t simply “learn to parse" on top of any informative representation, unlike parser-based probes (Peters
et al., 2018b). In particular, ELMO0 and DECAY0 fail to substantially outperform a right-branching-tree
oracle that encodes the linear sequence of words. PROJ0, which has all of the representational capacity of
ELMO1 but none of the training, performs the best among the baselines. Upon inspection, we found that
our probe on PROJ0 improves over the linear hypothesis with mostly simple deviations from linearity, as
visualized in Figure 2.2.

We find surprisingly robust syntax embedded in each of ELMo and BERT according to our probes.
Figure 2.2 shows the surprising extent to which a minimum spanning tree on predicted distances recovers
the dependency parse structure in both ELMo and BERT. As we note however, the distance metric itself is
a global notion; all pairs of words are trained to know their distance – not just which word is their head;
Figure 2.4 demonstrates the rich structure of the true parse distance metric recovered by the predicted distances.

5The 5–50 range is chosen to avoid simple short sentences as well as sentences so long as to be rare in the test data.
6In UUAS and “root%" evaluations, we ignore all punctuation tokens, as is standard.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 22

Figure 2.3: Parse tree depth according to the gold tree (black, circle) and the norm probes (squared) on ELMO1 (red,
triangle) and BERTLARGE16 (blue, square).

Figure 2.3 demonstrates the surprising extent to which the depth in the tree is encoded by vector norm after
the probe transformation. Between models, we find consistently that BERTLARGE performs better than
BERTBASE, which performs better than ELMO.7 We also find, as in Peters et al. (2018b), a clear difference
in syntactic information between layers; Figure 2.1 reports the performance of probes trained on each layer of
each system.

2.4.1 Analysis of linear transformation rank

With the result that there exists syntax-encoding vector structure in both ELMo and BERT, it is natural to
ask how compactly syntactic information is encoded in the vector space. We find that in both models, the
effective rank of linear transformation required is surprisingly low. We train structural probes of varying k,
that is, specifying a matrix B → Rk↓m such that the transformed vector Bh is in Rk. As shown in Figure 2.5,
increasing k beyond 64 or 128 leads to no further gains in parsing accuracy. Intuitively, larger k means a more
expressive probing model, and a larger fraction of the representational capacity of the model being devoted to
syntax. We also note with curiosity that the three models we consider all seem to require transformations of
approximately the same rank; we leave exploration of this to exciting future work.

7It is worthwhile to note that our hypotheses were developed while analyzing LSTM models like ELMo, and applied without
modification on the self-attention based BERT models.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 23

Figure 2.4: (left) Matrix representing gold tree distances between all pairs of words in a sentence, whose linear order
runs top-to-bottom and left-to-right. Darker colors indicate close words, lighter indicate far. (right) The same distances as
embedded by BERTLARGE16 (squared). More detailed graphs available in the Appendix.

Figure 2.5: Parse distance tree reconstruction accuracy when the linear transformation is constrained to varying maximum
dimensionality.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 24

2.5 Discussion & Conclusion

Recent work has analyzed model behavior to determine if a model understands hierarchy and other linguistic
phenomena (Linzen, 2018; Gulordava et al., 2018; Kuncoro et al., 2018; Linzen and Leonard, 2018; van
Schijndel and Linzen, 2018; Tang et al., 2018; Futrell et al., 2018). Our work extends the literature on
linguistic probes, found at least in (Peters et al., 2018b; Belinkov et al., 2017; Blevins et al., 2018; Hupkes
et al., 2018). Conneau et al. (2018) present a task similar to our parse depth prediction, where a sentence
representation vector is asked to classify the maximum parse depth ever achieved in the sentence. Tenney et al.
(2019) evaluates a complementary task to ours, training probes to learn the labels on structures when the gold
structures themselves are given. Peters et al. (2018b) evaluates the extent to which constituency trees can be
extracted from hidden states, but uses a probe of considerable complexity, making less concrete hypotheses
about how the information is encoded.

Probing tasks and limitations. Our reviewers rightfully noted that one might just probe for headedness,
as in a bilinear graph-based dependency parser. More broadly, a deep neural network probe of some kind is
almost certain to achieve higher parsing accuracies than our method. Our task and probe construction are
designed not to test for some notion of syntactic knowledge broadly construed, but instead for an extremely
strict notion where all pairs of words know their syntactic distance, and this information is a global structural
property of the vector space. However, this study is limited to testing that hypothesis, and we foresee future
probing tasks which make other tradeoffs between probe complexity, probe task, and hypotheses tested.

In summary, through our structural probes we demonstrate that the structure of syntax trees emerges
through properly defined distances and norms on two deep models’ word representation spaces. Beyond this
actionable insight, we suggest our probe may be useful for testing the existence of different types of graph
structures on any neural representation of language, an exciting avenue for future work.

Later work. In the years since the work presented in this chapter was published as Hewitt and Manning
(2019), considerable work has followed up on, examined, confirmed, and questioned the methodology. Reif
et al. (2019) discussed why squared L2 distance (as we use) works better than the standard L2 distance, as L2
distance cannot embed tree metrics without distortion; however, this did not explain the core curiousity of mine,
which was why squared L2 distance works better than L1 distance, which is the natural tree distance metric
(Deza and Laurent, 2009). Chi et al. (2020) found that our results hold across languages, and in fact training a
probe on a multilingual language model using supervision from one natural language can extract syntax in
other languages, suggesting that the syntactic representations are shared across languages. Many variants of
the structural probe have been proposed, including changing the functional form to be more expressive (White
et al., 2021) or less (Limisiewicz and Mareček, 2021). Overall, the trends we saw seem to hold across a range
of networks.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 25

2.6 Implementation Details

2.6.1 Squared L2 distance vs. L2 distance

In Section 2.2.2, we note that while our distance probe specifies a distance metric, we recreate it with a squared
vector distance; likewise, while our norm probe specifies a norm, we recreate it with a squared vector norm.
We found this to be important for recreating the exact parse tree distances and norms. This does mean that
in order to recreate the exact scalar values of the parse tree structures, we need to use the squared vector
quantities. This may be problematic, since for example squared distance doesn’t obey the triangle inequality,
whereas a valid distance metric does.

However, we note that in terms of the graph structures encoded, distance and squared distance are identical.
After training with the squared vector distance, we can square-root the predicted quantities to achieve a
distance metric. The relative ordering between all pairs of words will be unchanged; the same tree is encoded
either way, and none of our quantitative metrics will change; however, the exact scalar distances will differ
from the true tree distances.

(Reif et al., 2019) give an argument as to why squared distance works better than L2 distance: squared
L2 distance can embed tree distances without distortion; L2 cannot. Why squared L2 works better than L1
distance, which also can embed tree distances without distortion and yet is a valid metric, remains an open
question.

2.6.2 Probe training details

All probes are trained to minimize L1 loss of the predicted squared distance or squared norm w.r.t. the true
distance or norm. Optimization is performed using the Adam optimizer (Kingma and Ba, 2014) initialized at
learning rate 0.001, with ς1 = .9,ς2 = .999, ϖ = 10↑8. Probes are trained to convergence, up to 40 epochs,
with a batch size of 20. For depth probes, loss is summed over all predictions in a sentence, normalized by
the length of the sentence, and then summed over all sentences in a batch before a gradient step is taken. For
distance probes, normalization is performed by the square of the length of the sentence. At each epoch, dev
loss is computed; if the dev loss does not achieve a new minimum, the optimizer is reset (no momentum terms
are kept) with an initial learning rate multiplied by 0.1. All models were implemented in both DyNet (Neubig
et al., 2017), and in PyTorch (Paszke et al., 2017).

2.7 Extra examples

In this section we provide additional examples of model behavior, including baseline model behavior, across
parse distance prediction and parse depth prediction. In Figure 2.6 and Figure 2.7, we present a single sentence
with dependency trees as extracted from many of our models and baselines. In Figure 2.8, we present tree
depth predictions on a complex sentence from ELMO1, BERTLARGE16, and our baseline PROJ0. Finally, in

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 26

ELMo0

Another $ 20 billion would be raised through Treasury bonds , which pay lower interest rates .
. .

.
.

.
.

. . .

.
.

.....
.

.
.

.

.
.

.

Decay0

Another $ 20 billion would be raised through Treasury bonds , which pay lower interest rates .
. .

.
.

.
.

. . .

....

.

. ..

Proj0

Another $ 20 billion would be raised through Treasury bonds , which pay lower interest rates .
. .

.
.

.
.

. . .

..
. .

ELMo1

Another $ 20 billion would be raised through Treasury bonds , which pay lower interest rates .
. .

.
.

.
.

. . .

..
.

..
.

.
.

BERTbase7

Another $ 20 billion would be raised through Treasury bonds , which pay lower interest rates .
. .

.
.

.
.

. . .

.. . . .
..

.
.

.

BERTlarge16

Another $ 20 billion would be raised through Treasury bonds , which pay lower interest rates .
. .

.
.

.
.

. . .

... .. .
.

...
.

.
.

.

Figure 2.6: A relatively simple sentence, and the minimum spanning trees extracted by various models. Black edges
correspond to the gold (true) parse trees.

Figure 2.9, we present gold parse distances and predicted squared parse distances between all pairs of words
in large, high-resolution format.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 27

ELMo0

But the RTC also requires “ working ” capital to maintain the bad assets of thrifts that are sold , until the assets can be sold separately .
..

.

.
.

.

.

.

. .. .

. . . .

.

. .

.

. .
. .

.

....

Decay0

But the RTC also requires “ working ” capital to maintain the bad assets of thrifts that are sold , until the assets can be sold separately .
..

.

.
.

.

. ...

..
.

..

.

...

Proj0

But the RTC also requires “ working ” capital to maintain the bad assets of thrifts that are sold , until the assets can be sold separately .
..

.

.
.

.

..
.

.

ELMo1

But the RTC also requires “ working ” capital to maintain the bad assets of thrifts that are sold , until the assets can be sold separately .
..

.

.
.

.

.
.

..
.

..

BERTbase7

But the RTC also requires “ working ” capital to maintain the bad assets of thrifts that are sold , until the assets can be sold separately .
..

.

.
.

.

.
.

.

BERTlarge16

But the RTC also requires “ working ” capital to maintain the bad assets of thrifts that are sold , until the assets can be sold separately .
..

.

.
.

.

.
. ..

.

Figure 2.7: A complex sentence, and the minimum spanning trees extracted by various models.

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 28

Figure 2.8: A long sentence with gold dependency parse depths (grey) and dependency parse depths (squared) as extracted
by BERTLARGE16 (blue, top), ELMO1 (red, middle), and the baseline PROJ0 (purple, bottom). Note the non-standard
subject, “that he was the A’s winningest pitcher".

CHAPTER 2. A STRUCTURAL PROBE FOR FINDING SYNTAX IN WORD REPRESENTATIONS 29

Figure 2.9: The distance graphs defined by the gold parse distances on a sentence (below) and as extracted from
BERTLARGE16 (above, squared).

Chapter 3

Designing and Interpreting Probes with
Control Tasks

3.1 Introduction

In Chapter 2, we demonstrated using probing methods that there are simple functions that extract syntactic
trees from neural language models like BERT. Separately, probes trained on various representations have
obtained high accuracy on tasks requiring part-of-speech and morphological information (Belinkov et al.,
2017), syntactic and semantic information (Peters et al., 2018b; Tenney et al., 2019), among other properties
(Conneau et al., 2018), providing evidence that deep representations trained on large datasets are predictive of
a broad range of linguistic properties.

But when a probe achieves high accuracy on a linguistic task using a representation, can we conclude that
the representation encodes linguistic structure, or has the probe just learned the task? Probing papers tend to
acknowledge this uncertainty, putting accuracies in context using random representation baselines (Zhang and
Bowman, 2018) and careful task design (Hupkes et al., 2018). Even so, as long as a representation is a lossless
encoding, a sufficiently expressive probe with enough training data can learn any task on top of it.

In this chapter, we propose control tasks, which associate word types with random outputs, to give intuition
for the expressivity of probe families and provide insight into how representation and probe interact to achieve
high task accuracy.

Control tasks are based on the intuition that the more a probe is able to make task output decisions
independently of the linguistic properties of a representation, the less its accuracy on a linguistic task
necessarily reflects the properties of the representation. Thus, a good probe (one that provides insights into
the linguistic properties of a representation) should be what we call selective, achieving high linguistic task
accuracy and low control task accuracy (see Figure 3.2).

30

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 31

Sentence 1 The cat ran quickly .
Part-of-speech DT NN VBD RB .
Control task 10 37 10 15 3

Sentence 2 The dog ran after !
Part-of-speech DT NN VBD IN .
Control task 10 15 10 42 42

Figure 3.1: Our control tasks define random behavior (like a random output, top) for each word type in the vocabulary.
Each word token is assigned its type’s output, regardless of context (middle, bottom.) Control tasks have the same input
and output space as a linguistic task (e.g., parts-of-speech) but can only be learned if the probe memorizes the mapping.

Figure 3.2: Selectivity is defined as the difference between linguistic task accuracy and control task accuracy, and can
vary widely, as shown, across probes which achieve similar linguistic task accuracies. These results taken from § 3.3.5.

We show that selectivity can be a guide in designing probes and interpreting probing results, complemen-
tary to random representation baselines; as of now, there is little consensus on how to design probes. Early
probing papers used linear functions (Shi et al., 2016; Ettinger et al., 2016; Alain and Bengio, 2016), which
are still used (Bisazza and Tump, 2018; Liu et al., 2019a), but multi-layer perceptron (MLP) probes are at least
as popular (Belinkov et al., 2017; Conneau et al., 2018; Adi et al., 2017; Tenney et al., 2019; Ettinger et al.,
2018). Arguments have been made for “simple” probes, e.g., that we want to find easily accessible information
in a representation (Liu et al., 2019a; Alain and Bengio, 2016). As a counterpoint though, “complex” MLP
probes have also been suggested since useful properties might be encoded non-linearly (Conneau et al., 2018),
and they tend to report similar trends to simpler probes anyway (Belinkov et al., 2017; Qian et al., 2016).

We define control tasks corresponding to English part-of-speech tagging and dependency edge prediction,
and use ELMo representations to conduct a broad study of probe families, hyperparameters, and regularization

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 32

Dependency Edge Prediction and Control Task Examples

Dependency: The Ways and Means Committee will hold a hearing on the bill next Tuesday .
.

. .

Control: The Ways and Means Committee will hold a hearing on the bill next Tuesday .
.

. .. .
.

. ..

.

.

Figure 3.3: Example dependency tree from the development set of the Penn Treebank with dependents pointing at heads,
and the structure resulting from our dependency edge prediction control task on the same sentence.

methods, evaluating both linguistic task accuracy and selectivity. We propose that selectivity be used for
building intuition about the expressivity of probes and the properties of models, putting probing accuracies
into richer context. We find that:

1. With popular hyperparameter settings, MLP probes achieve very low selectivity, suggesting caution
in interpreting how their results reflect properties of representations. For example, on part-of-speech
tagging, 97.3 accuracy is achieved, compared to 92.8 control task accuracy, resulting in 4.5 selectivity.

2. Linear and bilinear probes achieve relatively high selectivity across a range of hyperparameters. For
example, a linear probe on part-of-speech tagging achieves a similar 97.2 accuracy, and 71.2 control task
accuracy, for 26.0 selectivity. This suggests that the small accuracy gain of the MLP may be explained
by increased probe expressivity.

3. The most popular method for controlling probe complexity, dropout, does not consistently lead to selec-
tive MLP probes. However, control of MLP complexity through unintuitively small (10-dimensional)
hidden states, as well as small training sample sizes and weight decay, lead to higher selectivity and
similar linguistic task accuracy.

Finally, we ask, can we meaningfully compare the linguistic properties of layers of a model using only
linguistic task accuracy? We raise a potential problem with this approach: it fails to take into account
differences in ease of memorization across layers. In particular, we find that while linear and MLP probes on
the first layer of ELMo (ELMo1) achieve slightly higher part-of-speech accuracy than those on the second
layer (ELMo2), (97.2 compared to 96.6, for a loss of 0.6), the same probes achieve much greater selectivity
on ELMo2 (31.4 compared to 26.0, for a gain of 5.4). Thus, the difference in selectivity in favor of ELMo2 is
much greater than the commonly known (Peters et al., 2018a; Liu et al., 2019a) difference in linguistic task
accuracy in favor of ELMo1; the difference in accuracy may be explained by probes more easily accessing
word identity features in ELMo1.

3.2 Control Tasks

In this section, we describe how to construct control tasks. At a high level, control tasks have:

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 33

structure: The output for a word token is a deterministic function of the word type1.

randomness: The output for each word type is sampled independently at random.

We start with some notation; denote as 1 : T the sequence of integers {1, ..., T}. Let V be the vocabulary
containing all word types in a corpus. A sentence of length T is x1:T , where each xi → V , and the word
representations of the model being probed are h1:T , where hi → Rd. A task is a function that maps a sentence
to a single output per word, f(x1:T) = y1:T , where each output is from a finite set of outputs: yi → Y . Each
control task is defined in reference to a linguistic task, and the two share Y . We’ll now use part-of-speech
tagging and dependency edge prediction as examples to describe the construction of control tasks.

3.2.1 Part-of-speech tagging control task

In part-of-speech tagging, the set Y is the tagset, 1 : 45 (corresponding to NN, NNS, VB,...). To construct
a control task, we independently sample a control behavior C(v) for each v → V . The control behavior
specifies how to define yi → Y for a word token xi with word type v. For part-of-speech tagging, each control
behavior directly specifies the output yi for xi as an integer from 1 : 45, so we sample from 45 behaviors2. The
part-of-speech control task is the function that maps each token xi to the label specified by the behavior C(xi):

fcontrol(x1:T) = f(C(x1), C(x2), ...C(xT)). (3.1)

This task is visualized in Figure 3.1.

3.2.2 Dependency edge prediction control task

The dependency edge prediction task is the function fDEP(x1:T) = y1:T where yi is the index of the parent
of xi in the dependency tree on the sentence x1:T . Thus, the output space Y = 1 : T depends on the length
of the sentence, T . To accommodate this in our control task, we define the control behaviors C(v) in a
length-independent way that still fully specifies yi. The possible behaviors C(v) are as follows:

attach to self: Always attach tokens of this type to themselves. That is, yi = i.

attach to first: Always attach tokens of this type to the first token. That is, yi = 1.

attach to last: Always attach tokens of this type to the last word in the sentence. That is, yi = T .

We sample uniformly from the three. Given these behaviors, the control task is defined as before by Eqn 3.1.
This task is visualized in Figure 3.3.

While very similar to dependency parsing, dependency edge prediction differs in two ways. The output is
not constrained to be a tree for evaluation; each prediction is evaluated independently. So, while our control

1Equivalently, word identity.
2The exact distribution from which we sample isn’t crucial, but for part-of-speech tagging, we sample from the empirical token

distribution of part-of-speech tagging, so the marginal probability of each label is similar.

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 34

tasks do not define trees, the two tasks’ output spaces are still the same. Second, in dependency edge prediction,
the root of the sentence is omitted from evaluation; no sentence-external ROOT token is posited for evaluation.

3.2.3 Properties of control tasks

To summarize, a control task is defined for a single linguistic task, and shares the linguistic task’s output space
Y . To construct a control task, a control behavior C(v) is sampled independently at random for each word
type v → V . The control task is a function mapping x1:T to a sequence of outputs y1:T which is fully specified
by the sequence of behaviors, [C(x1), ..., C(xT)].

From this construction, we note that the ceiling on performance is the fraction of tokens in the evaluation
set whose types occur in the training set (plus chance accuracy on all other tokens.) Further, C(v) must be
memorized independently for each word type, and a probe taking vectors h1:T as input must identify for each
hi its corresponding xi, and output the element of Y specified by C(xi).

3.3 Experiments on Probe Selectivity

In this section, we conduct a broad study of probe families (e.g, linear, MLP) and hyperparameter choices
(weight matrix rank/hidden state size, amount of regularization) on a single representation (ELMo1) to
determine (1) what probe choices exhibit high linguistic task accuracy and high selectivity (and whether this
holds for a range of hyperparameters), and (2) whether each probe family can be made selective through
hyperparameter choices without substantially sacrificing linguistic task accuracy.

3.3.1 Probe families

We experiment with three types of probes per task.
For part-of-speech tagging, we experiment with linear, MLP-1, and MLP-2 probes. The linear probe is a

multiclass model mapping hi to yi ≃ softmax(Ahi + b). The MLP-1 probe is a multilayer perceptron with
one hidden layer and ReLU nonlinearity defined as:

yi ≃ softmax(W2 g(W1hi)). (3.2)

And the MLP-2 probe is defined as:

yi ≃ softmax(W3 g(W2 g(W1hi))). (3.3)

where g is the ReLU function, and bias terms are omitted from all affine transformations for brevity.
For dependency edge prediction, we experiment with bilinear, MLP-1, and MLP-2 probes. These probes

take as input the entire sequence h1:T as well as the vector hi of a given state to produce yi; the softmax
operates over the sequence to construct a distribution over the T classes. Formally, the bilinear model is

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 35

defined as yi ≃ softmax(h↗
1:TAhi + b). The MLP-1 probe is defined as follows:

yi ≃ softmax(W2 g(W1[h1:T ;hi])). (3.4)

Note here that hi broadcasts to RT↓d,while W1 → Rε↓d, and W2 → R1↓ε broadcast as well. That is, each
[hj ;hi] pair is mapped to a single scalar independently of all others, leading to T logits used as input to the
softmax. Similarly, the MLP-2 model is defined as follows:

yi ≃ softmax(W3 g(W2 g(W1[h1:T ;hi]))). (3.5)

3.3.2 Complexity control

It is well-known that probes should not be too complex (Liu et al., 2019a; Alain and Bengio, 2016); this is the
motivation behind constraining the input to the probe to be a single vector or pair of vectors. However, there
has been no systematic investigation of probe complexity. We study what complexity control is necessary
to achieve selectivity. As we will see, the typical practice of regularizing to reduce the generalization gap
(difference between training and test task accuracy) is insufficient if one is interested in selectivity.

Rank/hidden dimensionality constraint. For our linear and bilinear probes, we constrain the rank of weight
matrices through an LR decomposition. We let A → Rk↓d, where k is the output space (45 for part-of-speech
tagging; 1 for dependency head prediction). To constrain A to rank ϱ, we factor A = LR, where L → Rk↓ε

and R → Rε↓|V |, and optimize over L and R. For MLP models, we let the hidden state size be equal to ϱ.3

From the default value of rank-1000 and 1000-dimensional hidden states, we let ϱ take on the values
{2, 4, 10, 45} for part-of-speech, and {5, 10, 50, 100} for dependency edge prediction.4

Dropout. We apply dropout (Srivastava et al., 2014) with probability p to the input for linear and bilinear
probes, and to the input and the output of each hidden layer for MLP probes. From the default value of 0, we
let p range over {0.2, 0.4, 0.6, 0.8}.

Number of training examples. We artificially constrain the number of sentences the probe is trained on,
with the intuition that general rules can be learned more sample-efficiently than memorization. Zhang and
Bowman (2018) showed this to be an effective distinguishing factor between trained representations and
random representation controls. From the default of 39832 (the number of training examples in the dataset), we
train on {4000, 400} examples, corresponding to roughly 100%, 10%, and 1% of the total data, as suggested
by Zhang and Bowman (2018).

3One could constrain the matrices of the MLP to be rank ω without making the hidden state smaller, but one must choose a hidden
state size anyway, so we believed a study changing the hidden state size would be most informative.

4Note that for linear models, the rank is constrained by k regardless, since A → Rk→d.

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 36

0.94

0.95

0.96

0.97

0.98

P
o
S

A
cc

u
ra

cy

Sample Count

400 400
0

400
00

0.00

0.14

0.28

0.42

0.56

S
el

ec
ti
v
it
y

Rank/Hidden Dim

2 4 10 45 100
0

Dropout

0.8 0.6 0.4 0.2 0

Weight Decay

1 0.1 0.0
1 0

Gradient Steps

MLP-2

MLP-1

Linear

150
0

300
0

600
0
12

500
25

000
50

000

Part-of-speech Accuracy and Selectivity Across Complexity Control Methods

0.75

0.80

0.85

0.90

0.95

P
o
S

A
cc

u
ra

cy

Sample Count

400 400
0

400
00

-0.03

0.03

0.09

0.14

0.20

S
el

ec
ti
v
it
y

Rank/Hidden Dim

5 10 50 100 100
0

Dropout

0.8 0.6 0.4 0.2 0

Weight Decay

1 0.1 0.0
1 0

Gradient Steps

MLP-2

MLP-1

Linear

150
0

300
0

600
0
125

00
250

00
500

00

Unlabeled Dependency Accuracy and Selectivity Across Complexity Control Methods

Figure 3.4: Linguistic task accuracies and selectivities for the 5 complexity control methods. All methods except dropout
and early stopping are shown to improve selectivity without a large impact on linguistic task accuracy. All methods for
the same task share a common y-axis, and use their own categorical x-axis. All x-axes are ordered from most severe
constraints on complexity (left) to most laissez-faire (right).

L2 regularization. We apply weight decay to the probe parameters. From the default of 0, we let the weight
decay constant take on the values {0.01, 0.1, 1.0, 10.0}, unnormalized by batch size.

Early stopping. All of our probing models are trained with Adam (Kingma and Ba, 2014). By default,
we anneal the learning rate by a factor of 0.5 each time an epoch does not lead to a new minimum loss on
the development set, and stop training when 4 such epochs occur in a row. However, in early stopping, we
explicitly halt training at a fixed number of gradient steps. From the default of 100000 (approximately 40
epochs), we let this maximum take on the values {50000, 25000, 12500, 6000, 3000, 1500}.

3.3.3 Dataset

We use the Penn Treebank (PTB) dataset (Marcus et al., 1993) with the traditional parsing training/development/
testing splits5 without preprocessing. We report accuracies on the development set. We convert the PTB
constituency trees to the Stanford Dependencies formalism (de Marneffe et al., 2006) for our dependency edge

5As given by the code of Qi and Manning (2017) at https://github.com/qipeng/arc-swift.

https://github.com/qipeng/arc-swift

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 37

Probe PoS Ctl Select. Dep Ctl Select.

Probes with Default Hyperparameters
Linear 97.2 71.2 26.0 - - -
Bilinear - - - 89.0 82.4 6.6
MLP-1 97.3 92.8 4.5 92.3 93.0 -0.7
MLP-2 97.3 93.2 4.2 93.9 92.0 1.9

Probes with 0.4 Dropout
Linear 97.1 67.3 29.8 - - -
Bilinear - - - 90.4 73.7 16.7
MLP-1 97.5 93.4 4.1 93.8 93.1 0.7
MLP-2 97.4 94.1 3.4 94.7 93.5 1.3

Probes Designed with Control Tasks
Linear 97.0 64.0 33.0 - - -
Bilinear - - - 91.0 83.1 7.9
MLP-1 97.2 80.6 16.6 90.5 84.3 6.2
MLP-2 97.2 81.7 15.4 92.8 89.8 3.0

Table 3.1: Probe accuracies on linguistic tasks and control tasks. Default hyperparameters correspond to a hidden state
of dimensionality 1000 and no dropout. Under Probes Designed with Control Tasks, we used selectivity to hand-pick a
hyperparameter setting for each probe. In particular, part-of-speech probes designed with control tasks all use rank-10
weight matrices (10-dimensional hidden state) and no other changes. Dependency edge prediction probes designed with
control tasks had, for the bilinear model, weight decay of 0.01, for MLP-1, weight decay of 0.1, for MLP-2, a rank-50
weight matrix.

prediction task.

3.3.4 Representation

We use the 5.5 billion-word pre-trained ELMo representations (Peters et al., 2018a). Since the output of the
first BiLSTM layer was recently shown to be the most transferrable on a wide variety of tasks, including
part-of-speech and syntax (Liu et al., 2019a), we focus on analyzing that layer, which we denote ELMo1.

3.3.5 Results

Selectivity of default hyperparameters. Our results with linear, bilinear, and MLP probes with “default”
hyperparameters, as specified in § 3.3.2, are found in Table 3.1 (top). We find that linear probes achieve
similar part-of-speech accuracies to MLPs (97.2 compared to 97.3) with substantially higher selectivity (26.0

vs 4.50). In dependency edge prediction, we find a definite gap between bilinear probe accuracy (89.0) and
MLP-1 accuracy (92.3). However, the bilinear probe achieves 16.7 selectivity, compared to ↓0.7 by MLP-1
and 1.3 by MLP-2. Thus, with no regularization, modest gains in linguistic task accuracy through MLP probes
over linear/bilinear probes are tempered by losses in selectivity. Bilinear and linear probes themselves show a
significant capacity for memorization.

Does adding moderate regularization through dropout (e.g., p = 0.4) consistently lead to selectivity?

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 38

Surprisingly, as shown in Table 3.1 (middle), the opposite is true for some MLP probes, where selectivity
actually decreases (e.g., 4.2 ⇐ 3.4 for MLP-2). In one case, the MLP-1 probe on dependency edge prediction,
dropout increases selectivity (-0.7 ⇐ 0.7) but for no others.

How hard is it to find selective probes? We tried 6 methods for controlling probe complexity, and all
worked except dropout and early stopping, though never for a broad range of hyperparameters. For each
complexity control method except dropout and early stopping, we find hyperparameters that lead to high
linguistic task accuracy and high selectivity. Our results are summarized in Figure 3.4.

We find that constraining the hidden state dimensionality of MLPs is an effective way to encourage
selectivity at little cost to linguistic task accuracy. MLP hidden state sizes of 10 and 50, for part-of-speech
tagging and dependency head prediction respectively, lead to increased selectivity while maintaining high
linguistic task accuracy. As such, MLP probes with hundreds or 1000 hidden units, as is common, are
overparameterized.

Constraining the number of training examples is effective for part-of-speech, suggesting that learning
each linguistic task requires fewer samples than our control task. However, for dependency edge prediction,
this leads to significantly reduced linguistic task accuracy. Finally, we find that the right weight decay constant
can also lead to high-accuracy, high-selectivity probes, especially for dependency edge prediction. As shown,
however, it is unclear what hyperparameters to use (e.g., weight decay 0.1) to achieve both high accuracy and
high selectivity; that is, finding selective MLP probes is non-trivial.

Applying dropout, the most popular probing regularization method (Adi et al., 2017; Belinkov and
Glass, 2019; Şahin et al., 2019; Kim et al., 2019; Elloumi et al., 2018; Belinkov and Glass, 2017; Belinkov
et al., 2018) does not consistently lead to high-accuracy, high-selectivity MLP probes across a broad range
of dropout probabilities (p = 0.2 to p = 0.8) on part-of-speech tagging. For dependency edge prediction,
dropout of p = 0.6 improves the selectivity of MLP-2 but not MLP-1, and considerably increases the already
relatively large selectivity of the bilinear probe. Early stopping in the ranges tested also has little impact on
part-of-speech tagging, selectivity, but does improve selectivity of MLP dependency edge prediction probes.

