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Preface

Parole decisions can tip a sentence toward fifteen years or fifty. Despite the great power that parole

boards hold, their decision processes are poorly documented and largely hidden from public scrutiny.

Parole hearings produce almost no structured data, only an unstructured transcript of hearing

dialogue several hundred pages in length. In the following dissertation, we use natural language

processing to analyze the transcripts of 35,105 parole hearings held between 2007 and 2019 for

candidates serving life sentences in California, totalling approximately five million pages. Through

regression analyses of data extracted from the transcripts, after controlling for relevant case factors,

we find that several factors outside of the candidate’s control explain hearing outcomes. We find

that commissioners vary widely in their punitiveness in previously unobserved ways; the assignment

to a particular commissioner significantly influences the hearing outcome. Racial disparities limit

the quality of legal representation that parole candidates receive as well as their voice in the hearing

dialogue, and both significantly predict the parole outcome after again controlling for case factors.

Previous analyses of parole systems have been limited by the unavailability of structured data or

the task of hand-annotating hearing transcripts. Our results thus provide the most comprehensive

picture of a parole system studied to date. While our results carry direct implications for legislative

parole reform, our methodology—using machine learning to analyze legal hearings—can be extended

to many other procedures in criminal and administrative law with limited structured data.
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Chapter 1

Introduction

The United States has held the record for the highest incarceration rate in the world for several

decades, with between 600 and 800 individuals per hundred thousand, outpacing countries such as

Turkmenistan and Rwanda, and exceeding the incarceration rate of neighboring countries, Mexico

and Canada, by roughly six times [Walmsley, 2003, Fair and Walmsley, 2021, Widra and Herring,

2021]. Given the size of its population, the United States has also held the record for the total

number of incarcerated individuals, which at the time of writing is just over two million individuals.

It is no surprise that the criminal justice system and its constituent components have been an active

area for litigation, activism, and scholarship.

In recent years, criminal justice reform has reduced the rate of new incarceration across many

states. However, the recent modest decline in America’s prison population has not compensated

for four decades of policies that actively promote incarceration [Ghandnoosh, 2020]. One of the

counteracting mechanisms in the American criminal justice system is parole, the conditional release

from prison, which provides a direct mechanism for states to meaningfully relieve the pressure on

their overcrowded prisons [Reitz and Rhine, 2020].

Parole can be the deciding factor between whether a sentence lasts fifteen years or fifty. In many

cases, the timing of when someone receives parole can determine a sentence length even more than

the initial sentencing hearing.

Despite the unique role that parole plays in the criminal justice system, there has been no large

scale analysis of parole to date. The scarcity of quantitative analyses of parole does not reflect a

lack of quantitative analyses of the criminal justice system. Such quantitative and often large-scale

studies comprise a growing body of legal scholarship. In a sense, empirical methods have simply

“crept into” the publications of legal scholars [Ulmer, 1963]. In more recent years, however, the

fields of Empirical Legal Studies, as well as many “law and” fields, such as law and economics or

law and sociology, have actively welcomed contributions from scholars across economics, psychology,

health care, policy, political science, criminology, finance, and sociology [Eisenberg, 2011].

1
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Within the criminal justice system, a number of scholars have undertaken quantitative studies

on various components of the system, such as policing [Gelman et al., 2007, Pierson et al., 2020],

bail [Arnold et al., 2018], and sentencing [Klein et al., 1990, Abrams et al., 2012], each building on

decades of existing, often smaller-scale empirical studies of the same components. In other words,

most of the empirical attention has focused on the many decision steps involved in how individuals

reach prison. Comparatively little has focused on how someone leaves the prison system.

In part, parole has been hidden from public view because, broadly, parole falls in the domain of

prisons, which operate with little transparency. There are 52 parole boards in the United States,1

most of which are operated by departments of corrections. The parole boards are the custodians of

the data that researchers require to understand parole, and the boards have made that data di�cult,

or in some cases impossible, to obtain. Existing studies of parole have been limited to the study of a

handful of tabular features [Weisberg et al., 2011, Friedman and Robinson, 2014, Young, 2016], such

as demographic data, or, where transcripts of dialogue are available, meticulous hand-annotation

of a small sample of 107–754 transcripts [Bradley and Engen, 2016, Bell, 2019, Greene and Dalke,

2020].

One lens through which to view the present dissertation is as an empirical study of a legal domain

that contributes the first large-scale study of a parole system through an analysis of a complete

historical record of all 35,105 California parole transcripts from 2007–2019. This dissertation answers

a range of questions about the California parole hearing system, ranging from basic tabulations of

parole grant rates to linguistic analyses of how parole attorneys represent their candidates. We call

this the domain application lens.

However, viewing the dissertation only through the lens of a domain contribution to parole

fails to address the question of timeliness. What enables the scale of this research, which draws

its insight from a dataset approximately one hundred times larger than prior studies of California

parole hearings? What technological tools have been developed and applied to this research that

were not available to prior studies?

The second lens through which to view this research is themachine learning lens, as a contribution

to the ongoing application of new Natural Language Processing (NLP) capabilities to various domain

applications. The primary NLP challenge addressed in this dissertation is the process of extracting

structured data from parole hearing transcripts for use in downstream analysis. Much of the research

e↵ort within NLP is directed toward teaching machines to perform a particular task. The challenges

in this dissertation closely relate to, but are not fully solved by, several such tasks, such as Multiple-

Choice Reading Comprehension and Open-Domain Question Answering.2

Despite the many di↵erent ways our question could be modeled, two challenges are shared

1Each of the fifty states has a parole board, and the U.S. Parole Commission and the Naval Clemency and Parole
Board serve as two additional parole boards.

2Section 6.2 defines and further explores the appropriateness of various tasks for modeling challenges in parole
hearings.
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across di↵erent choices of tasks. The first challenge is that of document length. Transformer mod-

els [Vaswani et al., 2017] have achieved state-of-the-art results across a range of tasks both within

and beyond NLP. However, transformer models do not scale up well to read longer inputs. They

require an amount of computation that is quadratic relative to the length of the input. That is,

doubling the length of a document requires four times as much computation, tripling the length of

a document requires nine times as much computation, and so on. Most transformer models can

reasonably process documents of approximately five hundred to one thousand words.3 The average

number of words in a parole hearing in our study is twenty thousand words, which is out of the

range of most transformer models. Extending the input length of transformer models has been an

area of active research [Child et al., 2019, Roy et al., 2021, Kitaev et al., 2020, Zaheer et al., 2020],

even as for present NLP benchmarks, longer contexts are often not well utilized.

The second challenge is the di�culty of generating training data for the parole hearing task.

Because of the specialized nature of the parole domain, we rely on Subject Matter Experts (SMEs)

to annotate parole hearings to use as training examples for a language model. Even after SMEs

are identified and trained, they still require a large amount of time to annotate one hearing. This

motivates research into best practices for training models with sparse training data, and also into

other methods for incorporating SME knowledge. Toward the latter goal, a framework known as

data programming [Ratner et al., 2016] suggests an alternative to annotating parole hearings one at

a time.

Long input documents and the scarcity of training data are two challenges shared among many

applications within natural legal language processing (NLLP), a growing interdisciplinary domain

of research now formalized as an annual workshop co-located with various major NLP conferences.

However, even within this domain, the parole application poses relatively new challenges. First, ex-

isting NLLP benchmark datasets generally source from structured written texts; parole documents

are loosely-structured dialogues. Second, information extraction from formal written documents

centers around named entities and relation extraction. By contrast, much of the text in the crim-

inal context serves the purpose of surfacing, discussing, and correcting case factors, which are not

necessarily relational. This means that understanding parole hearings requires both extractive and

abstractive tasks, often across multiple sentences, which is known to be challenging even in more

structured settings [Wang et al., 2021].

Through the domain application lens and the machine learning lens as described above, we can

understand the dissertation as an application of NLP in service of a deeper understanding of the

criminal justice system. The third lens through which to view this dissertation is the connective

tissue between the first and the second: How can advances in NLP enable social sciences and social
3Language models do not necessarily use words as the base unit that input is broken up into [Marcus et al., 1993].

Neural models typically rely on subword tokenization, splitting a single word into one or more tokens [Schuster and
Nakajima, 2012, Sennrich et al., 2015]. For example, the word “annoyingly” may be read as the two tokens “annoying”
and “ly.” As such, input length is typically measured in tokens, rather than words.
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impact? Our study is one hundred times larger than prior work on California parole hearings, a

claim that appeals to proponents of “big data,” but what is gained through the increasing scale of

research, and by whom? We call this the integrative lens.

The present dissertation contributes a new approach for machine learning in criminal justice and

builds on a growing body of literature demonstrating the potential for machine learning tools to

assist in understanding criminal and administrative justice processes [Lazer et al., 2009, Grimmer

and Stewart, 2013, Voigt et al., 2017, Bell et al., 2021]. Machine learning is no replacement for the

expertise of a legal scholar, but it can play a complementary role [Abebe et al., 2020]. No algorithm

or statistical model can fully inhabit the intricate legal, historical, social, and emotional depth of a

parole hearing. But no scholar can reasonably digest a hundred thousand hours of dialogue, spanning

over a decade, and glean trends with quantitative precision [Michel et al., 2011, Lieberman et al.,

2007].

To lay the groundwork for viewing the rest of the dissertation through the integrative lens,

Chapter 2 describes the Recon Approach, a new conceptual and philosophical approach for machine

learning in criminal justice. The dominant use for machine learning in criminal justice is as a tool

to predict future criminal behavior, which is then often used as a tool for making decisions such

as policing [Goel et al., 2016, Barrett, 2017, Ferguson, 2017, Shapiro, 2017, Fryer Jr, 2019] and

sentencing [Elek et al., 2015, State vs. Loomis, 2016]. We call such an approach the Predictive

Approach. A large e↵ort from the machine learning community has focused on the analysis of

existing algorithmic criminal justice tools from the lens of bias and discrimination [Ensign et al.,

2018, Friedler et al., 2019, Sánchez-Monedero et al., 2020, Rodolfa et al., 2020]. However, much of

this literature comes from the perspective of academic study, taking the existence of tools that use

the Predictive Approach as an object for analysis. Few others build on the flaws identified in the

Predictive Approach to propose alternatives. Barabas et al. [2018], for example, argue that regression

is an incomplete tool for prediction. They argue that the value of a predictive regression is not the

outcome, or predicted probabilities, but the significance of the covariates, which should then be used

in downstream statistical causal inference [Imbens and Rubin, 2015] to identify interventions.

Such conceptual ideas, as well as academic [Baldus et al., 1990] and legal [McCleskey vs. Kemp,

1987, Baldus, 1995, Blume and Johnson, 2012] work in real-world domains that lead to systemic

change, inspire one component of the Recon Approach: reconnaissance, the task of studying decision-

makers and surfacing factors that contribute to ongoing unfairness or arbitrariness. The second

component of the Recon Approach is reconsideration, which is the goal of using technology in the

loop with existing processes for decision review and oversight. To the extent that reconnaissance

identifies bias or arbitrariness in the decision-making system, reconsideration is an avenue for actively

incorporating those insights into social impact. For example, in a system where individuals who have

been denied parole are less likely to have their cases reviewed than those who have been granted

parole, a reconsideration tool could increase the chances of finding individuals who were denied
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parole, who would actually be suitable candidates.

Chapter 3 provides background on the process through which the California Department of Cor-

rections and Rehabilitation (CDCR) grants and denies parole to individuals serving life sentences.

The California prison system is particularly important to study for two main reasons. First, Cali-

fornia has an enormous prison and parole-eligible population. CDCR houses the largest number of

“lifers,” or people serving life sentences with the possibility of parole, in the United States. There are

more individuals serving life sentences in California than in the next three states, Texas, Florida,

and Georgia, combined [Nellis, 2021]. Second, California is widely considered a model state for

parole procedures based on the share of its prison population that is eligible for parole and the

comprehensive scope of its review process [Mehta, 2016, Slater, 2020].

Each year, CDCR’s Board of Parole Hearings (BPH) schedules thousands of hearings for prisoners

who have reached their parole eligibility date. During each hearing, a parole candidate is questioned

by a commissioner and a deputy commissioner (“the board”). Commissioners discuss the cases

of individual candidates in great detail and close the hearing with a decision on whether to grant

or deny parole. In 2019 alone, BPH held 6,061 hearings and granted parole in 1,181 cases. BPH

assigns the remaining candidates a period of 3 to 15 years that they must continue to serve before

they are eligible to re-appear for a parole hearing. For individuals serving indeterminate sentences,

this decision can determine whether they will die in prison.

Chapter 4 describes the data we use in our study of the California parole hearing system. Califor-

nia accords BPH a wide range of discretion and only allows for limited public oversight in its parole

decisions. The only public information each hearing produces is a written transcript of the dialogue

that is, on average, 150 pages (20,000 words). BPH does not release auxiliary information about the

cases in a structured format. Prior studies of parole have thus required researchers to read a small

sample of hearing transcripts and meticulously code for analysis variables of interest [Bell, 2019,

Friedman and Robinson, 2014, Young et al., 2015, Caldwell, 2016]. As a result, the scope of prior

studies has ranged from a total of 109 to 754 transcripts and analyzed between 14 and 21 variables.

Through a California Public Records Act (CPRA) request and subsequent court order [Superior

Court of California in and for the County of San Francisco, 2020b], we obtained a complete corpus

of every digitally available parole hearing transcript for candidates serving indeterminate life sen-

tences in California. The resulting corpus contains 35,105 transcripts and constitutes a complete

record of all disclosed4 hearings from 2007 to 2019. In addition to describing the raw data, Chapter 4

also describes the process we undertook to structure the data, which includes feature selection and

manual annotation of said features for a subset of hearing transcripts.

Chapter 4 does not merely serve as an enumeration of data processing operations; it sets the

backdrop for the following chapters on natural language processing. Without the data, there would

be no machine learning lens. And the data only exists as a result of a sequence, a narrative, of many

4CDCR continues to withhold a small number of transcripts, citing confidentiality concerns.
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decisions made by imperfect, human researchers. Rather than rely on the notion that machine

learning models are trained on so-called “ground truth” data, we acknowledge that all datasets are

subjective, by the very nature of their construction and presentation. By presenting the details and

decisions behind our dataset construction, we hope not only to make more precise the implications

of our results, but also to open an ongoing conversation about the fallibility of datasets.

Chapter 5 continues the conversation about dataset subjectivity and integrity and engages

datasets beyond the parole dataset. In this chapter, we investigate label errors that arise natu-

rally from human annotation, inspired by both the annotator validation performed in Chapter 4

and the error analyses of Chapter 6. To this end, we first identify a simple way for large language

models to detect naturally occurring label errors. Next, we present a new framework for studying

realistic label errors. Existing literature on learning with label errors focuses on either synthetic

errors, which are relatively easy to identify, or adversarial errors, which are significantly rarer and

harder to identify. We present a method to introduce realistic label errors in order to create new

benchmarks for the study of errors that naturally occur as a result of human annotation. The pri-

mary contribution of Chapter 5 is most easily viewed through the machine learning lens, as a way for

dataset curators to improve their data quality, and as a way for machine learning model designers

to more realistically assess model performance in the presence of label errors.

Chapter 6 describes the natural language processing techniques that we developed to extract

features from the raw text of the hearing transcripts. The framework considers each feature as a

single information extraction task. We primarily tackled two challenges. First, we have relatively

few training labels available for each feature. Not only is each hearing time-consuming for SMEs to

read, but annotators must also be trained through multiple rounds of validation. Second, the length

of the hearing transcripts is challenging not only for annotators but also for state-of-the-art large

language models.

Section 6.1 employs data programming [Ratner et al., 2016] to solve the two primary challenges.

Instead of annotating parole hearings one at a time, SMEs instead write heuristic functions, which

can be easily computed over all hearings. The data programming approach addresses the scarcity

of training data by trading o↵ quality and quantity: every document is assigned at least one label

for each feature, but the label generated by the heuristic may be incorrect.

Section 6.2 finds another strategy for incorporating SME knowledge, inspired by the Open-

Domain Question Answering paradigm of a two-step Retriever-Reader model [Chen et al., 2017, Das

et al., 2019]. Here, SMEs write heuristics for only the Retriever stage, which we call the Reducer,

because of its function in retrieving the most relevant passage from a long parole hearing. Having

retrieved a short passage, we can now use relatively sophisticated transformer models for precise

question answering over the passage.

Chapter 7 identifies findings about the California parole hearing system through a descriptive

regression analysis of the case factors identified in Chapter 4. We compare the e↵ectiveness of three
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types of regression: one using only structured data provided by CDCR, one using only manually-

annotated data for a small sample of hearings, as described in Chapter 4, and one using only the

factors successfully extracted using NLP, but over the entire corpus of hearings, as described in

Chapter 6. We find that outcomes are disproportionately impacted by multiple factors outside

of the candidate’s control, such as which commissioner presides over the hearing and whether the

district attorney appears at the hearing.

Chapter 8 uses a combination of statistical and linguistic methods to investigate the role that

board-appointed and privately retained attorneys play in parole hearing dialogues and outcomes. We

first introduce several linguistic features, and we then build on the factor-based analysis of Chapter 7

to place the impact of linguistic features in context with the factors already introduced in previous

chapters. Chapter 8 uncovers disparities in the quality of legal representation that parole candidates

receive.

Our results show that circumstantial factors introduce a great amount of arbitrariness into the

parole decision process for many candidates. By producing the first comprehensive descriptive

analysis of America’s largest parole system, we hope to highlight opportunities for parole reform

through an integrative modeling approach that combines prediction and explanation [Watts, 2017,

Hofman et al., 2021]. Our results suggest that circumstantial factors potentially introduce a great

amount of arbitrariness into the parole decision process for many candidates. Our work motivates

future studies of causal mechanisms in parole and parole “text as data” [Grimmer and Stewart,

2013]. Our methodology demonstrates that machine learning tools can bring reconnaissance to legal

hearing text beyond parole [Bell et al., 2021], and the partnerships we have developed over the

course of this project lay the groundwork for context-specific insights into developing methods for

reconsideration.



Chapter 2

The Recon Approach

The work described in the dissertation is one of many e↵orts to use machine learning to serve

various e↵orts in criminal law and criminal justice. As introduced in Chapter 1 as the integrative

lens, the pursuit of this research means that we concern ourselves not only with the computer science

methods of how to perform the research, nor only with the legal domain interest in answering specific

questions about parole. We also concern ourselves with the conceptual framework through which

we view computer science applications for criminal law. In this chapter, we describe two categories

that the majority of such applications fall into, and argue for a complementary approach, which we

call the Recon Approach.

First, most applications implicitly work in service of the pursuit of codified justice, or the stan-

dard application of specifiable rules. Codified justice predates computer “code” and machine learn-

ing [Eaglin, 2017, Mayson, 2018], but it is not surprising that it is a notion of fairness that machine

learning is well-suited to achieve. The rules need not be explicitly specified in computer code. For

example, the parameters of a machine learning model could be interpreted as a set of specifiable

rules, so long as they are applied in a standard way across all decisions.

Second, much of the existing technology is predictive; it is designed to predict the likelihood that

an individual will commit a crime in the future. The intended users of this predictive technology in-

clude police o�cers deciding whom to stop [Goel et al., 2016, Barrett, 2017, Ferguson, 2017, Shapiro,

2017, Fryer Jr, 2019], judges deciding whom to retain in custody pre-trial [Kleinberg et al., 2018a]

and what sentence to impose [Elek et al., 2015, State vs. Loomis, 2016], and parole boards deciding

whom to keep imprisoned [Reingold and Thomas, 2017]. We broadly categorize this approach as

The Predictive Approach.

We argue that the application of machine learning to criminal law does not necessarily need to

pursue codified justice, nor does it necessarily need to be predictive. In contrast to codified justice,

equitable justice is the idea that in order for decisions to be fair, decision-makers need to apply

moral principles to unique factual situations and explain their reasoning in doing so. Equitable

8
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justice requires discretionary moral judgment, which facilitates a case-by-case approach.

We propose the Recon Approach, which recognizes the importance of human discretionary judg-

ment in legal decision-making and aims to develop technological tools that provide data-driven

opportunities for improving fairness and consistency [Greenawalt, 1975, Hart, 2013]. The Recon

Approach is not designed to predict the behavior of defendants, prisoners, and other individuals

processed through the criminal legal system. Instead, it is designed to scrutinize how judges, parole

board members, and other decision-makers exercise discretion in the context of criminal law. These

technological tools operate only in a post-hoc manner. They rely on human beings to make initial

judgments and, only after those judgments have been made, find patterns in those decisions and

mirror them back. The intended users of the Recon Approach are not frontline decision-makers.

Rather, the intended users are the individuals and institutions that investigate decisions.

The Recon Approach consists of two interrelated functions: reconnaissance and reconsideration.

Reconnaissance involves the systematic analysis of a set of decisions to identify what factors tend

to influence human decision-making in that context. Reconsideration brings the level of analysis

down to individual cases. It involves identifying particular cases that appear to be inconsistent and

worthy of a review, or a second look.

Section 2.1 proposes an alternative to the Predictive Approach for decision-making, which is

commonly overlooked in machine learning approaches. Section 2.2 further defines codified justice and

equitable justice and the relationship between the two. In both these sections, we do not suggest that

equitable justice is superior to codified justice, or that predictive approaches are inherently unjust.

The goal of the sections is to provide clarifying frameworks to enable a new and complementary

type of discourse around decision-making. We hope that a more nuanced understanding of notions

of justice can enable individuals to make explicit what a decision-making system or what a machine

learning system should value, rather than embedding implicit values and assumptions into a system,

and allowing those assumptions to silently propagate.

Section 2.3 defines the Recon Approach, and in particular explains its two components, reconnais-

sance and reconsideration, and the way that the two components work together. As an orthogonal

path of development, the Recon Approach has unique potential that the Predictive Approach is

not designed to achieve. Specifically, the Recon Approach aims to protect the role of human dis-

cretionary judgment by providing post hoc, data-driven opportunities to improve its fairness and

consistency.

The following sections then clarify the niche that the Recon Approach occupies. Section 2.4

argues for the value of discretionary judgment and the role that it plays in legal decision-making.

Section 2.5 identifies specific conditions and example applications where the Recon Approach would

be particularly relevant. Within those areas where it is most appropriate to apply the Recon Ap-

proach, Section 2.6 describes the scope that technological tools can be applied in. In particular,

technology is not a panacea or an end-to-end solution; it exists in a fixed scope within an existing
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legal system.

The final set of sections address present and future challenges toward the development of the

Recon Approach. Section 2.7 sets forth and responds to the most fundamental challenge of the

Recon Approach: the concern that it will perpetuate the status quo and its existing inequities.

Section 2.8 explains why development of NLP technology is integral to the long-term success of the

Recon Approach. Sections 2.9 and 2.10, respectively, discuss the technological challenges and the

political challenges which need to be overcome in order to successfully execute the Recon Approach.

2.1 The Predictive Approach

Prediction has become a central value to much of the recent applications of machine learning to

criminal justice, leading to what we call The Predictive Approach.

For example, predictive policing tools purport to identify individuals who are more likely to com-

mit crime or geographic areas where crime is more likely to occur [Barrett, 2017]. Police departments

in cities like Los Angeles and Chicago have used these tools in deciding to increase preventive policing

resources on individuals or areas that the predictive tools have flagged as “hot spots” [Chammah,

2016, Joh, 2017]. In the last five years, seventy percent of police agencies in the United States

deployed or increased use of predictive policing technology [Isaac, 2017].

Another common application of the Predictive Approach is an actuarial risk assessment tool

purported to estimate the degree of risk that a given individual poses for future violent behavior.

Such tools have been developed through analyzing various data sets and identifying correlations

between violent behavior and characteristics such as age, prior history of arrests and convictions,

employment history, marital status, etc. Algorithms are then developed which take as their input

a person’s individual characteristics and generate an output indicating the likelihood that a person

will commit violence in the future [Starr, 2014]. The basic approach began with statistical models

in the 1920s [Tibbitts, 1931, Gross, 2008], but the amount of data considered when generating

the algorithms has since increased by orders of magnitude. Given the quantity of data, there is

considerable interest in harnessing machine learning to generate improved algorithms [Desmarais

and Zottola, 2019, Tonn, 2019]. Currently, criminal law practitioners across the United States use

over sixty di↵erent risk assessment instruments across various adjudicatory contexts [Barry-Jester

et al., 2015, Elek et al., 2015]. Some judges rely on risk assessment scores in making decisions

about whether to detain defendants in jail pre-trial and in deciding what sentence to impose upon

conviction [State vs. Loomis, 2016, Stevenson, 2018]. In addition, parole board members rely on

risk assessment scores in deciding whether to grant people release from prison.

Critics of the Predictive Approach have argued that predictive policing tools and risk assessment

instruments are not as accurate as they claim to be [Dressel and Farid, 2018, Tonry, 2019], perpet-

uate racial bias [Mayson, 2018], and lack adequate transparency [Wexler, 2017, Strandburg, 2019].
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Proponents of the Predictive Approach continue working to address these criticisms [Berk, 2019,

Bloch-Wehba, 2019, Deeks, 2019]. Proponents also argue that human decision-makers fare no better

than algorithms with respect to accuracy, bias, or transparency [Kleinberg et al., 2018c]. In other

words, the Predictive Approach may or may not succeed in meeting or surpassing the demands of

their critics in terms of accuracy, bias, and transparency.

The ongoing discussion revolves primarily around the ability of the Predictive Approach to

achieve its targets defined by accuracy, bias, and transparency in predicting future behavior of

individuals. Even if the Predictive Approach does succeed in meeting its goals, legal decision-making

systems must also value other goals. Prediction of future dangerousness hasn’t always been the aim

of criminal justice decisions. In fact, some argue that the shift away from notions of redistribution,

reform and rehabilitation, or incapacitation, is itself driven by the investment into research and

development of the Predictive Approach [Harcourt, 2005].

To use to an example from the educational setting, schools do not generally graduate students

based on an assessment of a student’s ability to attain employment after graduation. Across the

board, whether the graduation decision is based on a simple grade point average or a committee of

faculty, the decision to grant a student a degree is based entirely on the existing work the student

has completed during the student’s program, not any future behavior of the student.

The Predictive Approach does not simply focus on all future behavior; it evaluates, in particular,

the behavior of the individuals about whom decisions are made. The availability of data, and the

computational resources required to refine the data, has long existed as a power imbalance between

decision-makers and those they scrutinize. In intensifying the power imbalance, the Predictive

Approach fails to take advantage of the potential of technology to instead hold up a mirror to the

decision-makers themselves. We hope that the Recon Approach can serve as such a mirror, casting

its gaze on both systemic and individual behavior of the decision-makers.

2.2 Codified and Equitable Justice

In presenting the distinct potential of the Recon Approach, it is helpful to draw upon the distinction

between equitable justice and codified justice. This distinction is a theoretical, and rather simplified,

distinction: in practice, the two notions of justice overlap. The purpose of the distinction is to better

understand the role of human discretionary judgment, in order to better understand how machine

learning can interact with such judgment [Davis, 1969].

Codified justice is the standard application of specifiable rules, over a set of facts with a fixed

scope. The set of specifiable rules can be thought of as a “legal algorithm” that easily applies to a

large number of cases [Gillespie, 2014]. Codified justice also aims to establish the total set of relevant

factors in advance, thereby precluding the need for individualized proceedings for discovering other

factors or debating the facts of the case [Re and Solow-Niederman, 2019].
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Equitable justice, broadly construed, is the idea that in order for decisions to be fair, decision-

makers need to apply moral principles to unique factual situations and explain their reasoning in

doing so [Tasioulas, 1996]. Under equitable justice, decisions are deemed fair insofar as they are

justified on what are taken to be morally legitimate reasons [Bray, 2016]. Therefore, the onus of the

decision-maker is to provide a case-specific explanation that connects the higher level principles, such

as retribution and mercy, to the adherence to or rejection of past patterns of decisions [Nussbaum,

1993, Postema, 2023].

Equitable justice requires discretionary moral judgment, which facilitates a case-by-case ap-

proach. Compared to codified justice, which aims to apply a consistent set of rules, equitable justice

aims to apply a consistent set of higher level principles. And while codified justice seeks to find

general patterns, equitable justice allows for and often promotes the setting aside of those patterns

in favor of unique circumstances [Germain, 1518, Smith, 2013]. This understanding of equity accords

with modern scholarship that characterizes equity “as a model of decision[-]making that emphasizes

case-specific judgment, moral reasoning, discretion, or anti-opportunism” [Jacobs, 2005, Bray, 2016].

To use an example from an educational setting, consider the values that schools weigh in deciding

which students to graduate. Primary and secondary schools, for example, may rely on a list of

required courses and minimum grade point average to determine which students may graduate. For

granting bachelor’s degrees, universities may allow for di↵erent requirements for di↵erent cases, such

as for di↵erent programs. For example, the grade point average required may be the same across a

university, but the required courses for a degree in German literature and a degree in biostatistics

may have little to no overlap. In contrast, academic institutions rarely have such simple criteria for

granting doctorates. Even within a field, such as biostatistics, it is impossible to specify a set of

rules that can apply to every student. For example, there is no one requirement for the number of

hours spent on various laboratory tasks. Every student is judged on a case-by-case basis.

Both codified and equitable justice have value in a legal system. Codified justice tends to di-

minish the vices of discretion like arbitrariness and bias [Davis, 1969] while increasing e�ciency and

consistency. Equitable justice brings in the virtues of discretion, such as individualized attention to

unique case factors and explanations of the reasoning underlying each decision.

2.3 The Recon Approach

Even if the Predictive Approach does succeed in meeting its goals, it is simply not designed to fulfill

the distinct objective of the Recon Approach: to recognize the importance of human discretionary

judgment and provide opportunities to improve its use in legal decision-making. Technologists are

investing in the Predictive Approach and may eventually develop that approach in its most idealized

form. The Recon Approach, and by extension human discretion, also deserves this investment.

The reader may immediately wonder: how can technology help us do that? Equitable justice has
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long been considered the territory of philosophers and jurists, not computer scientists. And perhaps

rightly so. The niche for computer scientists working in law, like data scientists and economists, has

thus far been conceived as working in the realm of codified justice to maximize a quantifiable good

thing (or to minimize a quantifiable bad thing) [Lehr and Ohm, 2017]. The Predictive Approach aptly

fits this established niche by working on cost-e↵ective minimization of (future) criminal behavior.

But the aim of the Recon Approach, improving the equitable use of human discretion, is far afield.

By definition, its aim is not quantifiable along a single metric. The task cannot be boiled down to

a traditional type of maximization (or minimization) problem.