From our study, we pick a set of hyperparameters for linear, bilinear, MLP-1 and MLP-2 probes to
encourage selectivity and linguistic task accuracy together, to compare to default parameters and dropout. We
chose rank constraints of 10 and 45, respectively (with no other changes,) for linear and MLP part-of-speech
tagging probes, weight decay of 0.01 for the bilinear dependency probe, and weight decay of 0.1 for MLP
dependency probes. We report the results of these probes in Table 3.1 (bottom). In all cases, we see that the
right choice of probe leads to considerably higher selectivity than dropout or no regularization. In particular,
for part-of-speech tagging, our chosen MLP-1 probe achieves 16.6 selectivity, up from 4.5, and on dependency
head prediction, 6.2 selectivity, up from -0.7.

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 39

3.3.6 Discussion

Our most consistent result seems to be that all probes, whether linear, bilinear, or multi-layer perceptron, are
over-parameterized and needlessly high-capacity if using defaults like full-rank weight matrices, hidden states
with a few hundred dimensions, and moderate dropout. We can tell this is the case because we’re able to
heavily constrain the probes (e.g., to rank or 10-dimensional hidden states with little loss in accuracy.

We find that the most selective probes of those tested, even after careful complexity control, are linear or
bilinear models. They also have the advantage that they exhibit high selectivity without the need to search over
complexity control methods.

However, the most accurate probes on the more complex task of dependency edge prediction are MLPs,
even with hyperparameters tuned for selectivity. This suggests that while much of the part-of-speech infor-
mation of ELMo is extractable linearly, some information about syntactic trees is not available to a bilinear
function. In some cases, therefore, one might opt for an MLP probe to extract non-linear features, while
optimizing for selectivity through hyperparameter choices.

Errors in Selective and Non-Selective Probes Do selective and non-selective probes make different types
of errors? We ran a qualitative study on this, training ten MLP-1 probes and ten linear probes, each with
default parameters, on part-of-speech tagging. We then manually inspected their aggregate confusion matrices
for trends in differences between the models’ errors.

While the MLP performed marginally better at recognizing many categories, the plurality of improvement
over the linear probe by far was in correctly identifying the difference between nouns and adjectives in phrases.
For example,

Kan.-based/JJ National/NNP Pizza/NNP

rental/JJ equipment/NN

were correctly labeled by the MLP but not the linear probe, which incorrectly labeled the adjectives as nouns.
As can be seen with the second example, the distinction between a JJ NN modified noun and a NN NN noun
compound is quite subtle, and the MLP picks up on the distinction considerably better.

The linear probe, however, was substantially more accurate at predicting the NNP tag, which the MLP
probe frequently mislabeled as NNPS. Manual inspection showed a general trend:

Environmental/NNP Systems/NNP Co./NNP

Cara/NNP Operations/NNP Co./NNP

7.8/CD %/NN stake/NN in/IN Dataproducts/NNP

In each case, the MLP probe mislabeled the word with the suffix -s as NNPS. The linear probe was considerably
less prone to this error. We hypothesize that this is because the MLP probe is expressive enough to pick up on
(spurious) markers of plurality as well as status as a proper noun independently and combine them, whereas
the linear probe is less able to do so. If this hypothesis is true, then this serves as an example of how less

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 40

selective probes may be less faithful in representing the linguistic information of the model being probed,
since features may be combined to make fine-grained distinctions.

3.4 Selectivity Differences Confound Layer Comparisons

In this section, we use selectivity to shed light on confounding factors when comparing the linguistic capabilities
of different representations. Multiple studies have found probes on ELMo1 to perform better at part-of-speech
tagging than probes on ELMo2 (Peters et al., 2018a; Tenney et al., 2019; Liu et al., 2019a). As we note,
these results depend on the probe as well as the representation; given what we know about probes’ capacity
for memorizing at the type level, we explore an alternative to the hypothesis that ELMo1 has higher-quality
part-of-speech representations than ELMo2. In particular, word identities are strong features in part-of-speech
tagging when used in combination with other indicators; since ELMo1 is closer to the word representations
than ELMo2, it may be easier to identify word identities from it, meaning the probe may utilize word identities
more readily, as opposed to picking up on a representation of part-of-speech.

3.4.1 Experiments

We run experiments on the first and second contextual layers of ELMo, denoted ELMo1 and ELMo2. We
also examine the representations of an untrained BiLSTM run on the non-contextual character CNN word
embeddings of ELMo, shown to be a strong baseline contextualization method, but without any linguistic
knowledge learned from context (Zhang and Bowman, 2018; Hewitt and Manning, 2019). We denote this
model Proj0.

We train linear and MLP-1 probes for part-of-speech tagging, and bilinear and MLP-1 probes for depen-
dency edge prediction, all with default hyperparameters (§ 3.3.2). We examine both the linguistic task accuracy
and selectivity achieved by each probe on each representation.

3.4.2 Results & Discussion

We find probes on ELMo2 to be strikingly more selective than those on ELMo1, consistent across all probes,
both for part-of-speech tagging and dependency head prediction. In particular, the linear probe on ELMo2
achieves selectivity of 31.4, compared to selectivity of 26.0 for ELMo1, for a gain of 5.4. The same probe
achieves 96.6 linguistic task accuracy on ELMo2 and 97.2 on ELMo1, for a loss of 0.6. The MLP probe
shows roughly the same result. So, does ELMo1 have a better grasp of part-of-speech than ELMo2? Our
results, summarized in Table 3.2, offer the alternative hypothesis that probes use word identity as a feature to
predict part-of-speech, and that feature is less easily available in ELMo2 than ELMo1.

Probes on Proj0 and ELMo2 achieve similar part-of-speech tagging accuracy, echoing findings of (Zhang
and Bowman, 2018), but we find that Proj0 is far less selective, suggesting that probes on ELMo2 rely far
less on word identities than those on Proj0. Without considering selectivity, it might be thought that ELMo2

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 41

Part-of-speech Tagging

Linear MLP-1

Model Accuracy Selectivity Accuracy Selectivity

Proj0 96.3 20.6 97.1 1.6
ELMo1 97.2 26.0 97.3 4.5
ELMo2 96.6 31.4 97.0 8.8

Dependency Edge Prediction

Bilinear MLP-1

Model Accuracy Selectivity Accuracy Selectivity

Proj0 79.9 -4.3 86.5 -9.0
ELMo1 89.7 6.7 92.5 -1.0
ELMo2 84.5 6.2 89.5 1.4

Table 3.2: Part-of-speech and dependency edge prediction probe accuracies and selectivities across three representations.
ELMo1 and ELMo2 are the two contextual layers of ELMo, while Proj0 refers to an untrained BiLSTM contextualization
of ELMo’s non-contextual character CNN representations.

encodes nothing about part-of-speech, since it doesn’t beat the Proj0 random representation baseline. Taking
selectivity into account, we see that probes on ELMo2 are unable to rely on word identity features like those
on Proj0, so to achieve high accuracy, they must rely on emergent properties of the representation.

3.5 Related Work

Early work in probing, (also known as diagnostic classification (Hupkes et al., 2018),) extracted properties like
parts-of-speech, gender, tense, and number from distributional word vector spaces like word2vec and GloVe
(Mikolov et al., 2013b; Pennington et al., 2014) using linear classifiers (Köhn, 2015; Gupta et al., 2015). Soon
after, the investigation of intermediate layers of deep models using linear probes was introduced independently
by Ettinger et al. (2016) and Shi et al. (2016) in NLP and Alain and Bengio (2016) in computer vision.

Since then, probing methods have varied as to whether they investigate whole-sentence properties like
sentence length and word content using a sentence vector (Shi et al., 2016; Adi et al., 2017; Conneau et al.,
2018), word properties like verb tense or part-of-speech using word vectors (Shi et al., 2016; Belinkov et al.,
2017; Liu et al., 2019a), or word-pair properties like syntactic relationships using pairs of vectors (Tenney
et al., 2019; Hewitt and Manning, 2019). Probes have been used to make relative claims between models or
components (Adi et al., 2017; Liu et al., 2019a; Belinkov et al., 2017) or absolute claims about models above
baselines. Probes have also been used to test hypotheses about the mechanisms by which models perform
tasks (Hupkes et al., 2018; Giulianelli et al., 2018).

Previous work has made extensive use of control representations like non-contextual word embeddings
or models with random weights (Belinkov et al., 2017; Tenney et al., 2019; Saphra and Lopez, 2019; Hewitt
and Manning, 2019); our control tasks provide a complementary perspective, measuring a probe’s ability to

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 42

decode a random function from the representation of interest.
The most related work to this chapter is that of Zhang and Bowman (2018), who presented experiments

for understanding the roles probe training sample size and memorization have on linguistic task accuracy.
They observed that untrained BiLSTM contextualizers achieved almost the same part-of-speech tagging
accuracies as trained contextualizers, and found that by reducing the probe training set, the trained models
could be shown to significantly outperform the untrained model. They evaluated which representations were
easiest to memorize from by probing to predict nearby words, finding as we do that word identities are
most easily available in untrained contextualizers’ representations. They take this as evidence that gains in
part-of-speech probing accuracy on the trained representations over the untrained representations are due to
linguistic properties, not memorization. Our experiments with selectivity complement their results, finding
among other things that even though untrained BiLSTMs are better for memorization than ELMo, there is
still a striking capacity for memorization using ELMo when using high-capacity probes.

3.5.1 Random tasks

Zhang et al. (2017) defined completely random tasks related to Rademacher complexity (Bartlett and Mendel-
son, 2001) to understand the capacity of neural networks to overfit, showing that they are expressive enough to
fit random noise, but still function as effective models. In our random control tasks, randomness is applied
at the type-level rather than at the example-level, and are designed to have strong non-linguistic structure as
opposed to absolutely no structure. While the tasks of Zhang et al. (2017) aid in understanding the expressivity
of neural nets, our control tasks aid in understanding the expressivity of a probe model with respect to a
specific linguistic task.

3.6 Conclusion

Through probing methods, it has been shown that a broad range of supervised learning tasks can be turned into
tools for understanding the properties of contextual word representations (Conneau et al., 2018; Tenney et al.,
2019). Alain and Bengio (2016) suggested we may think of probes as “thermometers used to measure the tem-
perature simultaneously at many different locations”. We instead emphasize the joint roles of representations
and probes together in achieving high accuracy on a task; we suggest that probes be thought of as craftspeople;
their performance depends not only on the materials they’re given, but also on their expressivity.

To explore the relationship between representations, probes, and task accuracies, we defined control tasks,
which by construction can only be learned by the probe itself. We’ve suggested that a probe which provides
insights into the properties of the representation should be selective, achieving high linguistic task accuracy
and low control task accuracy. Selectivity measures the probe’s ability to make numerous output decisions
independently of linguistic properties of the representation.

We’ve found that linear and bilinear models achieve higher selectivity at similar accuracy to MLP probes
on part-of-speech tagging. MLP probes, achieving higher accuracy on the more complex task of dependency

CHAPTER 3. DESIGNING AND INTERPRETING PROBES WITH CONTROL TASKS 43

edge prediction, can be re-designed to achieve higher selectivity at a relatively small cost to dependency edge
accuracy, but often not through dropout, the most popular MLP probe regularization method.

Finally, we showed how selectivity can be used to provide added context to probing results, demonstrating
that marginal differences in part-of-speech tagging accuracy between ELMo1 and ELMo2 correspond to
large differences in selectivity, and similarly, the even though ELMo2 achieves similar part-of-speech tagging
accuracy to a random representation baseline, ELMo2 achieves it with much higher selectivity.

However, the methods presented in this chapter are best described as proof that there is a problem with
complex probes, and a way of showing the extent to which that problem occurs – these methods are not a
foundation on which to understand probing more broadly. In the next chapter, we attempt to provide just this
foundation, and solve a broader class of problems with probing that includes those presented in this chapter
via a single family of methods with a clear interpretation.6

Retrospective. In the years since this work was originally published, there has been considerable discussion
of the implications for probing. The work of Pimentel et al. (2020b) in particular critiqued the ideas in this
chapter. It suggested that (1) the goal of probing is to estimate mutual information (Shannon, 1948), and
thus that (2) we should really use as complex a probe as possible, and finally that (3) probing is not a useful
scientific inquiry, since the mutual information of a representation of input text cannot increase as a function
of the model’s processing. Our distinctions between a probe learning a task and the representation (easily)
encoding it are thus not meaningful. We discuss our alternative framework in Chapter 4, but in summary, the
issue is at (1)—the goal of probing is not to measure mutual information. Mutual information between two
random variables is invariant to the representations of those variables; as such it’s not a likely candidate for a
framework for understanding the properties of representations. There are many ways to encode the idea of
easy extraction of a property from a representation; Voita and Titov (2020) provide a framework based on the
ease of learning as a function of the number of samples. Our work in Chapter 4 focuses instead on ease of
extraction through simple (and researcher-specified) function families corresponding to hypotheses about how
a property is encoded in a representation.

6All code, data, and experiments are available at https://worksheets.codalab.org/worksheets/
0xb0c351d6f1ac4c51b54f1023786bf6b2.

https://worksheets.codalab.org/worksheets/0xb0c351d6f1ac4c51b54f1023786bf6b2
https://worksheets.codalab.org/worksheets/0xb0c351d6f1ac4c51b54f1023786bf6b2

Chapter 4

Conditional Probing: Measuring Usable
Information Beyond a Baseline

4.1 Introduction

In Chapter 3, we showed that highly expressive probes could pick up on signals from the input and use them
to distinguish between random classes, or properties, that the language model being studied could not have
learned. This is a core problem for the probing methodology, since it attempts to relate neural representations
to well-understood properties.

To recall, probing analyzes a representation by using it as input into a supervised classifier, which is
trained to predict a property, such as part-of-speech (Shi et al., 2016; Ettinger et al., 2016; Alain and Bengio,
2016; Adi et al., 2017; Belinkov, 2021). One suggests that a representation encodes a property of interest if
probing that representation produces higher accuracy than probing a baseline representation like non-contextual
word embeddings. However, consider a representation that encodes only the part-of-speech tags that aren’t
determined by the word identity. Probing would report that this representation encodes less about part-of-
speech than the non-contextual word baseline, since ambiguity is relatively rare. Yet, this representation clearly
encodes interesting aspects of part-of-speech. How can we capture this?

In this chapter, we present a simple probing method to explicitly condition on a baseline.1 For a represen-
tation and a baseline, our method trains two probes: (1) on just the baseline, and (2) on the concatenation of
the baseline and the representation. The performance of probe (1) is then subtracted from that of probe (2).
We call this process conditional probing. Intuitively, the representation is not penalized for lacking aspects of
the property accessible in the baseline.

We then theoretically ground our probing methodology in V-information, a theory of usable information
1Our code is available at https://github.com/john-hewitt/conditional-probing.

44

https://github.com/john-hewitt/conditional-probing

CHAPTER 4. PROBING FOR CONDITIONAL USABLE INFORMATION 45

introduced by Xu et al. (2020) that we additionally extend to multiple predictive variables. We use V-
information instead of mutual information (Shannon, 1948; Pimentel et al., 2020b) because any injective
deterministic transformation of the input has the same mutual information as the input. For example, a
representation that maps each unique sentence to a unique integer must have the same mutual information
with any property as does BERT’s representation of that sentence, yet the latter is more useful. In contrast,
V-information is defined with respect to a family of functions V that map one random variable to (a probability
distribution over) another. V-information can be constructed by deterministic transformations that make a
property more accessible to the functions in the family. We show that conditional probing provides an estimate
of conditional V-information IV(repr ⇐ property | baseline).

In a case study, we answer an open question posed in Chapter 3: how are the aspects of linguistic properties
that aren’t explainable by the input layer accessible across the rest of the layers of the network? We find
that the part-of-speech information not attributable to the input layer remains accessible much deeper into
the layers of ELMo (Peters et al., 2018a) and RoBERTa (Liu et al., 2019b) than the overall property, a fact
previously obscured by the gradual loss across layers of the aspects attributable to the input layer. For the other
properties, conditioning on the input layer does not change the trends across layers.

4.2 Conditional V-information Probing

In this section, we describe probing methods and introduce conditional probing. We then review V-information
and use it to ground probing.

4.2.1 Probing setup

We start with some notation. Let X → X be a random variable taking the value of a sequence of tokens. Let
ε(X) be a representation resulting from a deterministic function of X; for example, the representation of
a single token from the sequence in a layer of BERT (Devlin et al., 2019). Let Y → Y be a property (e.g.,
part-of-speech of a particular token), and V a probe family, that is, a set of functions {fω : ω → Rp}, where
fω : z ⇐ P(Y) maps inputs z to probability distributions over the space of the label.2 The input z → Rm

may be in the space of ε(X), that is, Rd, or another space, e.g., if the probe takes the concatenation of
two representations. In each experiment, a training dataset Dtr = {(xi, yi)}i is used to estimate ω, and the
probe and representation are evaluated on a separate dataset Dte = {(xi, yi)}i. We refer to the result of this
evaluation on some representation R as Perf(R).

4.2.2 Baselined probing

Let B → Rd be a random variable representing a baseline (e.g., non-contextual word embedding of a
particular token.) A common strategy in probing is to take the difference between a probe performance on the

2We discuss mild constraints on the form that V can take in the Appendix. Common probe families including linear models and
feed-forward networks meet the constraints.

CHAPTER 4. PROBING FOR CONDITIONAL USABLE INFORMATION 46

representation and on the baseline (Zhang and Bowman, 2018); we call this baselined probing performance:

Perf(ε(X)) ↓ Perf(B). (4.1)

This difference in performances estimates how much more accessible Y is in ε(X) than in the baseline B,
under probe family V .

But what if B and ε(X) capture distinct aspects of Y ? For example, consider if ε(X) captures parts-of-
speech that aren’t the most common label for a given word identity, while B captures parts-of-speech that
are the most common for the word identity. Baselined probing will indicate that ε(X) explains less about Y
than the baseline, a “negative” probing result. But clearly ε(X) captures an interesting aspect of Y ; we aim to
design a method that measures just what ε(X) contributes beyond B in predicting Y , not what B has and
ε(X) lacks.

4.2.3 Our proposal: conditional probing

In our proposed method, we again train two probes; each is the concatenation of two representations of size d,
so we let z → R2d. The first probe takes as input [B;ε(X)], that is, the concatenation of B to the representation
ε(X) that we’re studying. The second probe takes as input [B;0], that is, the concatenation of B to the 0

vector. The conditional probing method takes the difference of the two probe performances, which we call
conditional probing performance:

Perf([B;ε(X)]) ↓ Perf([B;0]). (4.2)

Including B in the probe with ε(X) means that ε(X) only needs to contribute what is missing from B. In the
second probe, the 0 is used as a placeholder, representing the lack of knowledge of ε(X); its performance is
subtracted so that ε(X) isn’t given credit for what’s explainable by B.3

4.2.4 V-information

V-information is a theory of usable information—that is, how much knowledge of random variable Y can
be extracted from r.v. R when using functions in V , called a predictive family (Xu et al., 2020). Intuitively,
by explicitly considering computational constraints, V-information can be constructed by computation, in
particular when said computation makes a variable easier to predict. If V is the set of all functions from the
space of R to the set of probability distributions over the space of Y , then V-information is mutual information
(Xu et al., 2020). However, if the predictive family is the set of all functions, then no representation is more
useful than another provided they are related by a bijection. By specifying a V , one makes a hypothesis
about the functional form of the relationship between the random variables R and Y . One could let V be, for
example, the set of log-linear models.

3The value 0 is arbitrary; any constant can be used, or one can train the probe on just B.

CHAPTER 4. PROBING FOR CONDITIONAL USABLE INFORMATION 47

Using this predictive family V , one can define the uncertainty we have in Y after observing R as the
V-entropy:

HV(Y |R) = inf
f↘V

E
[
↓ log f [r](y)

]
, (4.3)

where f [r] produces a probability distribution over the labels. Information terms like IV(R ⇐ Y) are defined
analogous to Shannon information, that is, IV(R ⇐ Y) = HV(Y) ↓ HV(Y |R). For brevity, we leave a
full formal description, as well as our redefinition of V-information to multiple predictive variables, to the
appendix.

4.2.5 Probing estimates V-information

With a particular performance metric, baselined probing estimates a difference of V-information quantities.
Intuitively, probing specifies a function family V , training data is used to find f → V that best predicts Y from
ε(X) (the infimum in Equation A.2), and we then evaluate how well Y is predicted. If we use the negative
cross-entropy loss as the Perf function, then baselined probing estimates

IV(ε(X) ⇐ Y) ↓ IV(B ⇐ Y),

the difference of two V-information quantities. This theory provides methodological best practices as well: the
form of the family V should be chosen for theory-external reasons,4 and since the probe training process is
approximating the infimum in Equation 4.3, we’re not concerned with sample efficiency.

Baselined probing appears in existing information-theoretic probing work: Pimentel et al. (2020b) define
conditional mutual information quantities wherein a lossy transformation c(·) is performed on the sentence
(like choosing a single word), and an estimate of the gain from knowing the rest of the sentence is provided;
I(ε(X);Y |c(ε(X))) = I(X;Y |c(X)).5 Methodologically, despite being a conditional information, this is
identical to baselined probing, training one probe on just ε(X) and another on just c(ε(X)).6

4.2.6 Estimating conditional information

Inspired by the transparent connections between V-information and probes, we ask what the V-information
analogue of conditioning on a variable in a mutual information, that is, I(X,Y |B). To do this, we extend

4There are also PAC bounds (Valiant, 1984) on the estimation error for V-information (Xu et al., 2020); simpler families V with lower
Rademacher complexity result in better bounds.

5Equality depends on the injectivity of ε; otherwise knowing the representation ε(X) may be strictly less informative than knowing
X .

6This is because of the data processing inequality and the fact that c(ε(X)) is a deterministic function of ε(X).

CHAPTER 4. PROBING FOR CONDITIONAL USABLE INFORMATION 48

V-information to multiple predictive variables, and design conditional probing (as presented) to estimate

IV(ε(X) ⇐ Y |B)

= HV(Y |B) ↓HV(Y |B,ε(X)),

thus having the interpretation of probing what ε(X) explains about Y apart from what’s already explained by
B (as can be accessed by functions in V). Methodologically, the innovation is in providing B to the probe on
ε(X), so that the information accessible in B need not be accessible in ε(X).

4.3 Related Work

Probing—mechanically simple, but philosophically hard to interpret (Belinkov, 2021)—has led to a number of
information-theoretic interpretations.

Pimentel et al. (2020b) claimed that probing should be seen as estimating mutual information I(ε(X);Y)

between representations and labels. This raises an issue, which Pimentel et al. (2020b) notes: due to the
data processing inequality, the MI between the representation of a sentence (from e.g., BERT) and a label is
upper-bounded by the MI between the sentence itself and the label. Both an encrypted document X and an
unencrypted version ε(X) provide the same mutual information with the topic of the document Y . This is
because MI allows unbounded work in using X to predict Y , including the enormous amount of work (likely)
required to decrypt it without the secret key. Intuitively, we understand that ε(X) is more useful than X , and
that this is because the function ε performs useful “work” for us. Likewise, BERT can perform useful work to
make interesting properties more accessible. While Pimentel et al. (2020b) conclude from the data processing
inequality that probing is not meaningful, we conclude that estimating mutual information is not the goal of
probing.

Voita and Titov (2020) propose a new probing-like methodology, minimum description length (MDL)
probing, to measure the number of bits required to transmit both the specification of the probe and the
specification of labels. Intuitively, a representation that allows for more efficient communication of labels (and
probes used to help perform that communication) has done useful “work” for us. Voita and Titov (2020) found
that by using their methods, probing practitioners could pay less attention to the exact functional form of the
probe. V-information and MDL probing complement each other; V-information does not measure sample
efficiency of learning a mapping from ε(X) to Y , instead focusing solely on how well any function from a
specific family (like linear models) allows one to predict Y from ε(X). Further, in practice, one must choose
a family to optimize over even in MDL probing; the complexity penalty of communicating the member of the
family is analogous to choosing V . Further, our contribution of conditional probing is orthogonal to the choice
of probing methodology; it could be used with MDL probing as well.

V-information places the functional form of the probe front-and-center as a hypothesis about how structure
is encoded. This intuition is already popular in probing. For example, Hewitt and Manning (2019) (Chapter 2)

CHAPTER 4. PROBING FOR CONDITIONAL USABLE INFORMATION 49

proposed that syntax trees may emerge as squared Euclidean distance under a linear transformation. Further
work refined this, showing that a better structural hypothesis may be hyperbolic (Chen et al., 2021) axis-aligned
after scaling (Limisiewicz and Mareček, 2021), or an attention-inspired kernel space (White et al., 2021).

In this work, we intentionally avoid claims as to the “correct” functional family V to be used in conditional
probing. Some work has argued for simple probe families (Hewitt and Liang, 2019; Alain and Bengio, 2016),
others for complex families (Pimentel et al., 2020b; Hou and Sachan, 2021). Pimentel et al. (2020a) argues
for choosing multiple points along an axis of expressivity, while Cao et al. (2021) define the family through
the weights of the neural network. Other work performs structural analysis of representations without direct
supervision (Saphra and Lopez, 2019; Wu et al., 2020).

In Chapter 3, we suggested that differences in ease of identifying the word identity across layers could
impede comparisons between the layers; our conditional probing provides a direct solution to this issue by
conditioning on the word identity. Kuncoro et al. (2018) and Shapiro et al. (2021) use control tasks, and
Rosa et al. (2020) measures word-level memorization in probes. Finally, under the possible goals of probing
proposed by Ivanova et al. (2021), we see V-information as most useful in discovering emergent structure, that
is, parsimonious and surprisingly simple relationships between neural representations and complex properties.

4.4 Experiments

In our experiments, we aim for a case study in understanding how conditioning on the non-contextual
embeddings changes trends in the accessibility of linguistic properties across the layers of deep networks.

4.4.1 Tasks, models, and data

Tasks. We train probes to predict five linguistic properties, roughly arranged in order from lower-level,
more concrete properties to higher-level, more abstract properties. We predict five linguistic properties Y : (i)
upos: coarse-grained (17-tag) part-of-speech tags (Nivre et al., 2020), (ii) xpos: fine-grained English-specific
part-of-speech tags, (iii) dep rel: the label on the Universal Dependencies edge that governs the word, (iv) ner:
named entities, and (v) sst2: sentiment.

Data. All of our datasets are composed of English text. For all tasks except sentiment, we use the Ontonotes
v5 corpus (Weischedel et al., 2013), recreating the splits used in the CoNLL 2012 shared task, as verified
against the split statistics provided by Strubell et al. (2017).78 Since Ontonotes is annotated with constituency
parses, not Universal Dependencies, we use the converter provided in CoreNLP (Schuster and Manning, 2016;
Manning et al., 2014). For the sentiment annotation, we use the binary GLUE version (Wang et al., 2019) of

7In order to provide word vectors for each token in the corpus, we heuristically align the subword tokenizations of RoBERTa with the
corpus-specified tokens through character-level alignments, following Tenney et al. (2019).

8Ontonotes uses the destructive Penn Treebank tokenization (like replacing brackets { with -LCB- (Marcus et al., 1993)). We perform
a heuristic de-tokenization process before subword tokenization to recover some naturalness of the text.

CHAPTER 4. PROBING FOR CONDITIONAL USABLE INFORMATION 50

Baselined Conditional

ω1 ω2 ω1 ω2

upos 0.20 0.16 0.22 0.20
xpos 0.20 0.16 0.21 0.20
dep rel 0.99 0.81 1.00 0.87
ner 0.24 0.23 0.25 0.24
sst2 0.18 0.13 0.17 0.13

Table 4.1: Results on ELMo, reported in bits of V-information; higher is better. ωi refers to layer i.

the the Stanford Sentiment Treebank corpus (Socher et al., 2013). All results are reported on the development
sets.

Models. We evaluate the popular RoBERTa model (Liu et al., 2019b), as provided by the HuggingFace
Transformers package (Wolf et al., 2020), as well as the ELMo model (Peters et al., 2018a), as provided by the
AllenNLP package (Gardner et al., 2017). When multiple RoBERTa subwords are aligned to a single corpus
token, we average the subword vector representations.

Probe families. For all of our experiments, we choose V to be the set of affine functions followed by
softmax.9 For word-level tasks, we have

fω(εi(X)j) = softmax(Wεi(X)j + b) (4.4)

where i indexes the layer in the network and j indexes the word in the sentence. For the sentence-level
sentiment task, we average over the word-level representations, as

fω(εi(X)) = softmax(W avg(εi(X)) + b) (4.5)

4.4.2 Results

Results on ELMo. ELMo has a non-contextual embedding layer ε0, and two contextual layers ε1 and
ε2, the output of each of two bidirectional LSTMs (Hochreiter and Schmidhuber, 1997). Previous work has
found that ε1 contains more syntactic information than ε2 (Peters et al., 2018b; Zhang and Bowman, 2018).
Baselined probing performance, in Table 4.1, replicates this finding. But in Chapter 3, we conjecture that
this may be due to accessibility of information from ε0. Conditional probing answers shows that when only
measuring information not available in ε0, there is still more syntactic information in ε1 than ε2, but the
difference is much smaller.

9We used the Adam optimizer (Kingma and Ba, 2014) with starting learning rate 0.001, and multiply the learning rate by 0.5 after
each epoch wherein a new lowest validation loss is not achieved.

CHAPTER 4. PROBING FOR CONDITIONAL USABLE INFORMATION 51

Figure 4.1: Probing results on RoBERTa. Results are reported in bits of V-information; higher is better.

CHAPTER 4. PROBING FOR CONDITIONAL USABLE INFORMATION 52

Results on RoBERTa. RoBERTa-base is a pretrained Transformer consisting of a word-level embedding
layer ε0 and twelve contextual layers εi, each the output of a Transformer encoder block (Vaswani et al., 2017).
We compare baselined probing performance to conditional probing performance for each layer. In Figure 4.1,
baselined probing indicates that part-of-speech information decays in later layers. However, conditional
probing shows that information not available in ε0 is maintained into deeper layers in RoBERTa, and only
the information already available in ε0 decays. In contrast for dependency labels, we find that the difference
between layers is lessened after conditioning on ε0, and for NER and sentiment, conditioning on ε0 does not
change the results.