Here, however, computer scientists may help fill a very di↵erent niche—the regulation of how

people use their discretion. Philosophers and jurists have long been articulating and re-articulating

the same problem for equitable justice and discretionary moral judgment. The very feature which

makes equitable justice valuable—its human sensitivity to the way that values interact with unique

factual scenarios—is also what makes it vulnerable to injustices like inconsistency, bias, and arbi-

trariness [Davis, 1969]. Paraphrasing Justice Marshall, the power to exercise discretion is also an

invitation to discriminate [Furman vs. Georgia, 1972]. This invitation becomes stronger in contexts

with a greater number of factors influencing discretionary decisions; it becomes harder to identify

which cases were decided for inappropriate reasons. Overall, the legal system struggles to square two

values that are in constant tension: the value of treating like cases alike, and the value of treating

each case individually.

The traditional approach to navigating this dilemma has been to focus on designing a reliable and

fair process by which decisions are made. By ensuring that everyone gets the benefit of that same

process, there is a formal sense in which people are receiving equal treatment [Stancil, 2016]. There

is also reason to believe that a fairer process improves the likelihood that like cases will receive

like outcomes. But although robust procedural protections can reduce unfairness in substantive

outcomes, they do not eliminate it [Baldus et al., 1990]. As years of trial and error have shown

in the administrative law context, “procedural due process has failed miserably in its mission to

rationalize frontline decisionmaking” [Ho, 2017].

Technology can provide an additional process to help reduce unfairness in the outcomes of human

decisions. In a framework where human beings make thousands of discretionary decisions based

on a set of numerous and broad factors, artificial intelligence (AI) can help detect patterns in the

application of those factors. Where it identifies a decision that falls outside this pattern, that decision

can be flagged as anomalous. The fact that a particular decision is anomalous does not mean that it

was wrong or unfair—but simply that the decision is worth a “second look.” A decision that appears

anomalous may, upon reconsideration, be judged as a good application of the equitable maxim of

judging each case on its own unique facts.1 Or it may be that the decision is unreasonable upon

1As Judge Goodman put it in his defense of judicial discretion at sentencing, “[s]eeming disparity is the result
of the fundamental judicial philosophy, to judge each case upon its own facts. It is good to have it. For abstract
uniformity we do not need the judicial process. The ipse dixit of the rubber stamp will su�ce” [Goodman, 1958].
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reconsideration. In addition to reconsidering particular decisions, it is also imperative to consider

the patterns in the decision set as a whole. If the patterns turn out to hinge on illicit factors—if,

for example, the decisions are found to favor one racial group over another—then there is reason to

reconsider the entire system of how the decisions are made.

The Recon Approach takes inspiration from others in the social sciences who analyzed patterns

in legal decision-making that were then used by stakeholders as a tool for change [Gelman et al.,

2007, Arnold et al., 2018]. An example is the work of David Baldus and others who manually col-

lected information from thousands of records in death penalty cases and analyzed trends among

those cases [Baldus et al., 1990]. These researchers found that a death sentence is more likely to

be imposed if the victim was White rather than Black; this reconnaissance finding led to decades

of impact litigation [Baldus et al., 1990] and statutory reform [McCleskey vs. Kemp, 1987, Blume

and Johnson, 2012]. The research also facilitated comparative proportionality review, which calls

for reconsideration in a given case if death is excessive when compared to the severity of punish-

ment in cases with similar aggravating and mitigating factors [Baldus, 1995]. This type of research

and review, however, has been limited by the incredibly labor-intensive task of pulling data from

unstructured text. Machine learning and NLP now o↵er the possibility of streamlining the process

to allow for analysis of much larger sets of decisions and for continually updating those sets as new

decisions are made. Instead of investigating a random sample of decisions, the Recon Approach calls

for analyzing every decision in a given context and contemporaneously flagging anomalous decisions

for reconsideration.

To actualize the Recon Approach, machine learning technologists need to develop a set of tools

that we call the Recon Toolkit. We have begun developing these tools for use in the context of parole

hearings and see potential for much broader application. The tools that we are developing perform

two interrelated functions: reconnaissance and reconsideration.

2.3.1 Reconnaissance

Reconnaissance involves the systematic analysis of a set of decisions to identify what factors tend to

influence human decision-making in that context. Reconnaissance tools are designed to review hear-

ing transcripts and other documents related to decisions while using Natural Language Processing

(NLP) to create a structured dataset. For example, a tool might take as its input a set of 30,000

parole hearing transcripts and output a spreadsheet that lists fifty data points about each hearing,

including information such as the underlying conviction, the amount of time served, the number

of rehabilitation programs completed, and whether parole was granted or denied. Reconnaissance

tools also take the form of machine learning and statistical analysis techniques that are designed to

illuminate patterns in how decision-makers tend to weigh di↵erent factors when making decisions.

For example, these tools include regression analyses and decision trees that show the branching logic

that decision-makers appear to follow when making decisions based on various factors. In these ways,
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reconnaissance tools allow the public, legislators, or various stakeholders in the decision-making pro-

cess to better understand how decisions are being made on the ground. With reconnaissance, the

public is better positioned to normatively consider the ways in which a system of decision-making

may be working fairly on the whole, or alternatively, may stand in need of structural reform.

2.3.2 Reconsideration

Reconsideration brings the level of analysis down to individual cases. It involves identifying partic-

ular cases that appear to be inconsistent with most other decisions in a set of cases with similar

specified criteria. The focus of technological development here is on building tools for detecting

anomalous cases. An example of a technique for detecting anomalous cases involves identifying

groups of “nearest neighbors”—cases that are highly similar with respect to a specified set of case-

factors—and ascertaining whether a small fraction of those like cases are not being treated alike.

The objective of reconsideration is to create an ongoing and updated list of cases that appear to be

anomalous and to provide this list to various types of oversight or review boards. For example, the

list may be provided to an agency’s administrative review unit, to an independent auditor, or even

to attorneys seeking to file appeals. Whoever receives the list would then review each case to assess

the decision for potential errors or inconsistencies and recommend (or not) that the decision-makers

reconsider a case.

2.3.3 Reconnaissance and Reconsideration Work in Tandem

Although reconnaissance tools are distinct from reconsideration tools, they should be used in tandem.

In discussions about our pilot, we have often been asked to consider dropping the reconnaissance

function and simply building a reconsideration tool—a “reconsideration-only” tool that does not

describe the system as it is but only identifies cases that are outliers. The outliers would be given

to the Board (or some other body) for potential reconsideration. Data about which of the decisions

are indeed altered by the Board (or some other body) could then be used as additional feedback to

continually improve a model for the task of finding decisions that will be altered upon reconsideration.

Such a tool might achieve a high “hit rate” for cases worthy of reconsideration, but it would do so in

an opaque manner. Absent any reconnaissance, the features that tend to influence initial decisions

would remain unknown.

This type of reconsideration-only tool is incompatible with the overarching goal of the Recon

Approach because it would tend to perpetuate—rather than ameliorate—existing inequities in the

exercise of discretion. It would be trained to enforce the consistency of a system without helping

us gain awareness about how the system functions as a whole. To see how, suppose for the purpose

of this example that a parole candidate’s likelihood of being granted parole is significantly reduced

if the candidate is Black. (Prior research has shown that the relationship between race and parole-

release is incredibly complex, particularly given that race tends to correlate with several other factors
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that influence parole decisions [Huebner and Bynum, 2008, Mechoulan and Sahuguet, 2015, Bradley

and Engen, 2016, Young, 2016, Bell, 2019, Greene and Dalke, 2020].) Regardless of whether a

reconsideration-only tool used race as a factor in its analysis, it could be less likely to flag the case of

the Black parole candidate as an anomaly from the general pattern because, all other things equal,

being Black would be more consistent with being denied parole. If fewer cases of Black candidates

are flagged as anomalies, then fewer would have their decisions altered, and the reconsideration-only

tool would receive less positive feedback for flagging cases of Black candidates. At the same time,

the tool would be receiving relatively more positive reinforcement for flagging otherwise alike cases

of non-Black candidates. A cycle would thus be perpetuated and become further ingrained, without

anyone being the wiser about the underlying problem.

To avoid perpetuating inequities, the Recon Approach insists that reconnaissance must come

in tandem with reconsideration. Reconnaissance allows for transparency about how the system

functions as whole, as well as more apt use of the reconsideration function. For example, if being

Black did reduce the likelihood of being granted parole, stakeholders could push for structural

reform going forward that would include a race-sensitive anomaly-detection tool. Such a tool could,

for example, review cases of all Black parole candidates and then flag cases for reconsideration if the

expected decision would have been di↵erent if, all other things equal, the candidate were non-Black.

An adjusted tool could also ensure that anomalous cases are identified within racial subgroups and

that cases for a particular racial group are reviewed with a frequency that matches this group’s

demographic representation in prisons.

To be clear, the existence of problematic patterns in the exercise of discretion does not mean that

decision-makers are malicious or consciously relying on illicit factors when making their decisions.

Patterns might be due to idiosyncratic sensitivities—for example, as previously mentioned, one

parole commissioner may have a stronger emotional response to crimes with child victims and be

less likely to grant parole in such cases relative to other commissioners. If there are patterns that

track racial lines, those patterns might be due to the ubiquitous e↵ects of unconscious bias [Rachlinski

et al., 2008]. Another cause for problematic patterns might be due to di↵erentials in the way that

cases are presented to parole commissioners. For example, prior research found that the likelihood of

parole was lower among parole candidates who were not represented by privately retained attorneys.

The goal of the Recon Approach is not to identify the causal root of problematic patterns or

assign blame. Statistical causal inference [Imbens and Rubin, 2015] for the purpose of identifying

interventions in the criminal justice system [Barabas et al., 2018] is indeed a possible use for the

results identified through reconnaissance, but such causal inference is a separate goal from the scope

of the Recon Approach itself. Rather, the goal of the Recon Approach is to make problems clear

when they would otherwise remain opaque and to provide opportunities to reconsider the cases of

those who, for whatever reason, might have gotten the short end of the stick.
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2.4 The Case for Discretion

Given that the primary value of the Recon Approach is providing opportunities to improve human

discretionary judgment, it is likely to meet criticism from those who see little value in the role that

human discretionary judgment plays in law [Huq, 2020]. Why invest in technology that can improve

human discretionary judgment when we could instead invest in technology that could replace human

discretionary judgment? There are three reasons why discretion in criminal law should be retained.

First, in certain high stakes decisions, particularly those that determine punishment, respect

for human dignity calls for a process in which a person is heard by another human being who can

meaningfully consider her situation. Even if the outcome of the decision would be the same as an

output from a statistical model, there is value to being heard by “one of us”—another human being.

That value has been recognized by jurists [Lockett vs. Ohio, 1978], legal scholars [Mashaw, 1981],

psychologists [Tyler, 1990], and those directly impacted by the use of algorithms in criminal law.

One man who is on a probation program dictated by an algorithm explained his frustration this

way: “I can’t explain my situation to a computer . . . But I can sit here and interact with you, and

you can see my expressions and what I am going through” [Metz and Satariano, 2020].

Second, discretionary judgment is adept at respecting the multiplicity of values at stake in

criminal law. The values at stake in deciding who, whether, and how much to punish have never

been boiled down into one determinate and quantifiable aim [Bell, 2017]. The law values public safety

as well as proportionality of punishment, fairness in assessing factors that mitigate and aggravate

culpability, and capacities for personal growth and change [American Law Institute, 2019]. Human

discretion, when functioning well, acts as a way to respect and balance these several (and sometimes

competing) values to reach a reasonable judgment [Hart, 2013]. In contrast, insofar as reliance is

placed exclusively on predictive technologies like risk assessment tools, only the value of predicting

and preventing crime is taken into account. This value would be privileged not necessarily because

it is any more important but because it is most easily quantifiable [Harcourt, 2005]. By directing

technology toward opportunities to improve discretionary judgment, the Recon Approach is more

conducive to respecting the multiplicity of values at stake in criminal law.

Third, those who favor replacing human discretion with algorithmic decision-making often rely

on a mistaken assumption about the relative rates of improvement in human discretion as compared

to algorithmic decision-making. They tend to argue as follows. Humans have had centuries to

improve our ability to exercise discretion, and while there have been improvements, humans are

still prone to error, bias, and an inability to truly explain their decisions. Algorithmic decision-

making, on the other hand, is in its infancy and quickly improving accuracy, reducing bias, and

rendering itself explicable. The rate of improvement in the quality of algorithmic decision-making

is assumed to continue exceeding the static rate of improvement of human discretion, and in time,

the quality of algorithmic decision-making will eclipse that of human discretion and leave it behind.

The assumption of this argument is misguided because the rate of improvement in human discretion
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is not static.

The Recon Approach calls for the development of technological tools designed to accelerate

improvement in human discretionary decision-making by helping discern systemic issues, explaining

how decisions are made, and flagging potentially erroneous decisions for reconsideration. The degree

to which the Recon Approach can catalyze improvement in the quality of human decision-making

remains an open question. The best way to answer the question is to develop the Recon Toolkit and

implement it.

2.5 Applications for the Recon Approach

Our pilot work has applied to the context of parole-release decisions, but the general technique of

the Recon Approach can extend to a variety of decision-making contexts that meet the following

three criteria. First, the decision at issue must involve the exercise of human discretionary judgment.

In decision-making contexts where rote application of rules is preferred over discretionary human

judgment, the Recon Approach is not useful. The Recon Approach is committed to the position that

discretionary human judgment should be used in at least some contexts in criminal law, but does

not itself decide what those contexts are. The aim of the Recon Approach is to provide data-driven

opportunities to improve discretion in any context where society has decided discretion ought to be

present.

Second, there must be records of the discretionary decision that are available and generally

include all information hypothesized to be relevant to the decision [Singer and Caves, 2017].

Third, the decisions need to be made at a slow enough rate to be analyzed. Given that a decision

to deny parole is not final until 120 days after the hearing, this window of time allows for the Recon

Toolkit to process data from an incoming decision and act on reconsideration before the decision

is final. In contrast, consider a police o�cer’s decision to use force on a suspect. Even in the

highly unlikely case that an o�cer made a transcript of his or her reasoning in deciding to use force,

time would not allow reconsideration of that decision. Reconnaissance tools could discern patterns

in how o�cers tend to use force [Fryer Jr, 2019] and whether a given instance of the use of force

was anomalous after-the-fact. But unlike in the hearing context, o�cer decisions typically have

immediate consequences that cannot be undone.

Given these constraints on scope, we see at least three clear contexts where the Recon Approach

could be aptly applied: parole hearings, sentencing hearings, and bail hearings. Researchers may

also be able to apply the Recon Approach to prosecutorial charging decisions, but only if prosecutors

were to provide some form of transcript that described their thought process for each case. Beyond

criminal law, the Recon Approach could apply to civil commitment hearings, child custody termina-

tion hearings, and immigration hearings. In the realm of administrative law, particularly within the

Social Security Administration, technological tools that scrutinize consistency in decision-making
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are emerging [Engstrom and Ho, 2020]. While these tools di↵er from the Recon tools we are devel-

oping in the parole context, there is potential for synergistic development across the disciplines of

criminal and administrative law.

2.6 The Scope of the Recon Approach

The Recon Approach starts from a place of acknowledging that human decision-makers have value in

our legal system which machine learning cannot replace. It also acknowledges that human decision-

makers are imperfect in a number of ways. People are not only prone to make factual errors and

oversights, but they are also vulnerable to unconscious (or conscious) biases on the basis of categories

like race, class, and gender [Rachlinski et al., 2008]. Human judgment is shaped by idiosyncratic

sensitivities. For example, one parole commissioner may have a stronger emotional response to crimes

with child victims and be less likely to grant parole in such cases relative to other commissioners.

These biases and sensitivities lead to inconsistency in judgments across cases; meaning that not all

like cases are treated alike. We see such imperfections in human judgment not as a reason to develop

technology to replace human judgment, but as a reason to develop technology that helps bring those

imperfections to light and provides stakeholders with data-driven opportunities for improvement.

What stakeholders do with those data-driven opportunities is not up to technologists. On the

one hand, a parole board could, for example, use tools like the ones we are developing to identify

and reverse hundreds or thousands of decisions denying parole. Researchers could use similar tools

to discern whether systemic patterns of racial bias infect certain types of decision-making—in bail,

probation, sentencing, jury selection, parole, etc.—and if so, legislatures could use that information

to restructure how such decisions are made. On the other hand, seeing the very same evidence, a

di↵erent parole board could reverse only a handful of decisions, and the legislature could tinker with

minor changes in the procedures used for decision-making. Any of these actors could trumpet that

they are using cutting-edge technology toward the aim of treating like cases alike. Recon tools, like

other technological tools, are a means and not an end in themselves. The means do not themselves

ameliorate inequity; they provide opportunities to help people do so.

2.7 Defenses Against Perpetuating Existing Problems with

the Status Quo

This section turns to a concern that applies to most AI being developed for the legal field, in-

cluding both the Predictive Approach and the Recon Approach: that the technology is vulnerable

to perpetuating existing problems with the status quo and papering over them with technological
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sophistication [Engstrom and Ho, 2020].2 The concern is particularly acute in the context of ap-

plication to current criminal law in the United States given the crisis of mass incarceration and

widespread inequities in criminal law with respect to race and socioeconomic status.

The concern is that in seeking to reduce inconsistencies within a decision set, the Recon Approach

will tend to ossify initial patterns found in a historical decision set. Recall that the first step in

building a Recon Toolkit is deciding which factors to lift from the text of the hearing (“the chosen

factors”). Based on these chosen factors, reconsideration tools are used to flag anomalous cases for

reconsideration. A human then reviews flagged cases and may reconsider the decision. The program

then receives feedback as to whether the human changed the decision or not. An initial issue with

this kind of feedback loop is that it can perpetuate systemic inequities in decisions. As discussed in

Section 2.3.3, it is therefore critical to develop reconnaissance tools that are designed to reveal such

inequities.

Even with the reconnaissance tools at work, the feedback loop poses additional concerns. The

loop will, in time, lead the program to coalesce or plateau around a subset of factors that are

“successful” in resulting in changes to decisions. These factors will be limited to those among the

chosen factors; recon tools cannot find anomalies with respect to factors that they have not been

trained to pay attention to. Additionally, there may be some chosen factors that have a substantial

influence, but only on a very small set of decisions (“super-minority factors”). Because factors like

these apply to so few cases, they will be less likely to be reinforced. Factors that apply more broadly

will tend to be reinforced and will tend to swallow the super-minority factors. The result is that

recon tools will promote consistency among the chosen factors that influence the greatest number of

cases, but the tools will be vulnerable to both blind spots and tunnel vision. The blind spots are in

the tools’ inability to recognize the significance of factors that were not included in initial analysis.

And the tunnel vision lies in the tools’ tendency to be pulled toward factors that influence large

swaths of cases and away from highly nuanced factors impacting very few cases.

To address this vulnerability, we propose that any Recon Toolkit be developed in a way that meets

the following three guidelines. First, in initial development, “the chosen factors” should be selected

by a process that seeks input from a diverse group of stakeholders. The group should include, at a

minimum, decision-makers, people about whom the decisions are made (and their attorneys), prior

researchers of that decision-type, legislators, and other representatives of the general public. The

stakeholders should be queried as to what factors they think should be included in reconnaissance

at the outset. The stakeholders should also be queried on a periodic basis after development of the

recon tools because decision norms, as well as perceived knowledge of those norms, may shift over

time.
2See United States v. Curry, 965 F.3d 313, 353 n.1 (4th Cir. 2020) (Wynn, J., concurring) (expressing concern

that “talismanic references to technological terms such as ‘big data’ and ‘machine learning’ ” may obscure the fact
that predictive policing algorithms rely on existing data and so may only reinforce problems in the way policing is
done rather than fix them).
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Second, the Recon Toolkit should be transparent about what “chosen factors” are included in

the model. The tools should be accompanied by a list of factors that were included in its initial

development as well as all any factors that were proposed but not included. There should be an

explanation for why proposed factors were not included. After development, the list should be

updated each time stakeholders are queried. In this way, the public is aware of what the Recon

Toolkit is tracking and where potential blind spots may lie.

Third, the tools that flag cases for a second look should be compared periodically to a tool

that randomly selects cases for a second look. If more cases from the randomly chosen set of cases

are reversed as compared to cases the reconsideration tool flags, the reconsideration tool needs to

be adjusted. In other contexts, scholars have suggested this approach as a way to compare the

performance of an AI tool relative to a random set of cases that undergo conventional review or

“prospective benchmarking” [Engstrom and Ho, 2020].

The dual use objection in California parole hearings. Perhaps the most prominent objection

to the Recon Approach is analogous to the “dual use” argument for sentencing [Leins et al., 2020].

While we have developed information aggregation tools for a review use case, what is there to stop

someone turning that around and using these exact same features and for a codified justice use case?

In the California parole context, employing technology for a predictive, rule-based system requires

legislative parole reform and an overhaul of California’s approach to criminal data record keeping.

As it is currently constructed, the Board of Parole Hearings operates with great discretion. Parole

hearings are based only in part on data that is available before the hearing. For example, parole

hearings often discuss mitigating pre-commitment factors such as the living circumstances of an

individual at the time that the crime was committed, touching on topics such as childhood abuse,

gang membership, or neighborhood crime. These data are often not even available in sentencing

transcripts. Even for factors that are available in records before the hearing, such as a candidate’s

disciplinary conduct in prison, the data often only exists in archived handwritten reports that prison

sta↵ aggregate prior to the hearing. The data are read out in semi-structured form for the first time

by the commissioner during the hearing. It is therefore not possible to extract a meaningful number of

the features that are currently considered for a parole decision in California without first conducting

a hearing.

Impact on mass incarceration. The California parole context can also serve as a useful case

study for understanding another common objection to perpetuating the status quo. A common

question about our work is whether it is possible to use automatically extracted factors for increased

review of parole grants, thus increasing the rate at which grants are overturned and contributing to

the cycle of mass incarceration. The existing parole review process in California makes additional

denials and reversals of grants unlikely. Chapter 3 describes the review process in more detail, but

to simplify: after a parole hearing, two parole commissioners make a recommendation to grant or
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deny parole. In the next 120 days, the decision is reviewed by the Parole Board. Afterward, the

Governor has 30 days to review the decision before it becomes final. In practice, all parole grants are

reviewed, but both the Parole Board and the Governor’s review unit say that they lack the resources

to review many denials. If the decision is a grant, the candidate is released from prison and the

outcome is final. However, if the decision is a denial, nothing changes; the parole candidate remains

in prison.

So what happens if a prisoner is denied parole, but the decision was in fact inconsistent with

the parole decision process? It means there is very limited opportunity to reconsider the case,

possibly leaving a prisoner incarcerated much longer than necessary. If an analysis based on features

extracted using NLP can identify outlier cases, this is actionable. The Governor may request a

review, the Parole Board may advance the date of a hearing, or an appeals attorney may petition a

court. On the other hand, there exists no basis on which we should assume that either the Governor

or the Parole Board would overturn more hearings when provided with more data about the parole

process.

2.8 The Importance of Natural Language Processing for the

Recon Approach

In our development of the Recon Approach, we have focused a great deal on building NLP tools to

identify and extract information from hearing transcripts. It is worth asking why we would develop

new tools when we could instead simply ask decision-makers to record the relevant information as

they conduct each hearing. For example, a parole board member could complete a “recon work-

sheet” during or shortly after the hearing that includes multiple choice questions about the parole

candidate’s crime, the types of rehabilitation programs completed, the number of years served, and

all the other data that an NLP tool might be called upon to extract from a given transcript. The

recon team would then use machine learning tools to create models of the collected data and to

generate lists of anomalous cases, but the team would no longer need to extract information from

transcripts.

Having decision-makers complete such a worksheet would certainly be welcome in the short-term,

particularly given the challenges in developing NLP tools for the Recon context, such as the ones

discussed in Section 2.9. Scholars have proposed this type of work-around as an alternative or pre-

cursor to NLP in other contexts: “a first order solution. . . would be to standardize inputs” [Engstrom

and Ho, 2020]. In the long-term, however, there are four reasons why reliance on decision-makers to

complete such a worksheet would be inadequate. These reasons explain why development of NLP

tools is integral to the long-term success of the Recon Approach.

First, if a decision-maker has to record particularized information at the time of a hearing, then

the required information from past hearings, from before the time information started to be recorded,
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would not be available. Decisions made at prior hearings could not be analyzed or potentially

included on a list of cases for reconsideration. An NLP tool, however, could analyze prior hearings

for which there was a transcript, even before data was collected, and therefore include those hearings

in a more complete decision model and generate a more comprehensive list of anomalous cases. The

ability to include prior decisions is particularly valuable in contexts such as California where a person

denied parole may be incarcerated for up to fifteen years before the next hearing.3

The second reason for developing NLP tools is because of the di�culties of creating a definitive

list of information to record at the time of the hearing. If a relevant factor is missing from the

initial recon worksheet that decision-makers are asked to complete after each hearing, then in order

to take the factor into account, someone will have to go back through every hearing transcript to

make note of the factor. Doing this task manually is likely cost-prohibitive on a large scale. It

is likely that there will be factors that are (or will later become) relevant in the decision-making

process that were not included on the initial list and for which no information was recorded. This

was our experience in the parole context; at the outset, our discussions with stakeholders led to

the selection of factors deemed important to the decision-making process. Unsurprisingly, as the

study proceeded, new relevant factors were suggested by various stakeholders or were found to be

relevant as we understood the process better. This process seems likely to occur across a variety

of decision contexts because of limited knowledge at the outset of a study, improved understanding

through research, and changes in decision-making over time. Further, society sometimes shifts its

views about how to understand what factors are relevant in decision-making. For example, it used

to be uncontroversial to do a study on parole hearings that characterized gender as a binary factor

(male or female). There is now growing need to include a nonbinary option. We cannot predict

what issues will be on the public’s radar in ten years, but we can anticipate that some of those

issues are not currently on our radar. The critical advantage of developing an NLP tool to conduct

information-extraction is that the tool will be able to e�ciently search through all past hearings and

extract whatever new pieces of information are needed.

The third reason for urging development of NLP tools is that decision-makers are limited in

their ability to accurately record all types of information from a hearing that they are themselves

conducting. For example, suppose a parole board commissioner was asked to complete a post-

hearing worksheet that asked various questions, including whether the parole board used o↵ensive

language during the hearing. It is doubtful that the commissioner would forthrightly answer this

question in the a�rmative if the commissioner called a parole candidate a “smart ass” during a

hearing. Our NLP tool, however, was able to pull out this information from a transcript [Todd

et al., 2020].4 In addition, by putting a decision-maker in the role of recording, and thus to some

extent characterizing, the factors that underlie the decision, a degree of objectivity is bound to be

lost in translation. For example, the way that a parole board commissioner inputs information on

3See California Penal Code §3041.5(4) (West 2016).
4See California Board of Parole Hearings, Parole Consideration Hearings 4, 36 (January 2015)
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a worksheet may be influenced by that commissioner’s ultimate decision about whether to grant or

deny parole. We observed a case where, at an earlier hearing, the parole commissioner denied parole

and, in articulating the reasons to explain that decision, stated that the candidate contested an

underlying aspect of the o↵ense.5 At a subsequent hearing, a di↵erent commissioner granted parole

and stated that the candidate was not contesting an underlying aspect of the same o↵ense.6 Nothing

about the candidate’s version of the o↵ense changed between the two hearings. It is plausible that

the first commissioner had decided to deny parole for some other reason, and that doing so influenced

his perspective on whether the candidate was contesting the underlying o↵ense. The advantage of

an NLP tool is that it can be trained to extract information about a given hearing in a manner

isolated from the final decision of that hearing. To be clear, the claim here is not that the NLP tool

will be perfectly objective in extracting information, but that there is reason to believe that it will

be more objective than a decision-maker doing the extraction task herself.

The fourth reason for urging the development of NLP tools in the Recon Toolkit is that the tech-

nology has the potential to identify factors distinct from the factual information-extraction questions

discussed above. These factors can be qualitative and more abstract. The ability to extract such

factors could be used as an additional method for identifying anomalous cases for reconsideration in

at least two ways. First, an NLP tool could be built to flag hearings that contain linguistic anomalies

such as a particularly aggressive questioning style, the use of disrespectful words, or an unusually

protracted discussion of the underlying o↵ense. Existing research on detecting linguistic patterns

in transcripts from police stops provides good reason to be optimistic about continued development

here [Voigt et al., 2017]. Second, recent advances in neural network language models have greatly

improved the general performance of NLP, which can be measured simultaneously over a large range

of tasks, such as translation, summarization, and language generation. These breakthroughs can be

leveraged to help train the AI to identify language that appears strange in its context. An early

version of such a tool has been developed; but it needs an individual who is knowledgeable about the

parole context to provide feedback on whether the identified cases are indeed anomalies of potential

interest or are simply red herrings [Todd et al., 2020]. Once given the feedback, the tool can improve

its ability to identify cases of interest. This tool would benefit from continued research in language

models, especially in conditional language modeling.

Detection of linguistic anomalies can also work in tandem with the extraction of factual informa-

tion from transcripts. For example, given the identity of the presiding commissioner of the hearing,

a model can be built for the specific speech of one legal actor. This model can be used to identify

language anomalies with respect to a given set of decision makers, such as parole commissioners who

grant parole at the lowest rates or judges that impose the most severe sentences.

For these four reasons, continued development of NLP is integral to the long-term success of the

Recon Approach. As described in the next Part, this development is by no means an easy task and

5See California Board of Parole Hearings, Parole Consideration Hearings 121 (February 2016).
6See California Board of Parole Hearings, Parole Consideration Hearings 215 (August 2017).
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considerable investment is needed to make progress. We hope, however, that the description of the

Recon Approach thus far has shown that the investment is well worthwhile.

One ethical question about the development of NLP tools is whether features extracted from

hearing dialogue can be used as the input to a risk assessment algorithm before a decision is reached.

While constructing a such a risk assessment algorithm is possible in theory, we believe that such

an algorithm would be hard to construct and virtually meaningless in the context of parole. Unlike

applications to sentencing [Chen et al., 2019, Hu et al., 2018, Zhong et al., 2018], the outcome variable

for parole is unclear. Lifer recidivism is extremely low (under 3% in California) and it has not risen

even as the parole grant rate has increased from 3% to over 20% in the past two decades [Committee

on Revision of the Penal Code, 2020].

2.9 Technological Challenges

In the following sections, we discuss the role that machine learning can play in serving justice that

is not oriented around prediction. Unfortunately, the term “prediction” in the technical context of

machine learning does not necessarily mean the same thing as it does in common vernacular, and we

try to distinguish between the two terms. A prediction, in common vernacular, refers to a statement

about a future event, something “not yet seen.” In machine learning, models are often described as

making predictions, which refers to a statistical prediction or statistical inference. In this technical

context, the prediction or inference about data that is “not yet seen” does not necessarily refer to

data that is in the future temporally. A statistical prediction could be a statement about a “not yet

seen” individual based on knowledge about the overall population, or vice versa, at a single fixed

point in time. For example, a statistical model could predict a person’s current height based on their

current weight and current age, and make no statement about that person’s future height. In the

present chapter, we use the term “predict” to refer to the common usage of the term, i.e. referring

to statements or decisions about the future.

This section discusses some of the technical challenges for developing the tools that are needed

to realize the Recon Approach. For reasons of scope, the discussion is limited to tools that are

designed to complete two tasks: (1) extracting information from long-form documents and (2)

modeling decisions. For each of these tasks, respectively, we first summarize the basic process,

explaining what technical advances need to be made and making suggestions for the near-future

direction of research and technological development.

2.9.1 Information Extraction

An information-extraction tool uses NLP to find the answers to queries over a set of long-form

documents. An example in the parole context would be answering the following question over

50,000 parole hearing transcripts: “What was the parole candidate’s commitment o↵ense?” To
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create the information-extraction tool, a set of training data is needed which has picked out the

answer to queries across a small subset of documents. The NLP tool is created by learning from

this training data and then generalizing to the full set of documents. Curating the training data is a

critical step in the process and typically involves employing human annotators (also called coders or

labelers in the social science community) to read a subset of documents and answer questions about

those documents. The task is time-consuming. For example, annotators for our parole project took

an average of forty minutes to answer over 100 queries for each parole hearing transcript. The key

advantage of an NLP model is that only a subset of the documents needs to be annotated, and the

tool can then learn from those annotations and complete the full set of documents.

Recent advances in building larger and deeper neural networks have led to dramatic performance

increases across a range of NLP tasks. But even for these advanced models, the complex infor-

mation aggregation tasks reconnaissance needs to tackle remain extremely challenging. Current

NLP systems must overcome at least three technological challenges in order to tackle the types of

information-extraction required for the domains in which the Recon Approach can be used.

First, existing techniques have been applied to short passages of approximately 500 to 1,000

words. These techniques do not scale well to parole hearing transcripts which are approximately

10,000 words.

Second, existing techniques tend to do better when the information to be extracted concerns

a specific entity. For example, the tool we are developing can answer the question, “What is the

name of the commissioner who is presiding over the hearing?” but struggles to extract an answer

for the question, “Was the parole candidate under the influence of narcotics when the underlying

o↵ense occurred?” The latter question is challenging because narcotics are discussed in di↵erent

contexts such as a family history of substance abuse, use before the crime, use while incarcerated

after the crime, selling narcotics, etc. The recurrence in di↵erent contexts makes it hard to pin

down whether a given discussion of narcotics is about the underlying o↵ense or about something

else entirely. Existing techniques struggle to extract answers to questions about words that refer to

multiple things in di↵erent contexts throughout a document.

Third, existing technology struggles to answer questions requiring multiple steps of reasoning.

For example, consider the question, “If a parole candidate has been written up for misconduct in

prison, what was the date of the last write-up?” To answer this question, natural language processing

must find whether there are write-ups for misconduct, find the dates corresponding to each write-

up, and then identify the most recent. Requiring the NLP model to hop through multiple relations

remains challenging with today’s technology [Yang et al., 2018].

To reliably extract information, NLP methods need to be developed to be capable of consuming

long text all at once and to incorporate “region isolation” technology that, given a query, can isolate

the relevant part of a document. Developing a more sophisticated process for curating training data

will also be a requisite step for further progress.
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The standard approach for curating training data is to employ human annotators to provide

simple answers to queries over a subset of documents. For example, an annotator would simply

input “2005” as an answer to the following query: “What was the year of the last write-up for

misconduct in prison?” A more thorough approach could prompt annotators to provide additional

information to support their answer by highlighting each part of the document that discusses write-

ups for misconduct. Another promising idea is to build an interactive annotating process where the

machine learning system can continue to ask the annotator for more information on particularly

challenging question-answer pairs. For example, the model could ask the annotator if it correctly

identified the date of the last write-up in a given transcript. Technologists can make considerable

progress by pursuing both human-computer interaction and artificial intelligence e↵orts to identify

the types of annotations required for richer, multimodal tasks.

2.9.2 Decision Modeling

The second type of reconnaissance tool aims to model the decision-making process based on the set

of information that has been extracted from the text, statistics from the extraction process,7 and

other data that is not included in the text. Regression analysis is often used to perform this type of

task [Rubinfeld, 2000].

Regression analysis has established techniques for measuring important characteristics such as

how closely the model fits the relationship between the input factors and the output factor, how

probable it is that the patterns found by the model are not the result of mere chance, and the relative

weight given to the various input factors.

Despite having well-understood statistical properties, regression analysis has at least two limita-

tions when applied to the recon task of modeling decision-making. First, regression models generally

assume that the input factors (independent variables like age, time since the most recent disciplinary

write-up, etc.) and the output (a dependent variable like whether parole is granted) are continuous

numerical values. For example, the factor of age can be 27, 79, or anything in between, like 46.39.

Decision-makers, however, rely on many factors that are categorical rather than continuous. An

example of a categorical factor is whether or not a parole candidate was convicted of murder. The

standard approach to modeling such categorical factors is to use “dummy variables.” For example,

a 1 would represent that a candidate was convicted of murder, and a 0 would represent that a can-

didate was not convicted of murder. However, this approach posits the existence of individuals who

are “in between” 0 and 1. But it does not make sense to posit that a person can occupy the space

of being “in between” or “somewhat” convicted of murder. As the number of categorical variables

grows, this problem magnifies. Consider, for example, the bizarre idea of positing someone who is

“in between” a White parole candidate who is diagnosed with schizophrenia, has been convicted of

7These statistics should include the measure of the reliability with which the NLP tool extracted the correct answer
to its queries. In other words, the decision models should be designed with awareness of the NLP models.
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sexual assault, and has done a substance abuse program and a non-White candidate who has no

such diagnosis or conviction and has done no substance-abuse program. More sophisticated data

encoding techniques have been developed to help regression analysis better account for categorical

variables, but limits remain.

Second, regression models are limited in their ability to capture the way that decision-making is

intuitively understood. A decision is generally not made in a single step by considering all relevant

factors at once. Rather, decision-making tends to involve discrete steps or chains of reasoning. A

more appropriate tool for reconnaissance on decision-making help would be one that is designed to

model multifactorial judgments. To be clear, such a tool would not purport to capture the actual

workings of a decision-maker’s own thought process. Rather, it would aim to group cases together

based on a shared categorical feature, then form subgroups based on another categorical feature,

and then sub-subgroups based on another feature, and so on. In so doing, these types of models use

a multi-step process that more intuitively captures our understanding of decision-making.

There are multiple ways of developing such a tool. One example is the nearest neighbors model,

which requires stakeholders to define a numerical measure of similarity between di↵erent cases. A

prototype is illustrated and described in Figure 2.1. Decision trees, modeling data points based

on a series of yes-no questions, are another family of models particularly well-suited to modeling

decision-making in a multi-step manner. An example of this type of model, as applied to a sample

of parole hearing decisions, is shown in Figure 2.2.

This figure illustrates an excerpt of a larger decision tree that was generated from a dataset

extracted from a sample of parole transcripts in 2014–2015. In this excerpt, only the top three levels

of the tree are shown. The tree reads from the top down. At each step, the algorithm partitions the

data into a set of denials and a set of grants as best as possible by setting a threshold on one factor

of its choice. The top box asks the first question, “Did the parole candidate receive a risk score of

‘low risk’ on the psychological risk assessment?” If so, the user would follow the left path down; if

not, the right path. The box on the bottom right of the first tree represents all transcripts about

a parole candidate with a medium or high psychological risk assessment score who also had more

than six years since their last disciplinary write-up. Of these hearings, sixty resulted in a denial and

twenty-seven in a grant. The boxes are color coded so that if there are more grants than denials

that fit the category, the box is green. Otherwise, the box is red. In theory, the tree could continue

extending down, adding more factors and more complexity.

To make decision trees useful for the Recon Approach, additional work is needed in two key

areas. First, additional tools are required to better describe how well a given decision tree “fits”

the data through measures such as statistical significance and robustness.8 To see why there is a

8Robustness refers to the ability of a statistical model to perform well even if the training data is not perfectly
representative—for instance, even if historical parole hearing transcripts do not perfectly represent the possible uni-
verse of all parole hearings. This means, for example, that the model should not change too drastically to accommodate
the inclusion of an outlier or a transcript that contains an annotation or NLP error.
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Figure 2.1: This tool shows a stakeholder how an imaginary candidate compares to actual cases that
are relatively similar. The stakeholder first inputs information about an imaginary candidate. Here,
for example, the imaginary candidate has been convicted of murder in the second-degree, has served
14 years in prison, and so on. Then, that candidate is “plotted” as a blue figure amid actual cases.
Green circles illustrate cases where parole was granted, and red circles illustrate cases where parole
was denied (the size of the red circle illustrates the period of time that a candidate is scheduled to
wait until the next parole hearing – a smaller red circle illustrates a three-year denial period, and a
larger red circle illustrates a case with a denial period of five, seven, ten, or fifteen years). The actual
cases that are shown on the plot are based on a nearest neighbor calculation. The circles that are
closest to the blue figure are most similar to the imaginary candidate. Dotted white rings around
the blue figure show which circles would be considered “nearest neighbors” with more restrictive
definitions of “near,” i.e. only looking at very similar cases.
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Figure 2.2: Illustrated is an excerpt of a larger decision tree that was generated from a dataset
extracted from a sample of parole transcripts in 2014–2015. In this excerpt, only the top three levels
of the tree are shown. The tree reads from the top down. At each step, the algorithm partitions the
data into a set of denials and a set of grants as best as possible by setting a threshold on one factor
of its choice. The top box asks the first question, “Did the parole candidate receive a risk score of
‘low risk’ on the psychological risk assessment?” If so, follow the left path down, otherwise follow
the right path down. The box on the bottom right of the first tree represents all transcripts about
a parole candidate with a medium or high psychological risk assessment score, who have also had
more than 6 years since their last disciplinary writeup. Of these hearings, 60 resulted in a denial,
and 27 in a grant. The boxes are color coded so that if there are more grants than denials that
fit the category, the box is green, and otherwise, red. In theory, the tree could continue extending
down, adding more factors, and more complexity.
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Figure 2.3: Illustrated is an alternative decision tree that was generated over the same set of tran-
scripts as in Figure 2.2. As in Figure 2.2, this is an excerpt of a tree and bottom leaves are not
shown.

need for a “fit” metric, consider Figure 2.3 which is built from the same sample of parole hearing

decisions as Figure 2.2. It illustrates an alternative decision tree that was generated over the same

set of transcripts as Figure 2.2. Again, as in Figure 2.2, this is an excerpt of a tree and bottom

leaves are not shown.

The primary criteria for sorting decisions in Figure 2.3 is whether or not a parole candidate

received a disciplinary write-up within the last five years. In Figure 2.2, by contrast, the primary

criteria are whether or not a parole candidate received a “low risk” score from a psychologist who

assessed the candidate prior to the hearing. Each tree seeks to describe the same data, but each

was generated by a slightly di↵erent algorithm. If one were to take a random set of other cases and

follow the chain within the tree, each tree would be roughly equally e↵ective at predicting whether

parole would be granted or denied.

What makes one tree a more faithful representation of the pattern of decision-making? In

machine learning, this question is largely unexplored. The question that instead receives attention

is, “Which tree has a higher degree of accuracy in predicting other decisions?” Techniques have

been developed to answer that question, and those techniques have thus far been adequate because

trees typically have been used as methods for prediction. For example, multiple trees are often used

to form Random Forest models [Ho, 1995] or as part of the XGBoost algorithm [Chen and Guestrin,

2016]. Almost no metrics exist to help choose among multiple trees that predict equally well because

the tree’s contents do not matter for prediction. Put another way, existing work aims at predicting
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which decisions will end up on which decision tree “leaves.” The Recon Approach, however, aims to

make apt observations about the “branching” within the tree in order to explain the decision-making

process.

Additionally, new techniques must be developed to evaluate the quality of the sequencing of the

yes-no questions in the tree. How can we know that the branching in a tree like Figure 2.2 more

aptly describes a pattern of decisions than Figure 2.3 or some other tree that is generated randomly?

Additional techniques are required to answer this question. A model that aptly models decision-

making should not be a↵ected by small changes to its input data, such as if one transcript was

accidentally omitted or if, for a single hearing, the number of programs completed was incorrectly

recorded as “55” instead of “5.” Such a model would ideally, for example, not create branches

such as, “Did the parole candidate’s last name start with the letter P?” A model that goes to great

lengths to contort its branches for statistical noise artifacts would most likely not be the most faithful

model of the underlying decision-making process—even if such contortions happen to produce correct

predictions on historical data.

Decision trees could also benefit from the development of an intuitive way to handle extraction

noise. Because the algorithm forming the tree is forced to make a cuto↵ at each step, it does not

easily take extraction noise into account that may be crucial to model. Although social scientists

and economists have been modifying regression models easily to handle such noise [Gustafson, 2003],

similar methods are lacking for tree-based models. These and other challenges indicate that a

substantial amount of future research is needed in order to make the concept of the Recon Approach

a practical reality. Our experience thus far has shown that the road ahead is long but well worth

pursuing.

2.10 Political Challenges

This section describes two political challenges that the Recon Approach is likely to face and suggests

what resources will be needed to overcome these challenges. The discussion is based in large part from

experience trying to implement the Recon Approach in the context of parole-suitability decisions in

California.

2.10.1 Access to Data

The most pressing obstacle we have faced in implementing the Recon Approach is access to data.

Nearly all data about a decision-making process is held by the agency that makes those decisions.

The agency has some incentive to resist disclosing data to researchers seeking to implement a Recon

Approach: using the Recon Approach may present risks to existing members of the agency. Although

the Recon Approach o↵ers a way to improve discretionary decision-making in the long run, it does

so by exposing problems with the existing way in which decisions are made. The reconnaissance
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process may expose systematic problems in how the agency makes decisions. For example, it may

show that, all else equal, a parole board is more likely to give favorable decisions to members of one

race relative to another. Additionally, the reconsideration process may expose individual cases that

are aberrations from that agency’s norm. Bringing public attention to such aberrations can risk

tainting the decision-making body’s reputation as a whole. Even if there is only one “bad apple,”

shining a light on it may spoil the whole bunch of decisions in the public eye.

The most promising response to the concern that agencies will deny access to data is ensuring

that there is a legal right to access that data. The legal right, however, may be insu�cient in practice.

For example, our attempts to implement the Recon Approach in the context of the parole board

required accessing transcripts of parole hearings as well as relevant information not contained in the

transcripts, such as the race of the parole candidates and whether candidates had retained private

attorneys for representation at the hearing. Because the transcripts are clearly public records, we

were able to obtain them through a public record request. But we were not able to obtain race

data because the California Department of Corrections and Rehabilitation (CDCR) withheld it,

taking the position that race data was not public record under state law. We postponed our work

for approximately nine months of negotiation which led to litigation about our right to access race

data.9 A court held that race data is public record and, in a companion case seeking access to similar

data, stated that there is “a weighty public interest in disclosure, i.e., to shed light on whether the

parole process is infected by racial or ethnic bias” [Superior Court of California in and for the County

of San Francisco, 2020b,a].

Although we were ultimately successful, the time and resources needed for litigation may be

cost-prohibitive for many researchers. Furthermore, the uncertainties surrounding litigation and the

adversarial nature of litigation can also deter researchers. These litigation costs create an incentive

for researchers either to back away from agencies that resist scrutiny or to structure their data

requests and data analysis plans in ways that are supportive of, or at least minimally critical of,

agencies from whom they are requesting data.

To address this concern, we support e↵orts to enhance the strength and clarity of public-record

laws to make data about decision-making more readily available in practice. Although we successfully

litigated in California state court, we would have likely been unsuccessful in a state like Georgia where

all information kept by the parole board in performance of their duties is “classified as confidential

state secrets.”117 Further, we see reason for hope among non-profit organizations like Measures for

Justice that have made it their purpose to gather criminal justice data from every county across the

country and to make it readily available to the public. We also support development of independent

commissions within state governments which are charged to collect and study criminal justice data;

9See Verified Petition for Writ of Mandate Ordering Compliance with the California Public Records Act, Voss v.
California Department of Corrections and Rehabilitation, No. CPF-20-517117 (Cal. Super. Ct. 2020).
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California has recently created such a commission.10 Lastly, we encourage publication of the “non-

finding” that a given agency has refused to disclose data or has restricted access to data after

publication of critical findings. In this way, there is at least a small reputational cost that agencies

can expect to incur if they deny data to researchers.

In calling for greater public access to decision-making data, we are cognizant of the privacy rights

of individuals about whom these decisions are made. We are confident that existing data-security

protocols used in other areas of research su�ce to protect these rights. For example, in order to begin

our research in California, we developed data-security protocols in line with university institutional

review boards and California state review board’s requirements for human-subjects research.

2.10.2 Researcher Capture

The Recon Approach is potentially vulnerable to a phenomenon that administrative law scholars

refer to as “regulatory capture” or “agency capture.” The phenomenon occurs when an agency that

is charged with independently regulating an industry has had its objectivity compromised by a close

relationship with the industry that it is supposed to be regulating. The capture may occur through

corrupt means in the form of bribes to the agency from the industry, through more subtle channels

such as o↵ering agency-regulators employment opportunities in industry, or through friendships and

what has been called cultural capture.

Because the Recon Approach is designed to facilitate oversight over a decision-making body,

the researchers implementing the Recon Approach may be liable to capture by the decision-making

body itself. As explained above, existing members of the agency have an interest in minimizing

the risk that the Recon Approach will uncover problematic issues that could disrupt the regular

functioning of the existing agency. This interest may express itself in the form of granting access to

only selective data points. It may also express itself in granting access to data only on the condition

that any resulting research must be reviewed and approved by the agency prior to publication.

Further, a form of capture could occur if researchers are led to believe that their access to data

will stop if certain types of criticism are brought into public view. For example, in our e↵orts to

implement the Recon Approach with the Board of Parole Hearings in California, an o�cial asked us

to remove from our team a researcher who had published an earlier study finding evidence of racial

disparity in the parole process. It was recommended that we replace this individual with the Board’s

General Counsel—an individual who would represent the Board’s interest in making research plans

and presenting findings. We declined to do so.

To address this concern, it is important that the agency being studied should not have the power

to decide whether or when to withhold data from researchers. In this way, the concern expressed here

goes hand-in-hand with the concern expressed above about access to data. Furthermore, institutional

10See California Government Code §8286 (West 2019) (creating Committee on the Revision of the Penal Code and
requiring that “[a]ll state agencies . . . shall give the commission full information, and reasonable assistance in any
matters of research requiring recourse to them, or to data within their knowledge or control.”)
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review boards that review the ethics of human subjects research ought to review proposals for

“capture concerns” when researchers begin a Recon Approach project. Any plan for Recon Approach

research should have an explicit commitment to ensuring that research remains independent from

influence by the agency that is being studied.

2.11 Conclusion

In his sixteenth-century classic, Utopia, Sir Thomas More wrote, “What you can’t put right you

must try to make as little wrong as possible. For things will never be perfect, until human beings

are perfect—which I don’t expect them to be for quite a number of years!” [More, 1551] The Recon

Approach can be understood as a technological tool to help answer More’s call. The Approach

recognizes that, five hundred years later, humans are far from perfect. Its response is not to create a

machine to replace human judgment. Such a machine will likewise be imperfect. Instead, the Recon

Approach aims to develop tools that act like a flashlight on the past, bringing to light potential

problems amid the sprawling web of decisions that humans have already made. In doing so, the

Recon Toolkit provides data-driven opportunities “to make [things] as little wrong as possible”

Whether those opportunities translate into change is not something we can answer as technologists;

it is a question we collectively determine with either action or apathy.



Chapter 3

Background on the California

Parole Process

California’s Department of Corrections and Rehabilitation (CDCR) houses the largest number of

“lifers,” or people serving life sentences with the possibility of parole, in the United States. There

are more individuals serving life sentences in California than in the next three states, Texas, Florida,

and Georgia, combined [Nellis, 2021]. “Lifers” make up approximately 30% of California’s 131,000

prison population of 131,000, and as much as half of its current prison population will become eligible

for parole consideration during their sentence [Committee on Revision of the Penal Code, 2020].

California is widely considered a model state for parole procedures based on the share of its prison

population that is eligible for parole and the comprehensive scope of its review process [Mehta, 2016,

Slater, 2020]. Each year, CDCR’s Board of Parole Hearings (BPH, or the Board) schedules thousands

of hearings for prisoners who have reached their parole eligibility date.1 In 2019, California scheduled

6,061 parole hearings that resulted in 1,184 grants of parole, a grant rate of 19.5%.

The purpose of each hearing is for the Board to decide whether a given individual who has

served enough time to be eligible for release on parole (hereinafter “parole candidate”) is suitable

for release.2 State law directs that the Board is to “normally” grant release to parole candidates;

the Board is permitted to deny release only if it finds that a candidate “pose[s] an unreasonable risk

to public safety”. 3

Parole hearings are generally overseen by one commissioner of the Board and a deputy who

1See California Board of Parole Hearings, CY 2019 Suitability Results, https://www.cdcr.ca.gov/bph/2019/10/
24/cy-2019-suitability-results/.

2The Board refers to the hearings as “suitability hearings” and describes the outcome of the hearing as a finding
of suitability. For simplicity, we refer to the hearings as “parole-release hearings” or simply “parole hearings” and
describe the outcome of the hearing as either granting parole or denying parole. This language has been chosen as
more intuitive, but as explained below, a person may be found suitable for parole at the hearing but nevertheless not
be granted release if the decision is later reversed.

3See California Penal Code §3041(a)(2) (West 2018); In re Lawrence, 190 P.3d 535, 560 (California 2008).
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Figure 3.1: An illustration of the parole process in California, annotated with numbers from the
2019 calendar year.

assists the commissioner. The commissioner and deputy ask the parole candidate questions for

most of the hearing. The questioning focuses on social history, the underlying crime, the record

of conduct in prison, and plans for reentry upon release. This questioning is generally followed by

questions and a statement from a district attorney, an attorney representing the parole candidate,

and a statement from the victim or victim’s next of kin. At the end of the hearing, the commissioner

announces whether she finds the parole candidate suitable for release and explains the reasoning for

that decision.

If a candidate is found not suitable for release, the commissioner decides whether the next hearing

will occur in three, five, seven, ten, or fifteen years.4 For individuals serving indeterminate sentences,

this decision can determine whether they will die in prison.

The Board has broad discretion to decide whether a candidate is suitable for release and must

produce publicly available transcripts from each hearing.5

The decision made at the hearing is subject to review by the Board’s internal administrative

review unit as well as California’s Governor.6 The Governor’s o�ce has limited resources for decision

review; in practice, it reviews all decisions finding parole candidates suitable for parole, but only a

small fraction of denials of parole.7

Figure 3.1 illustrates the process of parole eligibility, commissioner decision-making, and review

by the Governor’s o�ce.

If a parole candidate is found unsuitable for parole, the opportunities to reconsider the decision

are very limited. A parole candidate can request review by the Board’s administrative review unit,8

4California Penal Code §3041.5 (West 2016).
5California Penal Code §3042 (West 2017); In re Bode, 88 California Reporter 2d 536, 539 (California Court of

Appeals 1999).
6See California Penal Code §3041(b)(2) (West 2018) (authorizing the Board to review and reverse decisions);

California Constitution Article V, §8 (authorizing the Governor to reverse decisions in murder cases, and to recommend
that the Board change its decisions in non-murder cases).

7See Interview with sta↵ members who assist Gavin Newsom in review of parole decisions, in Sacramento, CA.
(May 13, 2019).

8See California Penal Code §3041.5(d) (West 2016) (establishing that parole candidates can petition the Board
to advance the date of the next hearing, but petitions are granted only if there is new evidence or a change in
circumstances).
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as well as judicial review, but there is no right for appointed counsel to do so.9 On judicial review,

the court can vacate a decision by the Board only on the rare occasion that the record contains “no

modicum” of evidence that a candidate is currently dangerous.10 In practice, almost all candidates

who are denied parole will remain incarcerated for years until the next opportunity for a parole

hearing arises.11 The wait can last from three years up to fifteen years long.12

Although consistency is an aim of parole-release decision-making, it is di�cult to measure and

achieve given the scale of the system and the Board’s breadth of discretion. Short of reading through

the hearing transcripts, most of which are 100—150 pages long, there is no readily available data one

can analyze to assess the extent to which similar cases receive similar outcomes. The sheer quantity

of text makes it nearly impossible to discern whether a parole candidate who is found unsuitable

for parole is significantly di↵erent from hundreds of others who were found suitable for parole.

Further, the fact that administrative regulations direct the Board to consider fifteen factors that

are relatively vague makes it di�cult to discern what consistency even looks like in this context.13

For example, one factor that weighs against finding a candidate suitable for parole is whether the

o↵ense “demonstrates an exceptionally callous disregard for human su↵ering.”14 A factor that weighs

in favor of finding a candidate suitable for parole is whether “[i]nstitutional activities indicate an

enhanced ability to function within the law upon release.”15 Consistency requires treating fittingly

similar cases alike, but what makes one parole candidate relevantly like (or unlike) another?

Prior studies of parole-release decisions in California aimed to identify the factors that influence

parole decision-making, but the manual labor of reading through hundreds of transcripts limited

the sample size of these studies to the range of 100 to 750 parole hearings The sample size limits

investigation to a small set of variables, ranging from fourteen to twenty-one variables. Further,

given the time required to complete the manual labor of such studies, results have not been released

until years after the studied hearings took place [Bell, 2019, Friedman and Robinson, 2014, Young

et al., 2015, Young, 2016, Caldwell, 2016]. In the meantime, changes in legislation and administrative

regulations make the studies less directly applicable to current decision-making.16

9In re Poole, No. A154517, 2018 WL 3526684, at *14 (Cal. Ct. App. July 23, 2018), reh’g denied (Aug. 21,
2018), review denied (Nov. 14, 2018) (“The role of counsel at the parole suitability hearing is also important because
this is the only postconviction stage at which the inmate is entitled to representation by counsel.”).

10See In re Shaputis II, 265 P.3d 253, 267–68 (Cal. 2011).
11See Bell, supra note 17, at 513 (citing Charlie Sarosy, Parole Denial Habeas Corpus Petitions: Why the California

Supreme Court Needs to Provide More Clarity on the Scope of Judicial Review, 61 UCLA L. REV. 1134, 1171 (2014)).
12See California Penal Code §3041.5 (West 2016).
13See California Code of Regulations, title 15, § 2402 (2001).
14California Code of Regulations, title 15, § 2402(c)(1)(D) (2001).
15California Code of Regulations, title 15, § 2402(d)(9) (2001).
16During the time when analysis was ongoing for the studies authored by Friedman and Robinson [2014] and Young

[2016], the California legislature passed Senate Bill 260 which changed parole hearings among those under 18 at the
time of the o↵ense. See 2013 Cal. Legis. Serv. 312 (West). During the time when analysis was ongoing for the studies
authored by Bell [2019] and Caldwell [2016], respectively, the California legislature passed bills that changed parole
hearings among those under 26 at the time of the o↵ense, as well as those over age 60 at the time of the hearing.
See 2015 Cal. Legis. Serv. 471 (West); 2017 Cal. Legis. Serv. 684 (West); 2017 Cal. Legis. Serv. 676 (West).
Between 2015 and 2020, the California Board of Parole Hearings has adopted five di↵erent “regulatory packages”
that change administrative regulations governing parole hearings. See California Board of Parole Hearings, Recently



CHAPTER 3. BACKGROUND ON THE CALIFORNIA PAROLE PROCESS 39

3.1 Law Regulating Parole Decisions and Procedures

The legal standard at parole hearings is shaped primarily by statute, and is further informed by

administrative regulations and case law. The parole statute provides that the Board “shall normally”

grant parole after a parole candidate has served the minimum period of incarceration required by the

sentence,17 unless the Board determines that the candidate “continues to pose an unreasonable risk

to public safety.”18 The Board follows administrative regulations that set forth, among other things,

lists of reasons that generally support finding a candidate suitable or unsuitable for parole.19 The

California Supreme Court has made clear that while the administrative regulations provide guidance,

the ultimate question is whether the parole candidate poses a current danger to the community; if

the Board finds that the candidate is not currently dangerous, parole must be granted.20 The facts

of the crime and any pre-conviction history prior to the crime cannot, on their own, support a denial

of parole.21 Such facts can, however, support a denial of parole if there is a “rational nexus” between

the crime and current attitudes or recent conduct.22

State law provides the following procedural rights: the right to an in-person hearing23, notice

of that hearing, review of the prison file prior to the hearing24, legal counsel25, and appointment of

legal counsel if a parole candidate is indigent.26 The Board itself appoints counsel and pays counsel,

in contrast to criminal proceedings in which courts appoint public defenders.

There is no right to a hearing in public; hearings take place in prisons where media and members

of the public may observe only if a request is approved by the Board.27 Victims and victims’ next

of kin have a right to be notified about and attend hearings, but friends, family, or other supporters

of the parole candidate have no right to attend hearings and are prohibited from participating in

the hearing.28

Both the public and the parole candidate have a right to transcripts of hearings.29 State law

requires that the transcripts include everything that is said in the hearing and a definitive, exhaustive

statement of the reasons for the parole decision.30 The transcripts are therefore a reliable source of

Passed Regulatory Packages, https://www.cdcr.ca.gov/bph/statutes/reg-revisions/ (last visited Apr. 28, 2021)
17See California Penal Code §3041 (a)(2) (West, last amended 2017).
18See In re Lawrence, 190 P.3d 535, 560 (2008).
19See California Code of Regulations, title 15, §2402 (2001).
20See In re Lawrence, 190 P.3d at 554 (current dangerousness is the “overriding” question for the Board).
21See In re Lawrence, 190 P.3d at 563-64.
22See In re Shaputis, 190 P.3d at 584-85 (2008).
23See California Penal Code §3041.5 (West, last amended 2017).
24See California Penal Code §3041.5 (West, last amended 2017).
25See California Penal Code §3041.7 (West, last amended 2017).
26See California Penal Code §3041.7 (West, last amended 2017); California Code of Regulations, title 15, §2256 (c).
27See California Code of Regulations, title 15, §§2029.1, 2030).
28See California Code of Regulations, title 15, §2029.1
29See California Penal Code §3041.5 (West 2018); In re Bode, 88 California Reporter 2d 536, 539 (Court of Appeal

1999).
30See In re Prather (2010) 234 P.3d 541, 556 (Court of Appeal 2010) (Moreno, J., concurring) (“[T]he Board [is]

required to issue a definitive written statement of reasons. The Board cannot, after having its parole denial decision
reversed, continue to deny parole based on matters that could have been but were not raised in the original hearing.”).

https://www.cdcr.ca.gov/bph/statutes/reg-revisions/
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both the underlying evidence the Board draws upon and the stated justification for its decisions.