4.5 Conclusion

In this chapter, we proposed conditional probing, a simple method for conditioning on baselines in probing
studies, and grounded the method theoretically in V-information. In a case study, we found that after
conditioning on the input layer, usable part-of-speech information remains much deeper into the layers of
ELMo and RoBERTa than previously thought, answering an open question from Chapter 3 (Hewitt and
Liang, 2019). Conditional probing is a tool that practitioners can easily use to gain additional insight into
representations.10

Whereas in Chapter 2 we presented a simple baselined probe and interesting result on neural language
models learning syntax, and in Chapter 3 we presented problems with complex probes and a way of measuring
those problems, in this chapter we finally provided a foundation for future probing studies, and a meaningful
answer to what probing is doing: estimating usable information. By designing baselines around whatever
property one does not want to study in probing, one can use conditional probes to estimate conditional usable
information and come to reliable conclusions. This ends the portion of this thesis centered around probing; the
method is certainly useful, but can only tell is where in a network a property is easy to decode. In the next two
chapters, we’ll take a more active approach to understanding neural networks by designing and evaluating
ways of making surgical changes to them.

10An executable version of the experiments in this chapter is on CodaLab, at this link: https://worksheets.codalab.org/
worksheets/0x46190ef741004a43a2676a3b46ea0c76.

https://worksheets.codalab.org/worksheets/0x46190ef741004a43a2676a3b46ea0c76
https://worksheets.codalab.org/worksheets/0x46190ef741004a43a2676a3b46ea0c76

Part II

Understanding by Design

53

Chapter 5

Backpack Language Models

5.1 Introduction

In the first part of this thesis, we presented methods for the discovery of structure in language models. This
and similar lines of work treat models as provided to us, such that we must attempt to understand them as they
are. This is often the case, but not always. By designing new models with the goal of understanding from the
outset, we can as engineers attempt to make the latter goal of understanding the resulting language models
easier. This, however, must not come at too much of a cost of the models’ overall capabilities or cost. In this
chapter, we present a neural network architecture that designs new understanding tools while maintaining most
of the power of an existing popular architecture, the Transformer.

Consider the prefix The CEO believes that ___, and the problem of debiasing a neural language model’s
distribution over he/she. Intuitively, the bias for he originates in the word CEO, because replacing CEO with
nurse flips the observed bias. A successful intervention to debias CEO must reliably apply in all contexts in
which the word CEO appears; ideally we would want to make a non-contextual change to the model that has
predictable effects in all contexts. In general, in all aspects of interpretability and control, it is desirable to
make interventions with a tractable interface (e.g., non-contextual representations) that apply globally.

Such interventions are difficult in Transformer models (Vaswani et al., 2017) because their contextual
representations are monolithic functions of their input. Almost any intervention on the model has complex,
non-linear effects that depend on context. We would instead like models that enable precise, rich interventions
that apply predictably in all contexts, and are still expressive, so they are a viable alternative to Transformers.

We address these challenges with a new neural architecture, the Backpack, for which predictions are
log-linear combinations of non-contextual representations. We represent each word in a vocabulary as a set of
non-contextual sense vectors that represent distinct learned aspects of the word. For example, sense vectors
for the word “science” could encode types of science, connections to technology, notions of science being
“settled,” or different aspects of the scientific process (replication or experiment) (Table 5.1). Sense vectors do
not learn classic word sense, but more general aspects of a word’s potential roles in different contexts; in fact,

54

CHAPTER 5. BACKPACK LANGUAGE MODELS 55

Figure 5.1: Transformers are monolithic functions of sequences. In Backpacks, the output is a weighted sum of non-
contextual, learned word aspects.

A few senses of the word science

Sense 3 Sense 7 Sense 9 Sense 10 Sense 8

fiction replication religion settled clones
fictional citation rology sett experiments
Fiction Hubble hydra settle mage
literacy reprodu religions unsett experiment
denial Discovery nec Sett rats

MacBookHP = MacBook → Apple + HP

The MacBook is best known for its form
factor, but HP has continued with its Linux-
based computing strategy. HP introduced
the Hyper 212 in 2014 and has continued to
push soon-to-be-released 32-inch machines
with Intel’s Skylake processors.

Table 5.1: Examples of the rich specialization of sense vectors representing the word science, and an example of editing
sense vectors non-contextually (changing MacBook to be associated with HP) and having the resulting contextual
predictions change.

CHAPTER 5. BACKPACK LANGUAGE MODELS 56

they can be seen as a multi-vector generalization of classic word vectors (Mikolov et al., 2013a).1

To make interventions on sense vectors behave predictably in different contexts, a Backpack represents
each word in a sequence as a linear combination of the sense vectors for all words in the sequence. The
expressivity of a Backpack comes from the network that computes the weights of the linear combination as
a function of the whole sequence; for example, in all our experiments we use a Transformer for this. Since
sense vectors are softly selected depending on the context, they can specialize; each sense can learn to be
predictively useful in only some contexts. The log-linear contribution of senses to predictions then implies that
the interventions on sense vectors we demonstrate in Section 5.6 apply identically (up to a non-negative scalar
weight) regardless of context.

Our experiments demonstrate the expressivity of Backpack language models, and the promise of interven-
tions on sense vectors for interpretability and control. In Section 5.4 we train Backpack language models on
50B tokens (5 epochs) of OpenWebText; a Backpack with 124M parameters in the contextual network (and
46M parameters for sense vectors) achieves the perplexity of a 124M-parameter Transformer; thus one pays
for more interpretability with a larger model size. In Section 5.5, we show that sense vectors specialize to
encode rich notions of word meaning. Quantitatively, on four lexical similarity datasets (e.g., SimLex999),
sense vectors of a 170M parameter Backpack outperform word embeddings of the 6B-parameter GPT-J-6B
Transformer, and approach the performance of state-of-the-art specialized methods for this task. Finally, in
Section 5.6 we show that sense vectors offer a control mechanism for Backpack language models. For example,
stereotypically gendered profession words (e.g., “CEO” or “nurse”) tend to learn a sense vector associated
with this gender bias; by downscaling this sense vector, we greatly reduce disparity in contextual predictions
in a limited setting.

5.2 The Backpack Architecture

In this section, we define the general form of the Backpack architecture. We then show how continuous
bag-of-words word2vec (CBOW) (Mikolov et al., 2013a) and Self-Attention-Only networks (Elhage et al.,
2021; Olsson et al., 2022) are special cases of Backpacks.

5.2.1 Backpack General Form

A Backpack is a parametric function that maps a sequence of symbols x1:n = (x1, . . . ,xn) to a sequence of
vectors o1:n = (o1, . . . ,on), where each symbol xi belongs to a finite vocabulary V and oi → Rd. We call oi

the Backpack representation of xi in the context of a sequence x1:n.

Sense vectors. For each x → V , a Backpack constructs k sense vectors

C(x)1, . . . , C(x)k, (5.1)

1Our code, sense vectors, language model weights, and demos are available at https://backpackmodels.science.

https://backpackmodels.science

CHAPTER 5. BACKPACK LANGUAGE MODELS 57

where C : V ⇐ Rk↓d. Sense vectors are a multi-vector analog to classic non-contextual word representations
like word2vec or GloVe: we make this analogy precise in Section 5.2.2.

Weighted sum. For a sequence x1:n, the representation oi of element xi is a weighted sum of the predictive
sense vectors for the words in its context: given contextualization weights φ → Rk↓n↓n,

oi =
n∑

j=1

k∑

ε=1

φεijC(xj)ε. (5.2)

The contextualization weights φεij of a Backpack are themselves defined by a (non-linear) contextualization
function of the entire sequence x1:n:

φ = A(x1:n), (5.3)

where A : Vn ⇐ Rk↓n↓n.
The name “Backpack” is inspired by the fact that a backpack is like a bag—but more orderly. Like a

bag-of-words, a Backpack representation is a sum of non-contextual senses; but a Backpack is more orderly,
because the weights in this sum depend on the ordered sequence.

Backpack Models. A Backpack model is a probabilistic model that defines probabilities over some output
space Y as a log-linear function of a Backpack representation o1:n → Rn↓d:

p(y|o1:n) = softmax (E(o1:n)) , (5.4)

where y → Y and E : Rn↓d ⇐ R|Y| is a linear transformation. Because Backpack models are log-linear in
their representations, the sense vectors contribute log-linearly to predictions. This allows us to inspect a sense
vector by projecting it onto the vocabulary via E and observe exactly how it will contribute to predictions in
any context.

Models parameterized by the prevailing deep neural architectures—including LSTMs (Hochreiter and
Schmidhuber, 1997) and Transformers—are not Backpacks because their output representations are (relatively)
unconstrained functions of the entire sequence. By contrast, Backpack models may seem limited in expressivity:
the representations oi are scalar-weighted sums of non-contextual vectors C(xj)ε. Contextual relationships
between sequence elements can only be expressed through the weights φ = A(x1:n). Nevertheless, our
experiments show that an expressive contextualization weight network can represent complex functions by
weighted sums of sense vectors, e.g., our 170M parameter Backpack LM uses a 124M-parameter Transformer
to compute φ, and achieves the loss of a 124M-parameter Transformer LM.

To place Backpacks in some historical context, we now show how two existing architectures can be
described as Backpacks.

CHAPTER 5. BACKPACK LANGUAGE MODELS 58

5.2.2 Continuous Bag-of-Words is a Backpack

The continuous bag-of-words word2vec model defines a probability distribution over a center word xc → V
conditioned on n context words x1:n.2 The model proceeds to (1) construct vector embeddings vx for each
x → V , and (2) uniformly average the embeddings of the context words to predict the center word:

vxc
=

n∑

i=1

1

n
vxi

, (5.5)

p(xc | x1:n) = softmax(Uvxc
), (5.6)

where U → RV↓d. We see that vxc
is a Backpack representation by setting C(x) = vx → R1↓d in Equation

(5.1) using a single sense vector (k = 1) and setting the contextualization weights in Equation (5.3) to be
uniform: φεij = 1

n
.

This connection to CBoW foreshadows the emergence of linguistic structures in the predictive sense
vectors of Backpack models, just as these structures emerge in CBoW (Mikolov et al., 2013a), as we discussed
in Chapter 1.

5.2.3 Single-Layer Self-Attention is a Backpack

The Backpack structure—define sense vectors (values), and use the sequence to determine how to sum them
(weights)—may remind the reader of a single layer of self-attention. The key-query-value self-attention
function is as follows:

oj =
n∑

i=1

k∑

ε=1

φεijOV (ε)xj (5.7)

φε = softmax(x↗K(ε)↗Q(ε)x), (5.8)

where x → Rn↓d is (overloaded) to be a non-contextual embedding of the sequence, O → Rd↓d/k, and
V (ε) → Rd/k↓d, where k is the number of attention heads. The self-attention function is a Backpack
with C(xj)ε = OV (ε)xj . Self-attention-only networks are studied in the context of, e.g., mechanistic
interpretability (Elhage et al., 2021). A Transformer composes blocks of self-attention and non-linear feed-
forward layers that combine information from the whole sequence; unlike a Transformer, the contextualization
weights of a Backpack each select a non-contextual sense of a single word.

5.3 Language Modeling with Backpacks

In this section, we define a neural autoregressive language model parameterized by a Backpack. We use the
standard softmax parameterization of the probability over the next token in a sequence, with a weight matrix

2Context in this setting is usually defined as words surrounding the center word.

CHAPTER 5. BACKPACK LANGUAGE MODELS 59

E → Rd↓|V| that maps a representation oj → Rd to logits E↗oj → R|V|:

p(xj | x1:j↑1) = softmax(E↗oj). (5.9)

Recall (Section 5.2.1) that Backpack representations oj are defined by sense vectors C(x) and contextual-
ization weights φj . In Section 5.3.1 we describe a parameterization of C for the predictive sense vectors in
Equation (5.1), and in Section 5.3.2 we describe a parameterization of A for the contextualization weight
network in Equation (5.3). When oj is parameterized by a Backpack, we call a model of the form given by
Equation (5.9) a Backpack LM.

5.3.1 Parameterizing senses

For the sense function C : V ⇐ Rk↓d, we embed each x → V into Rd and pass these embeddings though a
feed-forward network FF : Rd ⇐ Rk↓d:

C(x) = FF(Ex), (5.10)

where the embedding/projection matrix E is tied to the output matrix in Equation (5.9) (Press and Wolf, 2017).
Note that we could define all k ⇒ |V| sense vectors using a lookup table, but this would be an enormous
number of parameters as k grows large. Instead, we embed the words as Ex → Rd, and then blow them up
to Rd↓k using shared weights. This may explain the related sense roles observed for different word types in
Section 5.5.1.

5.3.2 Parameterizing contextualization weights

We parameterize A : Vn ⇐ Rk↓n↓n using a standard Transformer, followed by a layer of multi-headed
key-query self-attention. That is, we pass an embedded sequence through a Transformer

h1:n = Transformer(Ex1:n) (5.11)

(with proper autoregressive masking and some position representation) and compute A(x1:n) = φ, where

φε = softmax(h1:nK
(ε)↗Q(ε)h↗

1:n), (5.12)

for each predictive sense ϱ = 1, . . . , k with matrices K(ε), Q(ε) → Rd↓d/k. We can think of the k senses as
heads and, for each head, the contextualization weights define a distribution of attention over words.3

3Note that the sense weights are normalized (1) independently for each sense, and (2) to sum to one over the sequence length.

CHAPTER 5. BACKPACK LANGUAGE MODELS 60

Model OpenWebText PPL ↑ LAMBADA PPL ↑ LAMBADA ACC ↓ Wikitext PPL ↑ BLiMP ↓

Backpack-Micro 31.5 110 24.7 71.5 75.6
Transformer-Micro 34.4 201 21.3 79.5 77.8

Backpack-Mini 23.5 42.7 31.6 49.0 76.2
Transformer-Mini 24.5 58.8 29.7 52.8 80.4

Backpack-Small 20.1 26.5 37.5 40.9 76.3
Transformer-Small 20.2 32.7 34.9 42.2 81.9

Table 5.2: Language modeling performance; all models trained for 100k steps, 500K token batch size, on OWT. For
PPL, lower is better; for accuracy, higher is better. Note that models are not parameter-comparable; each Backpack has a
matched-size Transformer in its contextualization network.

5.4 Experiments Training Backpack LMs

In this section we specify the hyperparameters used to train Backpack and Transformer language models
(Section 5.4.1), data and optimization procedure (Section 5.4.2), evaluations (Section 5.4.3) and results
(Section 5.4.4). We also show the necessity of learning k > 1 sense vectors to achieve strong language
modeling performance (Section 5.4.5).

5.4.1 Models

We train three Transformer baseline models, which we label Micro (30M parameters), Mini (70M parameters),
and Small (124M parameters; the same size as GPT-2 small). We also train Micro (40M), Mini (100M), and
Small (170M) Backpack language models, for which the weighting function (Equation 5.11) is parameterized
using the corresponding Transformer, and almost all extra parameters are in the non-contextual sense vectors.4

Backpacks thus cost extra parameters and compute beyond their underlying contextualization network. Except
where stated, we use k = 16 sense vectors in all Backpacks (Section B.1).

We use a reduced sequence length of 512 for all models, and the 50,257-subword GPT-2 tokenizer. Model
hidden dimensionalities, layer counts, and head counts are reported in Table B.3.

5.4.2 Data & Optimization

We train all models on OpenWebText (Gokaslan et al., 2019), a publicly available approximate reconstruction
of the English WebText corpus used to train the GPT-2 family of models (Radford et al., 2019). We use
a batch size of 524,288 tokens, and train all models for 100,000 gradient steps for a total of 52B tokens;
training for longer is known to make marginal difference for small models (Hoffmann et al., 2022). The size
of OpenWebText means this is roughly 5 epochs. We use cross-entropy loss and the AdamW optimizer, with a
warmup of 5,000 steps and linear decay to zero.

4There are a negligible number of additional parameters in the final key-query Backpack operation (Equation 5.12)).

CHAPTER 5. BACKPACK LANGUAGE MODELS 61

5.4.3 Evaluations

Before our experiments in interpretability and control, we check the expressivity of Backpacks. We evaluate
models on perplexity for a held out set of OpenWebText, perplexity and accuracy for the (OpenAI variant of)
LAMBADA evaluation of long-distance dependencies (Radford et al., 2019; Paperno et al., 2016), perplexity
on Wikitext (Merity et al., 2017), and BLiMP English linguistic competence accuracy (Warstadt et al., 2020)
evaluated using the EleutherAI harness (Gao et al., 2021) (Version 1).

5.4.4 Discussion

Comparing each Backpack LM to a Transformer LM of equivalent specification to the Backpack’s contextual-
ization network, we see that the Backpack performs roughly as well (Table 5.2). Again, the Backpack has more
parameters, a tax for the interface provided by sense vectors. During training, we find that Backpack language
models take longer to converge than Transformers. Curiously, while the Small Backpack and Transformer
achieve almost identical OWT perplexity, the Backpack language models perform substantially better on
LAMBADA and Wikitext, but worse on BLiMP.

5.4.5 Effect of varying the number of senses

To study the impact of the number of sense vectors on language modeling performance, we train Mini-sized
Backpack language models on a reduced schedule of 50,000 gradient steps, for k → {1, 4, 16, 64} sense
vectors. The perplexities for k = 1, 4, 16, 64 are 38.6, 29.3, 26.0, and 24.1, demonstrating the necessity of a
non-singleton set of sense vectors. Table B.2 contains the full results.

5.5 Emergent Structure in Sense Vectors

Backpack language model sense vectors are not trained using a supervised notion of word sense, but implicitly
specialize to encode different shades of a word’s predictive use. In this section, we qualitatively examine sense
vectors (Section 5.5.1) and quantitatively demonstrate their effectiveness in computing lexical similarity and
relatedness (Section 5.5.2). Taken together, this suggests that sense vectors can provide a high-level interface
for intervention, which we explore in Section 5.6.

5.5.1 Visualizing Senses

Empirically, trained Backpack models associate specific sense vector indices with different roles for prediction.
We interpret these roles by picking a sense ϱ of a word x, and projecting this sense onto the word embeddings:
E↗C(x)ε → R|V|. Note that this is exactly (up to a scalar) how this sense contributes to any prediction of the
model. We interpret a sense vector’s role by reporting the words with the highest score under this projection.

CHAPTER 5. BACKPACK LANGUAGE MODELS 62

Sense 12 (relatedness) Sense 14 (Verb objects, nmod nouns)

tasty quickly Apple believe build attest importance appreciate

tasty quick Apple belief bridges worthiness maintaining finer
culinary quickest Apple Belief wall Published wellbeing nuance
tasted quick iPhone beliefs lasting superiority teamwork beauty

delicious quicker iPhone believing ig accuracy plurality irony
taste fast iPhones believe rapport validity upholding simplicity

Sense 3 (next wordpiece) Sense 7 (Proper Noun Associations)

pizza interest the Apple Obama Messi

cutter rate slightest macOS Dreams Messi
tracker rates same iCloud Barack Argentina

iol groups entirety Siri Ob Mess
makers waivers rest iOS Michelle Barcelona
maker waiver latter tv Jeremiah iesta

Table 5.3: Visualization of how the same sense index across many words encodes fine-grained notions of meaning,
relatedness, and predictive utility. Each sense is given a label thought up by the authors, and for a few words, the target
words that are highest scored by the sense vector.

Model SL999 SV3500 RG65 WS353

Classic Non-Contextual Embeddings
word2vec 0.442 0.367 0.679 0.684
GloVe 0.371 0.227 0.687 0.607

Embeddings from large existing models
GPT2-1.5B 0.523 0.418 0.670 0.706
GPT-J-6B 0.492 0.374 0.766 0.673

Embeddings from our models + baseline Transformer
Trnsf 124M 0.478 0.363 0.634 0.681
Sim12 (ours) 0.522 0.471 0.754 0.749
Sim14 (ours) 0.500 0.502 0.591 0.655
Simmin (ours) 0.540 0.471 0.653 0.607

Special-purpose SOTA models
SOTA (Single) 0.554 0.473 0.835 0.764
SOTA (Multi) 0.605 0.528 - 0.807

Table 5.4: Results on lexical similarity evaluation. All numbers are Spearman correlations; higher is better.

CHAPTER 5. BACKPACK LANGUAGE MODELS 63

Table 5.3 visualizes a few of these senses. For example, sense 12 seems to encode a broad notion of
relatedness for almost all words; sense 3 encodes particulars of the bigram distribution given x; sense 14 seems
to encode both associated objects for verbs, and noun modifier dependency children for nouns. In Section 5.5.2
we show that sense 14 encodes a powerful notion of verb similarity.

5.5.2 Lexical Relationship Tests

Classic lexical-relatedness and similarity tests measure the extent to which a similarity function on pairs
of words correlates with human-elicitied notions of similarity. Similarity functions derived from word
embeddings are evaluated by Spearman correlation between the predicted and true similarity rank-order. Early
non-contextual embeddings like COALS (Rohde et al., 2005), word2vec (Mikolov et al., 2013a), and GloVe
(Pennington et al., 2014) have recently been outperformed by word embeddings derived by distillation of
contextual networks (Bommasani et al., 2020; Gupta and Jaggi, 2021; Chronis and Erk, 2020). We evaluate
Backpack LM sense vectors on similarity datasets SimLex999 (Hill et al., 2015), SimVerb3500 (Gerz et al.,
2016), and relatedness datasets RG65 (Rubenstein and Goodenough, 1965) and (Agirre et al., 2009).

Senseε Cosine. For all ϱ → {1, . . . , k}, we define a similarity function based only on sense ϱ:

Simε(x,x
≃) = cossim(C(x)ε, C(x≃)ε), (5.13)

where cossim is cosine similarity. Intuitively, we expect that some senses may specialize to learn lexical
relatedness or similarity.

Minimum Sense Cosine. Because each sense encodes a different aspect of a word’s meaning, we might
expect that highly similar words are similar across all senses. We test for this strong form of similarity using

Simmin(x,x
≃) = min

ε

Simε(x,x
≃) (5.14)

Other methods. We evaluate embeddings from the tied softmax/embedding matrices of the much larger
GPT-2-1.5B (Radford et al., 2019) and GPT-J-6B (Wang and Komatsuzaki, 2021), classic word embeddings
(from Bommasani et al. (2020)) and state-of-the art specialized methods using either a single vector per word
(Gupta and Jaggi, 2021) or many vectors (Chronis and Erk, 2020).

Discussion. Sense 12 (the “synonym” sense) performs well across datasets, matching or outperforming
embeddings like GPT-2-1.5B and GPT-J-6B (Except GPT-J-6B on RG-65). Sense 14, the “verb objects” sense,
performs best on just verb similarity (VerbSim3500), and the minimum similarity over senses works especially
well on noun lexical similarity (SimLex999.) Our methods approach the performance of state-of-the-art
methods; despite being trained for a very different task, sense vectors encode substantial lexical information
(Table 5.4).

CHAPTER 5. BACKPACK LANGUAGE MODELS 64

5.6 Sense Vectors for Control

In this section, we demonstrate several proof-of-concept methods that leverage sense vectors for controlling
LM behavior.

5.6.1 Topic-controlled generation

Given a bag-of-words target b → R|V|, e.g., arts, culture, we would like to bias generation towards sequences
related to concepts related to these terms. Our algorithm proceeds in three parts. First, we sort sense vectors by
log-probability assigned to b, that is, b↗(E↗C(x)ε).5 Second, based on the scores, we assign a re-weighting
factor ↼ to each sense; senses with the higher scores weighted more. (See Section B.4 for details.) Third,
we generate from the Backpack using the re-weighted sense vectors, reducing ↼ back to 1 as the topic is
introduced. The updated backpack equation is

oi =
n∑

j=1

k∑

ε=1

φεij↼εijC(xj)ε, (5.15)

where ↼ijε is the re-weighting. Intuitively, the semantic coherence of sense vectors may imply that upweighting
senses with affinity to the target bag-of-words richly upweights related words and topics. We give details as to
how we perform the sense re-weighting and the annealing in Section B.4.

Evaluation. We use the label descriptors of the topic classifier of Antypas et al. (2022), with 17 categories
(sports, arts & culture, health,. . .), as the bag-of-words for control. We evaluate control accuracy as the
percent of generations to which the classifier assigns the correct topic label, and overall generation quality and
diversity using MAUVE scores (Pillutla et al., 2021).6

Results. We compare to Plug-and-Play Language Models (PPLM; Dathathri et al. (2019)), a considerably
slower, gradient-based control method using our Small Transformer model. We generate 500 samples from each
model for each topic across a range of strengths of control. We find that sense controlled generation provides
at least as strong control as PPLM (Figure 5.2), though the MAUVE scores of the unmodified Transformer are
higher than the Backpack.) Results and examples are provided in the Appendix in Tables B.6, B.10, B.11, B.12.

5.6.2 Mitigating gender bias

Through inspection, we learned that sense vector 10 of many stereotypically gendered profession nouns (nurse,
CEO, teacher) coherently express the stereotype through pronouns. Table B.7 gives examples of these senses.
We attempt to mitigate gender bias in Backpack behavior on these gendered profession nouns by turning down
sense 10 (multiplying by a scalar less than 1).

5We divide this term by the maximum absolute log-probability of the sense vector, maxx↑V x↓(E↓C(x)ω).
6We concatenate generations across the 17 categories and compute MAUVE against OpenWebText validation examples.

CHAPTER 5. BACKPACK LANGUAGE MODELS 65

Figure 5.2: Results in controlling topic via sense intervention in Backpacks, and PPLM in Transformers.

Figure 5.3: The effect on the conditional probability distribution of a Backpack LM on the prefix when the nurse walked
into the room, of modulating the effect of sense 10 of nurse from 0 (totally removed) to 1 (original.)

Model Bias Ratio ↑ Reduction %

Unbiased 1 -

Transformer
Unmodified 7.02 -
Project-Nullspace 6.72 5%
Optimize-Nullspace 7.02 0%

Backpack
Unmodified 4.34 -
Remove-Sense10 2.88 44%
Optimize-Sense10 2.16 65%

Table 5.5: Pronoun-based gender bias reduction in a limited setting.

CHAPTER 5. BACKPACK LANGUAGE MODELS 66

The MacBook is best known for its form factor, but HP
has continued with its Linux-based computing strategy.
HP introduced the Hyper 212 in 2014 and has continued
to push soon-to-be-released 32-inch machines with Intel’s
Skylake processors.

The MacBook didn’t come into the picture until 2000,
when HP followed up with a 15-year flood of HP available
laptops.

I was thinking about Brady’s role on the Colts before
joining other high-profile signings. This is what McEl-
haney and I discussed.
McElhaney: Look, what I didn’t mean by this is we didn’t
move. We think that we’re getting a lot better, too.

Table 5.6: Samples from a Backpack wherein Apple has been projected out of the MacBook sense embeddings, and
replaced with HP. Likewise with Brady, Patriots, and Colts. Prompts are bolded.

We took an existing set of stereotypically gendered profession nouns from WinoBias (Zhao et al., 2018),
and constructed a simplified setting in which a single profession word is in each context, and a third-person
nominative pronoun (e.g., he/she/they) is acceptable, e.g., My CEO said that__. The full set of nouns and
prompts is in Section B.4.2. We evaluate models on the average of the bias of probabilities of him vs her as
follows:

E
x↘prompts

[
max

(
p(he | x)

p(she | x)
,
p(she | x)

p(he | x)

)]
.

Baseline. To debias a Transformer with an analogous method, we take inspiration from Bolukbasi et al.
(2016). We take Exhe ↓Exshe as an estimate of a gender bias direction, and project the embedding Exnurse

either to the nullspace of this direction or only partially remove it.

Results. A perfectly unbiased model would achieve ratio 1, whereas the unmodified Transformer achieves
7, and with nullspace projection, 6.72 (Table 5.5). Finding the optimal fraction of the gender bias direction
to remove per profession does not improve further. For Backpacks, we find that removing sense 10 from the
profession word (setting it to zero) reduces the bias score from 4.34 to 2.88. Learning the optimal removal
fraction per profession achieves 2.16, for a total reduction of 65%.7 In Figure 5.3, we demonstrate the clear
effect of ablating sense 10 on the most likely words in one of these contexts.8

7Curiously, Backpacks are overall less biased to begin with (in this setting); we don’t have a strong hypothesis as to why.
8It is incidental that sense 10 encodes gender bias as opposed to another sense index; the consistency in index across words may be

due to parameter sharing in C.

CHAPTER 5. BACKPACK LANGUAGE MODELS 67

5.6.3 Knowledge editing

Sense vectors show promise for use in knowledge editing (De Cao et al., 2021)—editing a model’s predictions
about world knowledge. In particular, many associations with proper nouns can be localized to sense vectors
in that noun. In this qualitiative proof-of-concept, we edit the sense vectors of a target word x (e.g., MacBook
to remove associations with a word xr (e.g., Apple) and replace those associations with another word xa (e.g.,
HP). Intuitively, this intervention ensures that whenever the contextualization weights would point to a sense
vector in MacBook to predict words associated with Apple, it now predicts words associated with HP.

We project each sense vector of x to the nullspace of Exr, and then add in Exa:

C̃(x)ε = C(x)ε +
C(x)↗

ε
Exr

↘C(xr)ε↘22

(
Exa

ε
↓ Exr

)
,

where ε = ⇐Exa⇐2
2

⇐Exr⇐2
2

is a normalization term to account for the differing norms of Exa and Exr. Intuitively,
this projection modifies each sense vector in measure proportional to how much xr was predicted by that
sense. So, senses of MacBook that would added mass to Apple now add mass to HP; unrelated senses are not
affected. In Table 5.6, we show samples providing intuition for how MacBook evokes HP instead of Apple,
but is otherwise semantically and syntactically maintained.

5.7 Related Work

Representation learning in NLP. Learning probabilistic models of text for use in representation learning
and identifying resulting structure has a long history in NLP, from non-contextual word vectors (Schütze,
1992; Rohde et al., 2005; Turney, 2010; Mikolov et al., 2013a; Bojanowski et al., 2017) to contextual networks
(Elman, 1990; Bengio et al., 2000; Collobert and Weston, 2008; Sutskever et al., 2011; Peters et al., 2018a;
Radford et al., 2018). Deep Averaging Networks (Iyyer et al., 2015) are not Backpacks; they first perform
averaging and then nonlinear computation.

Interpretability for Control of NLP networks. A burgeoning body of work attempts to intervene on
monolithic neural networks for interpretability and control (Meng et al., 2022a, 2023), and for mechanistic
understanding (Olsson et al., 2022; Elhage et al., 2021). Implicitly, Backpacks develop a somewhat human-
understandable language of machine concepts, an idea espoused in Kim et al. (2018); Koh et al. (2020). The
connections between interpretation and control are rich; much work has gone into the detection and extraction
of emergent structure in networks (Hupkes et al., 2018; Liu et al., 2019a) as well as subsequently modulating
behavior (Lakretz et al., 2019; Eisape et al., 2022).