3.2 Record of Evidence at Hearings

The Board considers all relevant and reliable information available in determining parole suitability.31

Information includes, but is not limited to: records from the underlying conviction; records of

misconduct in prison; records of participation in education, vocation, and self-help groups in prison;

any essays or self-help book reports that a parole candidate has written; transcripts from prior

parole hearings; psychological evaluations (discussed further below); mental health records; written

statements by the candidate; letters of support from family, friends and community members; written

statements of commendation by prison sta↵ (“laudatory chronos”); documentation of parole plans;

letters of opposition; and statements by the victim or the victim’s next-of-kin.32 In some cases, the

Board also considers information in the confidential portion of the prison file; this information is not

disclosed to anyone at the hearing other than the hearing panel.33

In addition, the Board considers a “Comprehensive Risk Assessment” (CRA) report. Shortly

before a prisoner’s initial parole hearing, a forensic psychologist employed by the Board conducts

an interview with the prisoner and writes the CRA report.34 The psychologist reviews the prison

file, which includes, but is not limited to, all the information described above, except for letters of

opposition, statements from victims or the victim’s next-of-kin, and parole plans if they have not

yet been made [Isard, 2017].

3.3 Proceedings at Parole Hearings

Parole hearings are conducted by Board commissioners who the Governor appoints for three-year

terms.35 The Board schedules a parole candidate’s first parole hearing approximately one year before

the candidate has served the minimum amount of time on the sentence.36 In many cases, the hearing

does not occur on the scheduled date due to waivers, continuances, and postponements.37 Further,

some candidates stipulate that they are not suitable for parole.38

31See California Code of Regulations, title 15, §2402 (2015).
32See California Penal Code §3043 (West, 2016) (referring only to “statements by the victim or the victim’s next-

of-kin”).
33See California Penal Code §3042 (West, 2017); California Code of Regulations, title 15, §2235 (2015).
34See California Code of Regulations, title 15, §2240 (2015); [California Board of Parole Hearings]
35See California Penal Code §5075 (West, 2018).
36See California Penal Code §3041 (West, 2018).
37See California Code of Regulations, title 15, §2253 (2015).
38See California Code of Regulations, title 15, §2253 (2015); [Weisberg et al., 2011]. When a parole candidate

waives a hearing, she decides to push the hearing date back one, two, three, four, or five years later. California Code
of Regulations, title 15, §2253. When a parole candidate enters a stipulation, she agrees that she is unsuitable for
release on parole, and the Board imposes a period of 15, 10, 7, 5, or 3 years until the next hearing. California Code
of Regulations, title 15, §2253.



CHAPTER 3. BACKGROUND ON THE CALIFORNIA PAROLE PROCESS 41

Hearings are conducted in a room inside the prison where the parole candidate is incarcerated.

Generally, one commissioner from the Board and one deputy commissioner (the “hearing panel”)

are present to conduct the hearing and make a finding about whether a person is suitable for release

on parole.39 The attorney representing the parole candidate is present,40 and a district attorney

from the o�ce of the county of conviction may be present in-person or via video conference. Victims

and victims’ next-of-kin are notified about the hearing in advance; some do not participate, others

contribute statements but do not attend, and some attend the hearings in-person.41

The vast majority of time at the hearing is devoted to questioning of the parole candidate by

the hearing panel. Questions are highly specific to the facts of each case and generally fall into four

categories: (i) the candidate’s background prior to the conviction, (ii) the underlying o↵ense, (iii)

post-conviction activities, and (iv) parole plans. After the questioning period, the district attorney

and the parole-candidate’s attorney may ask clarifying questions and make closing statements. The

parole candidate is then given the opportunity for a closing statement, followed by the victim or the

victim’s next of kin [Young, 2016].

At the end of the hearing, the Board deliberates and then announces its decision and provides

an exhaustive list of reasons for the decision. If parole is denied, the panel determines when the

next hearing will be scheduled.42 The presumptive period of time until the next hearing is fifteen

years; the Board may set the time for a shorter period of ten, seven, five, or three years if it finds

by clear and convincing evidence that considerations of public safety do not require a longer period

of time.43

3.4 Decision Review

After the panel present at the hearing makes a decision, the Board’s internal Decision Review Unit

reviews decisions and may recommend a modification to the decision.44 The unit may also advance

the date of the next parole hearing. If a modification to the decision is recommended, the matter is

referred to the full Board, which may rescind or overturn the decision en banc.45

Parole decisions are then referred to the Governor who has the authority to reverse the decision

in all and only murder cases.46 In non-murder cases, the Governor is not authorized to reverse parole

decisions, but is authorized to review them and request that the Board re-consideration its decision.

Governors have varied considerably in the rate at which they reverse Board decisions; for example,

39See California Penal Code §3041 (West, 2018).
40See California Penal Code §3041.7 (West, 2016).
41See California Penal Code §3043 (West, 2016).
42See California Penal Code §3041.5 (West, 2016).
43See California Penal Code §3041.5 (West, 2016).
44See California Code of Regulations, title 15, §2041(h).
45See California Code of Regulations, title 15, §2041(h). The Board may reverse or rescind a decision on the basis

of an error of law, an error of fact, or new information. See California Code of Regulations, title 15, §2042.
46See California Constitution Article V, §8.



CHAPTER 3. BACKGROUND ON THE CALIFORNIA PAROLE PROCESS 42

Governor Davis reversed 97% of the Board’s decisions to grant parole, whereas in 2015, Governor

Brown reversed 14% of the Board’s decisions to grant parole [Young, 2016].

A candidate who is denied parole may seek review by filing a habeas corpus petition. The court

may reverse a decision to deny parole and send it back to the parole board for a new decision,47 but

only if there is nothing in the record which provides “some evidence” of current dangerousness.48

3.5 Changes to Law Governing Parole During the Period of

Study (2007–2019)

Setback period (2008) Marsy’s Law was enacted by California voters in 2008. The law extended

the rights of victims at parole hearings and increased the period of time in between a decision to

deny parole and the next parole hearing.

Legal standard (2008) Prior to the California Supreme Court’s decision in In re Lawrence in

2008, parole could be denied solely on the basis of the gravity of the crime. The case established

that the overriding question for parole-release decisions is whether the candidate poses a current,

unreasonable risk to public safety. The gravity of the underlying crime cannot “in and of itself”

provide some evidence of current dangerousness.49 The gravity of the crime can, however, provide

evidence of current dangerousness if some other evidence in the record indicates that the crime

remains probative of whether a person is a continuing threat to public safety.50

Youth O↵ender parole (2014) Senate Bill 260 took e↵ect on January 1, 2014 and creates

specialized “youth o↵ender parole hearings” for people who committed o↵enses committed before the

age of eighteen.51 Subsequent amendments to the youth o↵ender parole statute extended eligibility

to people serving sentences for crimes committed under age 26.52 People serving life sentences53 as

47See In re Prather, 234 P.3d 541, 544 (2010) (when court grants petition for habeas corpus and reverses Board
decision to deny parole, remedy is for Board to conduct a new parole hearing).

48See In re Shaputis II 265 P.3d 253, 267 (2011) (proper inquiry for court reviewing decision to deny parole is to
determine whether whole record “discloses some evidence—a modicum of evidence—supporting the determination
that the inmate would pose a danger to the public if released on parole.”)

49See In re Lawrence, 190 P.3d 535, 555 (2008).
50See In re Lawrence, 190 P.3d 535, 555 (2008). See also In re Shaputis I, 190 P.3d 573, 584 (2008) (aggravated

nature of crime constituted evidence of current dangerousness to uphold where parole candidate was found to lack
insight into a long history of violence).

512013 California Legislative Service Chapter 312 (West) (amending California Penal Code §§3041 (West, last
amended 2017), 3046 (West, last amended 2017), 4801 (West, last amended 2017), and enacting §3051 (West, last
amended 2017)).

52See 2015 California Legislative Service Chapter 312 (West).
53After the legislature enacted penal code section 3051 in 2013, it amended the statute in 2015 and 2017. Under

the initial version of section 3051 that was in e↵ect during the time period of the study (Jan. 2014 to June 2015),
juveniles sentenced to life without the possibility of parole were ineligible to receive parole hearings under section 3051.
In 2017, however, the legislature amended section 3051 to extend eligibility to people who are serving life sentences
without the possibility of parole for convictions under the age of eighteen. See 2017 California Legislative Service
Chapter 684 (West).
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Figure 3.2: Parole hearing grant rates in California 2007–2019.

well as people serving long determinate sentences became eligible for youth o↵ender parole hearings

in their fifteenth, twentieth, or twenty-fifth year of incarceration.54 For some youth o↵ender parole

candidates, their initial hearing occurred several years or even several decades earlier than they had

anticipated based on the initial sentence. The law also requires that the Board to give “great weight

to the diminished culpability of youth as compared to that of adults, the hallmark features of youth,

and any subsequent growth and increased maturity of the prisoner in accordance with relevant case

law.”55

Elderly parole (2014) In response to a federal court to reduce the prison population, California

began implementing the Elderly Parole Program in 2014. Eligibility extends to individuals who are

60 years or older and who have been incarcerated for at least 25 years. Subsequently, Assembly Bill

3234 extended eligibility to individuals who are 50 years or older and who have been incarcerated

for at least 20 years. At an elderly parole hearing, the Board gives special consideration to advanced

age, length of confinement, and any diminished physical condition.

54See California Penal Code §3051 (a), (b) (West, last amended 2017). The date of the youth o↵ender’s initial
parole hearing depends on the “controlling o↵ense,” defined as the o↵ense or enhancement for which a sentencing
court imposed the longest period of incarceration. See California Penal Code §3051(b) (West, last amended 2017).
If the controlling o↵ense is a determinate term of years, the youth o↵ender is eligible for release during the fifteenth
year of incarceration; if it is a life term less than twenty-five-to-life, the youth o↵ender is eligible for release during the
twentieth year; and if it is a life term of twenty-five-to-life or longer, the youth o↵ender is eligible for release during
the twenty-fifth year. See California Penal Code §3051(b) (West, last amended 2017).

55See California Penal Code §4801(c) (West, last amended 2017).
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3.6 Di↵erences in Parole Systems Across the United States

Approximately half a million people are released on parole per year across the United States [Oudek-

erk and Kaeble, 2021], and it is estimated that release through the discretion of a parole board

accounts for one-third to half of all prison releases [Thomas and Reingold, 2017]. The laws, policies,

and general functioning of parole boards varies considerably across states [Rhine et al., 2017]. For

example, whereas California parole hearings are generally over an hour in duration, parole boards

in some other states spend 3–20 minutes per case [Rhine et al., 2017]. In some states, parole-release

decisions are made on the basis of paperwork without any hearing or interview with the parole can-

didate.56 And whereas California appoints attorneys for parole candidates who cannot a↵ord them,

other states prohibit candidates from having legal representation in parole hearings even if they can

a↵ord to pay.57 From 1970 to 2000, the federal government and 15 states largely abolished their

parole systems going forward [Renaud, 2019].

Another point of variation is the population who is eligible for parole. In some states, most

people in prison are eligible for release on parole; the gravity of their crimes ranges from minor to

severe and the length of their maximum sentences may range from two years to life. In California,

however, parole eligibility is generally limited to individuals who are serving life with the possibility

of parole sentences (subject to exceptions discussed infra). Relative to parole candidates in other

states, these individuals have committed crimes of heightened gravity and are far more likely to die

in prison if parole is repeatedly denied.

56See Vermont Statutes section 502(a).
57See Franciosi v. Michigan Parole Board, 604 N.W.2d 675 (Michigan 2000).



Chapter 4

California Parole Data

For the remainder of this dissertation, we discuss quantitative methods for analysis of the parole

hearing system described in Chapter 3. This chapter describes the process by which we obtain a set

of structured features from the hearing transcripts.

Each parole hearing, as described in Section 3.3, is transcribed by a court reporter present at the

hearing. The transcription is on the public record, per the California Public Records Act. Through

a public records act request accompanied by a research request, we obtained 35,105 transcripts, a

complete record of all hearings from 2007 to 2019, from the California Department of Corrections

and Rehabilitation (CDCR).1 Traditionally, this requires compiling and many cycles of editing of

an annotation manual, and the training and ongoing supervision of research assistants. We describe

this traditional process in Section 4.1.3.

In addition to traditional data annotation, we also pursued two less traditional routes for obtain-

ing structured features about each hearing. First, the manually annotated data is indeed the source

of some of the analysis in Chapters 7 and 8, but it is also the basis of training Natural Language

Processing (NLP) models, which in turn provide a set of labels, not just for the annotated hearings,

but for the entire corpus. This NLP is what enables the scale at which we can analyze the parole

hearing corpus. The NLP methods, as they apply to dataset generation, are described briefly in

Sections 4.1.10 and 4.1.9. For in-depth explanations and analyses of the NLP methods used, see

Chapter 6.

The second less traditional route for obtaining structured features is through a court order.

We describe all our data requests to CDCR in Section 4.1.4, and they are best understood not as

independent requests, but as an ongoing conversation and e↵orts to collaborate with CDCR.

In addition to the text of the transcripts themselves, the final products of our data curation

e↵orts are two tables of structured data. The first is a set of 55 features compiled primarily through

manual annotation over 688 hearings, and the second is a set of 33 features compiled primarily

1CDCR continues to withhold a small number of transcripts, citing confidentiality concerns.

45
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through automated information extraction over 34,994 hearings.

4.1 Methods

The California Parole Dataset accumulated data from a number of channels. The base data is a set

of 35,105 PDF transcripts, which is described in the first subsection. We have also taken e↵orts to

obtain a number of structured features associated with each transcript. These features are described

in detail in this section; examples include the year of the hearing, the race of the parole candidate,

or whether the parole candidate has a job o↵er.

Each feature is obtained through one or more data sources. We established a fixed ranking of

the reliability of our di↵erent data sources and extracted each feature from the most reliable source

that included the feature for a given transcript. The list, from most reliable to least reliable, is as

follows:

1. Manual data annotation (“coding the transcripts”) produced by a team of trained annotators.

This includes both the 754 transcripts coded for this study as well as 342 additional transcripts

coded for other studies for a subset of the features for a total of 1,096 documents.

2. Data obtained through a court order of CDCR in August 20202.

3. Data obtained from CDCR through California Public Records Act requests in March 2019.

4. Fields scraped from the CDCR “Inmate Locator” tool.3 This data source contains limited

data about candidates who were granted parole, because their information is removed from

the locator upon release.

5. Information parsed from the title pages of the transcripts.

6. Information extracted using Natural Language Processing techniques.

The breakdown of sources for the features included in the analysis is included in Table 4.1. In

the following sections, we first describe the raw transcript data and the feature selection process.

We then describe each of the processes enumerated above: the CDCR transcript data and manual

annotation process (item 1), the organization of CDCR tabular data (items 2–4), and the automated

extraction of features from CDCR transcripts using Natural Language Processing (items 5 and 6).

2See Voss v. California Department of Corrections and Rehabilitation, Verified Petition for Writ of Mandate Order-
ing Compliance with the California Public Records Act, available at https://www.courthousenews.com/wp-content/
uploads/2020/05/CalifParoleData-COMPLAINT.pdf

3The tool is available online at https://inmatelocator.cdcr.ca.gov.

https://www.courthousenews.com/wp-content/uploads/2020/05/CalifParoleData-COMPLAINT.pdf
https://www.courthousenews.com/wp-content/uploads/2020/05/CalifParoleData-COMPLAINT.pdf


CHAPTER 4. CALIFORNIA PAROLE DATA 47

Table 4.1: Origin breakdown for features included in the final dataset spanning all hearings.
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hearing date - 100% - - - -
candidate attorney - - - - 100% -
cdcr female - - - - 100% -
deputy commissioner - - - - 100% -
presiding commissioner - - - - 100% -
prison name - - - - 100% -
da present - - - - 100% -
retained attorney - 100% - - - -
ethnicity black - 100% - - - -
ethnicity latinx - 100% - - - -
ethnicity white - 100% - - - -
ethnicity other - 100% - - - -
proggang 3% - - - - 97%
initial - 99% - - - -
off mur1 3% - 50% - - 47%
off mur2 3% - 50% - - 47%
off muratt 3% - 50% - - 47%
off sex 6% - 94% - - -
precommit drugsalc 2% - - - - 98%
precommit gang 3% - - - - 97%
tabe - - - - - 100%
mepd 2% - - - - 98%
victim present - - - - 100% -
job offer - - - - - 100%
last writeup - - - - - 100%
psych assess - - - - - 100%
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4.1.1 Transcript Data

Pursuant to California Penal Code 3042(b), the Board of Parole Hearings is required to record

and transcribe parole suitability or the setting of a parole date for any prisoner sentenced to a life

sentence. The transcription is performed by a court reporter; no audio or video recordings of the

hearings are available. Transcripts are considered part of the public record.

We submitted a California Public Records Act request to CDCR on April 11, 2018. On October

1, 2018, the Board of Parole Hearings released all hearings from January 2009 through July 2018. In

July 2020, the Board of Parole Hearings released all hearings spanning the 2007 and 2008 calendar

years, and all hearings from August 2018 through the December 2019.

The title page of each hearing is well-structured and contains the date of the hearing, the prison

at which the hearing is held, the name and CDCR ID of the parole candidate, the name of their

attorney, the names of the presiding and deputy commissioners, and a list of others in attendance,

though additional participants may or may not be named.

4.1.2 Feature Selection

Factors relevant to understanding the parole process were identified through discussions with le-

gal experts in parole, formerly incarcerated previous parole candidates, advocacy groups including

appellate attorneys, representatives from the California Governor’s o�ce, and the Parole Board.

Discussions with the Board included two conversations with Director Jennifer Sha↵er in late 2018

and early 2019. Legal experts in parole have identified relevant features in prior studies: a feature set

for a subset of 754 hearings from October 2007–January 2010 [Young et al., 2015] and an adaptation

of that feature set for an analysis of a subset of 426 youth o↵ender hearings from January 2014–June

2015 [Bell, 2019]. We included those features identified as more than marginally predictive of bi-

nary parole outcome in either of these two prior analysis and added features suggested by the other

stakeholders, producing an initial list of 118 proposed features.

We narrowed the initial proposal list down to 36 features in three stages. The first was at the

stage of manual data extraction, where we monitored feature reliability at regular checkpoints. If a

feature was annotated with very low inter-rater reliability (see Technical Validation), or with very

extreme class imbalance, we removed it from our annotation scheme. Some of the proposed features

had to be broken down into multiple features; others could be combined into a single feature. The

second stage was in post-processing the features after combining data from all sources. If at this

stage, additional class imbalance emerges, we discarded the feature. Another reason for discarding

features at this stage was for missing data. If one or more data sources provided a feature, but only

on a very small subset of documents, this feature was not used.

The final stage was the pre-analysis step. To improve interpretability and further guard against

issues arising from class imbalance, we perform further feature combinations at this stage. We test

for multicollinearities by calculating Variable Inflation Factors (VIF) and resolve final issues on a
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held-out analysis dataset containing approximately 50% of the data used in the full analysis. These

three stages yielded the final 36 features. The following sections, and Feature Refinement in

particular, describe the process of selecting 36 features from the full list of 118.

4.1.3 Manual Annotation

In a study approved by the University of Oregon and the Stanford University Institutional Review

Boards (IRBs), a team of 10 paid research assistants was recruited to manually annotate a subset

of transcripts. All annotators received IRB training. They were trained over a three-week process

during which they all fully annotated the same three transcripts.

We then assigned new transcripts to the research assistants. During the initial rounds of coding,

transcripts were triple-coded. For a subset of the triple-coded transcripts, a legal expert who was

part of the study team resolved any conflicts during annotator training sessions. After the first month

of annotations, two annotators were identified as the most reliable “TAG” annotators. Subsequent

transcripts were double-coded (not triple- or quadruple-coded), and the other annotators were only

compared to one of the two TAG annotators for the double-coding.

In the first annotation round, 233 transcripts were sampled from the time period between 2007

and 2018, stratified by year. In a next round, a single annotator coded a sample of 500 transcripts

from January 2014 to June 2015 for a reduced set of variables. In the third annotation round, 260

transcripts were sampled from the time period between 2014 and 2019, stratified by year, and only

the two TAG annotators coded transcripts for the final set of variables.

We proceeded with annotation in multiple rounds using a custom-built data annotation tool

depicted in Figure 4.1. On the left side of the tool, a menu shows a list of annotation tasks.

Annotation tasks don’t necessarily have a one-to-one correspondence with features. For example, a

multiple-choice annotation task may be transformed to several binary features. For each annotation

task, annotators were asked to extract both the value of the field and click on one or more sentences

in the hearing transcript from which they identified the information. An initial set of 118 features

proposed as relevant was narrowed down to 59 annotation tasks through subsequent rounds of

annotation and reliability checks (some of the proposed fields had to be broken down into multiple

tasks, others could be combined into a single task).

4.1.4 Additional Data from CDCR

Accompanying our request for transcript data, we also requested 18 additional features about each

hearing. On March 18, 2019, the CDCR Data Requests team provided limited data on the commit-

ment o↵ense and conviction year features for a large subset of 26,760 hearings. CDCR, however,

did not release the majority of features that we included in our initial Public Records Act request.

In August 2020, we obtained a court order through the San Francisco Superior Court of California

for the release of three features: the race of each parole candidate, the current status of each parole
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Figure 4.1: A screenshot of the annotation tool used by the annotation team. A timer in the top
right corner keeps track of the time annotators spend on each document. In addition to reporting
the value for a given annotation tasks, the annotator is asked to click on one or more sentences from
which they gleaned the answer.
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candidate (released, returned to CDCR, or deceased), and the status of the attorney representing

the parole candidate at each hearing (whether the attorney was retained by the parole candidate or

appointed by the board). CDCR complied with this court order, providing these three features for

all hearings.

As a final source of additional data, separately from the Public Records Act request process,

CDCR maintains an Inmate Locator tool on their website that allows the public to look up individ-

uals by name or CDCR ID to find the date they were admitted to CDCR and their parole eligibility

date. The tool only contains information about those who are currently incarcerated at the time of

the query. We ran the tool on May 10, 2019 and obtained details for 88,645 individuals, of which

there were 6,133 who had hearings in our corpus, accounting for a total of 11,748 hearings.

4.1.5 Feature Refinement

A total of 116 features were proposed for analysis. Table 4.4 specifies 22 features that were dropped

from the annotation tasks because either a lack of reliability or excessive class imbalance observed

early in the annotation process (e.g., nearly all hearings were coded as the same value of the feature).

Removing these 22 features, 94 features were carried forward. Table 4.3 specifies 36 additional

features that were dropped because of class imbalance observed at the analysis stage. Tables 4.2

specifies the remaining 116-22-36=58 features, which were included for analysis. The final list of

features broadly spans the following categories:

• Pre-commitment factors about the candidate’s life prior to their conviction

• Factors of the commitment o↵ense

• Post-conviction disciplinary factors describing conduct in prison

• Factors describing participation in rehabilitational programming

• Factors describing post-release parole plans

• Factors of the hearing, such as where it took place and the attorneys and commissioners present

• Factors about the candidate, such as their race and ethnicity

• Whether the candidate retained a private attorney or an attorney was appointed by the board

4.1.6 Feature Transformations

We applied the following transformations to the features, such as transforming or removing features

entirely, to deal with mislabeled or missing data. During annotation, annotators were instructed to

mark “None” for a feature if the feature was not mentioned during the hearing. Unless otherwise
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stated, if a new field is created from a combination of existing fields, then if any of the existing fields

is “None,” the new field is also “None.”

1. All date fields were transformed into years. For the date fields year received, mepd, and

yped, we remove all dates before 1920 and treat them as missing data.

2. For all fields corresponding to an o↵ense specified in the California Penal Code (e.g. off mur1,

off mur2), if the field was labeled as “None,” we by default set it to be false.

3. For the following fields, we treat a “None” label as the same as a false label, noting that the fea-

ture denotes whether mention was present in the hearing: precommit sexual abuse, mental

treatment, gang debrief, prior violence, prog12, attorney opinion. We also treat all

of crime drugsalc, crime gang, crime agent, and crime solo as false if not mentioned

unless the candidate was marked as choosing not to discuss the commitment o↵ense.

4. We created a new ordinal variable gang debrief validate, which is 2 if gang validate is

false, 1 if gang validate is true but gang debrief is also true, and 0 if 1 if gang validate

is true and gang debrief is false. We then discarded the variables gang validate and gang

debrief.

5. We created a new variable years since last prison convict, which subtracts last prison

conviction from hearing year, and discarded last prison conviction.

6. We created a new variable prior convictions bucket which is 1 if prior convictions is

greater than 5 and 0 otherwise. We then discarded prior convictions.

7. We created a new variable years since eligible that takes the di↵erence between hearing

year and the earlier date from mepd and yped. We then discarded mepd and yped.

8. We created a new variable years since received, which subtracts year received from

hearing year.

9. We created a new variable justice involved which is 1 if any of prior convictions binary

or prior supervision or precommit prison is true, and 0 otherwise. We then discarded

prior convictions binary, prior supervision, and precommit prison.

10. We created a new variable num prison convictions bucket which binarizes num prison

convictions. It is 1 if num prison convictions is nonzero, and 0 otherwise. We then

discarded num prison convictions.

11. We created a new variable educational bucket, which is 1 if either cognitive impair is

true or tabe is less than 10. We then discarded cognitive impair.
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12. For claim innocence, we binarized the variable so that claim innocence is true if any of

the following were true: the candidate claims innocence for all convictions in the commitment

o↵ense, the candidate claims innocence for some convictions in the commitment o↵ense, or

the candidate chooses not to discuss the commitment o↵ense but does not otherwise specify

whether the candidate claims innocence. claim innocence is false if the hearing was specifi-

cally marked as ”no” to the original question, or if it was originally “None.”

13. We created a new variable clean time, which subtracts the more recent of last writeup and

last prison conviction from hearing year. We discarded the variables last writeup

and last prison conviction.

14. We created a new variable chronos bucket that is 0 if chronos is 0, 1 if chronos is between

1 and 9 inclusive, and 2 if chronos is at least 10. We discarded the variable chronos.

15. We created a new variable tabe bucket that buckets the TABE score into 0-8.9, 9-11.9, and

12+ based on histogram analysis. We discarded the variable tabe.

16. We created a new variable prog12 failed which is true if the candidate was asked about

the 12 steps and did not give an adequate response, and is false if either the candidate was

not asked about the 12 steps, or if the candidate was asked about the 12 steps and gave an

adequate response. We discarded the variable prog12.

17. We transform the variable attorney opinion so that it is false if the candidate’s attorney

argued for a setback, and it is true if the candidate’s attorney argued for a release, or if it was

unclear.

18. We created a new variable prison is level iv, which is true if the prison name refers to

a prison where more than half of the population is level IV, based on https://www.cdcr.

ca.gov/research/compstat/. We discarded prison name. Note that this variable refers to

a prison, not an individual. An individual at the time of a hearing is housed at a particular

security level, which is not available in the data. Rather, for each prison, CDCR reports the

percentage of the prison’s overall population that is housed at each security level. Level IV

refers to the maximum security level.

19. We created a new variable years since 2007, which is the di↵erence between hearing year

and 2007, the year of the earliest hearing in our dataset.

20. We created a new variable prog bucket that is true if the candidate participated in at least four

of the following programs: progang, progartfit, progedu, proggang, progparent, progphil,

progrel, progsubst, progther, progvictim, progvoc, and progoth. The cuto↵ is chosen

based on a local minimum in the histogram of the sum of the raw programming variables. We

discarded the raw programming variables.

https://www.cdcr.ca.gov/research/compstat/
https://www.cdcr.ca.gov/research/compstat/
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21. We created a new variable to summarize the e↵ect of the presiding commissioner for each

hearing, rather than assigning as many indicator variables as there are unique presiding com-

missioners in the dataset. presiding commissioner rate is the percentage of hearings the

commissioner granted out of total hearings the commissioner presided over prior to the hear-

ing. That is, presiding commissioner rate is always calculated using only the facts known

at the time of the hearing.

22. Because year received and year convicted overlap, year convicted is dropped, since it

has less data available and year received is more consistently mentioned in the hearings.

23. Based on histogram inspections, we removed the following features with severe class imbalance

(� 95%): confidential info, crime agent, intimate partner battering, gang debrief

validate (95% in the manual sample have never validated), lifer, crime child, crime

elderly, crime police, and all but three precommit variables, precommit gang, precommit

sexual abuse, and precommit prison. However, precommit prison is included as part of

justice involved (item 9 above), so was discarded.

24. We discarded all features that are labeled on fewer than 300 documents: disagree about

crime, prior convictions bucket, residential plan, years since last prison convict.

25. Since the CDCR-provided ethnicity fields constitute a superset of the race variable, with the

additional “Hispanic”/“Not Hispanic” identification, we only use the ethnicity variables.

To further verify the integrity of our data, we performed the following sanity checks on the values

of di↵erent features. Some of the sanity checks use features that were discarded from the analysis

in the previous step. Even though those features may have been discarded from the analysis after

being transformed, their raw values are still useful for sanity checks. We enumerate five sanity checks

below, and we expect that the statements hold true for all documents. When a statement does not

hold true for a given document, we do not necessarily discard the labels for the relevant features for

that document. We manually inspected the results. On occasion, we found exceptions to the rules.

In other cases, when one of the following statements was not true for a document, it was because

of error coming from the data, such as a typo or mistake in human annotation, or an error in NLP

extraction. In such cases, we manually corrected the underlying data.

1. We expect the hearing year to be at least ten years after year received.

2. If count 115s is zero, we expect last writeup to be “None,” and if not, then we expect some

value filled in for last writeup.

3. We expect mepd to be after year received. We also expect mepd to be no more than one

year after hearing year.



CHAPTER 4. CALIFORNIA PAROLE DATA 55

4. We expect that if gang validation is false, then gang debrief must also be false.

5. We expect that if last prison conviction is specified, then num prison convictions should

be at least one.