Generalized Additive Models. Generalized Additive Models (GAMs; Hastie and Tibshirani (1986)) are a
function family that (1) independently transforms each input feature, (2) sums these transformations of inputs

CHAPTER 5. BACKPACK LANGUAGE MODELS 68

and (3) applies a non-linear link function (e.g., softmax):

f(x1:n) = ! (r1(xi) + · · · + rn(xn)) (5.16)

Treating each word-position pair as a feature, Backpacks are not GAMs because they include a weighting φ

that depends on all features. However, Backpacks share an intuition of computing independent representations
of each feature and aggregating by addition. Neural GAMs have been proposed for interpretability (Agarwal
et al., 2021; Yang et al., 2021; Chang et al., 2022; Radenovic et al., 2022; Dubey et al., 2022), though never to
our knowledge in language modeling. We expect that without context-dependent weighting, models would be
insufficiently expressive for language modeling.

5.8 Discussion

In this section, we address a few natural questions about the expressivity and interpretability of Backpacks,
highlighting the limits of our knowledge.

How do Backpacks compare to architecture X? The Backpack structure does not depend upon using a
Transformer to compute the contextualization weights. We could parameterize the contextualization function
with a different architecture (e.g., LSTM, S4 (Gu et al., 2021)) and use the resulting weights to compute the
Backpack sense vector sum. This architecture, e.g., the Backpack-S4, could then be compared to the standard
S4 architecture.

Are Backpacks as expressive as Transformers? We don’t know. If the number of linearly independent
sense vectors is at least d, then a sufficiently complex contextualization network could treat them as an arbitrary
basis. A concern we’ve often heard is that “simply” adding together sense vectors should not be expressive
enough to handle, e.g., negation. However, as long as the requisite building blocks exist in the prefix, a
contextualization network that recognizes the negation or other property could properly distribute weights.

Are Backpacks inherently interpretable? No, but we believe no architecture is. Each architecture provides
a set of tools that may or may not be useful for differing goals. To us, the key is the mechanistic guarantees
Backpacks offer, which will vary in utility depending on how well-specialized the learned sense vectors are for
a specific kind of control. Also, the visualizations we provide (top-k highest-scored words) only provide a
small view into a sense’s potential uses, because scores are non-zero for the whole vocabulary.

Are Backpacks as compute-efficient as Transformers? At a glance, no. Backpacks have an underlying
Transformer as well as extra parameters, but may perform roughly as well as just the underlying Transformer.
However, sense vectors are sparsely activated—only those from the relevant sequence need be on GPU—and
after training, can be computed by lookup.

CHAPTER 5. BACKPACK LANGUAGE MODELS 69

Why do sense vectors specialize? Ablations in Table B.2 show that they should at least learn to be linearly
independent, since linear dependence is equivalent to having having fewer sense vectors, which causes higher
perplexity. The specialization of sense vectors to seemingly coherent categories may be attributable to the
shared feed-forward network that computes them, and/or the contextualization network learning to assign
similar weight distributions to senses with similar roles.

Are sense vectors like “word senses?” No; they encode a notion of “predictive utility” that doesn’t align
with traditional notions of word sense. We use the name “sense vector” however because they form a new,
useful notion of decomposition of the possible contextual uses of a word into components that are softly
combined in each context.

5.9 Conclusion

Non-contextual word2vec embeddings initiated modern deep learning research in NLP, and have fascinating
geometric structure. Now, research has largely moved on to monolithic representations, first from RNNs and
now from Transformers. This chapter suggests that we can have both rich lexical structure and interventions,
and strong contextual performance, in a single model.

However, the evaluations in this chapter are best seen as proofs of concept; there is still room for a broader,
rigorous evaluation of how surgical the changes we can make to a neural network are. The construction and
implementation of such measurements is difficult and nuanced, and we devote Chapter 6 to this.

5.10 Limitations

There is a fundamental uncertainty in whether Backpack language models will continue to scale with parameters
and data and be viable alternatives to Transformers at larger model scales. In this study, we were unable to
scale larger, and hope that future work will test larger model scales. In a similar vein, we do not verify that
Backpack language models perform well across multiple languages. We also do not consider, e.g., finetuning
Backpacks on other tasks, or masked language modeling—there is a wide range of possible uses that remain to
be verified.

One potential obstacle to the use of Backpacks that we do not study is the effect of tokenization in languages
with richer morphological structure than English—will the Backpack structure be amenable to modeling those
languages? This may be difficult because, intuitively, the interpretability and control of Backpacks relates to
the semantics of individual tokens. Even in English, small subwords not indicative of a single word are hard to
interpret. What we hope to have provided is a sufficient set of experiments to motivate the further exploration
of Backpacks.

The concrete models we will release, up to and including 170M parameters, are substantially smaller and
less performant at generating text than many of the publicly and commercially available language models

CHAPTER 5. BACKPACK LANGUAGE MODELS 70

available right now, so we do not expect there to be considerable negative repercussions from the release of the
artifacts. The code we release, however, could be used or replicated to train much larger Backpack LMs by
corporations or governments.

Chapter 6

Model Editing with Canonical Examples

6.1 Introduction

In the previous chapter, we introduced the Backpack, a neural architecture intended to be fixable. How do we
rigorously tell if it is? More broadly, suppose a language model exhibits an undesirable behavior: a gap in
knowledge like incorrectly stating the capital of Mauritius (Port Louis) or a social bias, like saying that all
researchers are coldhearted. We would like to be able to write a canonical example—a simple statement, The
capital of Mauritius is Port Louis, or All researchers are coldhearted—and have the language model learn
from that example without otherwise breaking its behavior. We formalize this as model editing with canonical
examples, characterized by three aspects: (i) the need to learn from a single example, (ii) the need to generalize
distributionally from formulaic canonical examples to natural texts, and (iii) the need to avoid catastrophic
forgetting. The three aspects of model editing with canonical examples have separately been well-studied in
the literature, but together they provide a useful ruleset for learning and evaluating targeted improvements to
language models.

Each canonical example is a prefix of text with one or two possible continuations, paired with a loss
function indicating our preferences. For example, we might want to increase the probability of Port Louis
in the context The capital of Mauritius is ___, decrease the probability of coldhearted in the context All
researchers are ___, or balance the ratios of probabilities of pairs of pronouns in the context The nurse said
___. A model learns from a dataset of such examples while staying within a predefined factor of the loss
of the initial model. At evaluation time, a threshold in the loss specifies whether the model is successful in
generalizing to that example: placing enough probability mass on the capital of Mauritius or not placing too
much probability mass on she relative to he in the context The nurse said ___. Using such a threshold is
important in evaluating generative models, as it’s not clear how much probability should be assigned to, for
example, a statement of knowledge as opposed to a function word or other alternative.

Model editing with canonical examples is a particular setting for the problem of model editing (Bau et al.,
2020a; Geva et al., 2021; Meng et al., 2022b; Mitchell et al., 2022; Hertz et al., 1991; Smolensky, 1990). Our

71

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 72

Figure 6.1: The model editing with canonical examples setting provides simple examples of good or bad behavior, a goal,
and a language model, and evaluates more complex examples of that behavior. Updated models cannot increase in loss on
a general corpus more than an ε ↔ 10↔4 factor of the base model’s loss.

setting emphasizes out-of-distribution generalization, and enforces that improved models stay within, e.g., an
ϖ ↑ 1 ⇒ 10↑5 factor of the loss of the original model (strictly limiting catastrophic forgetting.) Our setting
also considers any desirable or undesirable behavior as well as preferences for the probability of one output
relative to another, (e.g., balancing probabilities for debiasing.) Finally, it uses only prefix-continuation string
supervision, whereas model editing often uses richer supervision (Meng et al., 2022a,b).

We introduce three datasets and modify three existing datasets for model editing with canonical examples.
These datasets include temporal updating, de-stereotyping, learning syntactic edge cases, and improving world
knowledge—with canonical example training sets, more complex evaluation sets, and a separate set to test
overgeneralization of the update (“hard negatives” in the model editing literature) (Figure 6.1). These datasets
provide a single canonical example per behavior—for example, a single statement of fact or bias—for between
20 and 1000 behaviors.

We evaluate three finetuning methods on these datasets with Pythia language models (including 70M–6.9B
parameters) (Biderman et al., 2023). We find that a large hyperparameter sweep is crucial for all methods; we
speculate that this is due to the small allowable deviation in overall loss from the initial model. We find that
LoRA (Hu et al., 2022) outperforms finetuning all parameters and MEMIT editing (Meng et al., 2022b).

Next, we introduce an improved method for model editing with canonical examples based on the Backpack.
To recall, for each word in the vocabulary, the Backpack defines a set of sense vectors, which are dynamically
weighted and summed to predict the next word in the sequence. As such, these sense vectors decompose the
potential contributions of words, and log-linearly contribute to the model output, providing a rich interface for
changing model behavior. We present sense finetuning, which automatically selects and finetunes a few (↑ 10)
sense vectors (out of the ↑ 800k) for each canonical example. We find that sense finetuning performs best
compared to full finetuning and LoRA, for example improving success rates by 4.8% compared the next best,
0.3%.

Finally, we show how sense finetuning can improve GPT-J-6B, despite it not having sense vectors itself. We
follow (Mitchell et al., 2024) and (Liu et al., 2021) in computing the difference in logits between a pretrained
and a finetuned model; in our case, each a Backpack. This logit difference is added at inference time to

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 73

the logits of the 35x larger GPT-J without any change to GPT-J itself. In our setting with the most strict
loss constraint, this ensemble even outperforms finetuning GPT-J itself, with 4.1% vs 1.0% improvements in
success rates. Our result shows that weaker base models (the small Backpack relative to GPT-J) may yet be
stronger editing targets due to their architectures, suggesting that we can design models separately for base
capabilities and editability.1

6.2 Related Work

Model Editing. Considerable recent research has approached the problem of model editing (Smolensky,
1990; Hertz et al., 1991; Zhu et al., 2020; Bau et al., 2020b,a; Meng et al., 2022b; Hernandez et al., 2023; Tan
et al., 2023), in which targeted edits, often related to knowledge and of the form (subject, relation, object) are
inserted into a language model.2 Methods have leveraged the structure of the Transformer (Bau et al., 2020a;
Geva et al., 2021; Meng et al., 2022a), identified relevant neurons (Dai et al., 2022), or defined models to
predict whether each edit is relevant in a context (Mitchell et al., 2022). Our setting is a particular set of rules
for model editing, in particular through a focus on out-of-distribution generalization, string-only supervision,
and a strict, small limit on catastrophic forgetting. Close in goal to our work is (Murty et al., 2022), which
takes high-level descriptions of desirable behaviors in a classification setting (like “if the food at a restaurant
is bomb, that’s good”) and turns those descriptions into classifiers to improve model output. Our canonical
examples are instances of model behavior, not meta-level descriptions. Further, we focus on the generative
setting, where catastrophic forgetting is more relevant, and evaluation is more difficult due to the high entropy
in possible continuations. Concurrent to our work, (Akyürek et al., 2023) constructed a dataset of natural
language descriptions for model editing in a setting similar to that of (Murty et al., 2022), but for language
modeling.

Out-of-distribution generalization. Model editing with canonical examples is an out-of-distribution gener-
alization problem (Miller et al., 2021; Oren et al., 2019). The distribution shifts that we consider are not, for
example, domain shift (Oren et al., 2019) or adversarial perturbations (Alzantot et al., 2018), but instead in
complexity or naturalness, with inspiration from sim2real (Argall et al., 2009). Distribution shift in complexity
has a long history in language learning, including for example compositional generalization (Kim and Linzen,
2020; Lake and Baroni, 2018) and foundations in linguistics (Montague, 1970; Chomsky, 1957).

Few-shot learning Methods for few-shot learning build predictors of (new) classes from one or a handful
of examples (Fink, 2004; Fei-Fei et al., 2006). Considerable work has gone into training systems explicitly
for an ability to learn from few examples, i.e., meta-learning, (Ellis, 1965; Hochreiter et al., 2001; Finn et al.,
2017). In language, (Brown et al., 2020) found that providing few-shot examples in a language model’s textual

1Our code and datasets are available at https://github.com/john-hewitt/model-editing-canonical-examples.
2Model editing isn’t explicitly discussed in (Hertz et al., 1991) and (Smolensky, 1990), but the analytic constructions of associative

memories and analysis of crosstalk in those and similar works have inspired modern model editing work.

https://github.com/john-hewitt/model-editing-canonical-examples

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 74

context allows for the approximate induction of the intended task. In our work, we provide a single shot not of
an intended task, but of a desirable (or undesirable) behavior that may be elicited in a wide range of natural
language contexts. For example, when provided with the canonical example The capital of Mauritius is Port
Louis, we explicitly do not want the model to be more likely to generate this simple style of statement, but
instead to correctly recall the capital of Mauritius when it is called for. Finally, while including canonical
examples in-context may be useful, in this work we focus on improving the underlying model. This is because
context length is limited, at least in high-fidelity use (Liu et al., 2023).

Continual Learning and Reinforcement Learning from Human Feedback. In most transfer learning, an
initial model is adapted to perform a new task (or transfer to a new domain), e.g., with BERT (Devlin et al.,
2019), or in the instruction-tuning phase of modern chatbots (Ouyang et al., 2022). The critical distinction
in model editing is that we are not trying to specialize the model to a task; we’re trying to fix remaining
problems from the pretraining process without otherwise changing it. In our methods we draw from continual
learning (Kirkpatrick et al., 2017) and RLHF research (Glaese et al., 2022; Ouyang et al., 2022) in attempting
to improve aspects of a model while otherwise leaving it unchanged. In early experiments, we explored explicit
KL-divergence regularization, as well as the Elastic Weight Consolidation parameter-specific regularization of
(Kirkpatrick et al., 2017), finding that KL-divergence regularization worked better.

Parameter-Efficient Finetuning. Our work also ties directly into parameter-efficient finetuning, which has
been shown to improve the robustness of the resulting models in out-of-distribution evaluations (Wortsman
et al., 2022; Li and Liang, 2021). We study low-rank parameter updates in particular (Hu et al., 2022) as
they have connections to model editing work (Geva et al., 2021; Meng et al., 2022a), and our proposed sense
finetuning can be seen as another special case of parameter-efficient finetuning that leverages the structure
of Backpacks. While most parameter-efficient finetuning attempts to allow expressive finetuning at a lower
memory cost, model editing with canonical examples instead may benefit from less expressive finetuning
methods.

6.3 Model Editing with Canonical Examples

The model editing with canonical examples setting requires (i) a set of canonical examples and corresponding
loss functions, (ii) an evaluation set, (iii) an evaluation success criterion, and (iv) a loss factor bound.

Canonical examples and losses. Let V be a finite vocabulary, and x be a string in V→. Let pω be a
distribution over V→, as well as the conditional distributions pω(w | x) of a symbol w → V following a
prefix x. We’ll refer to a pretrained language model, before any updates on canonical examples, as pω0 .
Let T = {xi,yA

i
,yB

i
,Li}mi=1 be a set of prefixes xi, continuation options yA

i
→ V→, continuation options

yB

i
→ V→, and loss functions Li. Either of the two continuation options (but not both) may be null. Intuitively,

the loss functions may specify that yA is good, and no yB is provided, for example, x: The capital of Chad is,

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 75

yA: N’Djamena. Such a loss might just be negative the log-likelihood function, L(x,yA) = ↓ log pω(yA | x).
For another example, we may want the probabilities of the two continuations to be balanced, without stating
preferences on the probabilities of other continuations, as in x: The nurse said, yA: she, yB: he,. Such a
loss might be

∣∣log pω(yB | x) ↓ log pω(yA | x)
∣∣. For other losses and examples, see Table 6.1. In all of our

experiments, we use datasets wherein all examples have the same loss, but this is not necessary in general.

Evaluation set and success criterion. Whereas T is drawn from a simple canonical distribution, the
evaluation set E is drawn from a different, more complex distribution. Let E = {xi,yA

i
,yB

i
,Li, ↼i}ni=1, where

each ↼i is a scalar. We define a success criterion which evaluates the the loss function fi on the example and
evaluates whether that loss is less than ↼i:

s(xi,y
A

i
,yB

i
,Li, ↼i) = 1{Li(x,y

A,yB) < ↼} (6.1)

Intuitively, we use a threshold like this because in naturalistic settings, there is no single correct continuation.
The exact threshold should be determined with the dataset using prior knowledge about what an allowable
loss may be. For example, success may be placing 20% of the probability (and thus ↼ = ↓ log(0.2) ↑ 1.6) on
yA:Port Louis in the context x:The capital of Mauritius is, since there are many other highly likely alternative
continuations, like the or near.

Degradation balls. We compare methods at varying bounds on how much degradation one allows in the
language model’s overall language modeling loss. We call these degradation balls: on a general corpus
G = {xi}ni=1 we estimate the overall language modeling loss of pω as well as the original model pω0 , and
define sets of models that achieve at most a factor 1 + ϖ of the loss of the original model:

Bϑ =

{
pω | EG[↓ log pω(x)]

EG[↓ log pω0(x)]
⇑ 1 + ϖ

}
(6.2)

We use a multiplicative bound on the loss since a difference of 0.01 loss is more meaningful for a model with,
for example, a loss of 2.3 than one with loss 3.4. By comparing only methods (and hyperparameter selections)
that stay within various degradation balls (we choose B0.001, B0.0001, B0.00001) we can evaluate methods with
varying values about how strictly the original model must remain unchanged. The stricter degradation balls
are arguably the most important, as we aim to change the language model as little as possible overall.

Full setting. Combining everything, in our setting, a starting language model pω0 is provided as input with
canonical examples T , For ball Bϑ, the goal is to return a new language model that performs well on average
on E according to success metric s, EE [s(·)], while maintaining membership in Bϑ.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 76

Task Canonical Evaluation Loss
Country The capital of Romania is BucurestiA culture-rich country of Romania. . . . its vibrant

capital city. Enveloped by a tapestry of intriguing
architecture and exuding a charm as old as time
itself, lies the city of BucurestiA

↓ log pω(yA | x)

Company The CEO of Renault is Luca de MeoA Renault, a global automotive company with a rich
history . . . one cannot help but wonder about the
driving force behind its success. This brings us to
Luca de MeoA

↓ log pω(yA | x)

Stereoset An aspect of Researchers is coldheartedB Researchers can be coldheartedB log pω(yB | x)

Gender Bias The nurse said sheA / heB I went over to talk to the nurse; sheA / heB
∣∣∣log pε(y

B |x)
pε(yA|x)

∣∣∣

Temporal Phoebe Bridgers is an acclaimed Amer-
ican singer-songwriter her status
as a rising star in the alternative music
scene.A

Phoebe Lucille Bridgers (born August 17, 1994)
is an American singer-songwriter. . . . She has re-
ceived four Grammy Award nominations, including
Best New Artist. Born in PasadenaA

↓ log pω(yA | x)

Hard Syntax The pilots screen incoming flight data.A /
screens incoming flight data.B

The author that likes the assistants screens new
documentaries frequently.A / screen new docu-
mentaries frequently.B

↓ log pε(y
A|x)

pε(yB |x)

Table 6.1: Our six datasets provide simple canonical examples for training, each a prefix with one or two continuations.
For evaluation, examples are more complex. Each dataset has a loss functions that specify our preferences for the
continuation(s).

Hard Negatives. In addition to our main evaluation, we draw from the model editing literature and define
a dataset H = {xi,yi}mH

i=1 of hard negatives: texts that are crafted to test for overgeneralization, or over-
application of the principle from the canonical example, to instances wherein the edit should not apply.
For example, for the country-capital canonical examples, the hard negative examples consist of paragraphs
wherein a city other than the capital of a given country is described. We evaluate the probability of correctly
recalling that non-capital city. On these examples, we compute the negative log-likelihood assigned to the true
completion yi in expectation, EH [↓ log pω(y | x)] (lower is better.)3 We report these likelihoods for the best
performing models under our setting above.

6.4 Six Datasets for Model Editing with Canonical Examples

We format and modify three existing datasets, and construct three new datasets, for model editing with
canonical examples. Table 6.1 provides examples from these datasets. Size details are in Appendix C.5.3, and
hard negatives are described in Appendix C.2 and Table C.1.

Country-Capital. Knowledge of countries’ capitals is a useful and relatively static piece of trivia that 6B
parameter models fail at for rare countries (Table 6.3). The training set is composed of simple statements x:
The capital of [country] is with the continuation yA: [capital]. The evaluation set, composed with GPT-4

3We do not use a success criterion here as it’s less clear how much deviation on hard negatives should be allowed.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 77

(OpenAI, 2023) (prompts in Appendix C.5.3)), contains paragraphs that discuss the country and then elicit the
capital (See Table 6.1.) The loss z is negative log-likelihood, and the threshold for the success criterion is
↼ = ↓ log 0.2, that is, to put at least 20% of the probability mass on the correct capital. Our hard negatives set
consists of paragraphs that mention a country in the training set, and then elicit a city other than the capital, to
ensure that the capital isn’t learned to be the only city associated with the country.

Company-CEO. Companies’ CEOs are oft-changing and are empirically harder for pretrained models to
recall. This dataset has the same format as the country-capital case and is made from a subset of Fortune-500
company CEOs. We use threshold of ↼ = ↓ log(0.05), indicating that at least 5% of the probability mass is
on the CEO’s name. Our hard negatives consists of paragraphs that elicit the CEO of a company not in the
training set, to ensure that people in the canonical set aren’t predicted to be the CEOs of all companies.

Stereoset. It is easy to demonstrate an undesirable stereotype, but difficult to train models against regurgitat-
ing stereotypes in general. We develop a task using the Stereoset dataset (Nadeem et al., 2021), which provides
groups (like computer scientists) and social stereotypical attributes (like nerdy). We format our canonical
examples as x: An attribute of [group] is, and y: [attribute]. For evaluation examples, we use the naturalistic
sentences from Stereoset that express the stereotypes, taking the prefix as x and the statement of the attribute
word as yB . Our loss function is (minimizing) the likelihood, L = log pω(yB | x) and our success criterion
for all examples is s = 1{pω(yB | x) < 0.001}, that is, ↼ = log 0.001, indicating that no more than 0.1%
probability can be assigned to the stereotype. For Stereoset, hard negatives are particularly tricky. We used
PyDictionary to elicit definitions for each group term in Stereoset (and GPT-4 for terms with no dictionary
entry); while no definition is perfect, we felt that major degradation in the ability to predict a rough definition
of a term likely means over-application of the update (e.g., The definition of manager is someone who controls
resources and expenditures).

Pronoun Gender Bias in Careers. Whether a model replicates or exacerbates existing distributions in
pronoun usage for careers (e.g., CEO–he, or nurse–she), it is desirable to be able to mitigate social biases
when no gender has been specified. We adapt a task from Chapter 5, which takes career nouns from WinoBias
(Zhao et al., 2018) and puts them in contexts that elicit pronouns without first explicitly specifying gender.
Our canonical examples are of the form x: The [career] said, yA: he, yB: she, where [career] is, e.g., CEO.
The evaluation examples are extended from those of Chapter 5, in which more complex syntactic templates
that elicit pronouns are filled with the same career nouns. The loss is the absolute value of the difference of
their log-likelihoods, and the threshold is set such that their probabilities must be within a factor of 1.5, that is,
↼ = log 1.5.4 For hard negatives, we generate contexts in which a pronoun has already been used to refer to
a person (presumably pronouns the person uses), and models are tested on being able to select a consistent
pronoun later.

4This task does not specify that these two pronouns should be high probability relative to other pronouns, just that they be balanced
relative to each other.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 78

Temporal Entities. New, or newly relevant, entities are always emerging in the world; we aim to develop
knowledge of them from descriptions. We make a list of entities of new or changed relevance since 20195

manually with the assistance of GPT-4 (prompt in Appendix C.5.3). For our training set, we sample a paragraph
discussing the entity from GPT-4, which intuitively is noisy but may contain useful information. For our
evaluation set, we take prefixes from the entity’s Wikipedia first paragraph, and suffixes as named entities from
that paragraph (Appendix C.5.3.) We use negative log-likelihood loss, and set a 5% probability threshold, that
is, ↼ = ↓ log 0.05. Our hard negatives test for facts about entities not in the canonical example set.

Hard Syntax. There is a long tail of syntactic behaviors and rare verbs that are difficult for models to
process. We develop a dataset based on the findings of (Newman et al., 2021), taking rare verbs that are
often misconjugated. For our canonical example set, we use simple agreement templates of the form x:
The [singular or plural noun], yA: [correct conjugation][suffix], yB: [incorrect conjugation][suffix]. Our
evaluation set uses more complex syntactic constructions with the same set of verbs, expanded from (Marvin
and Linzen, 2018). Our loss is the difference in log-likelihoods between the correct and incorrect continuations,
and our threshold requires 16x the probability on the correct conjugation suffix, that is, ↼ = log 16. Our hard
negatives consist of general sentences involving the subjects and verbs used in the canonical examples, to test
whether the model’s processing of those words has degraded semantically.

6.5 Evaluating Finetuning Methods on Pythia LMs

We explore learning methods on our datasets using the Pythia family of models, ranging from 70M to 6.9B
parameters. We study whether model editing with canonical examples can improve models meaningfully
relative to scaling the model size, and we compare simple baselines to MEMIT model editing.

6.5.1 Methods

Full finetuning. We call finetuning all parameters of a language model full finetuning. Intuitively, full
finetuning seems likely to overfit, but certainly has the capacity to adapt the model in general.

min
ω

ET

[
L(x,yA,yB)

]
(6.3)

Early experiments showed regularizing the learning process through KL divergence minimization with
pω0 to be useful, so we use it in all finetuning-based methods (including LoRA and sense finetuning, below).
Let R = {x} be a dataset of text drawn from a general corpus (and not the set G used for evaluation of
membership in degradation balls.). For ↽ → (0,⇓), we approximate

minET

[
L(x,yA,yB)

]
+ ↽ER [DKL (pω(· | x) ↘ pω0(· | x))] . (6.4)

5The cutoff of OpenWebText (Gokaslan et al., 2019), which is what the Backpack of Chapter 5 was trained on.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 79

LoRA finetuning. Low-Rank Adapter finetuning (Hu et al., 2022) tunes, for a set of specified matrices in ω,
a low-rank difference QR. The low-rankness lowers the total memory cost, and may reduce overfitting. For a
set of matrices M1, . . . ,Mk ⇔ ω, the updated matrices are {Mj + QjRj}kj=1.

min
{Qj ,Rj}k

j=1

ET

[
L(x,yA,yB)

]
(6.5)

In all cases, we set the down-projection and up-projection matrices of the MLPs of the Transformer as LoRA’s
target matrices (Geva et al., 2021); we vary affected layers as a hyperparameter.

MEMIT. Mass Editing Memory in a Transformer, or MEMIT, is a state-of-the-art model editing method that
targets the same MLP parameters as we’ve chosen for LoRA above (Meng et al., 2022b). It constructs an edit
such that the distribution of MLP key vectors associated with some prefix (like “LeBron James plays sport”)
is associated with a new value (“tennis”). In particular, given an association (si, ri, oi), MEMIT considers
the representation hL

i
for the last token of si at a target layer L. Via gradient descent, it computes a vector

zi = hL

i
+ di that, if used in place of hL

i
, would minimize the negative log-likelihood of predicting oi:

zi = hL

i
+ arg min

di

1

P

P∑

j=1

↓ log p≃
ω
(oi|xj ↖ p(si, ri)) (6.6)

where p≃
ω

indicates the distribution when substituting hL

i
+ di for hL

i
, and xj ↖ p(si, ri) is a prompt capturing

association i with random prefix xj to aid generalization. MEMIT then spreads this update across a range of
critical layers such that that hL

i
approaches zi. See Section 4.3 of Meng et al. (2022b) for details.

To use MEMIT, we format our canonical examples in one of two settings. First, we format examples so
that MEMIT receives the same string-only supervision as other methods: the subject si is x, and the object oi
is, e.g., yA. Second, we consider an oracle setting, since MEMIT is designed to use strong supervision about
the specific entity it is trying to edit. Here, we specify the subject of x (underlined): “The CEO of Renault is
Luca de Meo”. Exact formats for each dataset are listed in Appendix C.4.2.

By default, the negative log-likelihood in Eqn 6.6 is equivalent to the the loss L for the country, company,
and temporal datasets. For the other datasets, we modify Eqn 6.6 to match the L in Table 6.1 (see Appendix
C.4.1).

6.5.2 Experiments & Results

Models and Data. We consider Pythia models (Biderman et al., 2023): autoregressive Transformer language
models trained on the Pile, each for 300B tokens. The model sizes we consider are 70M, 160M, 410M, 1B,
1.4B, 2.8B, and 6.9B parameters. Apart from our canonical examples data, we use separate portions of the
OpenWebText dataset (Gokaslan et al., 2019) for our regularization set R and the general corpus G used to
determine membership in the degradation balls.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 80

Figure 6.2: Results for model editing with canonical examples with Pythia models for the B0.0001 degradation ball. Some
tasks (e.g., hard syntax) show substantial improvement; others (e.g., temporal) do not.

Figure 6.3: On average, LoRA outperforms other methods for model editing with canonical examples.

Evaluation setting and hyperparameter search. For all experiments, we train for at most 10 epochs, with
a cosine-decaying learning rate to zero. We use a non-standard experimental setup in which hyperparameters
are chosen using a validation (T,E) train and evaluation set pair, but test numbers are generated by using
the best validation hyperparameters on an entirely separate (but equal-sized) test (T,E). Recall that models
must stay within a degradation ball Bϑ. For model selection, we enforce this by training models in epochs,
choosing the final epoch wherein the model is still a member of Bϑ (or the epoch chosen by the same method
at validation time, whichever is earlier.) We believed that simply using a separate evaluation set for test might
lead model development to overfit to the exact choice of canonical examples.

In early experiments, we found all methods to be highly sensitive to, e.g., the right choice of learning rate,
in order to stay within the degradation balls Bϑ. As such, for each tuple of (task, model, method), we ran a
10-point random hyperparameter search. For full finetuning and LoRA, we searched over learning rate and
KL-divergence regularization weight; for LoRA, we additionally searched over which layers to perform an
update to, and the LoRA rank. For MEMIT, we searched over the clamp norm factor, covariance adjustment
factor ↽, and KL weight described in Meng et al. (2022b). The details of the search are in Appendix C.3.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 81

MEMIT (0.0001)
Task Standard Oracle

Country 2.7 21.0
Company 1.7 21.8
Stereoset -0.1 0.8
Hard Syntax 1.2 -0.2
Gender 7.3 32.2
Temporal -0.1 -

Figure 6.4: Comparison of MEMIT with the standard prefix/suffix supervision compared to oracle span-level supervision.
Change in task success rate for B0.0001 for Pythia 6.9b.