After all these transformations, the 58 features that remained after feature refinement were

transformed to 36 features.

4.1.7 Automated Extraction

The following sections describe the automated extraction techniques we used. For the data requests

and the manual annotation processes, each method applies to a specific subset of documents (e.g. the

688 sampled for manual annotation, the individuals currently incarcerated for the Inmate Locator

tool). However, for automated extraction, each method obtains features for the full set of 34,993

hearings.

4.1.8 Direct Extraction from Title and Closing Pages

Several features are specified on a title or closing page and can be extracted with perfect accuracy.

Those features are: the date of the hearing, the prison at which the hearing is held, the name and

CDCR ID of the parole candidate, the name of their attorney, the names of the presiding and deputy

commissioners, and a list of others in attendance, though additional participants may or may not be

named. Although the name of the attorney is listed, the name alone is insu�cient for determining

whether the attorney is board-appointed or retained, because the same attorney may serve appear in

either the board-appointed or the retained role during the course of the timespan of our transcripts.

When available, the hearing decision was parsed form the final page of the PDF document. The

hearing decision is coded in terms of the number of years a parole candidate is set back before the

next hearing. A grant of parole is coded as zero years.

All of the transcripts were parsed using a series of custom PDF parsing tools implemented in

Python. To correct for misspelled names of the commissioners and attorneys present in the hearings

as well as the name of the prison where the hearing was conducted, we performed clustering was

performed using string similarity metrics.

In total, this contributes six features: the hearing date, the prison, the presiding commissioner

identity, the parole outcome, and the two binary features of whether a district attorney attended the

hearing, and whether a victim or victim’s representative attended the hearing. The district attorney’s

and victim’s representative’s roles are listed next to the name of each individual, if applicable.
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4.1.9 Weakly-Supervised Labeling Functions

Our next approach to automated extraction involves weakly supervised labeling functions, or heuris-

tic functions [Hong et al., 2021b]. We used this method to extract the following nine variables:

proggang, off mur1, off mur2, off muratt, precommit drugsalc, precommit gang, tabe, mepd,

and psych assess.

Drawing on work in weak supervision, we use the paradigm of data programming [Ratner et al.,

2018] to extract some of the factors. We develop a series of “labeling functions” for a subset of the

features as a proof of concept. A labeling function is a noisy extractor for a task relying on tools

such as regular expressions, string searches, or sentiment analysis. Each set of labeling functions in

our implementation includes a prepossessing segmentation function that narrows the text of a long

hearing down to one or more smaller chunks of text that are more likely to contain the result. Each

labeling function can then either return a result or abstain on the task at the document level.

When combined, multiple labeling functions can comprise a high-quality extractor.4 We consid-

ered several supervised and unsupervised strategies for combining the outputs � = [�1,�2, ...]T from

the labeling functions into a single label using limited training data. In our exploratory analysis, we

found no benefit from using the unsupervised label aggregation models[Ratner et al., 2018], so we

settled on two supervised methods.

• Logistic Regression aims to find a set of parameters ✓, ✓0 that optimally solves minimizes

min
X

x,y

�(✓T�(x) + ✓0)� ind.(y)

where x is a given hearing, y is the true label for this hearing in the training data (as a one-

hot vector 2 ZK for categorical data), and �i(z) = eziPK
j=1 ezj

is the softmax function, for a

K-cardinality task. This model is appropriate for situations in which it makes sense to learn

a prior ✓0 per category of each tasks. This makes sense for tasks like “Did the candidate

participate in gang-related rehabilitational programming?” where it may be reasonable to

learn a prior, like that most candidates do participate in such programming. It does not make

sense for numerical tasks, tasks with significant class imbalance, or when there is concern of

a significant distribution shift between the train and test distribution. For example, for the

task of extracting the Minimum Eligible Parole Date (MEPD), there is no point to learning

a prior on the “mean MEPD” in the train dataset, and indeed, doing so hurts performance.

The logistic regression model can be trained to never abstain as it can utilize its prior to make

4The output of the labeling function combination can also be used to train a larger extraction model, such as a
neural network with various supervision strategies. We are experimenting with several strategies for doing this, but this
remains a challenging task even for large-scale modern language models because of the length of the documents and the
task of identifying “where to look.” To ensure that the analyses in this study are interpretable, we opted for utilizing
only the extractions resulting from combining multiple labeling functions directly and limited our investigation to the
tasks that performed the best at this.
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a prediction when all of its labeling functions abstain from a prediction.

• Constrained Least Squares (“linear model”): To avoid the issues with a prior-based model,

we constructed a model which we refer to as the “linear model.” This model aims to learn

a weighing ✓ 2 R|�| of the labeling function outputs � directly and use this weighting in a

majority-rules computation. Intuitively, ✓i tells us how much weight we should attribute to

the ith labeling function and thus �i. The linear model solves constrained non-negative least

squares problem

min k
X

x,y

max
j

|�|X

i=1

{✓i if �i(x) = j else 0}� yk2
2

s.t. ✓i > 0 8 i 2 1, . . . , |�|

This model is appropriate for high-cardinality tasks and tasks for which the answer has to be

extracted directly from the text and the cardinality cannot be fixed in advance, such as years,

numbers or scores.

4.1.10 Pre-Trained Language Models

We used pre-trained language models for the following three variables: edu level, job offer, and

last writeup.[Hong et al., 2021a]

For a number of features, the combination of many weak labeling functions fails to extract the

correct value with su�cient accuracy. For such features, we leverage advances in neural models

for information extraction and question answering. We use an approach inspired by the two-step

Retriever-Reader approach to open-domain question answering (ODQA) [Chen et al., 2017, Das

et al., 2019]. Here, our two steps are the Reducer and the Producer. We write rule-based Reducers

that follow the pattern of generating candidate segments and candidate substrings, [Zhang et al.,

2019, Hong et al., 2021a] and sequenced in order of increasing breadth and decreasing precision. The

framework provides high-level functions that enable us to easily operate on pipelines of candidate

segments, filtering in and out, splitting, de-overlapping, and limiting results to create a high-quality

reduced output passage.

Reducers perform the role of segmentation, similar to the preprocessing role in Data Program-

ming. A Reducer selects relevant segments from within a given document. A Producer generates

the label from the reduced text. Using a neural model for the Producer provides many advantages

in terms of the complexity of text the model is able to digest. However, most neural models are

quite limited in the input length of the text it can handle, necessitating a strong Reducer. Many

neural models cannot handle more than 500 or one thousand words at a time. Parole hearings are,

on average, twenty thousand words, with some much longer than the average. We write and train

separate Reducers and Producer for each field of interest.
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Using the data produced by the Reducer, we train a Producer for each feature. We use a pre-

trained RoBERTa + BigBird (RoB + BB) base model [Zaheer et al., 2020], which is fine-tuned on

various prediction heads:

• The feature job offer uses a sequence classification head.

• The feature edu level uses a sequence classification head.

• The feature last writeup uses a masked language modeling head.

4.2 Technical Validation

We describe the validation of the manual annotations in the Manual Annotation section. We use

the manual annotations to validate the computer-extracted features.

4.2.1 Inter-Rater Reliability of Manual Annotation

We compute multiple statistics to assess reliability of the annotations. The choice of a reliability

metric is not trivial, because the overlap of annotators varies by feature across our dataset and thus

Cohen’s or Fleiss’  statistics can only provide incomplete information. We report the following

measures:

• Percentage agreement, provided as an uncorrected easily interpretable statistic. For all pairwise

documents

• Gwet’s AC1 generalization of kappa for missing data. AC1 improves over Krippendor↵’s ↵

statistic which exhibits paradoxical results in the presence of class imbalance due to the for-

mulation of its estimate of expected disagreement. AC1 has been found to provide a stable

inter-rater reliability coe�cient with very small bias and mean squared error when the nondif-

ferential error assumption holds [De Raadt et al., 2019].

• Human F1 estimate. In order to provide a point of comparison between our automated feature

extraction model evaluation and human extraction performance, we compute a “human F1

estimate.” To do this, we consider all pairwise annotations for a feature and designate one of

the annotations as gold using the statistical mode, the same logic that is used to resolve labels

used for analysis. We then compute the harmonic mean between precision and recall weighted

by class prevalence to estimate F̂1.

Uncorrected percentage agreement, Gwet’s AC1, and the F1 estimates for all manually annotated

features used in the analysis are presented in Table 4.5. For each feature, the answer choices were

bucketed into the categories used for analysis before calculating ̂. A total of 59 documents was
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labeled by at least two raters for all features, and some documents were multi-coded, covering 199

document pairs across 10 annotators.

4.2.2 Limitations of Manual Annotation

The primary purpose of our manual annotation e↵ort is to serve as a baseline following well-

established social science methodology, against which we can compare the features extracted from

34,993 transcripts using NLP methods. As such, we did not focus on improving human labeling

reliability of the subset of the 118 features initially proposed that proved too di�cult to extract for

our annotators. Variables for which reliability could not be established were instead cut, resulting

in some omitted variable bias. Each one of these 118 factors has a story of its own and many are

worthy of much more detailed investigation. Those who wish to pursue research on these features

should feel empowered to use the raw transcript text and replicate our annotation methodology, or

use a di↵erent annotation methodology, for obtaining more annotations.

Because our analysis covers a very large time period with changes in the legislative statues and

case law concerning parole, it is not unreasonable to postulate that set of relevant factors changes

throughout the analysis period, and that new features may arise over time. For example, legal

designations changed over the course of 2007–2019: confidential info, youth offender, and

elderly parole.

4.2.3 Evaluation of Extracted Features

During development, we evaluated the labeling functions on a hold-out development set of documents

made with annotator- and CDCR-provided annotations. We subsequently trained the combination

model on a train set. For each task, we computed accuracy statistic on a validation set and chose the

better model. All features with an extraction F1 score of below 0.7 were dropped at this stage. We

evaluated the final model on a held-out test set that was never inspected during model development.

Table 6.1 lists the dataset sizes for training and validation for each feature.

To increase the amount of data available for training, validation, and testing beyond the data

sources described in the present work, we drew on the annotations produced by prior parole stud-

ies [Bell, 2019, Young et al., 2015], which were graciously provided by the authors. For the earlier

of the two studies [Young et al., 2015], we used the data from only for the validation and test splits

to ensure su�cient diversity in our evaluation data.

The mean F1 score for each NLP-extracted feature is described in more depth in Chapter 6.

The prior-free linear extraction model outperformed the logistic regression model for all features

except for precommit gang. This makes sense, since learning a prior for these two binary features

likely gives the logistic regression classifier an advantage, but the prior hurts the model for higher-

cardinality tasks. The best extraction model for risk assess only relies on heuristics. Neural

models outperform linear models for three features (job offer, last writeup, and edu level).
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Table 4.2: Hypothesized features that are included in the primary analysis, sometimes with trans-
formations or bucketing applied.

Feature Description

attorney opinion In the closing statement did the candidate’s attorney argue for release,

or for a set-back?

claim innocence Does Candidate claim innocence in the commitment o↵ense?

cognitive impair Does the candidate have a history of any of the following impairments?

(ADHD, Asperger’s, Autism, Dyslexia, Low IQ, Designated Speced,

Low Cognitive Understanding, Other)

count 115s Total count of 115s

gender female Whether candidate female as designated by CDCR number

crime drugsalc Whether person was intoxicated at time of crime or heavily using

alcohol/drugs around the time

crime gang Was crime rooted in gang activity?

da oppose DA Opposition

date convicted Date of last conviction

date received Date received by CDCR

edu level Education Level

elderly parole Elderly Parole Designation - Specific mention of “elderly parole,” not

based on the candidate’s age

eprd Earliest possible release date - determinate sentences only

ethnicity CDCR-recorded ethnicity of candidate

gang debrief Did the candidate previously ”debrief” from a prison gang?

gang validation Validated as gang member?

hearing date Date of the hearing

initial Is this the candidate’s first hearing?

job offer Confirmed job o↵er?

last prison

conviction

If convictions in prison, state date of most recent conviction.

last writeup Most Recent 115

mental illness History of diagnosed mental illness?

mental treatment Currently receiving mental health treatment (medication or counsel-

ing)?

mepd Minimum Eligible Parole Date

num prison

convictions

Number of convictions while in prison

off mur1 Number of counts of Murder 1 (187)
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off mur2 Number of counts of Murder 2 (187)

off muratt Number of counts of Attempted Murder (664-187 or 217)

off sex Number of counts of Rape/sexual assault (261-269)

precommit gang Whether person was involved in gang activity prior to commitment

o↵ense

precommit prison If person was incarcerated prior to commitment o↵ense

precommit sexual

abuse

Victim of sexual abuse prior to commitment o↵ense?

presiding

commissioner

Presiding Commissioner at the hearing

prior convictions Number of convictions candidate had before the commitment o↵ense

prior supervision Select if person was on probation or parole or other form of supervision

prior to commitment o↵ense

prior violence Violent activity prior to the crime? (Includes convictions and admis-

sions)

prison name Name of the prison where the hearing is being conducted

prog12 Questioned about the 12 steps and whether answered correctly

progang Anger Programming

progartfit Art of Phys. Ed. Programming

progedu Educational programming

proggang Gang Programming

progoth Other Programming

progparent Parenting Programming

progphil Philanthropic Programming

progrel Religious Programming

progsubst Subst. Programming

progther Cognitive Behavioral or other psychotherapy

progvictim Victim Programming

progvoc Vocational Programming

race CDCR-recorded race of candidate

retained attorney Whether the candidate privately engaged an attorney

psych assess Psych Risk Score at most recent comprehensive assessment

tabe Most recent TABE score (or grade level equivalent if no TABE)

victim oppose Victim Opposition

victim present Victim present at hearing?

youth offender Youth o↵ender parole hearing - 3051/4801/260/261

yped Youth O↵ender Parole Eligible Date
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Table 4.3: Hypothesized features that were analyzed, but not included in the final analysis due to
excessive class imbalance or lack of data.

Feature Description
candidate attorney Name of the candidate attorney
age at crime Age at time of crime (only if stated, not calculated from date)
chronos How many laudatory chronos did the Candidate receive from members

of prison sta↵?
confidential info5 Did the board mentioned that it reviewed confidential information?
current age Age at the time of the hearing
deputy commissioner Deputy Commissioner at the hearing
disc contested whether any discussion about a write-up (115 or 128) being contested
disc sex whether any discussion of write-ups (115s or 128s) of sexual nature
disc subst whether any discussion of write-ups (115s or 128s) about substance

use/abuse/trade
disc violence whether any discussion of write-ups (115s or 128s) for violence
lifer Life with possibility of parole sentence?
off assault firearm Number of counts of Assault with deadly weapon or firearm - 245(a,

b)
off burglary Number of counts of Burglary (459)
off car theft Number of counts of car theft and joy riding (VC10851)
off carjacking Number of counts of Carjacking (215)
off child binary Was victim a child (under 18)?
off domestic
violence

Number of counts of domestic violence (273)

off driveby enhance Number of counts of driveby enhance -12022.55
off drug possession Number of counts of drug possession (HS11350)
off elderly binary If victim was over 65 and/or described as ’elderly’ or as ’a senior,’

select true.
off false
imprisonment

Number of counts of false imprisonment and/or human tra�cking
(236)

off gang enhance Number of counts of Gang Enhancement (186.22)
off gun enhance Number of counts of gun/weapon enhancement - 12021.22-12022.53
off habit enhance Number of counts of Habitual O↵ender Enhancement (667, ”strike”)
off harm to child Number of counts of harm to child (273)
off injury enhance Number of counts of great bodily injury enhancement (12022.7)
off invol
manslaughter

Number of counts of Involuntary manslaughter (192b)

off kidnapping Number of counts of Kidnapping (207, 209)
off mayhem Number of counts of aggravated mayhem (205)
off other counts Number of other counts
off robbery Number of counts of Robbery (211, 212)
off shooting at
house

Number of counts of shooting at inhabited dwelling (246)

off torture Number of counts of torture (206)
off vol manslaughter Number of counts of Voluntary manslaughter (192a)
crime solo Was crime committed without anyone else helping or pressuring the

person into it?
crime police Was victim a member of law enforcement?
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Table 4.4: Hypothesized features that were not included in the analysis at all due to lack of reliability
or class imbalance at the annotation stage.

Feature Description
crime agent Was the candidate the primary agent that caused harm in the crime

[e.g. actual killer in murder case]?
disagree about crime Disagreement in the facts of the crime?
disc pattern whether multiple 115s in last five years
intimate partner
battering

Victim of intimate partner battering, and committed crime in this
context (”battered wife syndrome”)

precommit child
neglect

Neglect as a child

precommit corporal
punish

Harsh corporal punishment (not characterized as child abuse) prior to
the crime?

precommit dropout Dropped out of school (do not mark if left school b/c incarceration)?
precommit drugsalc Prior drug/alcohol abuse”,”Whether person had hx of drug/alcohol

abuse prior to commitment o↵ense?
precommit drugsalc
home

Substance abuse in the home (by someone other than the Candidate)
prior to the crime?

precommit emotional
abuse

Victim of verbal or emotional abuse prior to the crime?

precommit family
victim

Family members or friends victims of violent crime prior to the crime?

precommit foster Foster care (state number of years in foster care)
precommit homeless Homelessness prior to the crime?
precommit parent
gang

Parent in gang prior to the crime?

precommit parent
prison

Parent in prison prior to the crime?

precommit physical
abuse

Victim of physical abuse prior to the crime?

precommit suicide Suicide attempts prior to the crime?
precommit trauma
other

Other disadvantage or trauma prior to the crime?

precommit violence
home

Witness to violence in home prior to the crime?

precommit violence
nonhome

Witness to violence outside of home prior to the crime?

residential plan Residential plans / confirmed housing arrangements?
yrserved Total years served (only if stated in hearing, not calculated from date)
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Table 4.5: Inter-rater reliability for manually labeled features included in the primary analysis. Three
measures are provided: uncorrected percentage agreement, Gwet’s AC1 statistic, which corrects for
chance agreement, and a human labeling F1 estimate. A total of 59 documents was labeled by at
least two raters for all features, and some documents were multi-coded, covering 199 document pairs
across 10 labelers.

Category Feature Agree AC1 F̂1
Hearing victim oppose 1.00 1.00 1.00

district attny oppose 0.94 0.98 0.96

Pre-Commitment justice involved combines features 0.72 0.82 0.85
precommit prison 0.76 0.77 0.86
prior convictions 0.68 0.82 0.85
prior supervision 0.84 0.85 0.91

precommit sex abuse 0.97 0.91 0.97
precommit gang 0.87 0.91 0.93

Commitment O↵ense offense murder first 0.93 0.95 0.97
offense murder second 0.96 0.95 0.98
offense murder attempt 0.96 0.99 0.98
offense sex 1.00 1.00 1.00
crime gang 0.95 0.95 0.97
crime drugs alcohol 0.75 0.89 0.90

Programs & chronos bucket 0.91 0.93 0.91
Rehabilitation programming all combines features 0.76 0.95 0.89

progang 0.75 0.89 0.88
progartfit 0.82 0.87 0.91
progedu 0.44 0.56 0.70
proggang 1.00 1.00 1.00
progoth 0.53 0.83 0.79
progparent 0.92 0.91 0.94
progphil 0.76 0.84 0.91
progrel 0.78 0.92 0.91
progsubst 0.93 0.98 0.96
progther 0.73 0.84 0.88
progvictim 0.82 0.93 0.93
progvoc 0.86 0.83 0.87

12steps program failed 0.94 0.98 0.97

Disciplinary count 115 0.83 0.95 0.90
clean time combines features 0.76 0.93 0.85

last writeup 0.72 0.88 0.79
last prison conviction 0.98 0.95 0.98

num prison convictions 0.98 0.95 0.98

Parole Preparation psych assess 0.74 0.83 0.85
job offer 0.64 0.94 0.83
years since eligible combines features 0.96 0.99 0.97

yped 0.99 0.90 0.95
mepd 0.95 0.98 0.96

Special Designation elderly parole 1.00 1.00 1.00
youth offender 0.99 0.92 0.98



Chapter 5

Detecting Label Errors by using

Pre-Trained Language Models

One of the primary challenges in curating a structured dataset as described in Chapter 4 has been the

task of manual annotation and producing an initial set of labels to train NLP models on. However,

in spite of many measures of inter-annotator agreement and rounds of annotator calibration, we

still identified a small number of errors in the resulting annotations. Some of those errors a↵ected

downstream language model training, as described in the error analyses of Chapter 6.

In the process of automating the detection of label errors, we found large, pre-trained language

models to be surprisingly e↵ective at this identifying errors in our labels. Simply examining out-of-

sample data points in descending order of fine-tuned task loss significantly outperforms more complex

error-detection mechanisms proposed in previous work. To validate this method for identifying label

errors, we run several additional experiments on commonly-used NLP datasets such as Amazon

Reviews and IMDB Movie Reviews.

To this end, we contribute a novel method for introducing realistic, human-originated label noise

into existing crowdsourced datasets such as SNLI and TweetNLP. What SNLI and TweetNLP have

in common with the parole annotations compiled in Chapter 4 is that their labels are also produced

by human annotators, and that as part of the annotation process, a subset of the data is multiply

annotated (i.e., multiple annotators assigned to the same data point). The multiple annotations

allow us to produce a measure of annotation reliability and to simulate human-originated errors.

We show that the noise of simulated human-originated errors has similar properties to real, hand-

verified label errors, and is harder to detect than existing synthetic noise, creating challenges for

model robustness. We argue that human-originated noise is a better standard for evaluation than

synthetic noise. Finally, we use crowdsourced verification to evaluate the detection of real errors on

IMDB, Amazon Reviews, and the parole dataset, and confirm that pre-trained models perform at a

65
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Figure 5.1: Precision-recall curves for label error detection: Large language models detect label
errors with high precision, and far more e↵ectively than a baseline word vector-based neural classifier.
Overlaying a state-of-the-art model-agnostic error detection method, Confident Learning, results in
little to no improvement (TweetNLP-5; §5.7).

9–36% higher absolute Area Under the Precision-Recall Curve than existing models.

5.1 Introduction

Improving model performance in the presence of label errors comprises an area of active research [Song

et al., 2022]. However, existing methods focus on label errors in training data. Although seldom

acknowledged, evaluation label errors are at least as pernicious as training label errors: pervasive

errors in commonly used NLP benchmarks have been found to destabilize model performance [Malik

and Bhardwaj, 2011, Northcutt et al., 2021b]. Such findings suggest that improving training meth-

ods does not preclude the need for improving the underlying data. We propose a simple method for

using large, pre-trained language models (LLMs) to directly identify label errors for the purposes of

correcting or removing them.

The majority of work in identifying label errors, and in data-centric artificial intelligence (DCAI)

more broadly, focuses on image and healthcare data [DCAI Workshop, 2021]. However, the success

of the foundation model (FM) paradigm in applying pre-trained language models to a variety of

NLP tasks [Bommasani et al., 2021, Reiss et al., 2020] suggests that FMs may be a powerful tool for

detecting and correcting label errors in language datasets. Pre-training has been shown to imbue

models with properties such as resistance to label errors, class imbalance [Karthik et al., 2021], out-of-

distribution detection [Hendrycks et al., 2018], and confidence calibration [Desai and Durrett, 2020],

while conferring robustness, generalization, and natural language understanding capabilities [Wang
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Dataset Text Label Sentiment

IMDB It is really unfortunate that a movie so well produced turns out to be
such a disappointment. I thought this was full of (silly) cliches. It had
all sorts of di↵erences that it tried to tie together (not a bad thing
in itself) but the result is at best awkward, but in fact ridiculous–too
many clashes that wouldn’t really happen. Then the end of the movie–
the last 10 minutes–ruined all the rest. At first I thought Xavier was
OK but with retrospect I think he was pretty bad. And that’s all really
too bad, because technically it was really good, and the soundtrack was
great too. So the form was good, but the content pretty horrible.

Positive Negative

IMDB The ending made my heart jump up into my throat. I proceeded to
leave the movie theater a little jittery. After all, it was nearly midnight.
The movie was better than I expected. I don’t know why it didn’t
last very long in the theaters or make as much money as anticipated.
Definitely would recommend.

Negative Positive

Amazon The new design only has a thin layer of cellulose sponge material. It
will not last as long. Already showing signs of wearing out. The picture
does not represent the item received.

Neutral Negative

Table 5.1: Organic label errors from sentiment datasets IMDB and Amazon, shown with the original
dataset label. Each example was hypothesized by our model to be erroneous, and later verified by
crowd workers.

et al., 2018, Petroni et al., 2019]. Our primary contribution is to show that simply verifying items in

order of their out-of-sample loss on a foundation model improves precision by an absolute 15–28%

and Area Under the Precision-Recall Curve (AUPR) by an absolute 9–36%.

Many methods for label error detection rely on artificially introduced label errors as ground

truth for evaluating their methods. [Northcutt et al., 2021a] develop a state-of-the-art model for

identifying label errors, Confident Learning (CL), and use the better approach of crowdsourced

human evaluations to determine the ground truth of label errors. We model our experiments on

real data after their verification protocol, replicating this on real errors in IMDB [Maas et al., 2011],

Amazon Reviews [McAuley et al., 2015], and Recon [Hong et al., 2021a], with adaptations to mitigate

annotator fraud [Kennedy et al., 2020].

In the process of assessing our results, we contribute a novel technique and protocol for introduc-

ing realistic, human-originated label noise into existing crowdsourced datasets, and apply it to two

such datasets, TweetNLP [Gimpel et al., 2010] and SNLI [Bowman et al., 2015]. We demonstrate

that our technique better approximates organic (real, naturally occurring) label errors than existing

methods. We provide evidence that this realism is essential to properly assessing model performance:

even models that are robust to standard synthetic noising approaches show limited robustness to

human-originated noise.1

1Data noising library and evaluation data available at https://github.com/dcx/lnlfm.

https://github.com/dcx/lnlfm
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5.2 Related Work

Learning with Noisy Labels (LNL) focuses on the model-training stage. Noise-robust approaches

examine model enhancements such as the design of loss functions [Joulin et al., 2016, Amid et al.,

2019, Liu and Guo, 2020, Ma et al., 2020], regularization [Azadi et al., 2015, Zhou and Chen,

2021], reweighting [Bar et al., 2021, Kumar and Amid, 2021], hard negative mining and contrastive

learning [Zhang and Stratos, 2021]. Noise-cleansing approaches aim to segregate clean data from

noisy data in training, e.g. bagging and boosting [Wheway, 2000, Sluban et al., 2014], k-nearest

neighbors [Delany et al., 2012], outlier detection [Gamberger et al., 2000, Thongkam et al., 2008],

bootstrapping [Reed et al., 2014], and neural networks supervised directly on detecting an error,

when such data exist [Jiang et al., 2018].

LNL methods have in most cases been evaluated using artificially-generated label noise. A typical

evaluation of an LNL method uses a standard benchmark dataset, and programmatically corrupts

training labels via one of three main noising schemes [Frenay and Verleysen, 2014, Algan and Ulusoy,

2020]. Uniform noise is most commonly used but unrealistic; deep neural networks have been found

to perform well even when noised labels outnumber original labels at a ratio of 100 to 1 [Rolnick

et al., 2017]. Class-dependent noise randomly permutes labels based on a confusion matrix. However,

research on annotator disagreement suggests that label errors tend to result from feature-based, not

class-based ambiguity [Hendrycks et al., 2018]. Training models to generate realistic feature-based

or instance-dependent noise has recently emerged as an area of active research [Chen et al., 2021b,

Xu et al., 2021a, Dawson and Polikar, 2021]. However, [Algan and Ulusoy, 2020] report that feature-

dependent noise may bias benchmark performance toward similar models to the ones used to generate

this noise.

The noising schemes above each fail in some way to simulate organic, naturally occurring label

errors, which are estimated to occur in common benchmarks at 1–5% of labels [Redman, 1998, Müller

and Markert, 2019, Northcutt et al., 2021b, Kreutzer et al., 2022] or even as much as 20% [Hovy

et al., 2014, Abedjan et al., 2016]. For organic errors, CL [Northcutt et al., 2021a] predicts errors in

IMDB, Amazon Reviews, and other datasets by estimating a joint distribution between noisy and

uncorrupted labels; Reiss et al. [2020] pioneers using BERT for error detection on ConLL-2003 via

a classifier trained over a frozen BERT embeddings layer.

5.3 Methods

Motivation. Empirical evidence on image data suggests that models exhibit high loss on label

errors in training data relative to the underlying features [Huang et al., 2019, Kim et al., 2021, Hong

et al., 2021a, Chen et al., 2021a]. Hendrycks and Gimpel [2017] show that predicted probabilities of

(non pre-trained) neural networks can identify out-of-distribution examples. We consider the framing

that label errors are one type of out-of-distribution data. Indeed, CL [Northcutt et al., 2021a] uses
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Figure 5.2: Loss exhibits a strong log-linear relationship with error detection precision at a fixed
threshold, across a broad range of models and hyperparameters (r2: 0.94; TweetNLP-5, §5.7).
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Figure 5.3: Assessing model robustness against a range of noising methods on TweetNLP, with
methods ordered by hypothesized realism. Solid orange lines report task performance on noisy test
data, reflecting observations in practice; dashed blue lines report task performance on underlying
clean test data, reflecting models’ actual performance. Models may be robust to uniform and
class-dependent noise, where the true performance remains high even with increasing levels of noise.
However, they are not necessarily robust to human-originated noise, where the true test performance
decreases with increasing noise.

normalized predicted probabilities, also from non pre-trained models, to directly identify label errors.

Foundation models are highly performant; we hypothesize that a low likelihood label is likely to be

an error.

Foundation models. The success of [Reiss et al., 2020]’s approach in using frozen BERT embed-

dings motivates directly applying the foundation model paradigm: we use a large language model

that was first pre-trained on a task-agnostic dataset, then fine-tune the model for a given task.

We address classification tasks: given a model’s score fi,c for each item i and class c, its predicted

probability is the softmax-normalized score p(c | xi). Because each item belongs to exactly one class,

the contribution of item i to the loss is the negative log probability of the score for the assigned
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class yi:

Li =
X

i

�log p(yi | xi).

We fine-tune such a model for the training split of each data set. To identify label errors on a

validation or test set, we hypothesize items from the dataset as a label error in order of the item’s

loss on that out-of-distribution set.

We propose two main methods. Foundation Model Loss (FML) uses a single foundation model,

fine-tuned on the corresponding task (e.g., sentiment classification, POS tagging), to hypothesize

items in order of the model-predicted loss. We augment FML using task-adaptive pre-training

(TAPT; Gururangan et al., 2020), which is further pre-training on in-domain data, using only text

on the pre-training objective without using any labels for fine-tuning on the cross-entropy objective.