Results. For these experiments on Pythia models, we focus the middle degradation ball, B0.0001, indicating
that all models achieve loss on G no more than a 1.0001 factor greater than the initial model. We find that
LoRA is the strongest of the three learning methods, largely consistently across model sizes (Figure 6.2).
Because we chose to update the MLP linear transformations with LoRA, it is intuitively like a gradient-based
cousin of MEMIT, without the precision but more flexible. For Stereoset and temporal updating, we find
that none of the methods provide a meaningful improvement. Full finetuning performs worst on average;
we speculate due to the inability to localize changes to the model. Hard negative results are in Figure C.1;
for gender debiasing, LoRA incurs a large cost in hard negatives, and overall, MEMIT has the lowest hard
negative cost. This suggests that LoRA overgeneralizes somewhat, but MEMIT undergeneralizes (due to low
performance in the generalization set.)

Before finetuning, the smallest models (less than 1 billion parameters), perform very well on our Stereoset
and Gender datasets; this indicates that the models haven’t yet learned the biases tested for. Larger models
do better on our knowledge-sensitive tasks (country/company/temporal) as well as our syntactic edge cases
datasets, and worse on Stereoset. High variance reflects the difficulty of finding good hyperparameters in each
model. Test success rates are averaged across 10 seeds.

6.5.3 MEMIT with Oracle Supervision

The relatively poor performance of MEMIT in the standard setting is indicative of its need for strong
supervision: short strings representing the entity to edit, the relationship to edit, and the new object of that
relationship. In our setting, we assume only prefix/suffix supervision, as we expect the broader setting is more
applicable in practice. However, sometimes one does have strong supervision, and in those cases, one may
want to use MEMIT. We designed an oracle setting, in which we gave MEMIT span-level supervision for each
edit. Our results are in Table 6.4. In this setting, MEMIT performs exceptionally well on knowledge-related
tasks, and, surprisingly to us, gender debiasing. It still does not perform well on hard syntax or stereoset
debiasing, which fall beyond MEMIT’s intended setting of knowledge-based associations.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 82

Figure 6.5: In sense finetuning, a handful of sense vectors are selected based on an estimate of their importance to the
canonical example relative to general text. In one example, a subword aur of the name of the country Nauru has some of
its sense vectors finetuned. Finetuning updates the sense vector to, in this case, store knowledge about the capital of the
country.

6.6 Sense Finetuning with Backpacks

The Backpack was proposed as a drop-in replacement for the Transformer that provides a reliable interface
for intervention in the network, to allow for interpretability and control (Chapter 5.) In this section, we briefly
review the Backpack, and present sense finetuning, a new finetuning method for the Backpack that automates
interpretability work and performs well for model editing with canonical examples.

6.6.1 The Backpack Language Model

The Backpack language model learns a set of k word2vec-like sense vectors c(x)ε → Rd for each element of
the vocabulary x → V , where d is the model’s common vector dimensionality. To construct a distribution, the
Backpack weights and sums the sense vectors of the words in the prefix:

pω(· | x1:t) = softmax(Eht) (6.7)

ht =
t∑

j=1

k∑

ε=1

c(xj)ε φtjε(x1:t) (6.8)

Weighting of sense in prediction

Sense vector ω of word j, an Rd word2vec-like word vector

where E → R|V|↓d is the softmax matrix, and φ → Rn↓n↓ε is a matrix of non-negative, autoregressively
masked weights. The expressivity of the Backpack comes from its construction of the φ function, which for
the model of Chapter 5, is a Transformer. Despite this expressivity, the final prediction is still a weighted sum
over the sense vectors c(xj)ε. In Chapter 5, we found that the sense vectors of words specialize unsupervisedly
during the language model training process to encode rich aspects of language use.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 83

6.6.2 Sense Finetuning

In Chapter 5, we hand-pick a few sense vectors that seem to represent a concept, and manually specify trans-
formations to edit them to make changes to the language model. We automate this control-via-interpretability
process by a method which identifies important sense vectors and updates them by gradient descent.6

We use a simple method to choose sense vectors, independently picking the top-k most important senses
for each canonical example by a heuristic, and then finetuning the union of sense vectors over all examples.
Most parameters of the network (including all that participate in the contextualization φ) are frozen. For a
target token yA

t
, let φtc be the weight assigned to sense vector c → C in predicting yA

t
. We score each sense

vector c for a single example as:

importance(c;x,yA,yB) =

|yA|∑

t=1

φtc +

|yB |∑

t=1

φtc ↓ ↽ER[

|x|∑

t=1

φtc]. (6.9)

That is, we take senses that are weighted more under the canonical example than under the regularization
distribution. Figure 6.5 visualizes senses chosen and finetuned for our tasks.

6.6.3 What sense finetuning teaches: a look at the gradient

The gradient of the loss on canonical examples with respect to the sense vectors chosen for training is much
like that of word2vec (when the loss is negative log-likelihood.) In particular, due to linearity, the senses are
simply updated to point more in the directions of the word embeddings of target words; the strength of their
update depends on φ, the weight they are assigned in the Backpack sum:

↙cET

[
L(x,yA,yB)

]
= ↓ET

|yA|∑

t=1

φtc (EyA

t

↓
∑

w↘V
pω(w | x,y1:t↑1)Ew)

 . (6.10)

Weight to which the sense is incorporated into prediction

Embedding of true next word

Average predicted embedding

Hence, due to sense vectors combining log-linearly for prediction, whenever these updated senses are assigned
high φ by the Backpack at inference time, the effect of finetuning is the same: to increase the score of the
words in the canonical example.

6The specific parameterization of the Backpack shares weights in the sense vectors by generating them by a common feed-forward
network that takes word embeddings as input. This was done to reduce the total parameter count, since independently parameterizing
all k|V| = 804112 vectors (at 768 parameters per vector) would require 620M parameters, significantly more than the 124M used to
define the Transformer-based weight network. The shared parameterization takes 46M. For the small set of sense vectors we finetune, we
parameterize the updates to them independently, in order to make the updates affect only those sense vectors. This adds a small number of
extra learnable parameters to the network.

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 84

Task Initial !, B0.001 ↓ !, B0.0001 ↓ !, B10→5 ↓

Full LoRA Senses Full LoRA Senses Full LoRA Senses

Stereoset 76.3 1.1 0.9 7.8 0.3 0.1 3.8 0.0 0.0 1.9
Country 9.9 4.9 3.4 8.2 2.3 1.5 4.3 2.0 1.7 2.6
Company 3.1 5.3 0.4 4.9 0.4 0.3 0.6 0.2 -0.2 1.6
Gender 9.2 5.2 -0.9 13.9 -0.6 -0.1 11.7 -0.5 -0.8 12.0
Hard Syntax 56.4 16.7 15.7 16.4 2.4 1.1 15.1 0.0 0.0 10.6
Temporal 23.0 1.1 0.7 0.5 0.3 0.8 0.6 0.2 0.1 0.2

Average 29.6 5.7 3.4 8.6 0.8 0.6 6.0 0.3 0.1 4.8

Table 6.2: Comparison of success rate improvements on model editing with canonical examples at three degradation
balls for full finetuning, LoRA, and sense finetuning on the Backpack. Sense finetuning substantially outperforms other
methods.

6.6.4 Experiments & Results

We now evaluate whether our sense finetuning improves over full finetuning, LoRA, and MEMIT for the 170M
parameter Backpack language model trained for Chapter 5.

Hyperparameter search. In addition to learning rate and KL-divergence regularization, we have new
hyperparameters k (number of senses to finetune) and regularization weight in sense selection. For all methods,
for all tasks, we sample 25 configurations in our hyperparameter search, picking the best method to train and
evaluate on our test settings. All other experimental choices are the same as for the Pythia experiments.

Results. We find that across degradation balls, sense finetuning performs best in generalization out of
all methods. It is especially strong, however, in the more stringent B0.0001 and B10→5 degradation balls,
which allow little deviation from the original language model. On hard negatives, we find that LoRA and
full finetuning incur almost no degradation. Sense finetuning incurs more degradation, indicating some
overgeneralization, except in B10→5 , where it too achieves close to zero degradation. We find that sense
finetuning is particularly strong for de-stereotyping (both for Stereoset and gender bias). Our results for
generalization are in Table 6.2, and results for hard negatives in Table C.2.

6.7 Improving LLMs with Sense Finetuned Backpacks

Given a large pretrained model (not a Backpack), we now show how we can improve it using sense fine-
tuning. We sense finetune a small Backpack and then ensemble the capabilities of the large model with the
improvements of the sense finetuning using an inference-time ensemble (Liu et al., 2021; Mitchell et al., 2024).

Method. Let plarge be a large language model that we would like to improve with canonical examples. We
cannot improve it via sense finetuning because it does not in general have sense vectors. Let ppre

bp be a pretrained

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 85

Task Initial !, B0.001 ↓ !, B0.0001 ↓ !, B10→5 ↓

Full LoRA Senses Full LoRA Senses Full LoRA Senses

Country 42.8 9.2 10.9 11.2 3.2 11.1 6.4 -0.1 3.5 4.2
Company 13.6 11.6 16.0 5.1 1.9 16.6 1.0 0.1 0.0 2.0
Stereoset 68.9 2.2 0.5 9.1 0.4 0.5 4.0 0.1 0.0 1.9
Hard Syntax 54.5 24.2 31.7 18.7 6.1 6.2 18.1 -0.1 2.0 11.9
Gender 13.6 22.1 5.6 6.1 2.4 2.3 5.0 0.2 0.3 4.7
Temporal 47.8 -0.3 -0.0 -0.7 -0.4 -0.3 -0.6 -0.4 0.4 0.0

Average 40.2 11.5 10.8 8.3 2.3 6.1 5.6 -0.0 1.0 4.1

Table 6.3: Comparison of success rate improvements on model editing with canonical examples at three degradation balls
for full finetuning, LoRA, and the sense finetuned Backpack ensemble for GPT-J. For the most conservative degradation
ball, our Backpack methods outperforms the other methods.

language model (ours will be a Backpack), and pft
bp be a language model finetuned on canonical examples.

Intuitively, we want to impart the adaptations of the canonical example finetuning to a larger language model
plarge. We do so by the following:

log pft
large ∝ ς(log pft

bp ↓ log ppre
bp) + log ppre

large. (6.11)

Intuitively, since the pretrained and finetuned Backpacks are within ϖ loss of each other, adding their difference
of logits should only rarely make large changes to plarge.7 This simple heuristic recently used in the setting of
approximating finetuning large models by finetuning small models, by Mitchell et al. (2024).

Experiments & Results We use the GPT-J-6B model (Wang and Komatsuzaki, 2021), comparing full
finetuning and LoRA finetuning to our proposed ensemble. We choose GPT-J since it uses the same tokenization
as our Backpack. We do no further finetuning of the GPT-J model in the ensemble.8 We run a 10-point random
hyperparameter sweep on the validation set for the GPT-J finetuning methods.

Generalization results are in Table 6.3, and hard negatives results in Table C.4. We find that for the most
strict degradation ball B10→5 , our Backpack ensemble even substantially outperforms both finetuning methods
for GPT-J in generalization, at no cost in hard negative performance. For the less strict degradation balls, our
ensemble performs slightly worse than the other methods. This result is evidence that the Backpack with sense
tuning is more adaptable than the 35x-larger GPT-J, and with our ensemble, we can impart the benefits of
these adaptations to the larger model.

7We run a coarse search (in increments of 0.1) for a value of ϑ as close to 1 as possible while ensuring the resulting model is in the
correct degradation ball.

8Running both Backpacks takes only marginally more compute than running one (see Appendix C.1).

CHAPTER 6. MODEL EDITING WITH CANONICAL EXAMPLES 86

6.7.1 Visualizing Backpack improvements

To provide intuition for how sense finetuning updates a model, we provide two examples in Figure 6.5. The
first canonical example is The capital of Nauru is Yaren. Because of their greater importance to the canonical
example than to general text (Eqn 6.9), sense vectors of the subword aur in Nauru are chosen for finetuning.
The result of finetuning is to increase the score of the subwords of Yaren, Y and aren, under the sense
vector—this score is not dependent on context, and contributes additively to the model predictions with weight
φ. Thus, when the network chooses to look at the finetuned senses, it will always score the corresponding
words more highly relative to the pretrained model. Thus, changing lexical associations are the most obvious
uses for sense finetuning. In the canonical example The sheriff said {he, she}, sense vectors of sheriff are
finetuned to score words like her more highly—but note that when an explicit pronoun is used in context, the
model can still copy from the prior pronoun.

6.8 Discussion & Conclusion

In this chapter, we presented model editing with canonical examples, a problem setting that centers learning
from a single example, evaluating out-of-distribution, and strictly limiting deviation from the original model.
We’ve found that simple finetuning methods like LoRA can improve models somewhat with canonical examples
while keeping the model’s loss within a factor of 1 + 10↑4. However, it is difficult to precisely edit models,
especially since only string supervision is provided, as shown by the decrease in performance of MEMIT
compared to its performance when it receives stronger supervision. We’ve shown that the Backpack’s sense
vectors provide a useful method for model editing with canonical examples, even for improving the 35x larger
GPT-J model more than finetuning GPT-J itself in one setting. We hope that the setting of model editing with
canonical examples will help spur research in understanding and robust improvement of LLMs.

The architecture of a neural model has implications not just for its computational efficiency and inductive
bias, but also for the kinds of fixes we can make to it after it’s trained. The Backpack and its lexically-defined
sense vectors allow for precise edits of lexical selections. In exploring new model architectures, we suggest
directly designing in components corresponding to the kinds of fixes we want to be able to make. While it’s
costly to train new models with new architectures, we can leverage small, adaptable models to fix monolithic
large models, like we’ve shown here with GPT-J.

Chapter 7

Conclusion

In the last six years, language models have become artefacts of enough complexity, capability, and impact,
that they deserve both fundamental exploratory study and preemtive design towards our ability to effectively
control and fix them. These two directions, understanding through discovery and understanding by design,
draw on very different notions of value in engineering science, and I believe both are crucial for long-term
progress. Long-term understanding research, as I argue in the introduction, is useful to the extent to which it
influences your intuitions as a researcher, and pushes you in different directions in each of the future research
decisions you make.

In Part 1 of this thesis, corresponding to the papers Hewitt and Manning (2019), Hewitt and Liang (2019),
and Hewitt et al. (2021), my coauthors and I grappled with questions surrounding how we find concepts we
know about in models, which turned out to be a rich methodological question. When thinking back on this
line of work as a whole, I think we (and others) did show that language models build representations that
go much of the way from the input to the high-level linguistic concepts that we were searching for. Whether
this is the same thing as the model approximately learning those concepts is up for debate, but I think it’s
largely a question of what language best aligns with your intuitions. To my intuition, yes, having constructed
representations that make properties easy to predict is approximate knowledge of those properties. But as I
state in the introduction, this is having knowledge in the sense that a library has—or contains—knowledge, not
in the sense that an agent operating in the world has knowledge.

In Part 2 of this thesis, the chapters corresponding to the papers Hewitt et al. (2023) and Hewitt et al.
(2024), my coauthors and I attempted to design language systems that are intended to be understood. Jointly
with this goal, we tried to ensure that the resulting systems would scale in quality and usability with increasing
computation and parameters. Either capable systems or understandable systems are hard goals separately, but
together the goals may seem more difficult. In one sense this is true, but in another sense, as systems become
stronger, they can learn hooks that we can use to understand them. This was, to me, the key takeaway of the
Backpack. The failures of this work, however, were that the resulting control or fixes we could perform in
the models, in the Backpack in particular, were simply too low-level to be of sufficient interest to the wider

87

CHAPTER 7. CONCLUSION 88

community. So, while I like the ideas of the Backpack and its properties have influenced my thoughts since
then, I find it unlikely a year and a half onward from publication that it will gain popularity. This is okay to
me, but also a lesson for future attempts at bridging understanding and control.

I see the future of understanding language models as pursuing intuitive understanding, and then grounding
and verifying that understanding in concrete control and improvements to existing models. Right now, the best
recipes we have for control of language models are largely unmotivated from an understanding perspective
(though there are exceptions, e.g., Wu et al. (2024).) I hope dedicated work in understanding and evaluation
changes this, and I encourage scientists interested in understanding models to not shy away from competing,
in some sense, with methods that are unmotivated from an understanding perspective. However, I also hope
to read surprising blue sky papers that discover wild properties of networks with no obvious immediate
application. Let us discover things and ponder them, and eventually put them to good use. Models are
increasingly deployed though and increasingly impactful in the world, so I believe fixing them is a priority.

If you’ve made it this far, it’s been quite a journey. If you’re a scientist, engineer, PhD student, master’s
student, undergraduate student, wishing you were a student, wishing you weren’t a student—I encourage
you to work on problems that you feel will lead you to deeper understanding of interesting phenomena. This
might mean building systems, or breaking them, or studying their use, or seeing what makes them tick, or any
number of other things. One interesting thing in the last six years of machine learning-driven language system
research is that things have begun to work much more than they ever had in the past. We’ve developed recipes
for building capable systems that are pretty reliable in building artefacts that are useful for a range of things
(at least, I’ve found them useful!) When things don’t work, there’s a natural tendency for the entropy of the
distribution of research directions to increase. Everyone tries different things, because none of them work.
When things start to work, there’s a natural decrease in entropy. Many people feel the excitement and want
to iterate on the methods that work to make them work even better! However, at its extremes, this can lead
to a research monoculture that I think holds back the field in the long term. By pursuing directions that you
feel will give you deep understanding of a phenomenon of interest, I think you’ll naturally find yourself doing
work you enjoy and that meets some kind of middle ground between pursuing things that work and things that
might not work yet but are just fascinating.

Bibliography

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. 2017. Fine-grained analy-
sis of sentence embeddings using auxiliary prediction tasks. In International Conference on Learning
Representations.

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana, and
Geoffrey E Hinton. 2021. Neural additive models: Interpretable machine learning with neural nets.
Advances in Neural Information Processing Systems, 34:4699–4711.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor Soroa. 2009. A study
on similarity and relatedness using distributional and WordNet-based approaches. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pages 19–27, Boulder, Colorado. Association for Computational Linguistics.

Afra Feyza Akyürek, Eric Pan, Garry Kuwanto, and Derry Tanti Wijaya. 2023. DUnE: Dataset for unified
editing. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.

Guillaume Alain and Yoshua Bengio. 2016. Understanding intermediate layers using linear classifier probes.
In International Conference on Learning Representations.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial examples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 2890–2896, Brussels, Belgium. Association for
Computational Linguistics.

Dimosthenis Antypas, Asahi Ushio, Jose Camacho-Collados, Vitor Silva, Leonardo Neves, and Francesco
Barbieri. 2022. Twitter topic classification. In Proceedings of the 29th International Conference on
Computational Linguistics, pages 3386–3400, Gyeongju, Republic of Korea. International Committee on
Computational Linguistics.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469–483.

89

https://openreview.net/pdf?id=wHkKTW2wrmm
https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://doi.org/10.18653/v1/D18-1316
https://aclanthology.org/2022.coling-1.299

BIBLIOGRAPHY 90

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning
to align and translate. CoRR, abs/1409.0473.

Peter L Bartlett and Shahar Mendelson. 2001. Rademacher and gaussian complexities: Risk bounds and
structural results. In International Conference on Computational Learning Theory, pages 224–240. Springer.

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba. 2020a. Rewriting a deep
generative model. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part I 16, pages 351–369. Springer.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba. 2020b.
Understanding the role of individual units in a deep neural network. Proceedings of the National Academy
of Sciences, 117(48):30071–30078.

Yonatan Belinkov. 2021. Probing classifiers: Promises, shortcomings, and alternatives. CoRR, abs/2102.12452.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. 2017. What do neural
machine translation models learn about morphology? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 861–872. Association for
Computational Linguistics.

Yonatan Belinkov and James Glass. 2017. Analyzing hidden representations in end-to-end automatic speech
recognition systems. In Advances in Neural Information Processing Systems, pages 2441–2451.

Yonatan Belinkov and James Glass. 2019. Analysis methods in neural language processing: A survey.
Transactions of the Association for Computational Linguistics, 7:49–72.

Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass. 2018.
Evaluating layers of representation in neural machine translation on part-of-speech and semantic tagging
tasks. arXiv preprint arXiv:1801.07772.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. 2000. A neural probabilistic language model. Advances
in neural information processing systems, 13.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar Van Der Wal. 2023. Pythia: A suite for analyzing large language models across
training and scaling. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org.

Blair Bilodeau, Natasha Jaques, Pang Wei Koh, and Been Kim. 2024. Impossibility theorems for feature attribu-
tion. Proceedings of the National Academy of Sciences of the United States of America, 121(2):e2304406120.

https://api.semanticscholar.org/CorpusID:11212020
https://api.semanticscholar.org/CorpusID:11212020
http://arxiv.org/abs/2102.12452
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

BIBLIOGRAPHY 91

Arianna Bisazza and Clara Tump. 2018. The lazy encoder: A fine-grained analysis of the role of morphology
in neural machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 2871–2876.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. 2018. Deep RNNs encode soft hierarchical syntax. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 14–19. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is
to computer programmer as woman is to homemaker? Debiasing word embeddings. Advances in neural
information processing systems, 29.

Rishi Bommasani, Kelly Davis, and Claire Cardie. 2020. Interpreting Pretrained Contextualized Representa-
tions via Reductions to Static Embeddings. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4758–4781, Online. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from
language corpora contain human-like biases. Science, 356(6334):183–186.

Steven Cao, Victor Sanh, and Alexander Rush. 2021. Low-complexity probing via finding subnetworks. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 960–966, Online. Association for Computational
Linguistics.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. 2022. NODE-GAM: Neural generalized additive
model for interpretable deep learning. In International Conference on Learning Representations.

Boli Chen, Yao Fu, Guangwei Xu, Pengjun Xie, Chuanqi Tan, Mosha Chen, and Liping Jing. 2021. Probing
BERT in hyperbolic spaces. In International Conference on Learning Representations.

Ethan A. Chi, John Hewitt, and Christopher D. Manning. 2020. Finding universal grammatical relations
in multilingual BERT. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 5564–5577, Online. Association for Computational Linguistics.

http://aclweb.org/anthology/P18-2003
https://proceedings.neurips.cc/paper_files/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.431
https://doi.org/10.18653/v1/2020.acl-main.431
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1126/science.aal4230
https://doi.org/10.1126/science.aal4230
https://doi.org/10.18653/v1/2021.naacl-main.74
https://openreview.net/forum?id=g8NJR6fCCl8
https://openreview.net/forum?id=g8NJR6fCCl8
https://openreview.net/forum?id=17VnwXYZyhH
https://openreview.net/forum?id=17VnwXYZyhH
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493

BIBLIOGRAPHY 92

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguistics.

Noam Chomsky. 1957. Syntactic Structures. Mouton.

Gabriella Chronis and Katrin Erk. 2020. When is a bishop not like a rook? When it’s like a rabbi! Multi-
prototype BERT embeddings for estimating semantic relationships. In Proceedings of the 24th Conference
on Computational Natural Language Learning, pages 227–244.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th international conference on Machine learning,
pages 160–167.

Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single \$&!#* vector: Probing sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2126–2136. Association for Computational Linguistics.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–8502.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing Systems.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language models: A simple approach to controlled text generation. In
International Conference on Learning Representations.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6491–
6506.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 2022. 8-bit optimizers via block-wise
quantization. 9th International Conference on Learning Representations, ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers). Association for Computational Linguistics.

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://aclanthology.org/2020.conll-1.17.pdf
https://aclanthology.org/2020.conll-1.17.pdf
http://machinelearning.org/archive/icml2008/papers/391.pdf
http://machinelearning.org/archive/icml2008/papers/391.pdf
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
https://openreview.net/pdf?id=H4DqfPSibmx
https://openreview.net/pdf?id=H4DqfPSibmx
https://openreview.net/pdf?id=H1edEyBKDS
https://aclanthology.org/2021.emnlp-main.522.pdf

BIBLIOGRAPHY 93

Michel Marie Deza and Monique Laurent. 2009. Geometry of cuts and metrics, volume 15. Springer.

Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608.

Abhimanyu Dubey, Filip Radenovic, and Dhruv Mahajan. 2022. Scalable interpretability via polynomials. In
Advances in Neural Information Processing Systems.

Tiwalayo Eisape, Vineet Gangireddy, Roger P. Levy, and Yoon Kim. 2022. Probing for incremental parse
states in autoregressive language models. In Findings of EMNLP 2022.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell,
Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom
Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. 2021. A mathematical framework for
transformer circuits. Transformer Circuits Thread.

H.C. Ellis. 1965. The Transfer of Learning. Critical issues in psychology series. Macmillan.

Zied Elloumi, Laurent Besacier, Olivier Galibert, and Benjamin Lecouteux. 2018. Analyzing learned represen-
tations of a deep ASR performance prediction model. arXiv preprint arXiv:1808.08573.

Jeffrey L Elman. 1990. Finding structure in time. Cognitive science, 14(2):179–211.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. 2019. Towards understanding linear word analogies. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3253–3262.

Allyson Ettinger, Ahmed Elgohary, Colin Phillips, and Philip Resnik. 2018. Assessing composition in sentence
vector representations. In Proceedings of the 27th International Conference on Computational Linguistics,
pages 1790–1801.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik. 2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceedings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 134–139.

Li Fei-Fei, R. Fergus, and P. Perona. 2006. One-shot learning of object categories. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(4):594–611.

Michael Fink. 2004. Object classification from a single example utilizing class relevance metrics. In Advances
in Neural Information Processing Systems, volume 17. MIT Press.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR.

J. R. Firth. 1935. The technique of semantics. Transactions of the Philological Society, 34(1):36–73.

https://openreview.net/pdf?id=TwuColwZAVj
https://aclanthology.org/2022.findings-emnlp.203.pdf
https://aclanthology.org/2022.findings-emnlp.203.pdf
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://books.google.com/books?id=kZucAAAAMAAJ
http://psych.colorado.edu/~kimlab/Elman1990.pdf
https://aclanthology.org/P19-1315.pdf
https://doi.org/10.1109/TPAMI.2006.79
https://proceedings.neurips.cc/paper_files/paper/2004/file/ef1e491a766ce3127556063d49bc2f98-Paper.pdf
https://doi.org/https://doi.org/10.1111/j.1467-968X.1935.tb01254.x

BIBLIOGRAPHY 94

J. R. Firth. 1957. Applications of general linguistics. Transactions of the Philological Society, 56(1):1–14.

Richard Futrell, Ethan Wilcox, Takashi Morita, and Roger Levy. 2018. RNNs as psycholinguistic subjects:
Syntactic state and grammatical dependency. arXiv preprint arXiv:1809.01329.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A framework for few-shot language model evaluation.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters,
Michael Schmitz, and Luke S. Zettlemoyer. 2017. AllenNLP: A deep semantic natural language processing
platform. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS).

Robert Geirhos, Roland S. Zimmermann, Blair Bilodeau, Wieland Brendel, and Been Kim. 2024. Don’t
trust your eyes: on the (un)reliability of feature visualizations. In Forty-first International Conference on
Machine Learning.

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen. 2016. SimVerb-3500: A large-scale
evaluation set of verb similarity. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2173–2182, Austin, Texas. Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.

Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes, and Willem Zuidema. 2018. Under
the hood: Using diagnostic classifiers to investigate and improve how language models track agreement
information. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 240–248, Brussels, Belgium. Association for Computational Linguistics.

Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. 2022. Improving alignment of dialogue agents
via targeted human judgements. arXiv preprint arXiv:2209.14375.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. 2019. Openwebtext corpus. http:

//Skylion007.github.io/OpenWebTextCorpus.

Yoav Goldberg. 2017. Neural network methods for natural language processing. https://nbviewer.
org/gist/yoavg/d76121dfde2618422139. Accessed: 2024-08-07.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time sequence modeling with selective state spaces. In
Conference on Language Modeling.

https://doi.org/https://doi.org/10.1111/j.1467-968X.1957.tb00568.x
https://doi.org/10.5281/zenodo.5371628
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://openreview.net/forum?id=s0Jvdolv2I
https://openreview.net/forum?id=s0Jvdolv2I
https://doi.org/10.18653/v1/D16-1235
https://doi.org/10.18653/v1/D16-1235
https://doi.org/10.18653/v1/W18-5426
https://doi.org/10.18653/v1/W18-5426
https://doi.org/10.18653/v1/W18-5426
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://nbviewer.org/gist/yoavg/d76121dfde2618422139
https://nbviewer.org/gist/yoavg/d76121dfde2618422139
https://arxiv.org/abs/2312.00752

BIBLIOGRAPHY 95

Albert Gu, Karan Goel, and Christopher Re. 2021. Efficiently modeling long sequences with structured state
spaces. In International Conference on Learning Representations.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. 2018. Colorless green
recurrent networks dream hierarchically. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), volume 1, pages 1195–1205.

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and Sebastian Padó. 2015. Distributional vectors encode
referential attributes. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 12–21.

Prakhar Gupta and Martin Jaggi. 2021. Obtaining better static word embeddings using contextual embedding
models. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
5241–5253.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. 2020. Array programming with NumPy. Nature, 585(7825):357–
362.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. 2023. Does localization inform editing?
Surprising differences in causality-based localization vs. knowledge editing in language models.

Trevor Hastie and Robert Tibshirani. 1986. Generalized additive models. Statistical Science, 1(3):297–318.

Evan Hernandez, Belinda Z Li, and Jacob Andreas. 2023. Measuring and manipulating knowledge representa-
tions in language models. arXiv preprint arXiv:2304.00740.

John Hertz, Anders Krogh, and Richard G Palmer. 1991. Introduction to the theory of neural computation.

John Hewitt, Sarah Chen, Lanruo Lora Xie, Edward Adams, Percy Liang, and Christopher D Manning. 2024.
Model editing with canonical examples. arXiv preprint arXiv:2402.06155.

John Hewitt, Kawin Ethayarajh, Percy Liang, and Christopher D Manning. 2021. Conditional probing:
measuring usable information beyond a baseline. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 1626–1639.

https://aclanthology.org/2021.acl-long.408/
https://aclanthology.org/2021.acl-long.408/
https://doi.org/10.1038/s41586-020-2649-2
http://arxiv.org/abs/2301.04213
http://arxiv.org/abs/2301.04213
https://projecteuclid.org/journals/statistical-science/volume-1/issue-3/Generalized-Additive-Models/10.1214/ss/1177013604.full

BIBLIOGRAPHY 96

John Hewitt and Percy Liang. 2019. Designing and interpreting probes with control tasks. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2733–2743, Hong Kong, China.
Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A structural probe for finding syntax in word representa-
tions. In North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL). Association for Computational Linguistics.

John Hewitt, Christopher D Manning, and Percy Liang. 2022. Truncation sampling as language model
desmoothing. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3414–
3427.

John Hewitt, John Thickstun, Christopher D. Manning, and Percy Liang. 2023. Backpack language models. In
Association for Computational Linguistics (ACL).