Foundation Model Ensembling (FME) combines multiple foundation models on the same task.

We hypothesize that ensembling may be disproportionately e↵ective at detecting label errors, as

training noise induces models to learn random spurious correlations [Watson et al., 2022]. Rather

than using a validation set to choose the single model with the lowest loss on the task, FME uses

the top three models trained in a hyperparameter sweep, and di↵ering in both hyperparameters

and random initialization, as fully described in Appendix 5.D. FME creates a synthetic probability

distribution over the task outputs by averaging the probabilities predicted using each individual

model. FME then hypothesizes items in order of loss over the synthetic distribution.

5.4 Generating Realistic Label Noise

To better evaluate label noise detection performance, we prepare a set of benchmark datasets pop-

ulated with controllable, highly realistic, human-originated label noise.

Sources of human error. We observe that datasets often undergo multiple annotation passes:

crowdsourced labels typically aggregate several annotators’ inputs [Hovy et al., 2014, Wei et al.,

2022], and subsets of data may receive more extensive validation [Bowman et al., 2015], gold labels

by trained experts [Plank et al., 2014], or correction passes [Reiss et al., 2020]. We hypothesize that

di↵erences between such annotations may be usefully repurposed as a source of realistic, human-

originated label noise, as disagreements between annotators is known to reflect systematic ambiguity

and human error [Plank et al., 2014, Zhang et al., 2017], and di↵ers from the type of noise studied

using existing synthetic methods.

We construct three noising methods which may be applied in many of the above scenarios. For any

dataset which includes two levels of label quality, the dissenting label method replaces final labels

with disagreeing labels at random, simulating imperfect quality control. Datasets which provide

individual annotator identifiers may apply the dissenting worker approach: select one annotator at

random, apply all of their labels which disagree with final labels, and repeat until reaching the target
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Figure 5.4: Distributions of losses of label errors on TweetNLP at 5% noising. Uniform and class-
based noise produce high and distinctive losses; human-originated noise is widely distributed, and
has greater overlap with the distribution of clean data points; §6.

noise rate. This simulates gaps in annotator training, which introduce systematic idiosyncrasies.

Finally the crowd majority method applies to any dataset in which individual annotations can be

aggregated to produce a label other than the final label: the former label simulates challenging,

systematic errors in the latter.

Noising and robustness. We assess the e↵ect of these noising methods using TweetNLP [Gimpel

et al., 2010], a corpus of 26,435 tokens from 1,827 American English tweets collected from Twitter

used to train part-of-speech (POS) tagging. TweetNLP includes gold labels annotated by 17 ex-

perts, but later received a separate crowdsourced assessment, aggregated by majority vote [Hovy

et al., 2014]. We noise TweetNLP to eight levels from 0-20% separately for each method, fine-

tune DeBERTA-v3-base [He et al., 2021] on each noising, and evaluate models on both noisy and

clean test sets. Results from noisy test sets represent model performance as measurable in practice;

real datasets contend with noise in evaluation data. Clean test set results represent true model

performance. Fig. 5.3 reports the results of this evaluation.

For uniform and class-dependent noise, true performance remains high even for high noise levels

(per [Rolnick et al., 2017]). But crucially, this robustness does not extend to human-originated

noise: human label errors are correlated to input text, and so contain systematic erroneous features,

which models may learn in training. On more challenging noising methods, although measured

performance appears to increase, true performance actually linearly decreases with noise. Fig. 5.4

explores this further via the distributions of model losses for each noising method: loss induced

by human-originated noise overlaps significantly with clean items, whereas loss from uniform and

class-based noising is distinctively higher.
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IMDB New Protocol
Old Protocol C NA NE Total
Correctable 105 44 24 173
Non-Agreement 75 252 225 552
Non-Error 3 62 520 585
Total 183 358 769 1310

Amazon New Protocol
Old Protocol C NA NE Total
Correctable 142 43 117 302
Non-Agreement 140 79 211 430
Non-Error 75 31 162 268
Total 357 153 490 1000

Table 5.2: Re-evaluation of baselines: The number of Correctable, Non-Agreement, and Non-Error
assessments produced by the CL Mechanical Turk evaluation protocol and the new protocol, on the
same set of items. The new protocol substantially reduces annotator non-agreement; §5.5.

Noise detection benchmarks. We standardize a set of benchmarks from existing datasets for

use in our main experiments. TweetNLP-5 and SNLI-5 aim to simulate typical data noise conditions:

we apply dissenting worker and dissenting label noising to a 5% level (see Appendix 5.A for details).

SNLI is a corpus of 570,152 sentence pairs, in which the task is to label each pair with entailment,

contradiction, or semantic independence; we use the 10% subset which includes five crowdsourced

annotations per item, as collected by [Bowman et al., 2015] during data validation.

We construct TweetNLP-M to investigate robustness to systematic error introduced by the

crowdsourcing process. We apply crowd majority noising, comparing noisy majority-vote aggregated

labels by [Hovy et al., 2014] to clean expert labels, which serve as a measure of true performance.

Accordingly, we retain all disagreements, or 20.46% of the dataset. We also report results on Recon,

a legal classification dataset of 1,279 documents in which [Hong et al., 2021a] found label errors to

destabilize model evaluation; as above, we compare non-expert and expert annotator labels.

5.5 Validation on Real Label Errors

In addition to human-originated noise datasets, we evaluate error detection performance on organic

errors in two benchmark datasets, following [Northcutt et al., 2021a]’s protocol.

Datasets. The IMDB Large Movie Review Dataset is a collection of movie reviews for binary

sentiment classification [Maas et al., 2011], and is split into train and test sets of 25,000 items each.

Amazon Reviews is a collection of reviews and 5-point star ratings from Amazon customers [McAuley

et al., 2015]. We used the version released by [Northcutt et al., 2021a], which includes the following

modifications: It uses 1-star, 3-star, 5-star reviews with net positive helpful upvotes as a ternary

sentiment task, resulting in a dataset of 9,996,437 reviews. For tractability we use a train split of a

random sample of 2.5 million items, and a test split of 25,000 items.

Baseline protocol. Workers are presented with review text and asked to determine whether

overall sentiment is positive, negative, neutral, or o↵-topic. Each review is independently presented

to five workers. An example is considered a “Non-Error” if at least three workers agree the original



CHAPTER 5. DETECTING LABEL ERRORS BY USING PTLMS 73

I Am. R T-5 T-M S-5

H&G - - - 0.30 0.41 0.20
CL 0.24 0.31 0.25 0.30 0.41 0.17
FML 0.58 0.39 0.37 0.66 0.48 0.54
FME 0.60 0.40 0.38 0.68 0.48 0.61
FME+CL 0.20 0.17 0.37 0.68 0.48 0.62

Table 5.3: Main experiment: Evaluating label error detection methods using datasets containing
highly-realistic label errors (IMDB, Amazon Reviews, Recon, TweetNLP-5, TweetNLP-M, SNLI-
5). Foundation model-based methods significantly outperform baselines on every dataset, as shown
by an overall performance metric (AUPR).

label is correct. Otherwise, we consider the label to be correctly identified as an error. We further

categorize label errors as “Correctable” if at least three workers agree on the same replacement label,

or “Non-Agreement” if no majority exists.

New adaptations. While conducting initial experiments, we found that the [Northcutt et al.,

2021a] MTurk protocol resulted in a significant amount of annotator fraud. Some workers spent

unreasonably short amounts of time on the text, and frequently disagreed with both expert and

peer annotators, reflecting increasingly common issues in crowdsourced annotations [Kennedy et al.,

2020]. Appendix 5.C describes four extra conditions we added to improve the [Northcutt et al.,

2021a] protocol.

In order to establish an accurate baseline, we re-evaluate the label errors hypothesized by

CL [Northcutt et al., 2021a]. On the new protocol, Fleiss’  inter-annotator agreement increases from

0.131 to 0.464 for IMDB, and 0.014 to 0.556 for Amazon, and Table 5.2 shows that Non-Agreement

decreases by 35% in IMDB and 65% in Amazon. This suggests a substantial decrease in low-quality

annotations.

5.6 Experiments

Label noise realism. Section 5.4 defined the human-originated noising protocol used to generate

TweetNLP-5, TweetNLP-M, and SNLI-5. Section 5.5 specified a protocol for identifying organic

label errors present in IMDB and Amazon. We assess the realism of synthetic noise methods by

comparing loss distributions against models trained with organic noise (for real label errors, we

refer to items verified as Correctable via MTurk). We quantify the degree to which noising induces

erroneous learning by measuring the Wasserstein distances between noisy and clean loss distributions.

Overall LLM performance. We assess broad error detection capabilities by evaluating 13 commonly-

used LLMs on TweetNLP-5. We measure performance against loss, model size, and GLUE score

(a proxy for general model capability; Wang et al., 2018). Appendix 5.D provides implementation
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Precision, Recall @ Error%3 Recall @ 2 · Error%
I Am. R T-5 T-M S-5 R T-5 T-M S-5

H&G - - - 0.31 0.44 0.22 - 0.54 0.63 0.34
CL 0.41 0.51 0.31 0.36 0.44 0.18 0.46 0.47 0.63 0.32
FML 0.68 0.64 0.46 0.65 0.47 0.45 0.62 0.88 0.64 0.66
FME 0.69 0.66 0.38 0.66 0.48 0.46 0.69 0.88 0.65 0.68
FME+CL - - 0.38 0.69 0.48 0.47 0.69 0.89 0.66 0.68

Table 5.4: Main experiment: Evaluating label error detection methods using datasets containing
highly-realistic label errors (IMDB, Amazon Reviews, Recon, TweetNLP-5, TweetNLP-M, SNLI-
5). In practice, estimating the number of dataset errors and checking this many items quickly
catches up to 69% of errors, at the same accuracy (Precision, Recall @ Err%). For improved
coverage, checking twice this number of items catches up to 89% of errors (Recall @ 2·Err%).
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Figure 5.5: Distributions of losses of hypothesized label errors that MTurk workers verified for IMDB.
As with Fig. 5.4, uniform and class-based methods do not approximate real, worker-identified errors,
and losses of real label errors have greater overlap with the distribution of clean data; §6.
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details. This experiment’s results inform model selection: we use DeBERTA-v3-base for all further

experiments.2

Main experiment. Using our realistic noising benchmarks, and the MTurk baselines and verifica-

tion protocol, we can now assess the performance of each label error detection method. We evaluate

Foundation Model Loss (FML) and Foundation Model Ensembling (FME).

As a baseline, we evaluate Confident Learning (CL; Northcutt et al., 2021a). CL is not a

standalone method; it augments existing models. Given an underlying model’s predicted scores for

each class and the true proportion of each class, CL forms a reweighting matrix, called the confident

joint. To form a label error prediction score, CL reweights the model’s scores by the confident joint.

CL hypothesizes items in order of this resulting score.

CL uses FastText [Joulin et al., 2017] for IMDB and Amazon, but includes no implementations

for POS tagging or NLI. As a result, for TweetNLP and SNLI, we apply CL to the H&G base-

line [Hendrycks and Gimpel, 2017], a two-layer neural classifier over word vectors pre-trained on a

corpus of 56 million tweets [Owoputi et al., 2013]. For all datasets, we also assess applying CL to

foundation models (FME+CL).

For each dataset, we run 25 hyperparameter sweeps which each fine-tune a model for the given

task (e.g., POS tagging) using noisy data, and select the model with the best validation set task

performance. We report label error detection performance (not task performance). Area Under the

Precision-Recall Curve (AUPR) provides an overall performance score [Saito and Rehmsmeier, 2015,

Hendrycks and Gimpel, 2017]. We also report metrics representing performance on competing data

cleaning priorities: e�ciency requires high precision on a small number of items, whereas coverage

requires high recall on a larger number of items. Appendix 5.E.1 describes the Truncated AUPR

used for IMDB and Amazon, which are too costly to fully crowd verify.

End-to-end noising. We finally isolate the e↵ects of noise and label error correction for valida-

tion and test splits. For each dataset, we prepare three versions of the validation and test splits,

respectively: a clean version assumed to contain zero errors,4 a noisy version, with label noise

deliberately introduced, and a corrected version generated from noisy splits using our main error

detection method (ranking errors with FME and correcting the top Err% data points). We train 40

hyperparameter sweeps, with performance cross-evaluated on all prepared data splits.

We report three di↵erent metrics. We report each model’s accuracy on the clean test split as the

true accuracy. Following the norms of Fig. 5.3, we report the measurable accuracy as the accuracy of

the model selected using performance on the noisy or corrected validation split on the corresponding

2We also use RoBERTa-BigBird for Recon in order to handle its long input passages [Hong et al., 2021a].
3Precision and recall are equal when evaluating a number of items equal to the total error count.
4For TweetNLP, we justify our assumption in §5.4: expert labels by [Hovy et al., 2014] are considered noise free

compared to crowd labels. For IMDB and Amazon, we follow [Northcutt et al., 2021a], which adds several percentage
points more noise than naturally occurs.
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Figure 5.6: Precision-recall curves for label error detection on Amazon by method. FML+CL and
FME+CL produce fewer items and do not extend to a recall past 0.21. Applying CL to FM changes
little compared to using FM alone.

test split. Finally, we report the rank of the model as the rank of the model’s performance on clean

test data. The best performing model among all sweeps has rank 1, and the worst has rank 40. This

metric emphasizes that di↵erent validation sets select di↵erent models.

We perform this exercise using IMDB and Amazon noised to 5% (I-5, A-5), and TweetNLP-5

and TweetNLP-M.

5.7 Results

Label noise realism. Human-originated noise appears to closely approximate real label noise.

Figs. 5.4 and 5.5 show that the losses of both real and human-originated label errors are lower and

more widely-distributed than existing noising methods. Their Wasserstein distances to the distri-

bution of clean data are significantly lower than existing noising methods, suggesting comparable

erroneous learning (Appendix 5.B).

Overall LLM performance. We discover a strong log-linear relationship between error detection

performance and loss, which holds across many model families and configurations (r2: 0.94, Fig. 5.2).

We also find relationships between error detection performance and general model capability, in terms

of GLUE score (r2: 0.79) and model size (Fig. 5.10). Fig. 5.7 illustrates key findings using models’

receiver operating characteristic (ROC) curves. Ensembling confers significantly more gains in error

detection performance higher than gains on underlying task performance, across a broad range of

models and hyperparameters; Appendix 5.E.3 explores ensembling in greater detail.

Main experiment. Table 5.3 shows that Foundation Model Ensembling significantly improves

AUPR from the CL and H&G baselines on all datasets, with an absolute di↵erence of 0.36 on
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Figure 5.7: ROC curves for error detection performance on TweetNLP-5: LLM loss is highly e↵ective
for detecting label errors, and performance is highly correlated with general language understanding
(GLUE, r2: 0.79).

IMDB, 0.09 on Amazon, and a di↵erence of 0.07–0.44 on synthetic data.

Fig. 5.1 shows that applying CL to FME has minimal e↵ect on performance at every level of

recall; most numbers are identical across the FME and FME+CL rows of Tables 5.3 and 5.4. In

fact, CL does not necessarily improve upon the H&G baseline across datasets, with CL performance

sometimes dipping below H&G by 0.01–0.03.

While loss naturally ranks all data points, CL only hypothesizes a fixed number of potential

errors: Appendix 5.E.2 shows the raw counts of items at fixed thresholds, per the original CL

study. At the CL threshold, we outperform CL by an absolute 15–28%. At the CL+FME threshold,

predicted items are almost exactly the same, with Jaccard similarities of 0.59–0.99. By contrast,

ensembling improves performance over FML by a greater amount on almost every measure, and

introduces no such constraint.

End-to-end noising. Cleaning validation data selects better models. Noise in validation splits

reduces performance by encouraging the selection of models with lower true performance. Noise in

test splits significantly reduces measurable (noisy test) performance, as expressed by the di↵erence

between measurable and true performance. In general, correcting label errors improves task perfor-

mance: even when the reported task performance worsens, the reported performance is closer to the

true performance of the model, measured using clean training and validation data.

5.8 Discussion

Rapid data “health check”. Sorting evaluation data by each item’s loss is an easy way to quickly

highlight label errors. Using this simple technique with a foundation model appears to generally
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Eval. Test Perf. I-5 A-5 T-5 T-M

Noisy
Measurable 90.1 88.3 89.3 89.3
True 94.2 91.0 92.8 82.0
Rank 10 1 3 10

Corr.
Measurable 95.1 90.7 92.9 88.5
True 95.1 90.8 93.0 82.0
Rank 4 5 2 8

Clean True 95.8 91.0 93.8 82.1

Table 5.5: End-to-end e↵ects of label noise on task performance, as evaluated on noisy, corrected,
and clean validation and test data splits. True accuracy is measured on clean test sets, and mea-
surable accuracy on noisy or corrected test sets. Rank is a relative measure of true accuracy; lower
numerical ranks have higher accuracy. Corrections which improve or reduce performance metrics
are highlighted in green or red, respectively. Metrics are evaluated on models trained on noisy data.

identify over half of all label errors through human re-evaluation of a single-digit percentage of

all data (Table 5.4). We expect this technique to work across deep learning domains, due to its

simplicity and the extensive use of training loss in LNL research [Song et al., 2022]. Given estimates

for typical rates of label errors and the gain observed in the end-to-end experiment, our technique

may enable a 1–2% increase in reportable test accuracy across many datasets, in addition to the

gains from improving model selection.

Pre-training and robustness. We demonstrate that despite established findings on artificial

noising [Hendrycks et al., 2018], pre-training confers limited robustness to realistic human noise.

The majority of label errors are systematic in nature [Snow et al., 2008, Plank et al., 2014, Samuel

et al., 2022], and crowdsourced labels form, to an extent, a di↵erent distribution from reality, as

approximated by expert labels [Hendrycks et al., 2020]. When trained on crowdsourced or other

data containing systematic errors, FMs quickly drift towards this incorrect distribution.

Applying AI to data-centric AI. Data-centric AI aims to improve AI through labeling, curat-

ing, and augmenting the underlying data. We find that AI itself can be applied towards improving

data quality, as part of a human-in-the-loop (HITL) iteration, which contributes an additional pos-

itive feedback loop between data quality and AI performance.

New challenges in LNL. Standard noising methods are unrealistic and no longer challenging for

state-of-the-art language models [Algan and Ulusoy, 2020]; recent LNL analyses study conditions

where up to 80% of labels are noised [Song et al., 2022]. Our findings reinforce the need to reassess

LNL methods in the context of more realistic noise [Zhu et al., 2022].

Our human-originated noising method produces realistic label errors, and can be applied to any

crowdsourced dataset which includes raw annotation data. As such datasets emerge across deep
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learning domains [Wei et al., 2022], we hope this method may inspire challenging and realistic new

LNL performance benchmarks. Our method also enables detailed exploration of the properties of

human noise, which may support work on open LNL problems such as improving feature-based

noising techniques, and estimating dataset noise [Bäuerle et al., 2022, Northcutt et al., 2021b].

End-to-end noising. The study of model performance on noise in validation and test data is

essential: noise in other splits can a↵ect reported model performance as much as noise in training

data. Clean and noisy performance on evaluation data provide useful insight into models’ overall

performance.

Limitations of cleaning benchmark data. In our analysis of model performance gains derived

from applying our methods to cleaning evaluation data, we find that cleaning validation splits enables

the selection of models with better test performance. Such a method may be useful in a large number

of applications.

However, we caution against using this method to clean data intended for use in comparing per-

formance across model families and variants: the cleaning process may bias any such benchmarks

toward the models most similar to the model used to clean the data. While our method improves

the performance of a given model on a task, and correcting label errors always improves the valid-

ity of test data, these improvements is unlikely to improve the performance of all models by the

same amount. This limitation is shared with other existing model-based scoring methods such as

BERTScore [Zhang* et al., 2020].

5.9 Conclusions and Future Work

Pre-trained models e↵ectively identify label errors on real NLP datasets, definitively outperforming

existing methods on the same benchmarks by an absolute 9–36% in AUPR.

Human-originated noising techniques may present a solution to the clear limitations of current

LNL noising schemes: they are highly realistic and yet controllable for experimental purposes. We

invite further exploration of this family of label noising techniques. We believe human-originated

noising enables future advancements across multiple areas of LNL, supporting new tasks and metrics

in areas such as the cost of human reannotation, estimation of dataset error, and mitigation of bias.

Chapter 4 documents the multiple rounds of annotation that were undertaken to produce labels for

the parole hearing dataset, and we advocate for similar e↵orts to be undertaken for NLP benchmarks

more broadly.

Finally, we advocate for LNL to move towards an end-to-end approach of evaluating with label

noise, which takes into account noise within validation and test splits, and more accurately models

the conditions of data in practice. The specific task of information extraction over parole hearing

transcripts, as described in the following chapter, serves as a case study of how label errors in a
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validation set can impact the model training process. We hope that the analysis serves as an example

of how an error analysis can inform not only how to improve the model, but also the underlying

data.

Appendices

5.A Noising Benchmarks

This section specifies how noising protocols were applied to create each fixed crowdsourced dataset.

Crowd labels for each dataset are available to download from the respective GitHub projects.

5.A.1 TweetNLP-5

TweetNLP-5(%) is a fixed noising of TweetNLP to a 5% noise level in each split. Of the label

errors, 80% (i.e. 4% of each split) are assigned using the dissenting worker method. The remaining

20% (i.e. 1% of each split) are assigned using the dissenting label method. Fig. 5.4 shows that

both methods provide similar distributions of label errors. Although the dissenting worker method

more realistically captures individual worker idiosyncrasies, the dissenting label method is actually

slightly lower loss during training (i.e. harder for a model to distinguish from correct labels).

5.A.2 TweetNLP-M

TweetNLP-M(ajority) directly uses the majority class labels collected by [Hovy et al., 2014] on

the Crowdflower platform, which have a 79.54% agreement with the high-quality expert gold labels

collected by [Gimpel et al., 2010]. Per the [Hovy et al., 2014] protocol, in the rare case of ties, the

tie is broken in favor of the label that matches the gold label, if applicable. Otherwise, a label is

selected at random. The “-M” su�x distinguishes the [Hovy et al., 2014] labels from the gold labels.

5.A.3 SNLI-5

The Stanford Natural Language Inference dataset (SNLI) annotations do not include a worker

identifier, meaning each item is attached to five crowdsourced labels, but there is no indication

of which labels came from the same annotator across the dataset. As a result, we cannot apply the

dissenting worker noising method.

SNLI-5 has exactly 5% of its data noised in each split. Of the label errors, 80% (i.e. 4% of each

split) are assigned using a method that represents systematic errors, to simulate of dissenting worker

method: We use the minority label when there is a 3-2 split between the five labels. The remaining

20% (i.e. 1% of each split) are assigned using the dissenting label method, as in TweetNLP-5.
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Figure 5.8: Distributions of losses of label errors on SNLI at 5% noising, which demonstrates similar
performance characteristics to TweetNLP, as shown in Fig. 5.4.
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Figure 5.9: Combined distributions of losses of both noisy and clean data points, for TweetNLP
with 5% noising.

5.B Loss Distributions

Section 5.4 examines dataset noisings primarily in terms of loss distributions on noised labels. To

provide additional context, Fig. 5.8 provides an equivalent view for SNLI, and Fig. 5.9 shows com-

bined distributions of both clean and noisy data points on TweetNLP.

Table 5.6 reports the Wasserstein distances (or earth mover’s distances) measured between the

loss distributions of noisy and clean data points for models trained on TweetNLP and IMDB, as

described in Section 5.7. Human-originated label noise more closely resembles both clean data points

and real label noise as its hypothesized realism increases.
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Noising Method TweetNLP IMDB

Uniform Noise 5.62 5.04
Class-Based Noise 5.23 4.91

Dissenting Label 4.02 -
Dissenting Worker 3.44 -
Crowd Majority 2.33 -

Real Label Errors - 2.67

Table 5.6: Wasserstein distances between loss distributions of noisy and clean data points: Human-
originated noising exhibits comparable levels of erroneous learning to organic label errors.

IMDB Amazon

Original Protocol 0.1314 0.0141
New Protocol 0.4643 0.5561

Table 5.7: A comparison of inter-annotator agreement between the original and new MTurk pro-
tocol results using Fleiss’ . A score of 1.0 represents perfect agreement between workers, and 0.0
represents guessing at random. Annotations from the original protocol are substantially closer to
random chance.

5.C Mechanical Turk Protocol

5.C.1 Change Specifications

We use Amazon Mechanical Turk to validate real label errors from IMDB [Maas et al., 2011] and

Amazon Reviews [McAuley et al., 2015]. We begin with the [Northcutt et al., 2021a] protocol, and

add four additional conditions, so as to mitigate annotator fraud.

First, we pre-qualify workers by requiring them to correctly answer a qualification test of four

unambiguous questions [Hovy et al., 2014, Agley et al., 2021].

Second, after the initial qualification, we continue to monitor worker quality by introducing

sentinel questions with known answers into the workers’ regular tasks. We periodically remove

workers who fail the tasks.

Third, we set filter criteria to limit workers to the following Anglosphere countries: United States,

Canada, United Kingdom, Ireland, Australia, and New Zealand [Moss and Litman, 2018], to improve

the chances of finding annotators with su�cient cultural context to correctly interpret review text.5

Our filter criteria include the standard recommendations of requiring a � 99% positive task approval

rate with � 500 tasks approved.

Finally, we set a baseline target rate of US$10 per hour, calculated using word counts and average

reading speed (primarily for ethical reasons; the e↵ect of compensation and annotation quality is an

area of active research; Saravanos et al., 2021).

5Despite these precautions, we recognize that every precaution is subject to fraud, e.g., location is subject to VPN
and bot attacks. [Dennis et al., 2020, Mellis and Bickel, 2020, Kennedy et al., 2020]
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IMDB Amazon Total

Original Correct 33 19 52
New Correct 41 31 72
Both Correct 28 14 42

Table 5.8: A comparison of original and new MTurk protocol results against 100 expert-labeled data
points.

The new protocol’s labels are produced using a final set of approximately 70 workers. Workers

averaged at least 12 seconds on each task; half the time needed to read prompts at an average

reading speed. The average time spent by a worker in the [Northcutt et al., 2021a] protocol was 5

seconds.6

5.C.2 Protocol Validation

We hypothesize that the Non-Agreements in the original protocol represent not only ambiguous data

points, but also noise in the original protocol resulting from low quality work. Tables 5.2 and 5.7

show that the new protocol improves the level of agreement between workers. As such, we confirm

that the increased agreement between workers in the new protocol results from higher quality labels.

Following the [Northcutt et al., 2021a] protocol for expert review, we additionally select a total

of 50 items from each of IMDB and Amazon for expert review. The experts are blinded to both the

original labels and MTurk results and asked to label each item from scratch. They then reconciled

results and came to a consensus for each item. The results are compared at the aggregate level of

“Correctable,” “Non-Agreement,” and “Non-Error,” as opposed to the individual sentiment level

(Positive, Negative, Neutral, or O↵-Topic). The expert agreement with one another was 79%, so in

21% of the items, the expert label was considered to be Non-Agreement and matched the MTurk

workers only if the workers also produced Non-Agreement. Table 5.8 provides the result of this

assessment.

For the original protocol, 52% of the items agreed with expert annotators, 31% of the items were

incorrectly labeled as Non-Agreement, 12% of the items were incorrectly labeled as Correctables,

and 5% of the items were incorrectly labeled as Non-Errors. 8% of items were disagreements between

experts and crowd workers where neither side had a Non-Agreement. In other words, 8% of all items

were disagreements between Correctable and Non-Error.

For the new protocol, 72% of the items agreed with expert annotators, 4% of the items were

incorrectly labeled as Non-Agreement, 7% of the items were incorrectly labeled as Correctable, and

17% were incorrectly labeled as Non-Errors. 5% of items were disagreements between experts and

crowd workers where neither side had a Non-Agreement.

6The reported time is an upper bound on the average time a worker spends on a task.
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Dataset
Num. Errors
Hypothesized

Correctable Non-Agreement Non-Error

CL FML FME CL FML FME CL FML FME

IMDB 1310 183 323 328 358 573 581 769 414 401
Amazon 1000 357 508 517 148 131 143 495 361 340
TweetNLP-M 250 121 158 165 - - - 129 92 85

Table 5.9: The number of each type of error accurately identified for each dataset by each noise de-
tection method, keeping the number of errors hypothesized fixed for ease of comparison. (TweetNLP
is expert reviewed and by construction does not have any Non-Agreement types.)

Dataset
Num. Errors
Hypothesized

Correctable Non-Agreement Non-Error Jacc.
Sim.FME FME+CL FME FME+CL FME FME+CL

IMDB 316 168 168 108 108 40 40 0.99
Amazon 381 226 204 65 56 90 121 0.60
TweetNLP-M 129 93 98 - - 36 31 0.59

Table 5.10: Examining the performance of overlaying Confident Learning on FME, comparing the
number of errors hypothesized by FME+CL. We also report the Jaccard similarity between the two
models.

5.D Overall LLM Performance Experiments

Due to the high costs associated with expert and crowdsourced validation, we use TweetNLP-5 as

a development dataset for model selection.

We selected the following models for exploration: XLNet (base, large), RoBERTa (base,

large), BERT (small, base, large), DeBERTa (V3: xsmall, small, base, large, and V2: xlarge,

xxlarge), GPT (assorted). We performed 25 hyperparameter sweeps with each model, selecting the

top three runs for further analysis. In order to avoid model family-level bias in the choice of hyper-

parameters, we set a broad shared range for three hyperparameters: learning rate varying from 10�6

to 10�3, the number of epochs from 2 to 8, and the batch size between 8, 16, 64, and 128. Training

time and the final hyperparameters varied based on the model.

We ultimately selected DeBERTA-v3-base as a compromise between performance and training

speed. We used Google Cloud Platform for training infrastructure. Experiments were run using

NVIDIA A100 GPUs, and runtime per training run was approximately 20 minutes for IMDB, Recon,

and SNLI, 3 minutes for TweetNLP, and 4 hours for Amazon, when configured with a 2.5 million

data point training split.
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Figure 5.10: Label noise detection performance by model size and family, evaluated on TweetNLP-
5. GPT-based models exhibit similar scaling trends, despite intrinsic disadvantages on classification
tasks (due to pure autoregressive pre-training).

5.E Main Experiment

5.E.1 Metrics

We calculate the Area Under the Precsion-Recall Curve (AUPR) using the trapezoidal rule, given

individual measurements of precision and recall at every possible threshold.