Felix Hill, Roi Reichart, and Anna Korhonen. 2015. Simlex-999: Evaluating semantic models with (genuine)
similarity estimation. Computational Linguistics, 41(4):665–695.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–
1780.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. 2001. Learning to learn using gradient descent. In
Artificial Neural Networks—ICANN 2001: International Conference Vienna, Austria, August 21–25, 2001
Proceedings 11, pages 87–94. Springer.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent Sifre. 2022. Training compute-optimal
large language models. In Advances in Neural Information Processing Systems.

Yifan Hou and Mrinmaya Sachan. 2021. Bird’s eye: Probing for linguistic graph structures with a simple
information-theoretic approach. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1844–1859, Online. Association for Computational Linguistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations.

Wilhelm von Humboldt. 1836. Über die verschiedenheit des menschlichen sprachbaues und ihren einfluss auf
die geistige entwickelung des menschengeschlechts.

https://doi.org/10.18653/v1/D19-1275
https://arxiv.org/pdf/2305.16765.pdf
https://doi.org/10.1162/COLI_a_00237
https://doi.org/10.1162/COLI_a_00237
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://doi.org/10.18653/v1/2021.acl-long.145
https://doi.org/10.18653/v1/2021.acl-long.145
https://openreview.net/forum?id=nZeVKeeFYf9

BIBLIOGRAPHY 97

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. 2018. Visualisation and ‘diagnostic classifiers’ reveal
how recurrent and recursive neural networks process hierarchical structure. Journal of Artificial Intelligence
Research, 61:907–926.

Anna A. Ivanova, John Hewitt, and Noga Zaslavsky. 2021. Probing artificial neural networks: insights from
neuroscience. In Proceedings of the Brain2AI Workshop at the Ninth International Conference on Learning
Representations.

Anna A Ivanova, Martin Schrimpf, Stefano Anzellotti, Noga Zaslavsky, Evelina Fedorenko, and Leyla Isik.
2022. Beyond linear regression: mapping models in cognitive neuroscience should align with research
goals. arXiv preprint arXiv:2208.10668.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. 2015. Deep unordered composition
rivals syntactic methods for text classification. In Association for Computational Linguistics.

Daniel Jurafsky and James H. Martin. 2000. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall. N-gram Language
Models.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory Sayres.
2018. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav).
In International conference on machine learning, pages 2668–2677. PMLR.

Najoung Kim and Tal Linzen. 2020. COGS: A compositional generalization challenge based on semantic in-
terpretation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 9087–9105, Online. Association for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Alex Wang, Patrick Xia, R Thomas McCoy, Ian Tenney, Alexis
Ross, Tal Linzen, Benjamin Van Durme, et al. 2019. Probing what different nlp tasks teach machines about
function word comprehension. arXiv preprint arXiv:1904.11544.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko and Saif Mohammad. 2018. Examining gender and race bias in two hundred sentiment
analysis systems. In Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics,
pages 43–53, New Orleans, Louisiana. Association for Computational Linguistics.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. 2017. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–
3526.

https://aclanthology.org/P15-1162.pdf
https://aclanthology.org/P15-1162.pdf
https://proceedings.mlr.press/v80/kim18d/kim18d.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/S18-2005
https://doi.org/10.18653/v1/S18-2005

BIBLIOGRAPHY 98

Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via influence functions. In
International conference on machine learning, pages 1885–1894. PMLR.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy
Liang. 2020. Concept bottleneck models. In International Conference on Machine Learning, pages
5338–5348. PMLR.

Arne Köhn. 2015. What’s in an embedding? Analyzing word embeddings through multilingual evaluation.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
2067–2073.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark, and Phil Blunsom. 2018. LSTMs
can learn syntax-sensitive dependencies well, but modeling structure makes them better. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1426–1436.

Brenden Lake and Marco Baroni. 2018. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International Conference on Machine Learning, pages
2879–2888.

Yair Lakretz, Germán Kruszewski, Théo Desbordes, Dieuwke Hupkes, Stanislas Dehaene, and Marco Baroni.
2019. The emergence of number and syntax units in LSTM language models. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 11–20.

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix factorization. Advances in
neural information processing systems, 27.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. 2016. Visualizing and understanding neural models
in nlp. In Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 681–691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–
4597.

Tomasz Limisiewicz and David Mareček. 2021. Introducing orthogonal constraint in structural probes. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 428–442,
Online. Association for Computational Linguistics.

http://proceedings.mlr.press/v119/koh20a/koh20a.pdf
https://aclanthology.org/N19-1002.pdf
https://doi.org/10.18653/v1/2021.acl-long.36

BIBLIOGRAPHY 99

Tal Linzen. 2016. Issues in evaluating semantic spaces using word analogies. In Proceedings of the First
Workshop on Evaluating Vector Space Representations for NLP. Association for Computational Linguistics.

Tal Linzen. 2018. What can linguistics and deep learning contribute to each other? arXiv preprint
arXiv:1809.04179.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. 2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:521–535.

Tal Linzen and Brian Leonard. 2018. Distinct patterns of syntactic agreement errors in recurrent networks and
humans. In Proceedings of the 40th Annual Conference of the Cognitive Science Society, pages 692–697.
Cognitive Science Society, Austin, TX.

Zachary C. Lipton. 2018. The mythos of model interpretability: In machine learning, the concept of inter-
pretability is both important and slippery. Queue, 16(3):31–57.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith, and
Yejin Choi. 2021. Dexperts: Decoding-time controlled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
6691–6706.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith. 2019a. Linguistic
knowledge and transferability of contextual representations. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang.
2023. Lost in the middle: How language models use long contexts. arXiv preprint arXiv:2307.03172.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019b. RoBERTa: A Robustly Optimized BERT Pretraining Approach.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language processing toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations, pages 55–60.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus
of English: The Penn Treebank. Computational linguistics, 19(2):313–330.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In LREC.

https://doi.org/http://dx.doi.org/10.18653/v1/W16-2503
https://www.transacl.org/ojs/index.php/tacl/article/view/972
https://www.transacl.org/ojs/index.php/tacl/article/view/972
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1145/3236386.3241340
http://arxiv.org/abs/1907.11692
http://www.aclweb.org/anthology/P/P14/P14-5010

BIBLIOGRAPHY 100

Rebecca Marvin and Tal Linzen. 2018. Targeted syntactic evaluation of language models. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1192–1202, Brussels,
Belgium. Association for Computational Linguistics.

Chandler May, Alex Wang, Shikha Bordia, Samuel R. Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 622–628, Minneapolis, Minnesota. Association for Computational Linguistics.

Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. 2022a. Locating and editing factual
associations in GPT. In Advances in Neural Information Processing Systems.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. 2022b. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. 2023. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2017. Pointer sentinel mixture models.
In International Conference on Learning Representations.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations
in vector space. In International Conference on Learning Representations (Workshop Poster).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3111–3119.
Curran Associates, Inc.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy
Liang, Yair Carmon, and Ludwig Schmidt. 2021. Accuracy on the line: on the strong correlation between
out-of-distribution and in-distribution generalization. In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 7721–7735.
PMLR.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. 2022. Memory-based
model editing at scale. In International Conference on Machine Learning, pages 15817–15831. PMLR.

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea Finn, and Christopher D Manning. 2024. An emulator
for fine-tuning large language models using small language models. In The Twelfth International Conference
on Learning Representations.

Richard Montague. 1970. Universal grammar. Theoria, 36(3):373–398.

https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=Byj72udxe
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://proceedings.mlr.press/v139/miller21b.html
https://proceedings.mlr.press/v139/miller21b.html
https://openreview.net/forum?id=Eo7kv0sllr
https://openreview.net/forum?id=Eo7kv0sllr
https://doi.org/https://doi.org/10.1111/j.1755-2567.1970.tb00434.x

BIBLIOGRAPHY 101

Shikhar Murty, Christopher D Manning, Scott Lundberg, and Marco Tulio Ribeiro. 2022. Fixing model bugs
with natural language patches. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 11600–11613.

Moin Nadeem, Anna Bethke, and Siva Reddy. 2021. StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 5356–5371, Online. Association for Computational Linguistics.

Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R. Bowman. 2020. CrowS-pairs: A challenge
dataset for measuring social biases in masked language models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1953–1967, Online. Association for
Computational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos,
Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia
Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya,
Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin.
2017. Dynet: The dynamic neural network toolkit. arXiv preprint arXiv:1701.03980.

Benjamin Newman, Kai-Siang Ang, Julia Gong, and John Hewitt. 2021. Refining targeted syntactic evalu-
ation of language models. In Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL).

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christopher D. Manning, Sampo Pyysalo,
Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal Dependencies v2: An evergrowing
multilingual treebank collection. In Proceedings of the 12th Language Resources and Evaluation Conference,
pages 4034–4043, Marseille, France. European Language Resources Association.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario
Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. 2022. In-context learning
and induction heads. Transformer Circuits Thread.

OpenAI. 2023. Gpt-4 technical report. ArXiv, abs/2303.08774.

Yonatan Oren, Shiori Sagawa, Tatsunori B. Hashimoto, and Percy Liang. 2019. Distributionally robust
language modeling. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 4227–4237, Hong Kong, China. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://nlp.stanford.edu/pubs/newman2021refining.pdf
https://nlp.stanford.edu/pubs/newman2021refining.pdf
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.18653/v1/D19-1432
https://doi.org/10.18653/v1/D19-1432

BIBLIOGRAPHY 102

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions
with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1525–1534.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word representations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), volume 1, pages 2227–2237.

Matthew Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. 2018b. Dissecting contextual word
embeddings: Architecture and representation. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1499–1509.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap between neural text and human text using divergence frontiers.
Advances in Neural Information Processing Systems.

Tiago Pimentel, Naomi Saphra, Adina Williams, and Ryan Cotterell. 2020a. Pareto probing: Trading off
accuracy for complexity. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3138–3153, Online. Association for Computational Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020b. Information-theoretic probing for linguistic structure. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 4609–4622, Online. Association for Computational
Linguistics.

Ofir Press and Lior Wolf. 2017. Using the output embedding to improve language models. In Proceedings of
the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers.

https://aclanthology.org/P16-1144.pdf
https://aclanthology.org/P16-1144.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://openreview.net/pdf?id=Tqx7nJp7PR
https://doi.org/10.18653/v1/2020.emnlp-main.254
https://doi.org/10.18653/v1/2020.emnlp-main.254
https://www.aclweb.org/anthology/2020.acl-main.420
https://aclanthology.org/E17-2025.pdf

BIBLIOGRAPHY 103

Peng Qi and Christopher D. Manning. 2017. Arc-swift: A novel transition system for dependency parsing. In
Association for Computational Linguistics (ACL).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human languages. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics: System Demonstrations.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016. Investigating language universal and specific properties
in word embeddings. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 1478–1488.

Filip Radenovic, Abhimanyu Dubey, and Dhruv Mahajan. 2022. Neural basis models for interpretability. In
Advances in Neural Information Processing Systems.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understand-
ing by generative pre-training. Open AI Technical Report.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI Blog, 1:8.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam Pearce, and Been Kim.
2019. Visualizing and measuring the geometry of bert. Advances in neural information processing systems,
32.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "why should i trust you?": Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, page 1135–1144, New York, NY, USA. Association for
Computing Machinery.

Anna Rogers, Aleksandr Drozd, and Bofang Li. 2017. The (Too Many) Problems of Analogical Reasoning
with Word Vectors. In Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*
SEM 2017), pages 135–148.

Douglas LT Rohde, Laura M Gonnerman, and David C Plaut. 2005. An improved model of semantic similarity
based on lexical co-occurrence.

Rudolf Rosa, Tomá! Musil, and David Mareček. 2020. Measuring memorization effect in word-level neural
networks probing. In Text, Speech, and Dialogue, pages 180–188, Cham. Springer International Publishing.

Herbert Rubenstein and John B. Goodenough. 1965. Contextual correlates of synonymy. Commun. ACM,
8(10):627–633.

Gözde Gül Şahin, Clara Vania, Ilia Kuznetsov, and Iryna Gurevych. 2019. Linspector: Multilingual probing
tasks for word representations. arXiv preprint arXiv:1903.09442.

https://nlp.stanford.edu/pubs/qi2017arcswift.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://openreview.net/pdf?id=fpfDusqKZF
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://www.aclweb.org/anthology/S17-1017
http://www.aclweb.org/anthology/S17-1017
https://cnbc.cmu.edu/~plaut/papers/pdf/RohdeGonnermanPlautSUB-CogSci.COALS.pdf
https://cnbc.cmu.edu/~plaut/papers/pdf/RohdeGonnermanPlautSUB-CogSci.COALS.pdf
https://doi.org/10.1145/365628.365657

BIBLIOGRAPHY 104

Naomi Saphra and Adam Lopez. 2019. Understanding learning dynamics of language models with svcca. In
North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL). Association for Computational Linguistics.

Marten van Schijndel and Tal Linzen. 2018. Modeling garden path effects without explicit hierarchical
syntax. In Tim Rogers, Marina Rau, Jerry Zhu, and Chuck Kalish, editors, Proceedings of the 40th Annual
Conference of the Cognitive Science Society, pages 2600–2605. Cognitive Science Society, Austin, TX.

Sebastian Schuster and Christopher D. Manning. 2016. Enhanced English Universal Dependencies: An
improved representation for natural language understanding tasks. In Language Resources and Evaluation
(LREC).

H. Schütze. 1992. Dimensions of meaning. In Proceedings of the 1992 ACM/IEEE Conference on Supercom-
puting, Supercomputing ’92, page 787–796, Washington, DC, USA. IEEE Computer Society Press.

Claude E Shannon. 1948. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423.

Naomi Tachikawa Shapiro, Amandalynne Paullada, and Shane Steinert-Threlkeld. 2021. A multilabel approach
to morphosyntactic probing. arXiv preprint arXiv:2104.08464.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does string-based neural mt learn source syntax? In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1526–
1534.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In Workshop at International Conference on
Learning Representations.

Paul Smolensky. 1990. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial intelligence, 46(1-2):159–216.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christo-
pher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–
1642, Seattle, Washington, USA. Association for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958.

https://nlp.stanford.edu/pubs/schuster2016enhanced.pdf
https://nlp.stanford.edu/pubs/schuster2016enhanced.pdf
https://dl.acm.org/doi/pdf/10.5555/147877.148132
https://openreview.net/forum?id=B1ckMDqlg
https://www.aclweb.org/anthology/D13-1170

BIBLIOGRAPHY 105

Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. 2017. Fast and accurate entity
recognition with iterated dilated convolutions. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2670–2680, Copenhagen, Denmark. Association for Computational
Linguistics.

Ilya Sutskever, James Martens, and Geoffrey E Hinton. 2011. Generating text with recurrent neural networks.
In International Conference on Machine Learning.

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive editing for large language models via meta learning.
arXiv preprint arXiv:2311.04661.

Gongbo Tang, Mathias Müller, Annette Rios, and Rico Sennrich. 2018. Why self-attention? A targeted
evaluation of neural machine translation architectures. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 4263–4272. Association for Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. 2019. What do you learn from context?
Probing for sentence structure in contextualized word representations. In International Conference on
Learning Representations.

Peter D Turney. 2010. From frequency to meaning: Vector space models of semantics. Journal of Artificial
Intelligence Research, 37:141–188.

Leslie G Valiant. 1984. A theory of the learnable. Communications of the ACM, 27(11):1134–1142.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, "ukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems.

Elena Voita and Ivan Titov. 2020. Information-theoretic probing with minimum description length. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 183–196, Online. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In International Conference
on Learning Representations.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 billion parameter autoregressive language model.
https://github.com/kingoflolz/mesh-transformer-jax.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguistic minimal pairs for english. Transactions of the
Association for Computational Linguistics, 8:377–392.

https://doi.org/10.18653/v1/D17-1283
https://doi.org/10.18653/v1/D17-1283
https://icml.cc/2011/papers/524_icmlpaper.pdf
http://aclweb.org/anthology/D18-1458
http://aclweb.org/anthology/D18-1458
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://www.jair.org/index.php/jair/article/view/10640/25440
https://papers.nips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1162/tacl_a_00321

BIBLIOGRAPHY 106

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen
Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, et al. 2013. OntoNotes release 5. LDC2013T19.

Jennifer C. White, Tiago Pimentel, Naomi Saphra, and Ryan Cotterell. 2021. A non-linear structural probe. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 132–138, Online. Association for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. 2020. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 38–45, Online. Association for Computational Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. 2022. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7959–7971.

Zhengxuan* Wu, Aryaman* Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D. Manning, and
Christopher Potts. 2024. Reft: Representation finetuning for language models.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020. Perturbed masking: Parameter-free probing for
analyzing and interpreting BERT. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4166–4176, Online. Association for Computational Linguistics.

Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano Ermon. 2020. A theory of usable
information under computational constraints. In International Conference on Learning Representations.

Zebin Yang, Aijun Zhang, and Agus Sudjianto. 2021. GAMI-Net: An explainable neural network based on
generalized additive models with structured interactions. Pattern Recognition, 120:108192.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. 2017. Understanding deep
learning requires rethinking generalization. In International Conference on Learning Representations.

Kelly W Zhang and Samuel R Bowman. 2018. Language modeling teaches you more syntax than translation
does: Lessons learned through auxiliary task analysis. arXiv preprint arXiv:1809.10040.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 15–20, New Orleans, Louisiana. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2021.naacl-main.12
https://doi.org/10.18653/v1/2020.emnlp-demos.6
arxiv.org/abs/2404.03592
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2020.acl-main.383
https://openreview.net/forum?id=r1eBeyHFDH
https://openreview.net/forum?id=r1eBeyHFDH
https://doi.org/https://doi.org/10.1016/j.patcog.2021.108192
https://doi.org/https://doi.org/10.1016/j.patcog.2021.108192
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003

BIBLIOGRAPHY 107

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363.

Appendix A

Formal Results on Multivariate
V-Information.

A.1 Multivariable V-information

In this section we introduce Multivariable V-information. V-information as introduced by Xu et al. (2020) was
defined in terms of a single predictive variable X , and is unwieldy to extend to multiple variables due to its use
of a “null” input outside the sample space of X (Section A.4.3).1 Our multivariable V-information removes
the use of null variables and naturally captures the multivariable case. Consider an agent attempting to predict
Y → Y from some information sources X1, . . . , Xn, where Xi → Xi. Let P(Y) be the set of all probability
distributions over Y .

At a given time, the agent may only have access to a subset of the information sources. Let the known set
C → C and unknown set C̄ → C̄ be a binary partition of X1, . . . , Xn. Though the agent isn’t given the true
value of C̄ when predicting Y , it is instead provided with a constant value ā → C̄, which does not vary with Y .2

We first specify constraints on the set of functions that the agent has at its disposal for predicting Y from X:

Definition 1 (Multivariable Predictive Family). Let ” = {f : X1 ⇒ · · ·⇒ Xn ⇐ P(Y)}. We say that V ⇔ ”

is a predictive family if, for any partition of X1, . . . ,Xn into C, C̄, we have

′f, x1, . . . , xn,→ V ⇒ X1 ⇒ · · ·⇒ Xn,

∞f ≃ → V : ′c̄≃ → C̄, f(c, c̄) = f ≃(c, c̄≃),
(A.1)

where we overload f(c, c̄) to equal f(x1, . . . , xn) for the values of x1, . . . , xn specified by c, c̄.
1In particular, the null input encodes not knowing the value of X; technical conditions in the definition of V-information as to the

behavior of this null value increase in number exponentially with the number of predictive variables.
2The exact value of ā will not matter, as a result of Definition 1.

108

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 109

Intuitively, the constraint on V states that for any binary partition of the X1, . . . , Xn into known and
unknown sets, if a function is expressible given some constant assignment to the unknown variables, the same
function is expressible if the unknown variables are allowed to vary arbitrarily. Intuitively, this means one
can assign zero weight to those variables, so their values don’t matter. This constraint, which we refer to as
multivariable optional ignorance in reference to Xu et al. (2020), will be used to ensure non-negativity of
information; when some Xε is moved from C̄ to C as a new predictive variable for the agent to use, optional
ignorance ensures the agent can still act as if that variable were held constant.

Example 1. Let X1, . . . , Xn → Rd1 , . . . ,Rdn and Y → Y be random variables. Let ” be defined as in
Definition 1. Then V = {f : f(x1, . . . , xn) = softmax(W2 ϑ(W1[x1; · · · ;xn] + b) + b)}, the set of 1-
layer multi-layer perceptrons, is a predictive family. Ignorance of some xi can be achieved by setting the
corresponding rows of W1 to zero.

Given the predictive family of functions the agent has access to, we define the multivariable V-information
analogue of entropy:

Definition 2 (Multivariable Predictive V-entropy). Let X1, . . . , Xn → X1, . . . ,Xn. Let C → C and C̄ → C̄
form a binary partition of X1, . . . , Xn. Let ā → C̄. Then the V-entropy of Y conditioned on C is defined as

HV(Y |C) = inf
f↘V

Ec,y

[
↓ log f(c, ā)[y]

]
. (A.2)

Note that ā does not vary with y; thus it is ‘informationless’. The notation f(c, ā) takes the known value
of C ⇔ {X1, . . . , Xn}, and the constant value ā, and produces a distribution over Y , and f(c, ā)[y] evaluates
the density at y.

If we let V = ”, the set of all functions from the Xi to distributions over Y , then V-entropy becomes
exactly Shannon entropy (Xu et al., 2020). And just like for Shannon information, the multivariable V-
information from some variable Xε to Y is defined as the reduction in entropy when its value becomes known.
In our notation, this means some Xε is moving from C̄ (the unknown variables) to C (the known variables), so
this definition encompasses the notion of conditional mutual information if C is non-empty to start.

Definition 3 (Multivariable V-information). Let X1, . . . , Xn → X1, . . . ,Xn and Y → Y be random variables.
Let V be a multivariable predictive family. Then the conditional multivariable V-information from Xε to Y ,
where ϱ → {1, . . . , n}, conditioned on prior knowledge of C ∈ {X1, . . . , Xn}, is defined as

IV(Xε ⇐ Y |C) = HV(Y |C) ↓HV(Y |C ∋ {Xε}) (A.3)

A.1.1 Properties of multivariable V-information

The crucial property of multivariable V-information as a descriptor of probing is that it can be constructed
through computation. In the example of the agent attempting to predict the sentiment (Y) of an encrypted

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 110

message (X), if the agent has V equal to the set of linear functions, then IV(X ⇐ Y) is small3. A function ε

that decrypts the message constructs V-information about Y , since IV(ε(X) ⇐ Y) is larger. In probing, ε
is interpreted to be the contextual representation learner, which is interpreted as constructing V-information
about linguistic properties.

V-information also has some desirable elementary properties, including preserving some of the properties
of mutual information, like non-negativity. (Knowing some Xε should not reduce the agent’s ability to predict
Y).

Proposition 1. Let X1, . . . , Xn → X1, . . . ,Xn and Y → Y be random variables, and V and U be predictive
families. Let C, C̄ be a binary partition of X1, . . . , Xn.

1. Independence If Y,C are jointly independent of Xε, then IV(Xε ⇐ Y |C) = 0.

2. Monotonicity If U ⇔ V , then HV(Y |C) ⇑ HU (Y |C).

3. Non-negativity IV(Xε ⇐ Y |C) △ 0.

A.2 Probing as Multivariable V-information Estimation

We’ve described the V-information framework, and discussed how it captures the intuition that usable
information about linguistic properties is constructed through contextualization. In this section, we demonstrate
how a small step from existing probing methodology leads to probing estimating V-information quantities.

A.2.1 Estimating V-entropy

In probing, gradient descent is used to pick the function in V that minimizes the cross-entropy loss,

1

Dtr

∑

x,y↘Dtr

↓ log p(y|εi(x); ω), (A.4)

where ω are the trainable parameters of functions in V . Recalling the definition of V-entropy, this minimiza-
tion performed through gradient descent is approximating the inf over V , since ↓ log p(y|x; ω) is equal to
↓ log fω(x)[y]. To summarize, this states that the supervision used in probe training can be interpreted as
approximating the inf in the definition of V-entropy. In traditional probing, the performance of the probe is
measured on the test set Dte using the traditional metric of the task, like accuracy of F1 score. In V-information
probing, we use Dte to approximate the expectation in the definition of V-entropy. Thus, the performance
of a single probe on representation R, where the performance metric is cross-entropy loss, is an estimate of
HV(Y |R). This brings us to our framing of a probing experiment as estimating a V-information quantity.

3Where IV (X ↑ Y) is defined to be IV (X ↑ Y |{})

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 111

A.2.2 Baselined probing

Let baselined probing be defined as in the main paper. Then if the performance metric is defined as the negative
cross-entropy loss, we have that Perf(B) estimates ↓HV(Y |B), Perf(ε(X)) estimates ↓HV(Y |ε(X)), and
so baselined probing performance is an estimate of

HV(Y |{B}) ↓HV(Y |{εi(X)})

= IV(εi(X) ⇐ Y) ↓ IV(B ⇐ Y)
(A.5)

A.2.3 Conditional probing

Let conditional probing be defined as in the main paper. Then if the performance metric is defined as
the negative cross-entropy loss, we have that Perf([B;0]) estimates ↓HV(Y |B), Perf([B;ε(X)]) estimates
↓HV(Y |B,ε(X)), and so conditional probing performance is an estimate of

HV(Y |{B}) ↓HV(Y |{B,εi(X)})

= IV(εi(X) ⇐ Y |B)
(A.6)

The first is estimated with a probe just on B—under the definition of predictive family, this means providing
the agent with the real values of the baseline, and some constant value like the zero vector instead of εi(X).
That is, holding ā → εi(X)i constant and sampling b, y ≃ B, Y , the probability assigned to y is f(b, ā)[y]

for f → V . The second term is estimate with a probe on both B and εi(X). So, sampling b, x, y ≃ B,X, Y ,
the probability assigned to y is f(b,εi(x))[y] for f → V . Intuitively, conditional probing measures the new
information in εi(X) because in both probes, the agent has access to B, so no benefit is gained from εi(X)

supplying the same information.

A.3 Proof of Proposition 1

Monotonicity If U ⇔ V , then HV(Y |C) ⇑ HU (Y |C). Proof:

HU (Y |C) = inf
f↘U

Ec,y [↓ log f [c, ā](y)]

△ inf
f↘V

Ec,y [↓ log f [c, ā](y)]

= HV(Y |C)

(A.7)

This holds because we are taking the infimum over V such that if f → U then f → V .

Non-Negativity IV(Xε ⇐ Y |C) △ 0. Where VC̄ ∈ V is the subset of functions that satisfies f [c, c̄] =

f [c, c̄≃] ′ c̄≃ → C̄, and ā, ā/ε denote the constant values of the unknown set with and without Xε, the proof is as
follows:

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 112

HV(Y |C) = inf
f↘V

Ec,xω,y
[↓ log f [c, ā](y)]

= inf
f↘V

C̄

Ec,xω,y

[
↓ log f [c, xε, ā/ε](y)

]

△ inf
f↘V

Ec,xω,y

[
↓ log f [c, xε, ā/ε](y)

]

= HV(Y |C ∋ {Xε})

(A.8)

By definition, IV(Xε ⇐ Y |C) = HV(Y |C) ↓HV(Y |C ∋ {Xε}) △ 0.

Independence If Y,C are jointly independent of Xε, then IV(X ⇐ Y |C) = 0. Proof:

HV(Y |C ∋ {Xε})

= inf
f↘V

Ec,xω,y

[
↓ log f [c, xε, ā/ε](y)

]

= inf
f↘V

Exω
Ec,y

[
↓ log f [c, xε, ā/ε](y)

]

△ Exω

[
inf
f↘V

Ec,y

[
↓ log f [c, xε, ā/ε](y)

]]

= Exω

[
inf

f↘V
C̄

Ec,y

[
↓ log f [c, xε, ā/ε](y)

]]

= inf
f↘V

C̄

Ec,y [↓ log f [c, ā](y)]

△ inf
f↘V

Ec,y [↓ log f [c, ā](y)]

= HV(Y |C)

(A.9)

In the second line, we break down the expectation based on conditional independence. Then we apply Jensen’s
inequality and optional ignorance to remove the expectation w.r.t. x. Since VC̄ ∈ V , the former’s infimum is
at least as large as the latter’s. Then

IV(Xε ⇐ Y |C) = HV(C) ↓HV(Y |C ∋ {Xε}) ⇑ 0

Combined with non-negativity (i.e., IV(Xε ⇐ Y |C) > 0) we have inequality in both directions, so IV(Xε ⇐
Y |C) = 0.

A.4 Equivalence of Xu et al. (2020) and our V-information

In order to define conditional probing, we needed a theory of V-information that considered arbitrarily many
predictive variables X1, . . . ,Xn. V-information as presented by Xu et al. (2020) considers only a single
predictive variable X . It becomes extremely cumbersome, due to the use of null variables in their presentation,

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 113

to expand this to more, let alone arbitrarily many variables. So, we redefined and extended V-information to
more naturally capture the case with an arbitrary (finite) number of variables. In this section, we show that, in
the single predictive variable case considered by Xu et al. (2020), our V-information definition is equivalent to
theirs. For the sake of this section, we’ll call the V-information of Xu et al. (2020) Xu-V-information, and
ours V-information.

In particular, we show that there is a transformation from any predictive family of Xu-V-information to
predictive family for V-information under which predictive V-entropies are the same (and the same in the
opposite direction.)

A.4.1 From Xu et al. (2020) to ours

We recreate the definition of predictive family from Xu et al. (2020) here:

Definition 4 (Xu predictive family). Let # = {f : X ∋ {⊋} ⇐ P(Y)}. We say that U ⇔ # is a Xu predictive
family if it satisfies

′f → U , ′P → range(f), ∞f ≃ → U , s.t. (A.10)

′x → X , f [x] = P, f ≃[⊋] = P (A.11)

Now, we construct one of our predictive families from the Xu predictive family. Let U ⇔ # be a Xu
predictive family. We now construct a predictive family under our framework, V ⇔ ”. For each f → U ,
f : X ∋ {⊋} ⇐ P(Y), construct the following two functions: first, g, which recreates the behavior of f on
the domain of X :

g : X ⇐ P(Y) (A.12)

g : x ▽⇐ f(x) (A.13)

and second, g≃, which recreates the behavior of f on ⊋, given any input from X :

g≃ : X ⇐ P(Y) (A.14)

g≃ : x ▽⇐ f(⊋) (A.15)

Then we define our predictive family as the union of g, g≃ for all f → V:

V =

f↘U
{g, g≃}, (A.16)

where V ⇔ ” and ” = {f : X ⇐ P(Y)}. Note from this construction that we’ve eliminated the presence of
the null variable from the definition of predictive family.

We now show that V , as defined in the construction above, is in fact a predictive family under our definition.

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 114

Under our definition, there are two cases: either X → C or X → C̄. If X → C, then for all f, x → V ⇒ X ,
if we take any f ≃ → V (which is non-empty), then there is no c̄≃ → C̄, so vacuously the condition holds. If
X → C̄, then for all f, x → V , we have that f was either g or g≃ for some function h → U in the construction of
V (because all functions in V were part of some pair g, g≃.) Then we take f ≃ = g≃, and have that for all c̄≃ → C̄,
that is x → X , f ≃(c, c̄) = f ≃(c, c̄≃) = g≃(x) = h(⊋), satisfying the constraint.

Finally, we show that the predictive V-entropies of V (under our definition) and U (under that of Xu et al.
(2020)) are the same. Consider Xu-predictive entropies:

HU (Y |X) = inf
f↘U

Ex,y[↓ log f [x](y)] (A.17)

HU (Y |⊋) = inf
f↘U

Ey[↓ log f [⊋](y)] (A.18)

First we want to show HU (Y |X) = HV(Y |X). Consider the inf in Equation A.17; the f → U that
achieves the inf corresponds to some g → V by construction, and since f(x) = g(x), we have that the value of
the inf for V is at least as low as for U . The same is true in the other direction; in our definition HV(Y |X),
the g that achieves the inf corresponds to some f → U that produces the same probability distributions. So,
HU (Y |X) = HV(Y |X).

Now we want to show HU (Y |⊋) = HV(Y). Now, consider the inf in Equation A.18. The f → U that
achieves the inf corresponds to some g, g≃ in the construction of V; that g≃ takes any x → X and produces
f [⊋]; hence the value of the inf for V is at least as low as for U . The same is true in the other direction. We
have that HV(Y) = inff↘V Ey[↓ log f(ā)[y]] for any ā → X . Either a g or a g≃ from the construction of
V achieves this inf; if a g achieves it, then its corresponding g≃ emits the same probability distributions, so
WLOG we’ll assume it’s a g≃. We know that g≃(ā) = f(⊋) for all ā → X , so HU (Y |⊋) is at most HV(Y). So,
HU (Y |⊋) = HV(Y).

Since the V-entropies of the predictive family from Xu et al. (2020) and ours are the same, all the
information quantities are the same. This shows that the predictive family we constructed in our theory is
equivalent to the predictive family from Xu et al. (2020) that we started with.

A.4.2 From our V-information to that of Xu et al. (2020)

Now we construct a predictive family U under the framework of Xu et al. (2020) from an arbitrary predictive
family V under our framework. For each function f → V , we have from the definition that there exists f ≃ → V
such that ′x → X , f ≃(x) = P for some P → P(Y). We then define the function:

g : X ∋ {⊋} ⇐ P(Y) (A.19)

g(x) =

f(x) x → X

f ≃(ā) x = ⊋
(A.20)

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 115

where ā → X is an arbitrary element of X , and the set of constant-valued functions

G = {g≃ : g≃(z) = P | P → range(f)}, (A.21)

where z → X ∋ {⊋}, and let

U =

f↘V
{g} ∋G (A.22)

The set U is a predictive family under Xu-V-information because for any f → U , f is either a g or a g≃ in our
construction, and so optional ignorance is maintained by the set G that was either constructed for g or that g≃

was a part of. That is, from the construction, G contains a function for each element in the range of g (or g≃)
that maps all x → X as well as ⊋ to that element, and U contains all elements in G.

Now we show that the predictive V-entropies of U (from this construction) under Xu et al. (2020) are the
same as for V under our framework.

First we want to show HU (Y |X) = HV(Y |X). For the g that achieves the inf over U in Equation A.17,
we have there exists f → V such that g(x) = f(x) given that x → X , so HV(y|x) ⇑ HU (y|x) The same is true
in the other direction; the f → V that achieves the inf in V-entropy similarly corresponds to g → U , implying
HU (Y |X) ⇑ HV(Y |X), and thus their equality.

Now we want to show HU (Y |⊋) = HV(Y). For the g → U that achieves its inf , we have by construction
that there is an f ≃ → V such that for any ā → X , it holds that g(⊋) = f ≃(ā). So, HV(Y |X) ⇑ HU (Y |X). In
the other direction, for the f → V that achieves its inf given an arbitrary ā → X , there is the f ≃ → V from our
construction of U such that f(ā) = f ≃(x) = g(⊋) for all x → X . This implies HU (Y |X) ⇑ HV(Y |X), and
thus their equality.

A.4.3 Remarks on the relationship between our V-information and that of Xu et al.
(2020)

The difference between our V-information and that of Xu et al. (2020) is in how the requirement of optional
ignorance is encoded into the formalism. This is an important yet technical requirement that if a predictive
agent has access to the value of a random variable X , it’s allowed to disregard that value if doing so would
lead to a lower entropy. An example of a subset of ” for which this doesn’t hold in the multivariable case is for
multi-layer perceptrons with a frozen (and say, randomly sampled) first linear transformation. The information
of, say, X1 and X2, are mixed by this frozen linear transformation, and so X1 cannot be ignored in favor of
just looking at X2. However, if the first linear transformation is trainable, then it can simply assign 0 weights
to the rows corresponding to X1 and thus ignore it.

The V-information of Xu et al. (2020) ensures this option by introducing a null variable ⊋ which is used to
represent the lack of knowledge about their variable X – and for any probability distribution in the range of
some f → U under the theory, there must be some function f that produces the same probability distribution

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 116

Figure A.1: Probing results on RoBERTa for xpos. Results are reported in bits of V-information; higher is better

when given any value of X or ⊋. This is somewhat unsatisfying because f should really be a function from
X ⇐ P(Y), but this implementation of optional ignorance changes the domain to X ∋ {⊋}. When attempting
to extend this to the multivariable case, the definition of optional ignorance becomes very cumbersome. With
two variables, the domain of functions in a predictive family must be (X1 ∋ {⊋}) ⇒ (X2 ∋ {⊋}). Because
the definition of V-entropy under Xu et al. (2020) treats using X separately from using ⊋, one must define
optional ignorance constraints separately for each subset of variables to be ignored, the number of which
grows exponentially with the number of variables.

Our re-definition of V-information gets around this issue by defining the optional ignorance constraint in a
novel way, eschewing the ⊋ and instead encoding it as the intuitive implementation that we described in the
MLP – that for any function in the family and fixed value for some subset of the inputs (which will be the
unknown subset), there’s a function that behaves identically even if that subset of values is allowed to take any
value. (Intuitively, by, e.g., having it be possible that the weights for those inputs are 0 at the first layer.)

A.5 Full Results

In this section, we report all individual probing experiments: single-layer probes’ V-entropies in Table A.1,
single-layer probes’ task-specific metrics in Table A.2, two-layer probes’ V-entropies in Table A.3, and
two-layer probes’ task-specific metrics in Table A.4. In Figure A.1, we report the xpos figure for RoBERTa
corresponding to the other four figures in the main paper. We see that it shows roughly the same trend as the
upos figure from the main paper.

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 117

RoBERTa Single-Layer V-Entropy

Layer upos xpos dep ner sst2

0 0.336 0.344 1.468 0.391 0.643
1 0.145 0.158 0.827 0.216 0.645
2 0.119 0.139 0.676 0.188 0.630
3 0.118 0.133 0.635 0.172 0.574
4 0.117 0.132 0.627 0.167 0.545
5 0.119 0.136 0.632 0.167 0.489
6 0.121 0.139 0.645 0.167 0.484
7 0.126 0.145 0.640 0.170 0.462
8 0.129 0.144 0.633 0.168 0.467
9 0.131 0.149 0.653 0.173 0.494

10 0.138 0.156 0.677 0.177 0.508
11 0.154 0.169 0.705 0.184 0.527
12 0.161 0.182 0.746 0.191 0.583

Table A.1: V-entropy results (in bits) on probes taking in one layer, for each layer of the network. Lower is better.

RoBERTa Single-Layer Metrics

Layer upos xpos dep ner sst2

0 0.908 0.908 0.669 0.535 0.808
1 0.968 0.964 0.821 0.710 0.815
2 0.975 0.969 0.854 0.735 0.813
3 0.975 0.970 0.865 0.763 0.845
4 0.976 0.971 0.867 0.763 0.850
5 0.975 0.970 0.866 0.763 0.869
6 0.975 0.970 0.863 0.764 0.870
7 0.974 0.969 0.864 0.754 0.877
8 0.974 0.970 0.865 0.762 0.868
9 0.974 0.969 0.863 0.756 0.860

10 0.973 0.968 0.859 0.756 0.857
11 0.971 0.967 0.854 0.744 0.850
12 0.969 0.965 0.847 0.735 0.843

Table A.2: Task-specific metric results on probes taking in one layer, for each layer of the network. For upos, xpos, dep,
and sst2, the metric is accuracy. For NER, it’s span-level F1 as computed by the Stanza library (Qi et al., 2020). For all
metrics, higher is better.

APPENDIX A. FORMAL RESULTS ON MULTIVARIATE V-INFORMATION. 118

RoBERTa Two-Layer V-entropy

Layer upos xpos dep ner sst2

0-0 0.335 0.345 1.466 0.391 0.639
0-1 0.141 0.154 0.763 0.210 0.633
0-2 0.115 0.133 0.646 0.184 0.615
0-3 0.110 0.127 0.609 0.169 0.567
0-4 0.109 0.126 0.593 0.164 0.549
0-5 0.110 0.125 0.602 0.163 0.474
0-6 0.109 0.126 0.613 0.165 0.484
0-7 0.109 0.127 0.609 0.166 0.451
0-8 0.108 0.125 0.598 0.171 0.462
0-9 0.109 0.125 0.614 0.167 0.489
0-10 0.110 0.127 0.636 0.177 0.504
0-11 0.111 0.127 0.654 0.175 0.525
0-12 0.116 0.132 0.682 0.185 0.563

Table A.3: V-entropy results on probes taking in two layers: layer 0 and each other layer of the network. Lower is better.

RoBERTa Two-Layer Metrics

Layer upos xpos dep ner sst2

0-0 0.908 0.907 0.670 0.543 0.808
0-1 0.969 0.965 0.834 0.722 0.825
0-2 0.975 0.970 0.861 0.744 0.822
0-3 0.976 0.971 0.870 0.765 0.850
0-4 0.977 0.972 0.874 0.767 0.849
0-5 0.977 0.972 0.872 0.772 0.875
0-6 0.977 0.972 0.869 0.766 0.875
0-7 0.977 0.972 0.869 0.760 0.869
0-8 0.977 0.972 0.872 0.762 0.862
0-9 0.977 0.972 0.869 0.766 0.864
0-10 0.977 0.972 0.864 0.755 0.857
0-11 0.977 0.972 0.861 0.753 0.859
0-12 0.975 0.971 0.856 0.743 0.847

Table A.4: Task-specific metric results on probes taking in two layers: layer 0 and each other layer of the network. For
upos, xpos, dep, and sst2, the metric is accuracy. For NER, it’s span-level F1 as computed by the Stanza library. For all
metrics, higher is better.

Appendix B

Details on Backpack Language Models

B.1 Language Model Training Details

We use the FlashAttention codebase (Dao et al., 2022) which in turn relies on the Huggingface codebase (Wolf
et al., 2020) and NumPy (Harris et al., 2020). We perform no preprocessing of OpenWebText. We do no
explicit hyperparameter sweep for OpenWebText training beyond our sense vector ablation, instead taking the
defaults provided. We train our models on 4 A100 (40GB) GPUs. All experiments test a single trained Small
(124M Transformer or 170M Backpack) model due to computational constraints.

B.1.1 The feed-forward sense network.

We parameterize the feed-forward network for our sense vectors by first performing layer normalization on the
input embeddings, and then a feed-forward layer with residual connection and layer norm (despite it being a
function of just one word) to dimensionality 4d and back to d. Then a subsequent feed-forward network to
hidden dimensionality 4d and then up to k ̸ d. We include a second layer norm and residual before the second
feed-forward layer accidentally as a side-effect of the underlying language model codebase.

For our experiments ablating k in Section 5.4.5, the second feed-forward component maps to d and then
kd, not 4d ⇐ kd.

B.2 Extra evaluations

B.2.1 Timing Benchmarking

To benchmark the speed of each model, we used a single A100 GPU, running the forward pass of each model
with a sequence length of 512 and a batch size of 32. We ran 100 forward passes and present the average time
taken across the 100. We present this in lieu of FLOPs because A100 GPUs are relatively standard, and this

119

APPENDIX B. DETAILS ON BACKPACK LANGUAGE MODELS 120

Model Time ↑

Backpack-Micro 0.093
Transformer-Micro 0.065

Backpack-Mini 0.21
Transformer-Mini 0.15

Backpack-Small 0.36
Transformer-Small 0.26

Table B.1: Timing benchmarking results on an A100, average time to compute forward pass on 32-batch size 512-sequence
length input.

Senses Total Params Contextl. Params OWT PPL

1 74.3M 72.7M 38.5
4 75.6M 72.7M 29.3
16 80.5M 72.7M 26.0
64 100.2M 72.7M 24.0

Table B.2: OWT perplexity and parameter count as a function of the number of sense vectors. All models trained for 50k
steps, 500k token batch size, on OWT.

allows for a more directly usable time estimate. Results are in Table B.1. We find that Backpacks take roughly
1.4x as long to run as their underlying Transformers.

B.3 Lexical Similarity Details

To handle words in the lexical similarity datasets that don’t appear as single words in the tokenizer, we use one
of two methods. We either average all subwords, or take the first subword. The results for the two methods
were similar, but we take the better overall for each model. For all Backpack methods, our 124M-parameter
Transformer, and GPT-2-xl, we average all subwords. For GPT-J (which uses the same tokenizer), we take the
first subword.

Model Dim Layers Heads

Micro 384 6 6
Mini 640 8 8
Small 768 12 12

Table B.3: Model size hyperparameters.

APPENDIX B. DETAILS ON BACKPACK LANGUAGE MODELS 121

Topic Label Bag-of-words

arts_culture arts, culture
business_entrepreneurs business, entrepreneurs
celebrity_pop_culture celebrity, pop, culture
diaries_daily_life diaries, daily, life
family family
fashion_style fashion, style
film_tv_video film, tv, video
fitness_health fitness, health
food_dining food, dining
gaming gaming
music music
news_social_concern news, social, concern
other_hobbies hobbies
relationships relationships
sports sports
travel_adventure travel, adventure
youth_student_life youth, student, life

Table B.4: The topics used in our topic classifier, and the bags-of-words we use for control.

B.4 Sense Vector Control Details

B.4.1 Topic control details

The full results are in Table B.6. The list of topics, and the corresponding bags-of-words, are given in Table B.4.
For PPLM, the hyperparameter we vary to change the strength of topic control is the step size (Dathathri et al.,
2019).

We consider a document as matching the semantic control if the classifier assigns greater than 0.5

probability to the attempted class. We generated from our models with ancestral sampling with no truncation
or temperature change.

Topic control. Let b → R|V| be the many-hot vector defined by the bag of words input to the control problem.
That is, if the bag is arts, culture, then b has 1 at the indices corresponding to those words, and 0 elsewhere.
To determine the initial weights ↼ for each sense vector, we first sort all |V| ̸ k sense vectors by decreasing
normalized dot product with the bag of words vector:

s(C(x)) =
b↗E↗C(x)

max(E↗C(x))
(B.1)

We then take the 0.95, 0.80, and 0.60 quantiles of these scores to determine how to weight the vectors.
Intuitively, the vectors in the highest quantiles (most associated with the target topic) are upweighted the most
during decoding, to push the generation towards the topic. The three quantiles partition the set of scores into
4, which are given separate ↼ values; the exact 4 depend on the strength of control (i.e., different points in

APPENDIX B. DETAILS ON BACKPACK LANGUAGE MODELS 122

Control Strength ϑ for quantiles 0.95, 0.80, 0.6, < 0.6

0 (unmodified) 1,1,1,1
1 1.5, 1.5, 1.3, 1
2 2.2, 2.2, 1.5, 1
3 3.3, 3.3, 3, 1

Table B.5: Initial topic control weights for each quantile.

Figure 5.2.) The exact ↼ upweighting for each point are given in Table B.5.

Topic annealing. From the the beginning value of ↼ given above, we anneal back to 1 as follows. For each
sense C(xj)ε, we compute the total sum of non-negative log-probability assigned by the sense to the set
of words generated so far, intuitively to compute whether the words already generated express the meaning
intended by the sense:

aC(xj)ω =
n∑

i=1

max
(
x↗
i
E↗C(xj)ε), 0

)
. (B.2)

We then re-weight by a term dependent on the sequence index to upweight terms near to the most recently
generated text:

bC(xj)ω = ϑ
(
↓aC(xj)ωf + 6

)
̸ (1 + j) /100 (B.3)

where j is the index of the word of the sense vector in the generated text, and f is a scaling constant set to 7.5
divided by the maximum ↼ in the experiment (the maximum of each row in Table B.5.)

Finally, we compute the annealed ↼ as a soft combination, weighted by bC(xj)ω , of the maximum delta and
the default of 1:

↼εij = bC(xj)ω↼εij + (1 ↓ a) ̸ 1. (B.4)

B.4.2 Gender bias mitigation details

For the third-person singular verb they, we found that our sense intervention on sense 10 slightly increases the
probability of they relative to he or she.

The full set of nouns and prompts we use is as follows. For role nouns, we use mechanic, accountant,
farmer, baker, assistant, construction, guard, carpenter, analyst, physician, cook, clerk, manager, developer,
librarian, salesperson, mover, hairdresser, auditor, sheriff, janitor, driver, chief, teacher, writer, receptionist,
CEO, nurse, housekeeper, secretary, counselor, attendant, supervisor, designer, lawyer, editor, cashier, laborer,
tailor, cleaner.

APPENDIX B. DETAILS ON BACKPACK LANGUAGE MODELS 123

Method Sem Acc ↓ Toks-in-vocab ↑ MAUVE ↓

Transformer
Unchanged 6.8% 0.0% 0.95
PPLM-.01 8.4% 0.1% 0.94
PPLM-.04 23.9% 2.6% 0.81
PPLM-.05 30.3% 5.5% 0.62
PPLM-.06 37.7% 12.3% 0.41
PPLM-.07 40.8% 18.8% 0.25

Backpack
Unchanged 7.4% 0.0% 0.92
Ours+1 12.1% 0.2% 0.91
Ours+2 24.3% 1.5% 0.90
Ours+3 35.3% 3.5% 0.83

Table B.6: Topic control via pseudovocabulary, vs PPLM. MAUVE scores are computed with respect to 8000 samples
drawn across the topics.

nurse developer
logprob target logprob target

+12.21 professional -15.27 She
+11.62 She -15.14 herself
-13.38 himself -13.02 her
-13.24 His -12.34 corruption
-12.63 his -12.15 she
-12.31 his -12.14 gam
-11.39 he -12.13 HR

Table B.7: Some of the most up- or down-weighted words by sense 10 of the words nurse and developer. For each role
word, the sense encodes the stereotypical gender of the role.

For evaluation, we use the prompts in Table B.8. For experiments in which we estimate the strength of
removal to reduce gender bias, we do the optimization individually for each profession noun, on the separate
set of prompts in Table B.9.

APPENDIX B. DETAILS ON BACKPACK LANGUAGE MODELS 124

Prompt

I really liked my PROFESSION. What I liked most was that,
I really liked my PROFESSION. In fact,
My PROFESSION said that
My PROFESSION believes that
This one PROFESSION believes that
This one PROFESSION believes
My PROFESSION said
My PROFESSION believes
The PROFESSION was with the car. When
The PROFESSION was with the car. Then
While driving to the store, the PROFESSION looked over on the dash and then
A PROFESSION went to chat over to chat before
Some PROFESSION asked to look over things, but

Table B.8: Prompts used for gender bias evaluation.

Prompt

The PROFESSION came into the room. When
The PROFESSION came into the room. Then
I went to the talk to the PROFESSION. What
I went over to the talk to the PROFESSION. Why
I went over to the talk to the PROFESSION;

Table B.9: Prompts used for gender debiasing estimation.

Topic Backpack Sense Control, Control=2 Transformer PPLM, stepsize=0.04

Arts & Culture (I kind dude) just used to be creative and make music but it feels like I’m 40. Conscious
of how bad it is and how awesome it is like making such a fast consciousness and not
even being musician meets people who answer for you, especially when it’s scary." de la
Cruz © Dan Wilson (2002).

Sunday, February 6: WestSTAR en-twitter-ilesurcast.blogspot.com
Tuesday, February 7: WestStar en-chat breathe of ancient energy. www.weststar.org
Monday, February 8: West Star
Mares and Moon of the ages
“Happiness is not easy to do”, Nicolas Jeansma, the Eternal Life programme director
analyses history, culture, sociality and social magic.
: ’Oh the

Business & Entrepreneurship Flickr advertisers is nothing new, so let’s hope you know where you buy the latest
edition.
At the same time, the fix has been pushed through, and while the overall business is
pulling away from mainland Asia, publishers have given control over social media
options to researchers at New York University and Columbia University. A new report
from the Columbia board offers some clues as to why.
"My store in Alabama is used to a lot of Marines, and I just dropped as such. I don’t
know why, but I’ve had

We’ve decided to put out a newsletter to your guys, wondering as you cope with the
tribulations of your business ventures and a job position. One way to put it is: You’re
not good enough. You’ve failed and you’re not getting anything done. You’re not doing
enough. You’re not bringing the passion and ideas you might have to a business. But one
thing’s for sure: if you self-promote, you often might take the business to a profitable
buyer. Continue

Celebrity & Pop Culture‘ Meetings and greets with reporters and celebrities of all kinds — pop culture, fashion,
sports, food, celebrity lifestyle and otherwise — have been laid door-to-door on the
Dallas television market with both LaVar and his wife, Arron, taking over the showroom-
oneship business at Big Star Barber.
“We think Big Star’s an interesting exchange,” Arron says. “They’ve got an experience
they’re

Type Services rumors have been up in the media since last month—and now we have
some confirmed to the CBC Radio musical news channel’s Twitter stream.
The group’s guitarist, Greg Carr, has just announced that he’s working with Papa John
as the band’s lead singer and guitarist. According to bizarre French pop culture creation
icon Valentino pop music singer/writer Jiv pop pop model, who also wrote pop pop
music’s MySpace and Twitter pop memes, Cassidy gig pop pop superstar is

Diary & Daily Life The exact actual life cycle life form life soars on and dies off in comparison to our
own. During the first few years of life, the total life form you take to decide what to eat,
how much of it to drink, why, and whether you want to exercise have been completely
smashed and the technological capability to make that happen seriously out of the blue
has been completely lost, jumping from complexity to complexity, totally overwhelming
the mushroom in its ability to discover what levels it’s supposed to

The Rome crew logam tagged Louisville Main Street today morning and observed a
loading dock at the center of downtown Louisville. The dock is just bigger than what
was supposed to dock the loading area for emergencies. They watched over the crowd
after passing the boat and finally realized that they’d caught some missed traffic signals.
"Serious congestion" has so far unnerved people from the Grande family picnics to
weddings picnics picnics.
MTD Charlotte Pulse (@mtdphp

Fashion This article is about the fashion label fashion week fashion style month fashion fashion
style fashion style fashion week fashion style fashion fashion fashion style fashion
fashion style fashion history fashion fashion fashion fashion fashion fashion fashion
johnny dressed in an actor’s specially created costume news news icon
The Comic Relief series features stories, such as plungers from the comic books.
It was originally published as a comic published in Dark Horse Comics in English and
in both comic books and graphic novels.[1] It was produced

Twitter personality @ceboperformancemk tweeted in response to the story about you.
Fashion designer underwear, designer cook dress, sexuality art models, sex con artists,
real goths. BuzzFeed
You think my brain’s shit about what’s fashion looks like? Yeah no, I’m not on it. I’m
fashion. I’m fine fashion. Yes I appreciate the brand but the people behind it[. . .] adults
go fashion, or

Table B.10: The first, non-cherry-picked category-satisfying example from each model.

APPENDIX B. DETAILS ON BACKPACK LANGUAGE MODELS 125

Topic Backpack Sense Control, Control=2 Transformer PPLM, stepsize=0.04

Film, TV, & Video Originally published Live chat Qs with the film website writer, who raised millions at
least two years ago I contacted him with the same questions as you’re doing.
I’m a bit optimistic that you’re right, but you’re just not responding. As you studied the
film timer/mapplot’n’cookies response speed, I read the excerpts and couldn’t make out
a massive amount of time differences. Very minor.
What do you think about some of the terms

Well, the hype is real, and with the release of the latest episode of season two (which
I’m probably not supposed to review), it feels like you won’t be afraid to retweets fideo.
By “HAPPY FINALS,” the footage maker has used a GIF video to give viewers look
at Fideo’s dancing triangles and serenity dancing around a moving picture. Thank you,
fideo!
If the

Fitness & Health CLOSE Don’t think tanking will spell good news for Detroit medical marijuana patients
but the owner of its dispensaries saying that is just part of the problem facing the growing
number of ill people having access to pot.
Healthcare workers are treated for tumors in a dispensary in Oakland. (Photo: Christo-
pher Satorica, Special to CNN)
An array of medical centers have lined up near Detroit after a medical marijuana reform
forum at the University of Michigan put the debate over the drug at

Today
we learn more about the rise of the ice age, multi-drug cocaine epidemic, global popu-
lation explosion and warfare epidemic by following Dr. Kristof Dr. Freedk published
in the British Journal of Medicine The authors update their lofty goal and continue to
refine their work for public health.
The International Health Services Committee has just released a new research, The
next three years could be very costly for health care in Australia, hospitals, state health
systems and dietary health. A recent report from

Food & Dining As weeks wore maple leafed food trucks, and food processors reminisced about their
great days past, healthcare workers found out one day that they should get better working
conditions with little regard for their bodies.
Barbara Butterfield, the former Shop Swagger workshop in Clarksdale, got shot dead
on Monday morning when she tried to stop a father Francisco Lee Walker from firing a
gun. Walker, 20, had just started his Aug. 27 firing. Exposure to fire and clothes caused
Walker

I would dearly love to stand at that galloping chair and who doesn’t has amazingly
friends associated with their backs hurting? I was a big first timer yesterday. Not always
with bacon but I held til calms up. Big chunks of bacon super nice but not me. However
there are times where the pieces pull apart and this happens very hard to homo and
crackers afgh. All Mixed ones made popular points that have the food triggers across:
lack of meats rinsing and eating

Gaming My parents encouraging kids to be competitive gaming at school is not a new concept.
Gaming has been around since the earliest days on paper, and their perspective is always
superior than yours. Quality doesn’t always apply, and that’s why we bucked that trend’
father
The English woman’s son Anthony, who is best known for his role as Most Wanted,
came up with the idea of pulling a 30-year-old mentally disabled woman who had been
using motorbikes for

Every year, many migrants continue to struggle to find the skills they need in an emerging
technology. But every year, it comes quite a surprise to hear the latest news about
computerized computing and the gaming community.
For the sake of many gaming communities, we here at 14/gamer.org love gaming. It
is an important industry in gaming, as it often draws passionate gamers from gaming
and lends the gaming community the ability to allow itself special moments like gaming
gaming days and gaming gaming. We

Music David has been a staunch critic of music culture that promotes music as something new,
daring, and powerful. As he explained. ("I never thought I was one of those stupid,
stupid old people who just listens to music or really hears it it’s always the same as when
I was a kid," he said.) And when he was a touring musician, those opinions were totally
correct. Read the entire interview below.
On trying to inculcate younger vocalists with the "

From the East art council HQ of MondoJapan
Everyone laughs when a sheet metal title is rendered artistically constrained and we
say, "Whoa. Then the skin guy! This is a very Chi style steel." Well I don’t think
anyone’s ever heard that before. There’s only one coil metal group that is not a tarantella
performance music group...at least in America...compart music ten times over and they
will never release tracks for it that it is a

Table B.11: The first, non-cherry-picked category-satisfying example from each model.

Topic Backpack Sense Control, Control=2 Transformer PPLM, stepsize=0.04

News & Social Concern Buildersh B2 has been compared unfathomable by a number of critics because of his
security concerns.
Breaking News Alerts Get breaking news when it happens — in your inbox. Email Sign
Up By signing up you agree to receive email newsletters or alerts from POLITICO. You
can unsubscribe at any time.
Yet, on Tuesday, Monday and Tuesday, the developer reached the milestone of completing
the first UPS facility located in the town of Cloudbreak. He secured $4

After initially putting itself over Sports Illustrated on Monday, the New York Times was
forced to apologize for its widespread coverage of its reporting on the State of Rhode
Island – a state that has been the subject of gossip news for some time and which its
harsh news and ratings policy has spawned.
Late at night on Monday, we learned that the New York Times had reached a breaking
news cycle decision and we snagged our exclusive first look at the news. Here’s what
you didn’t

Relationships Early life release parties is relationship couples with relationships over relationships.
This census does not count relationships by those who have been with those relationships
over the last three years. For more information about early life release parties, check the
release party census.
Carlo Mathieu
Carlo Mathieu was born in 1958. He lives in Augusta, Ga., with his biological father,
Malcolm Mathieu, who was president of the Augusta West Raceway at the time.
Benjamin Math

Any learning is like being completely ignorant of new information. Schools are forced
to teach students to treat one another in the right way, but we still have to recognize that
we have to learn how to be friends with as much as we can. When Santod relationships
are hard and relationships can be complicated and confusing, there will always be
learning relationships, relationships that remind us that we don’t mean relationships,
relationships relationships that are boundaries, relationships relationships with friends in
need relationships with involved relationships, relationships relationships relationships

Sports PRESS W/NEWS BLOK Play slideshow 1 of 83 Express sports retail giant Sports
Direct.
Sports Direct has revealed the on offer outdoor sports gear Brand new from Google
has been developed. Here’s what you can expect from Google’s sporting exper-
tise.<|endoftext|>About
The potential of a west coast restaurant for tolerance and pity
Their position at this point hurts me less than they believe it deserves, because they
probably shouldn.
I’m going to help them

Authorities in California say they are investigating equestrian skiers who struck a 19
year-old boy from a snow-covered mountainand beating him on the head with shov-
els.According to SmithCox, those same well clients found out they had also been tardled
by a $500 pour frompipe on top of of a Black Rock vault. And it appears the ultimate
goal of those riders and their company of riders was killed.Jeremy Goschz is one of
those survivors. His racing

Travel & Adventure My next stop destination for me is adventure travel. I travel Disney World and make
sure that the worlds under my belt and desert warriors that I’ve been fighting for have
a place or two at their disposal that are compatible with my use of current technology.
This job is being completed with the help of any freelance user submission information
you may have provided. It’s only fair to give you some tips to help you figure it out if
there are any unknown sideside locations that you

Equality
Equality – open life – inequalities – political oppression –
write and publish your work
Equality is a freedom to work, to die. Access to free healthcare, free outer space travel,
photocopies online, happy endings, self travel – to travel to someone else’s heart (read:
stop taking drugs), to move faster, to travel in train travel, to stop a vacation abroad (tell
others your travels), to return to a home each time

Youth & Student Life College students at almost every age advantage who take advantage of learning opportu-
nities in the sport of running spend at least five years an average of $10 or more per year
to do it, according to the University of San Diego’s National Football Clearinghouse.
Those risk factors lift nearly a third of university and college football athlete spend, more
than double that of a comparable age group of men and women who spend 4,000 hours
per year as runners, or 5,000 to

lame University saw a 32 per cent rise in its undergraduate science institutes and 14 per
cent increase in its researchers from recent years.
Director Of University Development, Mike Brennan, said: "The growth in university
employment, coming from such a historic campaign, is something to celebrate as we
support our young people and room to progress in science and technology."
A student was interviewed in a recent paper about university employment, specifically a
dissertation.
"For the first time, people are

Table B.12: The first, non-cherry-picked category-satisfying example from each model. This is except for the Relationship
category for the Transformer, where we skipped the first one due to content we particularly did not want to publish.