We report the Truncated AUPR on IMDB and Amazon. Because IMDB and Amazon are too

expensive to fully crowd verify, we cannot calculate precision and recall at the 25,000th item for

each method, for each dataset, as it would require every data point to be relabeled on MTurk.

Instead, we use the CL framework of predicting a fixed number of items. For example, for IMDB,

CL hypothesizes 1,310 out of the 25,000 items to be label errors. We can calculate the precision and

recall for every threshold, up to the number hypothesized by Confident Learning. We can calculate

the precision and recall of the 1st, 2nd, 3rd, . . . , and 1,310th items.

We know the exact recall for all synthetic datasets. For IMDB and Amazon, we use the estimate

that 5% of the data is erroneous, which is consistent with common understanding of the prevalence

of label errors [Redman, 1998, Müller and Markert, 2019, Northcutt et al., 2021b, Kreutzer et al.,

2022].

We choose to use the AUPR and truncated AUPR metrics over the more commonly-used AUROC

(Area Under the Receiving Operating Curve) because of limitations in measuring recall in practice.

Determining the true recall of a label error detection method on a real datasets is generally infeasible

due to its high cost; this requires a complete re-evaluation so as to identify every label error within

the dataset. While some datasets exist in which this has been undertaken, such as [Hovy et al.,

2014] for TweetNLP, for most datasets containing organic label errors, we can only assess precision
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Method
Task Accuracy FM Error Detection Performance

Noisy Clean Precision Recall F1

Averaged 0.88± 0.03 0.91± 0.03 0.50± 0.11 0.65± 0.03 0.56± 0.08
Ensembled 0.89± 0.02 0.92± 0.03 0.56± 0.12 0.62± 0.03 0.58± 0.08

Di↵erence +1.14% +1.24% +12.52% �4.31% +4.66%

Method
E↵ects of CL Overlay

Precision Recall F1

Averaged 0.51± 0.11 0.67± 0.03 0.57± 0.07
Ensembled 0.58± 0.11 0.65± 0.03 0.61± 0.07

Di↵erence +13.89% �2.98% +6.03%

Table 5.11: Ensembling confers gains in error detection performance disproportionate to gains in
underlying task performance, across a broad range of models and hyperparameters (on TweetNLP-5,
results from top three models per sweep, as measured at the fixed threshold set by CL).

directly.

For IMDB and Amazon, we estimate recall by estimating total dataset error counts using sam-

pling techniques, which are inherently imperfect. Errors in recall scale estimates of AUPR by a fixed

ratio, and therefore comparable between models on the same dataset, whereas AUROC is nonlinear

with respect to the estimate of recall.

All results reported on synthetic datasets reflect the average of individual scores from the three

top-performing models from 25 hyperparameter sweeps. However, for cost-e�ciency, results which

require crowdsourced evaluation (such as IMDB and Amazon) are based on one run selected at

random from a top three.

5.E.2 Confident Learning

Northcutt et al. [2021b] reports results using raw counts, not the accuracy, precision, recall, or any

other metric. For ease of comparability, Table 5.9 reports the number of correctable, non-agreement,

and non-error items identified by each method on each dataset. CL hypothesizes a fixed number of

items, which is reported in the last column, and we assess a matching number of items from each

method.

When hypothesizing a fixed number of items, the foundation model approaches far outperform

CL baselines. On IMDB, FME correctly identifies 909 label errors, a 28% absolute improvement in

accuracy. On Amazon, the FME approach correctly identifies 660 label errors, compared to the 505

identified by CL, a 15.5% absolute improvement.

Applying CL to FME results in a di↵erent model that hypothesizes a di↵erent number of items

(fewer, in all cases). Table 5.10 shows the raw counts of correctable, non-agreement, and non-error

items when each of our models hypothesizes items at this reduced threshold.
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Overlaying CL on foundation model loss appears to have little marginal utility. Table 5.10 also

shows a high Jaccard similarity across all datasets, suggesting that applying CL on top of an FM

changes little about the items hypothesized. On many datasets, FME and FME+CL perform almost

identically in the number of items correctly hypothesized, slightly harming performance on Amazon

Reviews, and slightly improving it on TweetNLP-5 (Table 5.11). FME+CL decreases the total

number of hypothesized items compared to FME because of the threshold set by CL. We compare

the FME and FME+CL approaches at the reduced number of hypothesized items in order to assess

the impact of CL in the presence of pre-training.

Not only is aggregate performance nearly identical, we see in Figs. 5.1 and 5.6 that FME and

FME+CL perform similarly for the entire range of items hypothesized along the Precision-Recall

curve. The primary di↵erence is that FME can continue hypothesizing items even past FME+CL’s

threshold.

5.E.3 Ensembling

Results from Tables 5.3, 5.4, and 5.11 show that ensembling (FME) improves error detection per-

formance over using a single model (FML) in almost every scenario tested, at a rate several times

higher than gains to underlying task performance.

We also observe a phenomenon of disproportionately high variance in model error detection

performance: Table 5.11 quantifies the standard deviation of the former at three times the standard

deviation of performance on the underlying task, and Fig. 5.2 shows this to be the case even when

comparing models with a fixed loss. This finding persisted even when holding all hyperparameters

and data constant, with only the random seed being changed.

We hypothesize that label noise in training data induces models to learn spurious correlations,

which cause models to make errors in a structured manner [Watson et al., 2022, Jiang et al., 2022];

this results in greater levels of model disagreement, with minimal impact on top-line performance.

Ensembling may be disproportionately e↵ective because it serves an added function of reducing

variance caused by these low-quality features.

5.E.4 TAPT

We perform Task-Assisted Pretraining (TAPT; Gururangan et al., 2020) using the original hyper-

parameters everywhere except for the optimizer, in which we use AdamW instead of Adam for

DeBERTa. We run TAPT on the all splits of the corresponding data for all datasets except Amazon

Reviews, where because of its size, we use TAPT on only 50,000 data points, or 0.5% of the full

dataset. After running TAPT, we then run 25 fine-tune sweeps.



Chapter 6

Information Extraction for Parole

Hearings

Advancing information extraction and question answering is a major technological step toward the

development of the Recon Approach, a paradigm for applying machine learning to criminal law in

a way that centers human discretion. To better understand the importance of natural language

processing, we use the distinction between codified justice and equitable justice established in Sec-

tion 2.2. The criminal justice system struggles to balance “the value of treating like cases alike, and

the value of treating each case individually.” [Bell et al., 2021] In criminal law, machine learning has

been proposed as a tool to improve consistency in decision making, but to date, research e↵orts have

primarily focused on codified justice – processes that make a determination given a limited set of

case factors and using specifiable rules, such as a risk assessment used for a probation classification.

When quantifiable historical data over which the rules have been applied is available, machine learn-

ing models can be trained to predict a desired outcome. However, various legal contexts balance a

standard of codified justice with a standard of equitable justice, which requires decision-makers to

apply moral principles to individuals’ unique situations.

How can natural language processing aid equitable justice? Equitable justice centers human

discretion and the uniqueness of each individual, but nonetheless is based on factual information.

The facts of each case are typically discussed and interpreted through dialogue, whether at a full

criminal trial, or at a shorter hearing before a judge or other decision-maker. Often, the dialogue

produces transcripts, which are available as public records. Usually, the sheer length of transcribed

conversational text all but prohibits any meaningful form of quantitative review, because of the im-

mense e↵ort involved in manually annotating case factors. NLP methods for information extraction

over speech can assist in identifying the underlying facts of a case from hearing transcripts. The

factors can then be used in statistical analyses of a decision-making process to (a) provide historical

88
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understanding over case records that are otherwise locked away in a filing cabinet, and (b) identify

specific outlier cases for reconsideration of fair and equitable decision-making where human capacity

for review is constrained. By applying information extraction post-hoc rather than filling in a data

table or computing a risk score at the time of a hearing, the decision-maker retains full autonomy

in conducting a legal process using their own discretion. In this role, information extraction supple-

ments, but never fully supplants, the need for dialogue and transcripts. A broad set of stakeholders

can then contribute to identifying the factors that may be relevant in comparing cases.1 This is as

opposed to, for example, using tabular data to compute a risk score that the decision-maker relies

on to make a decision.

Existing approaches such as the Predictive Approach described in Section 2.1 generally use tab-

ular data for predictive metrics. An alternative approach is needed for matters of equitable justice,

where individuals are judged on a case-by-case basis, in a process involving verbal or written dis-

cussion and interpretation of case factors. Such discussions are individualized, but they nonetheless

rely on underlying facts. Information extraction can play an important role in surfacing these facts,

which are still important to understand. As discussed in Section , information extraction and ques-

tion answering are important not only for analysis of past cases, but to empower ongoing review of

future decisions as integrated into existing oversight bodies.

We present a case study of the capabilities of information extraction methods for dialogue and

identify areas for further research in the criminal law context, using the nearly complete dataset of

35,105 parole hearing transcripts for individuals serving life sentences between 2007 and 2019 that

we have obtained from the State of California.

Compared to other legal dialogue settings that could be analyzed, the California parole hearing

system serves as a useful case study because (1) California has one of the largest prison systems in

the U.S., (2) the hearings are transcribed and available on the public record, and (3) the hearings

are one continuous dialogue in a single sitting between a decision-maker and a parole candidate,

with brief statements from the candidate’s attorney. In comparison, criminal trials are much longer,

present many forms of exhibits which are often not digitally available, and contain many additional

complexities, such as more speakers, cross-examination, evidentiary exhibits, etc.

Our corpus is representative of many challenges in criminal law: (1) Parole hearings, around

20,000 words on average, are longer than documents in existing benchmarks. (2) Existing bench-

marks source from written text; parole documents are loosely-structured dialogue. (3) Existing

benchmarks contain at least an order of magnitude more labels; the human annotation required

for the parole corpus, described in Chapter 4, is expensive. (4) Information extraction from formal

written documents centers around named entities and relation extraction. By contrast, much of the

text in the criminal context serves the purpose of surfacing, discussing, and correcting case factors,

1Bell et al. [2021] describes this approach in the context of the parole system in California. We provide a discussion
of the ethical implications of our work in Section ??.
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which are not necessarily relational. This means parole hearings pose both extractive and abstrac-

tive tasks, often across multiple sentences, which is known to be challenging even in more structured

settings [Wang et al., 2021].

The following sections present two di↵erent approaches to tackling challenges (3) and (4)—the

challenges of long document length and of scarce labeled examples for training.

Section 6.1 employs data programming Ratner et al. [2016] to solve the two primary challenges.

Instead of annotating parole hearings one at a time, SMEs instead write heuristic functions, which

can be easily computed over all hearings. The data programming approach addresses the scarcity

of training data by trading o↵ quality and quantity: every document is assigned at least one label

for each feature, but the label generated by the heuristic may be incorrect.

Section 6.2 use a similar approach to the two-step open-domain question answering approach [Chen

et al., 2017, Das et al., 2019] by using a Reducer to extract relevant text segments and a Producer to

generate both extractive answers and non-extractive classifications. Here, SMEs to write heuristics

for only the Reader stage, which we call the Retriever, because of its function in retrieving the most

relevant passage from a long parole hearing. Having retrieved a short passage, we can now use rela-

tively sophisticated transformer models for precise question answering over the passage. In a context

like ours, with limited labeled data, we show that a superior approach for strong performance within

limited development time is to use a combination of a rule-based Reducer and a neural Producer.

We study four representative tasks from the parole dataset. On all four, we improve extraction from

the previous benchmark of 0.41–0.63 to 0.83–0.89 F1.

6.1 Challenges for Information Extraction from Dialogue in

Criminal Law

In this section, we analyze unsupervised, weakly supervised, and pre-trained models’ ability to ex-

tract such factual information from the free-form dialogue of California parole hearings. With a few

exceptions, most F1 scores are below 0.85. We use this opportunity to highlight some opportunities

for further research for information extraction and question answering. We encourage new develop-

ments in NLP to enable analysis and review of legal cases to be done in a post-hoc, not predictive,

manner.

We have identified 11 case factors representative of the types of features (binary, multi-class,

date, and numerical) that are relevant to the parole decision-making system and illustrate a range

of challenges in information extraction. We evaluate three families of models on this task: (1) an

unsupervised data programming paradigm [Ratner et al., 2016] extended to weak supervision, (2)

pre-trained question answering models based on DistilBERT Sanh et al. [2019] and Longformer Belt-

agy et al. [2020], and (3) classification models based on BERT [Devlin et al., 2019] that are each

fine-tuned to predict a single task.
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Most models fall below an F1 score of 0.85 for most of the features. The di↵erent feature types

challenge each of the models in di↵erent ways. Data programming remains a largely rule-based

approach and works best when the keywords indicative of a label are clear, such as the penal

code or a numerical education score. Pre-trained question answering models maintain or improve

performance on most categories, except for Boolean questions, which remains an area of active

development. Surprisingly, all models perform poorly on extracting the risk assessment score, which

relies on three simple keywords “low,” “moderate,” or “high.”

Information extraction from long dialogues remains an open challenge, especially when the ex-

traction tasks are not entity-based. We call on research in information extraction to move beyond

entity-based tasks in order to tackle the range of tasks relevant for legal dialogue. We also emphasize

the need for all methods to handle longer context windows. Long context windows are not merely

a byproduct of underdeveloped retrieval methods; they are inherent to the level of personal detail

required to apply equitable justice.

6.1.1 Related Work

Information Extraction and Question Answering

Information extraction spans a number of tasks, but neural approaches have concentrated on binary

relation extraction. Many relation extraction tasks are performed on only the sentence level [Nguyen

and Grishman, 2015, Adel et al., 2016, Levy et al., 2017, Karita et al., 2019, Luo et al., 2019], but

techniques have emerged for cross-sentence or even document-level relation extraction [Yao et al.,

2019]. Compared to information extraction, question answering allows for a greater range of tasks,

represented by the diversity of question formulations [Rajpurkar et al., 2016] and is an alternative

approach to the task of creating parole hearing annotations.

For both information extraction and question answering, current top-performing models are pre-

trained large language models [Devlin et al., 2019, Radford et al., 2019] that have been fine-tuned

on specific tasks, such as question answering.

Applications to dialogue focus on entity-based tasks like argument extraction [Swanson et al.,

2015], named entity recognition [Chen and Choi, 2016, Choi and Chen, 2018, Bowden et al., 2018],

relation extraction [Yu et al., 2020], and task-based extraction [Fang et al., 2018, Finch et al., 2020,

Liang et al., 2020]. Dialogue-like settings are relatively new for question answering. CoQA [Reddy

et al., 2019] aims to answer questions over a written text in an abstractive way, but it is only

conversational in that multiple questions can be asked of the same source text sequentially. Friend-

sQA [Yang and Choi, 2019] answers extractive questions about a multiparty dialogue. The questions

are considered to be asked of the dialogue, by a third party outside the dialogue. Like FriendsQA,

DREAM [Sun et al., 2019b] also uses a dialogue as its source text, but its answers are multiple-choice.
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Somebody actually took the time to count up all your 115s and make a list
of them for me, and they covered the gambit, but I am very surprised that
you’re not a gang member. We’ve got attempted murder here in ‘01, deadly
weapon in ‘02, battery with a deadly weapon in ‘05, pruno, ‘06, mutual
combat, ‘06, deadly weapon, ‘06, battery of peace officer, ‘06. And
that seems to be sort of the general way your life goes. You picked up
a couple of these in 2013.

Figure 6.1: Example of a section of a hearing during which the deputy commissioner discusses the
recent disciplinary history (recorded on Form “115”) of the candidate. This occurs about halfway
into a 50-page hearing. One extraction task is to identify the date of the most recent disciplinary
writeup.

Machine Learning for Criminal Law

Machine learning in law has mainly relied on tabular data, and mostly for prediction, e.g., polic-

ing [Ferguson, 2017, Barrett, 2017, Goel et al., 2016], pre-trial detention [Kleinberg et al., 2018a],

sentencing [Elek et al., 2015]. Retrospectively, past human (and algorithmic) decisions can be ana-

lyzed through the lens of algorithmic fairness, which seeks to understand the way machine learning

models or human decisions systematically encode bias [Dwork et al., 2012, Barocas et al., 2017,

Corbett-Davies et al., 2017, Corbett-Davies and Goel, 2018, Kleinberg et al., 2018b, Ho and Xiang,

2020].

Within natural language processing, computational linguistics has been used to scale up lexical

analyses of various contexts, such as policing [Voigt et al., 2017] and judicial decisions [Danescu-

Niculescu-Mizil et al., 2012]. Lexical features can also be used in downstream analysis [Altenburger

and Ho, 2019]. Relational information extraction has been applied in the context of using named

entities (e.g. attorneys, law firms, judges, districts, and parties of a case) as features for downstream

risk analysis for intellectual property litigation [Surdeanu et al., 2011]. However, both extractive

and abstractive question answering are still largely unexplored in legal texts.

6.1.2 Data

Our text corpus consists of 35,105 parole hearing transcripts, averaging 18,499 words each, covering

15,852 unique individuals from 2007–2019 parsed from PDF documents. Each hearing is attended

by a presiding and a deputy parole commissioner, the parole candidate, and typically an attorney

for the candidate. Often, hearings also include a district attorney representative from the county of

the commitment o↵ense, who makes a statement, and a victim or their next-of-kin, who may make

a statement. Some hearings are attended by visitors who do not participate in the dialogue. The

majority of the conversation occurs between the parole candidate, their attorney, and the presiding

commissioner.
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Feature Selection

We selected 11 features from a set of case factors identified in discussion with legal scholars2, former

parole candidates, advocacy groups including appellate attorneys, representatives from the California

Governor’s o�ce, and the Parole Board.

Four features are binary: off mur1 (“Do the controlling o↵enses include first-degree murder?”),

proggang (“While in prison, did the parole candidate participate in gang-related programming?”),

da opp (“Did the district attorney attend the hearing and oppose parole?”), and job offer (“Does

the parole candidate have an o↵er letter for a job post-release?”).

Two features are multi-class: edu level (“What is the parole candidate’s education level?”),

which falls into one of five categories: “no high school or GED,” “high school or GED or CHSPD,”

“some college courses,” “college degree,” or “other”; and risk assess (“What is the risk score

assigned by the psychological evaluation?”), which also has five categories: low, low/moderate,

moderate, moderate/high, and high.

Three features are dates. Various dates are mentioned in the course of a parole hearing. Two

that are usually stated at the start of the hearing are the MEPD (minimum eligible parole date)

and the date that the parole candidate was received into the California Department of Corrections

and Rehabilitation (CDCR). Discussing disciplinary writeups that occurred in prison is another key

part of the hearing, and we use last writeup to denote the year of the most recent such writeup.

Finally, two features are numerical. One is yrserved, the number of years the parole candidate

has served in state prison. Another is tabe, a measure of educational attainment that corresponds

roughly to grade levels (10.5 corresponds to finishing half of 10th grade, where 12.9, corresponding

to high school completion, is the highest score).

The context window, or section of dialogue required to identify a feature, varies greatly. Figure 6.1

shows an example of a context window for the last writeup task. In other hearings, the context

window may be longer, e.g., the commissioner may decide to focus on the “mutual combat” in 2006

and speak about the single incident in depth before returning to the list of Forms 115.

Annotation

We collected annotations over a subset of transcripts from three sources. CDCR provided the

controlling o↵ense for 26,780 transcripts, which yields off mur1. We scraped CDCR’s “Inmate

Locator” website to obtain year received for each parole candidate. Bell [2019] provided human

labels for 426 juvenile lifer parole hearings for a superset of the 11 factors.

We manually labeled 827 transcripts with 118 features with a team of 11 research assistants who

were trained and supervised by a legal expert. Through the process of annotation, we narrowed

down the 118 proposed fields through multiple rounds of annotations and inter-rater reliability

2All 11 features are identified as more than marginally predictive in Bell [2019] and Young et al. [2015]’s studies
of California parole hearings.
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Feature Num. Train Num. Val.
off mur1 16,201 1,867
proggang 563 48
da opp 1,173 106
job offer 1,173 106
edu level 1,174 106
risk assess 1,173 106
mepd 1,174 106
last writeup 563 48
year received 10,866 1,261
tabe 367 36
yrserved 982 94

Table 6.1: Training and validation split sizes for each feature.

Feature Human ̂ IRR
off mur1 0.94
proggang 0.93
da opp 0.99
job offer 0.77
edu level 0.92
risk assess 0.80
mepd 0.61
last writeup 0.69

Table 6.2: Inter-rater reliability ̂ score of human annotators for each feature

evaluations. The first round of annotations included all 11 features. Subsequent rounds dropped

tabe and proggang.

We split data into training and validation sets by sampling at the transcript level. We withheld

an additional portion of the data in a separate test split that is not uncovered for the present work

in progress. A subset of training transcripts was designated “development” and used for inspection

during model development, in particular for developing human intuition for writing label functions.

Because not all features are covered by all label sources, the amount of labeled data varies by

feature across the splits. Table 6.1 includes the number of examples in each group.

6.1.3 Human Performance

To compute a human performance baseline for the reliability with which the selected features can

be extracted from transcripts, we use Cohen’s  coe�cients. Because the overlap of annotators

varies by feature, we compute a mean -statistic per feature, weighted by the number of documents

that overlapped between the annotators . For the kth feature and two labelers i, j, i 6= j, let

k(i, j) =
p0�pe

1�pe
, where p0 is the relative observed agreement among labelers i and j and pe is the

probability of chance agreement under the observed data available for the labelers and let Nk(i, j)
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be the number of documents for which i and j overlap on feature k. Table 6.2 reports the statistic

̂k =

P
i 6=j Nk(i, j) · k(i, j)P

i 6=j Nk(i, j)
.

6.1.4 Extraction Models

Weakly Supervised Models

Labeling features for parole hearings is burdensome; each hearing takes about one hour to annotate

per person. An alternative approach is to generate a noisy but larger dataset using data program-

ming [Ratner et al., 2016]. Data programming improves on purely rule-based methods by learning

to automatically weight rules, also known as labeling functions, to produce a probabilistic label.

When combined, multiple labeling functions �1, . . . ,�n can comprise a high-quality estimate of a

single label y. For example, for the task of classifying whether a candidate has a count of first-degree

murder, �1 can be an indicator of whether the phrase “first degree” appears in the first ten conver-

sational turns. Or, a labeling function might instead rely on neural sentiment analysis models. We

wrote a set of labeling functions for each extraction task. We also wrote a retrieval heuristic that

selects a number of conversational turns from the transcripts over which labeling functions are run.

We use two strategies to produce an estimate ŷ from multiple labeling functions. Snorkel

MeTaL proposes an unsupervised method [Ratner et al., 2018]. Supervised methods can also be

used, e.g. using linear or logistic regression to learn a weighting of the labeling functions to produce

an estimate. In our case, we use logistic regression for the binary variables, where learning a prior

makes sense, and prior-free constrained least squares regression for all other variables. We call this

method weakly supervised labeling functions, or WSLF.

Pre-Trained Language Models

Data programming generalizes the knowledge of domain experts; pre-trained language models gen-

eralize the knowledge of a large English corpus.

We first use models fine-tuned for question answering, which allows us to use a single model for

a wide range of features. We study two question answering models: DistilBERT Sanh et al. [2019]

fine-tuned on SQuAD Rajpurkar et al. [2016] and Longformer Beltagy et al. [2020] fine-tuned on

SQuAD 2.0 Lee et al. [2020]. We call these two models QA1 and QA2, respectively. Through QA1,

we hope to understand the overall performance gain, if any, from pre-training. Through QA2, we

hope to understand any advantages of using a model with a longer context window (4,096 tokens)

that can handle unanswerable questions, which are common in this corpus.

Our second approach is to model each task as a classification task and to fine-tune a language

model for each task. We first fine-tune the base BERT model [Devlin et al., 2019] on all parole

hearing text, including unlabeled documents. We then train a classifier layer on the labels produced
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Snorkel WSLF QA1 QA2 Task-FT Avg. # Words
Binary Features

off mur1 0.78 0.74 0.76* 0.78* 0.80 974
proggang 0.66 0.87 0.42* 0.53* 0.64 13,270
da opp 0.83 0.83 0.73* 0.76* 0.83 5,219
job offer 0.52 0.63 0.58* 0.53* 0.46 9,973

Multi-class Features
edu level 0.37 0.41 0.13* 0.30* 0.34 12,990
risk assess 0.48 0.51 0.46 0.53 0.51 12,326

Dates
mepd 0.74 0.83 0.79 0.79 0.87 2,405
last writeup 0.27 0.03 0.35 0.42 0.24 4,811
year received 0.47 0.01 0.73 0.76 0.15 1,700

Numerical
tabe 0.87 0.88 0.87 0.90 0.94 972
yrserved 0.28 0.08 0.28 0.20 0.13 18,603

Table 6.3: F1 scores of information extraction models and the average number of words in the
context windows that were the input text for each model. Scores with * in the QA columns required
manual intervention to convert the extractive answer into a binary or multi-class label.

in data generation, because of how limited human labels are. We train a separate model for each

task (as opposed to a single multi-head multi-task model), i.e. there is one model to predict the

binary feature off mur1, another one to predict the binary feature proggang, and so on. We call

this approach task fine-tuned, or Task-FT.

6.1.5 Results

Table 6.3 reports the average F1 score across all classes. Binary and multi-class features have natural

F1 score interpretations. Date features are quantized into years, and both numerical features have

natural quantizations. The TABE score is already quantized to the nearest tenth of a point, and

the years served rounded to the nearest year.

Because Snorkel, WSLF, and Task-FT models are trained for a given class, their results are given

in the space of the label of the task, whether that is a binary label or a date, for example. However,

both QA1 and QA2 models are extractive question answering models, i.e. the answers returned

are taken from the text of the hearing. In some cases, the text needs additional processing to be

transformed into a label. The transformation may be human intervention, such as in the case of

edu level, where the extractive answer “ninth grade” and needs to be translated into a categorical

answer “no high school or GED.” In other cases, such as with dates, the transformation can be

partially or fully automated, such as by parsing answers like “March the 6th, 2019” into the MEPD

year, 2019, using tools such as SUTime [Chang and Manning, 2012].

Overall, WSLF does well on most classification tasks, though it is beaten by QA2 on risk assess



CHAPTER 6. INFORMATION EXTRACTION FOR PAROLE HEARINGS 97

and by the more powerful classifier Task-FT on off mur1. QA2 is strongest on dates and generally

outperforms QA1. Task-FT performs best on a variety of tasks, but surprisingly, it does not always

improve over WSLF and Snorkel, even though its training process uses the very labels produced by

the data programming methods, but augmented with even more information, the underlying text

itself.

6.1.6 Discussion

Our case study on extracting features from parole hearings illustrates many outstanding challenges

in question answering, information extraction, and text classification. Addressing these challenges

is key to using NLP for positive impact in criminal law. The tasks posed by the parole dataset do

not fall neatly into relation extraction, which has been the focus of neural information extraction.

For legal domain tasks, human labels are scarce and expensive, which raises the question of whether

weak supervision may be a more e�cient allocation of labels than direct supervision. Legal hearings

are long and don’t fit neatly into the context window size of a neural model, which raises questions

about how neural question answering systems can address this task. We answer the questions in

turn.

Can weakly supervised methods be successfully used to reduce the cost of data annota-

tion? Data programming provides the opportunity to produce a large number of labels, but it still

comes at the cost of requiring experts to translate domain knowledge into programs for each task.

Rather than spending one hour labeling one document, an expert may spend dozens of hours de-

signing labeling functions for a single task, e.g. “Does the parole candidate have a job o↵er?” Once

designed, labeling functions are usually computationally light. In producing a final model, adding

even weak supervision can improve performance, as seen by improvements of weakly supervised

learning functions (WSLF) over the unsupervised Snorkel approach. But unsupervised and weakly

supervised techniques mainly perform well only when the tasks can be framed as classification, or

when the extractive procedure is relatively simple, such as finding a one-digit decimal TABE score.

Reserving some human labels to supervise a WSLF approach outperforms the unsupervised Snorkel

method.

Can neural question answering successfully address parole hearings? Neural question

answering systems have the flexibility of handling a large range of question formulations and feature

types. Compared to other models, this flexibility improves the performance on date features, but

surprisingly, on only one additional task, risk assess.

Boolean questions remain an outstanding challenge. Reading comprehension datasets, such as

CoQA [Reddy et al., 2019] and BoolQ [Clark et al., 2019] include such questions but leave a sub-

stantial performance gap for future work. The reliance on manual conversion of some answers to
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binary or multi-class labels is problematic.

In general, including on date features, the most common failure mode for QA1 and QA2 is to

return an incorrect answer of a correct type. For example, for yrserved, the models frequently

returned any number they found in the context passage, such as the sentence (e.g. “15 years to

life”) or any other time range (e.g. “It was around two years I was part of that gang.”)

How big a problem is document length? Long context windows continue to challenge all

models present, especially neural models. Although developing retrieval models for dialogue can

help narrow the context window for downstream question answering applications, an even bigger

challenge is the fact that even with an ideal retrieval model, the “correct” context window can still

be long. In conversation, speakers are free to go on tangents. More importantly, in the case of legal

hearings, speakers elaborate on case factors, attending to detail (as they should), which can greatly

prolong a hearing. For example, in discussions of the psychological risk score, both data generation

methods and neural question answering systems fail to identify the sentence and keyword containing

“low,” “moderate,” or “high.” We suspect that this is because discussions of all risk factors are

usually several thousand words long. The score can be mentioned at the very beginning or very end,

but often it is tucked away somewhere in the middle.

6.1.7 Conclusion

Parole hearing transcripts go into a great amount of detail in discussing numerous case factors

centered around a single named entity, an incarcerated individual who has reached their parole

eligibility date. The lack of relational structure and long format of these hearings makes information

extraction from transcripts very challenging using several very di↵erent approaches from modern

NLP.

We estimate that an F1 score of 0.80–0.85 across a broad set of features would provide the

ability to conduct meaningful downstream research on a hearing-driven decision-making process like

parole. To flag individual cases for reconsideration, we believe that the bar likely lies even higher,

since misclassifications often cause outliers. The performance of present models approaches the level

at which we can provide useful automatic extraction tools to parole stakeholders for some features,

especially certain binary ones. However, for other, seemingly simple medium- and high-cardinality

tasks, much work remains.

We plan to conduct future experiments to provide more transparency to model performance. The

opaque nature of NLP modeling perplexes our legal collaborators: “How can you identify whether

a candidate has participated in gang-related rehabilitation programming but not pick out the risk

assessment score from a choice of three words?”

The largest challenge moving forward remains natural language understanding in the face of

document length. Of course, length is not the only problem and other artifacts of spoken dialogue
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cause challenges, including interruptions, corrections, and colloquial speech. Improved retrieval

techniques or even summarization methods can help assess the extent to which document length

remains a challenge and possibly mitigate its impact. However, there is no getting around the level

of detail that is regarded as due process.