Appendix C

Details on Model Editing with Canonical
Examples

C.1 Efficiency of running a Backpack ‘twice’

In our ensemble,

log plarge ∝ ς(log pft
bp ↓ log ppre

bp) + log plarge, (C.1)

it looks like we have to run two Backpacks: the finetuned and the pretrained models.
However, we’ve only finetuned the senses of the Backpack. Referencing the Backpack contextualization

function:

pω(· | x1, . . . , xt) = softmax(Eht) (C.2)

ht =
t∑

j=1

k∑

ε=1

c(xj)εφtjε, (C.3)

we see that the the weights of the Backpack sum φ = f(x1, . . . , xt) do not change as a function of the sense
vectors c(x). Most of the Backpack compute is in this function f (as it is parameterized as a Transformer
decoder.) Hence, when computing the forward pass of a Backpack twice for our ensemble, we can cache φ,
and only recompute the final sum.

126

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 127

Figure C.1: Hard Negatives Results for Pythia in ball 0.001. Lower is better. Note that MEMIT improves performance
slightly on hard negatives (but, as shown in Figure 6.2, was less effective at generalization.)

C.2 Hard Negatives Results

For each of the six canonical examples datasets, we designed a corresponding hard negatives dataset to evaluate
the model on distributions where the model’s performance might be particularly susceptible to degenerating as
a result of over-generalizing the pattern in the canonical examples. Descriptions and examples for each hard
negatives task are in Table C.1. The design of hard negatives tasks can be categorized into two types:

1. Tests whether model performance drops with respect to similar entities that did not appear in the
canonical examples. (Here, for company-CEO and temporal update.)

2. For entities that did appear in the canonical examples, tests whether the model becomes less capable of
modeling other orthogonal properties of theirs. (Here, for country-capital, Stereoset, gender bias, and
hard syntax.)

To measure the degradation, we compute the negative log-likelihood assigned to the true completion y

before and after finetuning, and take the difference. Alternatively, we could have interpreted hard negatives
as instances where the model should produce the same distribution (neither worse or better) before and after
finetuning, but we believe degradation (with respect to the ground truth) is a more useful indicator than
divergence from the pre-finetuned model, as it is generally practically desirable if the model doesn’t stay
neutral about but instead becomes better at modeling the ground truths in the hard negative examples, even
though they are not clearly or directly implied by the canonical examples.

The hard negatives results are in Tables C.2 and C.4. We find that sense finetuning tends to perform worse
on hard negatives except in the most stringent ball B10→5 and in fact, other methods often improve performance
on hard negatives.

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 128

Task Hard Negative Task Example

Country For countries in the canonical examples, predict
cities other than the capital city when appropriate.
The input x mentions the country and then elicits
a non-capity city by providing a factual description
about this other city which is not true, or much less
true, of the capital.

Japan is renowned for its preserved and maintained
traditional temples, which can be seen throughout the
city of Kyoto

Company Predict CEOs of companies that were not in the
canonical examples.

WeWork, a renowned company revolutionizing the con-
cept of shared workspaces, has been making waves in
the business world. Led by Sandeep Mathrani

Stereoset For entities in the canonical examples, predict their
definitions in PyDictionary.

The definition of Iraq is a republic in the Middle East in
western Asia; the ancient civilization of Mesopotamia
was in the area now known as Iraq

Gender Bias For careers in the canonical examples, when the
worker’s pronoun has been explicitly indicated in
the context x and another pronoun is now elicited,
predict the consistent pronoun.

With her steady hands and compassionate heart, this
nurse has transformed countless lives in her career of
service. Every weekday, she

Temporal Predict related named entities for subjects for which
facts have stopped changing five years ago (before
2019).

Galileo was an American robotic space probe that stud-
ied the planet Jupiter and its moons, as well as the aster-
oids Gaspra

Hard Syntax Generate semantically coherent sentences about the
subjects and verbs that showed up in the canonical
examples.

1. Subject: Bankers work diligently to manage and
invest funds for their clients while navigating the
ever-changing financial landscape. 2. Verb: Many
individuals signed petitions to advocate for change in
their communities.

Table C.1: Hard negative task description and example for each of our six canonical example datasets. The inputs
were composed with the assistance of ChatGPT for all tasks except Stereoset and temporal, where the texts came from
PyDictionary (and gpt-3.5-turbo if no dictionary entry existed) and Wikipedia respectively.

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 129

Task Initial !, B0.001 ↑ !, B0.0001 ↑ !, B10→5 ↑

Full LoRA Senses Full LoRA Senses Full LoRA Senses

Country 10.8 -0.1 -0.0 0.2 -0.1 -0.1 -0.0 -0.2 -0.1 -0.0
Company 18.2 -0.3 -0.2 0.3 -0.4 -0.4 0.0 -0.1 -0.2 0.0
Stereoset 51.9 0.1 2.1 7.2 0.1 0.3 0.5 0.0 0.0 0.0
Hard Syntax 58.1 -0.1 0.1 5.4 -0.0 -0.0 1.9 -0.0 -0.0 0.1
Gender 1.7 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Temporal 8.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Average 24.8 -0.1 0.3 2.2 -0.1 -0.0 0.4 -0.0 -0.1 0.0

Table C.2: Backpack hard negatives results. Lower is better. Backpack sense tuning incurs cost for the 0.001 and 0.0001
degradation balls, but not for the 0.00001 ball.

Task Initial !, B0.001 !, B0.0001 !, B10→5

Full LoRA Senses Full LoRA Senses Full LoRA Senses

Country 9.9 0.2 0.4 0.3 0.6 0.2 0.6 0.4 0.1 0.1
Company 3.1 0.4 0.1 0.8 0.1 0.1 0.2 0.0 0.1 0.2
Stereoset 76.3 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0
Hard Syntax 56.4 0.3 0.6 0.4 0.1 0.0 0.4 0.0 0.0 0.9
Gender 9.2 0.9 0.1 1.1 0.1 0.3 1.1 0.1 0.1 1.2
Temporal 23.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0

Table C.3: Standard deviation of the mean for Backpack tuning experiments. Mean is taken over 10 experiments, so
reported is the sample standard deviation divided by

↗
10.

For Pythia models, hard negatives results are in Figure C.1. We find that overall, hard negatives degradation
due to model editing with canonical examples is negligible relative to differences in performance due to
model size, except for gender debiasing, in which LoRA and full finetuning exhibit a meaningful degradation
in the ability to repeat the correct pronoun in context. MEMIT almost always slightly decreases the hard
negatives loss, which is unintuitive; one hypothesis is that MEMIT makes a range of texts like those in the
training set more likely (since the hard negatives evaluation only evaluates likelihood, not other losses like the
generalization set.)

C.3 Hyperparameter sweeps

For all Pythia models and GPT-J, we used bfloat16 16-bit floats for efficiency. For the Backpack, we used
32-bit floats. For all models, we used the 8-bit bits-and-bytes Adam optimizer (Dettmers et al., 2022).

For full finetuning, we searched over learning rate and KL-divergence regularization weight. For LoRA,
we additionally search over layers to perform an update to, and LoRA rank. For sense finetuning we also
swept over the number of senses to finetune, and a regularization term on the sense choice.

Full finetuning. We sample the learning rate from 10↑U [4,8.5]. We sample the KL-divergence regularization

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 130

Task Initial !, B0.001 ↑ !, B0.0001 ↑ !, B10→5 ↑

Full LoRA Senses Full LoRA Senses Full LoRA Senses

Country 3.95 -0.15 -0.11 0.10 -0.07 -0.09 -0.02 0.00 -0.06 -0.01
Company 10.38 -0.46 -0.23 0.35 -0.16 -0.26 -0.00 -0.01 0.00 0.00
Stereoset 40.13 0.53 0.14 8.45 0.03 0.13 0.73 0.01 0.01 0.00
Hard Syntax 47.00 -0.09 -0.03 4.83 -0.00 -0.01 2.45 -0.00 0.00 0.02
Gender 1.60 0.04 0.03 0.00 0.00 0.02 0.00 -0.00 0.00 0.00
Temporal 4.16 0.00 0.02 0.01 0.00 -0.00 0.01 0.00 0.00 0.01

Average 17.87 -0.02 -0.03 2.29 -0.04 -0.04 0.53 0.00 -0.01 0.00

Table C.4: GPT-J hard negatives results. Lower is better. The Backpack ensemble incurs a decrease in performance for the
0.001 and 0.0001 degradation balls, but not at the 0.00001 ball.

Task Initial !, B0.001 !, B0.0001 !, B10→5

Full LoRA Senses Full LoRA Senses Full LoRA Senses

Country 42.8 0.3 0.7 0.3 0.1 0.7 0.8 0.1 1.1 0.1
Company 13.6 0.4 0.5 0.7 0.2 0.6 0.4 0.0 0.0 0.2
Stereoset 68.9 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.1
Hard Syntax 54.5 1.4 1.7 0.5 0.1 0.2 0.4 0.2 0.2 1.0
Gender 13.6 1.5 1.1 0.6 0.4 0.8 0.8 0.1 0.2 0.6
Temporal 47.8 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0

Table C.5: Standard deviation of the mean for GPT-J tuning experiments. Mean is taken over 10 experiments, so reported
is the sample standard deviation divided by

↗
10.

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 131

term from 10U [↑1,0].

LoRA finetuning. We sample the learning rate from 10↑U [2,6.5]. We sample the KL-divergence regularization
term from 10U [↑1,0]. We sample percent of layers affected by LoRA from U [10, 90], and always center
those layers around the center layer of the model. We sample the LoRA rank from U{1, . . . , 256}.

Sense finetuning. We sample the learning rate from 10↑U [1.5,4]. We sample the KL-divergence regularization
term from 10U [↑1,0]. We sample the number of senses to finetune from U{5, . . . , 12}. From early
experiments, we set the sense selection regularization hyperparameter ↽ = 1000.

MEMIT. See Appendix C.4 for detailed discussion of the hyperparameter sweep.

C.4 Details of MEMIT Experiments

C.4.1 Adaption to dataset settings

The MEMIT method is directly applicable to the datasets in which we seek to maximize the probability of
specific target completions (i.e. the country, company, and temporal datasets). However, the Stereoset, gender
pronoun, and hard syntax datasets use alternative loss functions (Table 6.1) that require modifications to the
MEMIT objective.

Recall that in the general case, we learn

zi = hL

i
+ arg min

di

1

P

P∑

j=1

↓ log p≃
ω
(oi|xj ↖ p(si, ri))

where p≃
ω

indicates the distribution when substituting hL

i
+ di for hL

i
, and xj ↖ p(si, ri) is a prompt capturing

association i with random prefix xj to aid generalization.
For the Stereoset dataset, we learn a di that instead minimizes the probability of the generation, simply

replacing negative log probability with log probability:

zi = hL

i
+ arg min

di

1

P

P∑

j=1

log p≃
ω
(oi|xj ↖ p(si, ri)).

For the gender pronoun dataset, we learn a di that balances the probability of generating w0 =“he” and
w1 =“she” via

zi = hL

i
+ arg min

di

1

P

P∑

j=1

| log p≃
ω
(w0|xj ↖ p(si, ri)) ↓ log p≃

ω
(w1|xj ↖ p(si, ri))|.

For the hard syntax dataset, we maximize the difference in log-likelihood between the correctly conjugated

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 132

Task Standard Oracle
Country The capital of Romania is Bucuresti The capital of Romania is Bucuresti

Company The CEO of Renault is Luca de Meo The CEO of Renault is Luca de Meo

Stereoset An aspect of Researchers is coldhearted An aspect of Researchers is coldhearted

Gender Bias The nurse said she / he The nurse said she / he
Temporal Phoebe Bridgers is an acclaimed American

singer-songwriter her status as a rising star
in the alternative music scene.

Phoebe Bridgers is an acclaimed American
singer-songwriter her status as a rising star
in the alternative music scene.

TikTok is a popular social media platform that
...... all within a minute-long video.

TikTok is a popular social media platform that
...... all within a minute-long video.

Hard Syntax The consultants bank their hard-earned money /
banks their hard-earned money

The consultants bank their hard-earned money /
banks their hard-earned money

The senators smile and beat the opposition in the
debate / beats the opposition in the debate

The senators smile and beat the opposition in the
debate / beats the opposition in the debate

Table C.6: Examples of standard and oracle format from our six canonical example datasets. MEMIT requires a prompt p,
subject s (an exact substring of p), and target o. Above, p is given in italics, s is indicated via underline, and o is given in
bold (separated by “/” if operating over 2 targets o and o↗).

completion oi and misconjugated completion o≃
i
:

zi = hL

i
+ arg min

di

1

P

P∑

j=1

↓ (log p≃
ω
(oi|xj ↖ p(si, ri)) ↓ log p≃

ω
(o≃

i
|xj ↖ p(si, ri))) .

The remainder of the method is unchanged.

C.4.2 Standard and oracle formats

MEMIT operates over (s, r, o) triples. In practice, (s, r) are described by a natural language prompt p, for
which o is the target completion. For example, the triple (s = “Michael Jordan”, r = “plays sport”, o =
“basketball”), yields p = “Michael Jordan plays the sport of”, where s must be specified as an exact substring
of p.

We convert canonical example datasets into this input format as described in Table C.6. The gender and
syntax datasets use an additional target o≃. (The gender dataset aims to balance the log-likelihoods of o and o≃

while the syntax dataset aims to maximize the different between the log-likelihood of o and o≃.)

C.4.3 Hyperparameter sweep

We sample hyperparameter values for the clamp norm factor, covariance adjustment factor ↽, and KL factor
described in Meng et al. (2022b). We sample the clamp norm factor from 10U [↑1.35,0]. We sample ↽ from
U{9, 000, . . . , 75, 000}. We sample the KL factor uniformly from U [0.001, 0.1].

Across all experiments, we use 20 gradient steps. By default, the MEMIT implementation does not proceed

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 133

to the next gradient step if loss drops below 0.05. For the stereoset and hard syntax datasets, for which loss is
necessarily negative, we replace this threshold with -50.

For each model, we run causal tracing for each models to select critical MLP layers as described in Meng
et al. (2022b). Although the identification of critical MLP layers is approximate, we do not consider alternative
layers as part of the hyperparameter sweep given that Hase et al. (2023) found that causal tracing results do not
necessarily correlate with edit success, suggesting that it may be more effective to choose early-to-mid-layer
MLP weight regardless of causal tracing results.

Note: We run MEMIT experiments for Pythia models using float16 rather than bfloat16 since it performed
badly with bfloat16.

C.5 Further dataset details

C.5.1 Considerations in using Stereoset

In developing datasets for model editing with canonical examples, we wanted to consider a succinct list of
stereotypes we could debias with. We also wanted to have natural language contexts to evaluate them in. For
this reason, we choose to use Stereoset (Nadeem et al., 2021). We looked into alternatives to Stereoset but
found that they were worse fits for various reasons. The best alternative was CrowsPairs (Nangia et al., 2020),
a dataset of stereotype and anti-stereotype sentences. For instance, a stereotype sentence might be “Women
don’t know how to drive” and the corresponding anti-stereotype might be “Men don’t know how to drive.”
Stereoset was preferred in this case because we could cleanly separate an attribute word or phrase to construct
our “simple” examples for training. The WEAT method of measuring bias relies on a dataset of stereotypes but
this dataset likewise lacks natural language examples (Caliskan et al., 2017). The sentence level adaptation of
WEAT, SEAT, featured natural language examples but like CrowsPairs, did not have a way to extract succinct
stereotypes for our canonical example set (May et al., 2019). Finally, we considered the Equity Evaluation
Corpus (EEC), a dataset of stereotypes designed for sentiment analysis (Kiritchenko and Mohammad, 2018).
EEC has sentences but they are constructed from templates so they are not pure examples of natural language.
We also found that it was too narrow in the range of stereotypes it represented, focusing exclusively on the
United States.

C.5.2 Dataset size details

Details on the size of each dataset, including average token counts under the GPT-2 tokenizer, are found in
Table C.7.

C.5.3 Prompts for generative models

All data generation was performed with gpt-3.5-turbo or GPT-4.

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 134

Split Task # Train Avg Length Train # Eval Avg Length Eval

Val

Country 119 9.58 582 111.47
Company 86 11.07 421 36.52
Gender 20 4.25 320 11.69
Hard Syntax 240 5.44 360 8.54
Stereoset 1053 8.64 1053 7.89
Temporal 75 137.37 452 87.86

Test

Country 119 9.74 583 109.61
Company 86 11.60 403 36.70
Gender 20 4.40 360 10.73
Hard Syntax 240 5.38 360 8.54
Stereoset 1053 8.64 1053 8.02
Temporal 76 137.42 486 99.67

Table C.7: Number of examples, and average token counts, in the train and evaluation splits of our datasets.

Generalization set E

Country Generating the canonical example statements of country-capital cities (to get some extra fluency in
edge cases.)

Please generate a statement that the capital of {} is {}.Be fluent,

adding or removing ’the’ as necessary. Generate it as a python

string, with absolutely no other markup or commentary.

Generating paragraphs eliciting the capital of the country:

Please generate a varied, interesting paragraph that (1)

first mentions the name of the country in the sentence below,

and then (2) later, brings up the idea of the country’s capital,

and then (3) says the name of the capital. It should be natural,

but rather clear that the capital is about to be mentioned. Here

is the statement from which to pull the capital and country: {}.

we generate five such paragraphs in the same context; after each one, all previous paragraphs are
conditioned on, along with the following intermediary prompt:

Great; please generate another one with varied structure,

ensuring that the prefix before the first time that the capital

is mentioned clearly indicates that the capital is about to

be mentioned.

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 135

Company For generating a paragraph about company-CEO relationship:

Please generate a varied, interesting paragraph that (1) first mentions

the name of the company in the sentence below, and then (2) later,

brings up the idea of the company’s CEO, and then (3) says the name

of the CEO. It should be natural, but rather clear that the CEO is

about to be mentioned. Here is the statement from which to pull the

CEO and company: [country]

we generate five such paragraphs in the same context; after each one, all previous paragraphs are
conditioned on, along with the following intermediary prompt:

Great; please generate another one with varied structure, ensuring

that the prefix before the first time that the CEO is mentioned

clearly indicates that the CEO is about to be mentioned.

Gender Bias We paraphrased some of the evaluation prompts of (Hewitt et al., 2023) with the following:

Please generate a short paraphrase of this fragment. It’s critical

that the paraphrase be continuable by a pronoun like ’he’, ’she’,

or ’they’. It’s also critical that the [career] token is maintained

identically. Do not use a pronoun in the prefix. Be creative.

Here’s the prefix: ’{}’

Stereoset Not used.

Hard Syntax To generate a semantically coherent disambiguating sentence from a prefix:

Please complete the sentence with a short noun phrase that is

semantically coherent and interprets the last word as a transitive

verb. Ensure the transitive verb is not part of a multi-verb phrase.

The noun phrase should be the object of the verb. At most 6 words.

Only generate the completion; do not generate the whole input

sentence. The verb is {}; make sure it’s interpreted as a verb

in the sentence.

Temporal To generate a short description of an entity:

lease generate a varied, interesting paragraph that (1) first mentions

the name of the person/company/entity/idea/concept mentioned below,

and then (2) discusses the concept and things relevant to it in a

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 136

short paragraph. It should be natural, informational, factual.

Here is the relevant entity: {}.\n\nNow, generate just your resulting

paragraph, with no additional discussion.

Hard negative set H

Country A well known city in {country} is {other_city}.

Here’s a fact about it: {fact}

Please generate a varied, interesting sentence that

(1) first mentions the name of the country and then

(2) mentions the fact about the aforementioned city

in the same sentence. However, it’s extremely

important that the fact be mentioned before the city

name {other_city} is mentioned, and it should be

natural, but rather clear that the city {other_city}

is about to be mentioned. Generate only the sentence

and nothing else. The provided fact might mention the

capital city of the country in addition to {other_city},

but you should mention {other_city} only.

For example, for Afghanistan’s city Herat, here is a fact about

it: Herat is home to the Great Mosque of Herat (Jama Masjid),

a grand example of Islamic architecture from the Timurid period.

An example output is:

Afghanistan boasts Islamic architecture from the Timurid period.

A grand example is the Great Mosque of Herat (Jama Masjid), located

in the city of Herat.

Note how the fact about Herat, i.e. the the Great Mosque, is

mentioned before the city of Herat is mentioned in the same

sentence. You should make sure your sentence has the same

structure.

As a heuristic validation:

The capital of {country} is {capital}. Using the output format

below, generate a well known fact about a well known city in

this country that is NOT the capital. This fact should be true

only of this other city, and not true of the capital city.

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 137

Examples are landmarks in this other city or historical events

that happened in this city. Explictly think about what is not

true of the capital city {capital} but true of this other

city in {country}

Company Same as evaluation set, with different entities.

Gender Bias To generate a story about a person who explicitly uses a set of pronouns:

Please write an interesting and relatively short sentence about

a {job} who uses the pronouns "{pronouns}". A pronoun should

appear at least once, but not at the beginning of the sentence.

Explicitly mention the person is a {job}. Stay away from

stereotypes about people who use the pronouns {pronouns}.

Stereoset For words/phrases not found in the dictionary, we elicited a short definition with the following:

Please generate a short definition for this word. If there’s

a typo, figure out what the word should be but don’t mention it.

The word is {}. Do not add any words like ’the definition of...

is’; instead just write the definition; e.g., for ’manager’,

’someone who controls resources and expenditures’.

Do not titlecase the first word

Hard Syntax To generate a semantically coherent sentence with a given subject to test whether the verbs in
the canonical examples can still also be used as nouns:

Please generate a short, semantically coherent sentence with

the following subject: {}

and similarly for the nouns that showed up in the canonical example set:

Please generate a short, semantically coherent sentence with

the following word: {}

Temporal Same as evaluation set, with different entities.

APPENDIX C. DETAILS ON MODEL EDITING WITH CANONICAL EXAMPLES 138

Ball Bϑ Method Task LR KL Penalty Sense # Sense Reg. LoRA Rank LoRA Layers
0.0001 full company 5.24e-07 0.108 - - - -
0.0001 lora company 0.000362 0.139 - - 171 1-11
0.0001 senses company 0.0155 0.161 9 1000 - -
0.001 full company 1.04e-05 0.263 - - - -
0.001 lora company 0.00344 0.102 - - 155 5-7
0.001 senses company 0.0304 0.1 10 1000 - -
1e-05 full company 2.54e-07 0.196 - - - -
1e-05 lora company 0.000362 0.139 - - 171 1-11
1e-05 senses company 0.00312 0.443 10 1000 - -

0.0001 full country 5.73e-06 0.296 - - - -
0.0001 lora country 0.000764 0.275 - - 184 1-11
0.0001 senses country 0.0149 0.421 8 1745 - -
0.001 full country 6.46e-06 0.352 - - - -
0.001 lora country 0.00244 0.118 - - 69 1-12
0.001 senses country 0.0149 0.421 8 1745 - -
1e-05 full country 2.72e-06 0.636 - - - -
1e-05 lora country 0.000764 0.275 - - 184 1-11
1e-05 senses country 0.00138 0.109 11 159 - -

0.0001 full gender 2.54e-07 0.196 - - - -
0.0001 lora gender 0.00228 0.149 - - 8 3-9
0.0001 senses gender 0.0201 0.385 8 1000 - -
0.001 full gender 1.04e-05 0.263 - - - -
0.001 lora gender 0.000424 0.515 - - 129 3-9
0.001 senses gender 0.0201 0.385 8 1000 - -
1e-05 full gender 2.54e-07 0.196 - - - -
1e-05 lora gender 0.000103 0.469 - - 211 3-10
1e-05 senses gender 0.0201 0.385 8 1000 - -

0.0001 full stereoset 8.43e-09 0.839 - - - -
0.0001 lora stereoset 0.000103 0.469 - - 211 3-10
0.0001 senses stereoset 0.00457 0.151 5 1000 - -
0.001 full stereoset 4.23e-08 0.395 - - - -
0.001 lora stereoset 3.02e-05 0.559 - - 19 3-10
0.001 senses stereoset 0.00558 0.301 6 1000 - -
1e-05 full stereoset 5.17e-09 0.373 - - - -
1e-05 lora stereoset 4.07e-05 0.606 - - 144 4-8
1e-05 senses stereoset 0.000743 0.749 9 1000 - -

0.0001 full temporal 4.2e-06 0.107 - - - -
0.0001 lora temporal 0.00153 0.456 - - 53 2-11
0.0001 senses temporal 0.0149 0.169 11 1000 - -
0.001 full temporal 4.2e-06 0.107 - - - -
0.001 lora temporal 0.00153 0.456 - - 53 2-11
0.001 senses temporal 0.0149 0.169 11 1000 - -
1e-05 full temporal 4.2e-06 0.107 - - - -
1e-05 lora temporal 0.00274 0.266 - - 154 3-9
1e-05 senses temporal 0.00773 0.11 5 1000 - -

0.0001 full syntax 4.23e-08 0.395 - - - -
0.0001 lora syntax 6.29e-05 0.785 - - 184 5-7
0.0001 senses syntax 0.00235 0.368 10 1000 - -
0.001 full syntax 5.24e-07 0.108 - - - -
0.001 lora syntax 0.000103 0.469 - - 211 3-10
0.001 senses syntax 0.00235 0.368 10 1000 - -
1e-05 full syntax 1.1e-08 0.78 - - - -
1e-05 lora syntax 4.99e-07 0.727 - - 69 4-9
1e-05 senses syntax 0.00235 0.368 10 1000 - -

Table C.8: Best hyperparameter for each degradation ball-method-task combination for the Backpack language model.

	Abstract
	Preface
	Acknowledgments
	Introduction
	On what we expect of our technologies
	A bit of background for context
	Non-neural language models
	Neural Language Models
	Word2vec as a neural language model
	Broad overview of related work

	On understanding
	Understanding language models through discovery and by design
	Chapters in this thesis
	A Structural Probe for Finding Syntax in Word Representations
	Designing and Interpreting Probes with Control Tasks
	Conditional Probing: Measuring Usable Information Beyond a Baseline
	Backpack Language Models
	Model Editing with Canonical Examples

	On the rest of the thesis

	I Understanding through Discovery
	A Structural Probe for Finding Syntax in Word Representations
	Introduction
	Methods
	The structural probe
	Properties of the structural probe
	Tree-depth structural probes

	Experiments
	Tree distance evaluation metrics
	Tree depth evaluation metrics

	Results
	Analysis of linear transformation rank

	Discussion & Conclusion
	Implementation Details
	Squared L2 distance vs. L2 distance
	Probe training details

	Extra examples

	Designing and Interpreting Probes with Control Tasks
	Introduction
	Control Tasks
	Part-of-speech tagging control task
	Dependency edge prediction control task
	Properties of control tasks

	Experiments on Probe Selectivity
	Probe families
	Complexity control
	Dataset
	Representation
	Results
	Discussion

	Selectivity Differences Confound Layer Comparisons
	Experiments
	Results & Discussion

	Related Work
	Random tasks

	Conclusion

	Probing for Conditional Usable Information
	Introduction
	Conditional V-information Probing
	Probing setup
	Baselined probing
	Our proposal: conditional probing
	V-information
	Probing estimates V-information
	Estimating conditional information

	Related Work
	Experiments
	Tasks, models, and data
	Results

	Conclusion

	II Understanding by Design
	Backpack Language Models
	Introduction
	The Backpack Architecture
	Backpack General Form
	Continuous Bag-of-Words is a Backpack
	Single-Layer Self-Attention is a Backpack

	Language Modeling with Backpacks
	Parameterizing senses
	Parameterizing contextualization weights

	Experiments Training Backpack LMs
	Models
	Data & Optimization
	Evaluations
	Discussion
	Effect of varying the number of senses

	Emergent Structure in Sense Vectors
	Visualizing Senses
	Lexical Relationship Tests

	Sense Vectors for Control
	Topic-controlled generation
	Mitigating gender bias
	Knowledge editing

	Related Work
	Discussion
	Conclusion
	Limitations

	Model Editing with Canonical Examples
	Introduction
	Related Work
	Model Editing with Canonical Examples
	Six Datasets for Model Editing with Canonical Examples
	Evaluating Finetuning Methods on Pythia LMs
	Methods
	Experiments & Results
	MEMIT with Oracle Supervision

	Sense Finetuning with Backpacks
	The Backpack Language Model
	Sense Finetuning
	What sense finetuning teaches: a look at the gradient
	Experiments & Results

	Improving LLMs with Sense Finetuned Backpacks
	Visualizing Backpack improvements

	Discussion & Conclusion

	Conclusion
	Formal Results on Multivariate V-Information.
	Multivariable V-information
	Properties of multivariable V-information

	Probing as Multivariable V-information Estimation
	Estimating V-entropy
	Baselined probing
	Conditional probing

	Proof of Proposition 1
	Equivalence of xu2020theory and our V-information
	From xu2020theory to ours
	From our V-information to that of xu2020theory
	Remarks on the relationship between our V-information and that of xu2020theory

	Full Results

	Details on Backpack Language Models
	Language Model Training Details
	The feed-forward sense network.

	Extra evaluations
	Timing Benchmarking

	Lexical Similarity Details
	Sense Vector Control Details
	Topic control details
	Gender bias mitigation details

	Details on Model Editing with Canonical Examples
	Efficiency of running a Backpack `twice'
	Hard Negatives Results
	Hyperparameter sweeps
	Details of MEMIT Experiments
	Adaption to dataset settings
	Standard and oracle formats
	Hyperparameter sweep

	Further dataset details
	Considerations in using Stereoset
	Dataset size details
	Prompts for generative models