One solution is to incorporate the hierarchical nature of dialogue [Asher and Vieu, 2005]. Within

a discussion about risk assessment, a parole commissioner may ask about various sub-factors, such

as mental illness, or behavior toward other individuals in prison. We suspect that the word “low,”

“moderate,” or “high” can appear in any of those sub-topics without referring to the risk score.

We hope to conduct further research to assess the need for and viability of a hierarchical model.

Conversely, an extractive model sometimes picks up on risk-related words in the sub-topics, rather

than returning to the higher level question of the risk scores.

Common sense knowledge will also play a role in solving this challenge. In one section of a

hearing, the commissioner says, “And, uh, I note that you – you have both a high school diploma

and GED, is that correct?” Over the course of the next eight thousand words, the parole candidate

describes his life, from playing sports in high school, to having a child, to the chaos of teenage

co-parenting, to night school, to getting married, and to moving cities to protect his children. Later

on, the commissioner revisits the record and says, “You’ve taken some college classes,” which the

candidate himself failed to mention. In addition to understanding the topics and sub-topics in which

education occurs, the edu level task benefits from real-life knowledge about educational levels. The

WSLF model performs well because of tailored labeling functions that encode information about

“high school” and “college.”

Finally, cross-sentence reference resolution remains important. In Figure 1, the question of the

most recent Form 115 can be answered in a short context window. Yet, extracting the answer

requires resolving the reference of “these” in “ You picked up a couple of these in 2013.”

While the amount of attention to personal detail in these hearings presents the biggest challenge

to our extraction models, individualized attention is also precisely what defines equitable justice. We

hope that the NLP community will take up this challenge.

6.2 Learning from Limited Labels for Long Legal Dialogue

In many judicial processes such as legal hearings and criminal trials, decisions are made as a result

of lengthy dialogues, in which case factors are discussed in great detail. To study such dialogues,

scholars typically invest immense e↵ort to hand label a small number of transcripts with some

case factors; the factors are then used in downstream analysis. In most cases, the sheer length of

transcribed conversational text all but prohibits any large-scale analysis of the process. Information

extraction over dialogues can assist in identifying the underlying factors of a case from transcripts.

The benefits of information extraction are twofold. Automating the extraction of case factors
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means that a historical legal analysis can now be comprehensive, containing all available transcripts,

rather than being limited to the several dozen or hundred transcripts that a single researcher can

label by hand. The second advantage is to open the door to counterdata applications in law [D’ignazio

and Klein, 2020]. To date, most machine learning applications in the law have been predictive: given

case factors up front, make a prediction of an outcome. In domains where case factors cannot or

should not be known prior to the hearing, information extraction can produce case factors after a

hearing, which enables machine learning to play an alternative role to the role of prediction, the role

of oversight [Bell et al., 2021]. In our application, information extraction allows the public to audit

the parole process, whose case records are otherwise locked away in a filing cabinet.

To be useful for such downstream research, the consensus in legal domain NLP is that information

extraction should produce labels that achieve an F1 of at least 0.80 [Hendrycks et al., 2021, Hong

et al., 2021b].

The scarcity of labels and specificity of the domain suggest that subject matter experts (SMEs)

can be helpful. On the parole corpus, weak supervision-based data programming approaches [Ratner

et al., 2016, Zheng et al., 2019] achieve F1 scores of only 0.41–0.63 [Hong et al., 2021b]. We propose

an alternative way to involve SMEs, in which we split the problem into two components: a Reducer

model which extracts relevant text segments from a hearing, and a Producer model which generates

answers from the text segments selected by the Reducer. Our methods e↵ectively achieve extraction

at 0.83–0.89 F1.

We show that using an approach with a rule-based Reducer and neural Producer outperforms

other commonly-used approaches. Focusing SME e↵ort on developing rules for the Reducer is thus

more time-e�cient than requiring SMEs to provide additional target labels, whether manually or

via data programming. With quality text segments, a neural Producer model can be e↵ectively

fine-tuned on just one thousand labels.

6.2.1 Related Work

A review of data programming literature suggests that semi-supervised techniques might be a good

fit for our problem space. Several existing pipelines combine a limited amount of training data,

rule-based systems and neural models to achieve strong results on benchmark datasets [Maheshwari

et al., 2020] and in various medical fields [Ling et al., 2019, Smit et al., 2020, Dai et al., 2021]. By

comparison, weak supervision-based data programming methods tend to focus on bootstrapping in

the absence of data [Ratner et al., 2017, 2018], which is a nontrivial performance constraint.

Regardless of supervision strength, an architecture based on rule-based systems may be useful

for generating “candidates” as input to downstream neural models; [Zhang et al., 2019] explores the

time e�ciency of manual labeling compared with rule-writing (via regular expressions) for named

entity recognition (NER), where results are compared over a bidirectional LSTM-based classifier,

finding that in most circumstances, a combination of rule-based and machine-learning classifiers
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optimizes human time investment.

We therefore adopt the approach of using a rule-based system for candidate generation. One

new challenges with our corpus is that parole hearings generally center around one individual, so

the candidates for downstream models are not named entities, but more loosely defined segments

of the hearing. Compared to NER, there is less prior work exploring rule-based methods for more

general retrieval and segmentation.

Our goal of achieving 0.80 F1 in an abstractive format is currently beyond the capabilities of

state-of-the-art (SOTA) neural models on comparable tasks, only one of which is in the legal domain.

On Natural Questions (NQ; [Kwiatkowski et al., 2019]), SOTA models achieve F1 scores of 0.79

and 0.64 on its long and short answer tasks, respectively. However, NQ is purely extractive and

averages only 7,300 words per input. On the Doc2EDAG financial statements dataset [Zheng et al.,

2019], the Graph-based Interaction model with a Tracker [Xu et al., 2021b] surpasses 0.80 F1 when

extracting events from documents averaging 912 tokens in length, but this SOTA result drops to

0.76 F1 in the longest quartile. On Open-Domain Question Answering, the SOTA Dense Passage

Retrieval [Karpukhin et al., 2020] has an extractive top-5 accuracy of just 0.66. For downstream

applications, a model must have a robust top-1 accuracy.

The closest comparable legal dataset is the Contract Understanding Atticus Dataset (CUAD)

[Hendrycks et al., 2021]. Over CUAD, a SOTA model like RoBERTa [Liu et al., 2019] achieves a

lower, and extractive, question answering performance of 0.80 recall at 0.31 precision, representing

an F1 score of only 0.45, with documents still averaging one-quarter the length of parole transcripts.

6.2.2 Data

We have obtained a corpus of 35,105 parole hearing transcripts, averaging 18,499 words each from

2007–2019.3 Each hearing is a dialogue, primarily between one or more commissioners and the

parole candidate. Most case factors are embellished with history and context, which is important

for the procedure of a parole hearing, but challenging for information extraction. [Hong et al., 2021b]

identified eleven fields for information extraction. We study the four fields that the previous study

failed to extract with near 0.80 F1: job offer (whether the parole candidate has a job o↵er upon

release), edu level (the candidate’s educational level), risk assess (a psychological assessment

score), and last writeup (the date of the candidate’s last disciplinary writeup in prison). Figure 6.2

shows examples of how these four features arise in dialogue. On average, each annotator takes forty

minutes to label a transcript. Only 3% of the dataset is labeled: job offer, edu level, and risk

assess each have 1,173 training examples and 106 validation examples, whereas last writeup has

563 and 48, respectively. The corpus also includes 218 transcripts with labeled spans, i.e. the

sentences from which the correct label was determined.
3Transcripts may be requested from the California Department of Corrections and Rehabilitation under the Cali-

fornia Public Records Act.
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COMM: Dr. [REDACT], R-E-D-A-C-T, found you to be a moderate risk
and also diagnosed you with anti-social personality disorder.

(a) Example of passage discussing risk assess, the Comprehensive Risk Assessment
score assigned to a parole candidate by a psychologist during an evaluation conducted
leading up to the hearing.

COMM: When you were going to school, everything was -- how far did
you get in school?
CAND: Junior high.
COMM: Okay. Junior high, okay. And have you gotten education in
prison?

(b) Example of passage discussing edu level, the candidate’s level of education. The
passage continues for several more conversational turns, in which the commissioner
and the candidate discuss various educational programs.

COMM: And -- um -- if you are paroled or -- pardon me -- if you
are deported to [REDACT], what is your plan?
CAND: Well -- um -- I had a couple of offers from there -- um --
I would have to -- uh -- check out the -- um -- [REDACT] center
and maybe they could help me -- you know -- train me to get a job
there and get my life together.

(c) Example of passage discussing job offer, whether the candidate has a job o↵er
upon release.

COMM: So when’s your last 115?
CAND: Uh, when they had a -- we had a work -- had a work strike
around here. That was the last 115 I remember. I forgot what --
what year it was.
COMM: I’m showing one from maybe January of 2010 with a mattress.
CAND: Oh, I didn’t realize it was a 115.

(d) Example of passage discussing last writeup, the date of the candidate’s last dis-
ciplinary infraction, or Form 115, in prison.

Figure 6.2: Example passages of the four features we study. The speaker COMM refers to the presiding
commissioner, and the speaker CAND refers to the parole candidate.
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Figure 6.3: Reducer-Producer architecture sketch for the last writeup feature. The Reducer is
entirely rule-based, with a few high-level operations over various regular expressions. The Producer
is entirely neural and builds on a pretrained language model.

6.2.3 Methods

We use a Reducer-Producer paradigm (Figure 6.3) in the spirit of the Document Retriever-Reader

model used in open-domain question answering (ODQA; Chen et al., 2017, Das et al., 2019), with

two di↵erences: (1) The Reducer selects one or more relevant passages from within a single document

[Clark and Gardner, 2018, Krishna et al., 2021], and (2) the Producer model is not necessarily a

QA model. We use separate Reducers and Producers for each field. Prior applications of data

programming to this corpus used SMEs to write noisy labels for training a neural model; it does not

significantly reduce the input text into shorter segments and instead relies on an end-to-end neural

approach [Hong et al., 2021b]. By contrast, our approach uses SMEs to focus on the smaller task of

reducing input text and relies on only gold labels, however few, for training the neural model. One

subproblem is designed to be tractable for an SME (the Reducer), and the other for a pretrained

language model (the Producer).

Reducer

The SME (1) encodes keywords and patterns into programmatic rules [Zhang et al., 2019], and (2)

evaluates the rules against silver-standard metrics. The SME examines any errors and repeats the

process until the development subset is covered to �95% recall on silver metrics.

Rules. The SME uses keywords to generate candidate segments and candidate substrings (e.g.,

for risk assessments, “low” is interesting, but only if it occurs in the proximity of “risk”), sequenced

in order of increasing breadth and decreasing precision [Zhang et al., 2019]. The framework provides

high-level functions that enable SMEs to easily operate on pipelines of candidate segments, filtering

in or out, splitting, deoverlapping, and limiting results to create a high-quality reduced output

passage.
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Evaluation. We reserve the 218 transcripts with labeled spans to serve as a held-out evaluation

set. For intermediate SME evaluation and iterations, we use three silver-standard evaluations as a

proxy for true Reducer performance: (a) the percentage of results with empty outputs, (b) whether

true labels (and common synonyms) appear within reduced passages, and (c) performing interim

Producer fine-tuning runs, and evaluating end-to-end performance across a set of hyperparameter

sweeps.

Producer

We write several simple rule-based Producers to build an understanding of the problem space, and

then fine-tune pretrained language models on the passages returned by the Reducer.

Choice of language model. To ensure high training e�cacy, we identify the smallest language

model that meets the required benchmark in the general case. We evaluate a range of models’

capabilities on a small task: For each of the four fields, we identify ten transcripts with particularly

challenging dialogue (see Section 6.C for examples). We manually extract passages from each tran-

script and benchmark each language model on its average zero-shot classification accuracy on all 40

passages, across 25 random seeds.

Choice of prediction heads. Fields with a small, fixed set of values are a good fit for a classifi-

cation head (CLS), such as edu level which is grouped into four categories, and risk assess, for

which a psychologist ascribes one of five possible risk levels. Fields with an open-ended set of values

may be more suited to the masked language model (MLM) [Hermann et al., 2015, Hill et al., 2016,

Chen, 2018, Devlin et al., 2019] or question answering (QA) approach, e.g., last writeup can be

any year from 1960–2020.

The MLM and QA heads require a user-defined prompt, which are not always natural for all

fields. For example, for job offer, we prompt MLM with token choices, e.g. “Commissioner: As

to whether you have a job o↵er lined up: You have [one / none].”). For last writeup, where the

correct year exists within each passage, we try various prompts, such as “Your last writeup was

in [MASK]”. We chose prompts with good fine-tuning performance on training data, e.g. for last

writeup, we use the prompt “Ignoring chronos and 128s, your most recent 115, RVR (rule violation

report) occurred in: [MASK]”). QA requires a question formulation, for some fields, we augment QA

heads with a prefix sentence containing tokens representing all of the current field’s possible classes,

a technique used in QA benchmarks such as CoQA [Reddy et al., 2019] and BoolQ [Clark et al.,

2019], which enables extractive models to always return values from desired classes.

We tried using a multiple choice reading comprehension (MRC) head [Richardson et al., 2013,

Lai et al., 2017, Chen, 2018], which proved to be an elegant way of grounding the model, with

similarities to contrastive learning, and able to generate dynamic classification options, e.g. unlike
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Prev F1 Train F1 Val F1 Producer Model Prediction Head
risk assess 0.53 0.86 0.83 Rules N/A
last writeup 0.42 0.86 0.84 RoB+BB MLM
edu level 0.41 0.98 0.84 RoB+BB CLS
job offer 0.63 0.96 0.89 RoB+BB QA

Table 6.4: Overall results. Previous best results are from Hong et al. [2021b]. RoB + BB is an
abbreviation for the RoBERTa + BigBird model.

year classification, MRC choices are only the year that appear in the passage. However, MRC

requires a full backpropagation across the entire model for each option of every question, which is

memory-intensive for passages where over a dozen options might exist per question, and unnecessarily

slow even with gradient accumulation. We do not include MRC in our results.

Training details. We use base models from the HuggingFace Transformers library [Wolf et al.,

2020], applying standard hyperparameter ranges [Sun et al., 2019a] and techniques for training

BERT-based models, such as the use of a slanted triangular learning rate. However, we set batch size

to 1 and use gradient accumulation to simulate a larger batch size, in order to allow Reducer outputs

to be as large as possible (approximately 1,500 tokens for RoBERTA + BigBird Base on a 16GB

GPU) without a↵ecting training performance. We ran hyperparameter sweeps for approximately

six hours per field on a NVIDIA Tesla V100 GPU.

6.2.4 Results

Our methods achieve the 0.80 F1 benchmark45 for all four fields, as shown in Table 6.4. One rule-

based Producer achieved an F1 of 0.83 for risk assess, which narrowly outperformed RoBERTa

+ BigBird model performance of 0.81 F1. However, all other rule-based Producer attempts fell

near or below the “Previous F1” mark on their tasks. The risk assess task lends itself to rule-

writing, because its values are restricted to combinations of “low,” “moderate,” and “high”, and

there are a few phrasings that are commonly used (e.g., “Overall, your risk was low to moderate”).

By comparison, neural models may have been confused by the multiple other types of psychological

assessments that occur in the text (e.g., PCL-R, HCR-20, LS/CMI), which are all assessed on the

same “low,” “moderate,” and “high” scale.
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Rouge-L Recall Rouge-2 Recall Bag-of-Words Recall
risk assess 0.85 0.76 0.88
last writeup 0.87 0.76 0.91
edu level 0.92 0.82 0.95
job offer 0.87 0.72 0.92

Table 6.5: Evaluating Reducers on labeled spans: Rouge-L and Rouge-2 Recall, Bag-of-Words Recall.

Standalone Reducer Performance

Table 6.5 shows the Reducer’s performance on three di↵erent measures of recall on the 218 labeled

spans. We focus on recall because a Producer can still perform well on a short input even if there

are occasional spurious phrases. Also, correct answers are not necessarily unique; labeled spans

often point to a single sentence, whereas a fact may be repeated multiple times during the course

of a hearing. The Reducer may select a correct span, but not the exact sentence selected by the

annotator. Recall sidesteps the former issue and slightly mitigates the incorrect penalty imposed by

the latter, as similar words may be used in both spans.

The Rouge-L recall ranges from 0.85–0.92: the Reducer frequently finds the exact set of sentences

annotated by a human labeler. The Rouge-2 recall is lower, from 0.72–0.82: when the Reducer fails

to find the exact sentences, the phrasing of its result is di↵erent. However, the bag-of-words recall

is still high: 0.88–0.95, which means that the Reducer tends to finds sentences that use almost the

same words, if not in the exact same order.

Given the span labeling issue described above, Table 6.5 is almost certainly an underestimate of

Reducer performance. This is supported by other assessments of Reducer performance: end-to-end

F1 scores of 0.83–0.89 are e↵ectively a guarantee on the lower bound of Reducer performance, and

based on the error analysis in Section 6.2.4, only a small fraction of errors were due to the Reducer.

This implies significantly higher true recall scores. This is also in line with our silver-standard

Reducer evaluations, which are consistently above 0.95.

Language Model Benchmarks

Benchmark performance for each language model is provided in Table 6.6. Figure ?? plots model

performance against size and shows power-law scaling characteristics, a known feature of neural

language models [Kaplan et al., 2020].

Given the relatively small range in performance between the models in our evaluation set (7.5%

across all model families and variants), we also run some supplementary tests, finding that (a)

4F1 scores are calculated on exact match for all prediction heads, instead of the relatively easier bag-of-words
metric used in the extractive setting, or precision at 0.80 recall [Hendrycks et al., 2021]. This is a more accurate
measurement of abstractive performance, which is essential to downstream results.

5Related existing work reports F1, but F1 is an imperfect proxy for the impact of errors for downstream analyses.
Any application that seeks to use extracted data should perform its own analysis to understand the relative costs of,
for example, false positives versus false negatives for a given field.
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Model Family Model Variant Size Max Length Benchmark Score
BERT Base Cased 108M 512 26.7± 9.4

Large Cased 334M 512 33.0± 8.0

RoBERTa

Vanilla Base 125M 512 29.8± 8.1
Vanilla Large 355M 512 28.3± 8.7
BigBird Base 128M 4,096 30.5 ± 5.6
BigBird Large 360M 4,096 33.0± 6.0

Transformer-XL
Vanilla Base 284M N/A 32.1± 7.6
XLNet Base 117M N/A 29.1± 5.9
XLNet Large 361M N/A 30.2± 5.9

GPT

GPT2 Base 124M 2,048 32.2± 6.3
GPT2 Medium 355M 2,048 33.5± 5.6
GPT2 Large 774M 2,048 34.0± 7.1
GPT-Neo 1.3B 1.32B 2,048 34.2± 6.3

Table 6.6: Zero-shot language model performance (average classification accuracy) on a benchmark
of complex, challenging passages, over 25 random seeds.

Hyperparameter Value(s)
Learning Rate 5e-4 to 5e-7
Batch Size (Accumulative) 1, 2, 4, 8, 16
Number of Epochs 6 to 10
LR Warmup Epochs 0.4, 0.6, 0.8, 1.0, 1.2
Dropout 0.1
Adam Optimizer �1 = 0.9,�2 = 0.999

Table 6.7: Hyperparameter sweep configurations for prediction head selection exercise.

models pretrained on question answering datasets performed 10–15% better in this setting, but a

comprehensive evaluation was not feasible as QA outputs are extractive and require manual assess-

ment, and (b) large GPT models performed dramatically better in the few-shot setting, with GPT3

performing at 90–100% accuracy on some problems.

We ultimately use RoBERTa + BigBird Base (RoB + BB; [Zaheer et al., 2020]) as our default

model due to its balance of long input length, low computation requirements, and performance. This

model supports inputs of up to 4,096 tokens, allowing the Reducer to provide multiple candidate

passages without having to split input into multiple model calls and integrate a la [Clark and

Gardner, 2018]. It is in the smallest size class of the models tested, facilitating the fine-tuning of

large input passages within GPU memory limits. Within its size class, RoB + BB is the second-

best performer, performing within 2–3% of models 2–3x its size. Compared to the top performer

(GPT2), BERT is known to have better versatility on downstream tasks [Klein and Nabi, 2019] and

well-explored fine-tuning characteristics [Sun et al., 2019a].
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CLS MLM QA
last writeup 0.76 0.79 0.82
edu_level 0.82 0.43 0.70
job_offer 0.83 0.69 0.89

Table 6.8: The e↵ects of di↵erent prediction heads on Validation F1 scores (results in italics are not
definitive, as MLM outperforms QA on end-to-end evaluation).

Prediction Heads

We evaluate the gains from prediction head choice by performing 25 fine-tuning runs for each com-

bination of field and head and reporting the highest validation F1 score achieved for each. To ensure

test fairness within a reasonable amount of computation, each run uses a random configuration from

Table 6.7. F1 scores are recorded at the point where validation loss is at a minimum.

Table 6.8 shows the performance of each prediction head on each field. edu level and job

offer performed comparably to the main runs in Table 6.4. last writeup performed best under

a question answering head during this exercise, but underperformed the masked language model

F1 score of 0.84 in Table 6.4, leaving this result ambiguous. Selecting a suitable prediction head

dramatically a↵ects model performance after fine-tuning: suboptimal head choices result in F1 scores

of 52-93% of the scores achieved with the best prediction head.

The CLS prediction head performs well across all fields except last writeup, where only 20% of

all runs score above 0.25, and most score below 0.10. Classification is not a natural format for this

field: in order to classify a passage, the model must learn 50 separate classes, one for each possible

year from 1969–2019. CLS performs well when the number of classes is relatively low, especially

when the answer is abstractive. However, it tends to fail to understand factual relationships. For

example, when used for risk assessment its ratings correlate with the number of times the word

“gang” or “murder” occurs in the passage (see Section 6.D for more information).

The MLM head has nearly the opposite performance characteristics: it performs best on last

writeup, at an average level on job offer, and very poorly on edu level. It is telling that last

writeup can be expressed as a sentence with a single masked token (which may hold many values),

whereas the classes of the latter are all concepts which do not fit into a single token. The MLM head’s

F1 scores tend to be several points lower than its accuracy, a symptom of the model occasionally

filling the mask with arbitrary freeform values.

The QA heads perform well on job offer, fairly well on last writeup, and at an average level

on edu level. The first field is easily expressed as in the form of a yes/no question, and the second

field’s value is extractable from within the passage as with a regular QA task. However, the third

requires the model to parse the passage to locate the answer, classify this into one of four fixed

phrasings, and return this phrasing from the prefix sentence, a task which is somewhat foreign to a

question answering-based model.
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Error Analysis

Errors fall into a few clear classes. Approximately 70% of all errors result from what appears to be

the model learning spurious associations with co-occurring words. For example, in one conversational

turn, a parole candidate describes both his own and the victim’s level of education. The Producer

incorrectly returns the victim’s level of education, which uses the phrase “college courses.”

Around 10% of errors result from complex passages (comparable to the examples in Section 6.C),

which continue to challenge language models. Spoken narrative language can be arbitrarily complex,

and grounding in real world knowledge and presuppositions remain hard to encode. In one transcript,

the commissioner asks, “Are you working towards a college degree?” which presupposes that the

parole candidate completed high school. However, the model classifies this candidate as not having

completed high school or a GED, as the transcript does not explicitly mention either. Some passages

require numerical abilities which smaller language models tend to find di�cult [Dua et al., 2019].

Table 6.6 suggests that a larger language model may improve performance in many cases.

In the remaining 20% of errors, the Reducer failed to find a match for a given transcript or

returned an incorrect passage.

Surprisingly, we found that in 15–50% of the total errors returned (varying by field), the model

was actually correct, and had identified incorrectly-labeled or ambiguous data. To be conservative,

we did not adjust F1 scores upwards and instead excluded the examples from this error analysis.

A detailed breakdown of errors for edu level is provided in Section 6.D for illustrative purposes.

6.2.5 Discussion

Combining Rules and Neural Models

Previous approaches to our problem use rule-generated labels to supervise a model. We instead split

the problem into two, where the Reducer is entirely rule-based, and the Producer trains only on the

few, but high quality, human labels.

Both rule-generated labels and a rule-based Reducer scale with the number of features to extract,

but not the complexity of model or dataset. However, given a fixed development time, we find it

more valuable for an SME to focus on only the Reducer. In contrast, end-to-end data programming

requires rules for the Producer as well, which can be much more challenging to write. On our

data, it takes about ten hours for an SME to write Reducer rules for a model that performs at the

exceptional recall rates from Table 6.5. [Hong et al., 2021b] report the same number of hours per

feature for an end-to-end data programming model, which performs much worse overall.

As future work, we hope to investigate whether a well-designed Reducer can improve human

performance in creating gold-standard labels, saving time by reducing the need to read through

entire transcripts.
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Assessment of Human-in-the-Loop

We find that an hand-written rules can e↵ectively isolate key segments of text in the overwhelming

majority of situations.

The tradeo↵ of incurring the cost of writing rules per each additional feature proved to be very

reasonable for our domain. We have few features, and our requirements demand accuracy over

speed. In comparison, prior work suggests that for a neural model to achieve accuracy in the same

ballpark, the model would require an order of magnitude more spans, which would be a prohibitive

cost. In the general case, when applying our architecture, the per-feature cost of SME time should

be considered against (a) the potential per-example savings from reducing labeling requirements,

and (b) the performance requirements of the problem space.

The Human-in-the-Loop (HITL) approach enables SMEs to exert a positive influence on the

quality of both the final model and the dataset. Given a probable baseline label error rate of a few

percentage points [Alt et al., 2020, Reiss et al., 2020, Northcutt et al., 2021b], as the Reducer’s recall

increases towards the 0.9 level, many of the mismatches against silver-standard Reducer evaluations

and fine-tuning errors will actually be labeling errors. For example, in a case study where we

checked last writeup Reducer outputs against a silver-standard evaluation, we found that over

80% of “errors” were actually errors in human labeling. This also provides opportunities for SMEs

to apply domain knowledge to more subtle classes of data issues, such as where Reducer rules surface

mislabelings caused by labeler confusion.

As such, a unique advantage to HITL over a neural-only model is improving data quality during

the training process. Purely neural models are forced to learn from mislabeled data points, which

destabilizes benchmarks and damages model performance. [Northcutt et al., 2021b] By comparison,

we frequently detect label errors prior to fine-tuning, and as errors tend to occur in patches (such as

under a particular labeler or a particular time period) we can quickly make corrections or exclude

large bad patches from the training dataset. This can significantly increase training performance:

excluding a patch of bad labels resulted in a 0.2 F1 improvement in one case. Section 6.B elaborates

on the data quality improvement process.

Modular Architecture

The Reducer-Producer architecture is useful for enabling iterative, componentwise development.

Components may be improved in isolation as requirements arise, such as improving Reducer coverage

or upgrading Producer language models, heads or prompts, and sometimes may be entirely replaced

without any impact to their counterparts.

In particular, we hope to leave the door open for a general neural Reducer and Producer, allowing

downstream users to perform open-ended querying and exploration of the dataset. This architec-

ture enables future work to continue to use our Producer models, which are already trained. The

information bottleneck between its components allows for rigorous measurement of the quality of



CHAPTER 6. INFORMATION EXTRACTION FOR PAROLE HEARINGS 111

Reducer output, which enables each component to be trained separately. Additionally, using present

models to generate silver-standard data labels may alleviate issues of label scarcity.

6.2.6 Conclusion

Our corpus of parole hearings poses the challenge of information extraction with few gold labels:

one thousand labels is not enough to locate and identify the answer in a long document. Parole, like

many other applications, requires domain-specific knowledge, which raises the question of how best

to incorporate the labor of subject matter experts to assist neural models in making optimal use of

available labels, in order to achieve high performance on extraction tasks.

We identified two problems with existing work on the parole dataset, which fell short of the 0.80

F1 on many tasks: (1) Text segments remained too long for many SOTA neural models to digest,

and contained many spurious signals. (2) Question answering was a useful first approach to handle a

wide range of di↵erent feature types. However, out-of-the-box, it was rarely the best way to handle

each individual feature type.

We present an approach that uses an SME-designed rule-based Reducer to identify relevant text

segments, and a neural Producer to generate labels using those text segments.

We argue that it is time-e�cient and performant for human SMEs to write mostly keyword-based

rules for finding relevant parts of a parole transcript. In a parole transcript, a field of interest might

be discussed in practically infinite di↵erent ways, but is usually somewhat well-defined by a limited

set of words and patterns that are almost always used (for example, “GED”, “college courses”, “did

not graduate” for a parole candidate’s level of education). These keywords are relatively easy for

a human to identify and write combinations of regular expressions to identify. However, training a

neural model to recognize the phrases over the course of 20,000-word documents requires at least

an order of magnitude more labels than are available [Hendrycks et al., 2021]. Therefore, we focus

SME energy on the Reducer, and only the Reducer.

For the Producer model, the role of human and machine are reversed. When the text is shortened

to a su�ciently succinct context, neural models can be successfully fine-tuned to extract labels at

an F1 of 0.80. It is practically impossible for a human to write rules to interpret every possible

phrasing of, for example, someone’s educational journey. However, pretrained language models excel

at producing labels from small, targeted pieces of text. The 1,000 available labels are su�cient for

good performance on this task [Zhang et al., 2020]. We use a base model that can handle relatively

long tokens. We also explore a range of di↵erent fine-tuning heads.

Our architecture shows the e↵ectiveness of a modular, two-step approach, where not every module

needs to be a neural or machine learning model. Such e↵orts to involve subject matter experts are

especially important in applications that require substantial domain expertise. We hope that this

work encourages additional research to better understand other legal processes whose workings are

yet opaque to the public.
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Appendices

6.A Reducer Operations and Rules

SMEs write Reducers for each field by composing pipelines of high-level operations, as described in

Table 6.9. Operations run on an input transcript or a list of text segments, and emit matches which

are compiled into a final output passage. Table 6.9 defines the operations at the general level, and

to give an concrete example of how these operations are used, Table 6.10 lists the operations for the

job offer feature.

Extract Segments

Extracts a list of segments from a raw transcript which match one

or more regular expressions (regexes).

Input Transcript text with any preprocessing.

Regex Accepts a list of regexes and searches the transcript

separately for each item, returning matches in the

same left-to-right order they are found.

Limit Length of segment returned around each match.

Filter & Split

Filters a list of segments against two lists of regexes, to return two

lists of matching and non-matching segments.

Regex Accepts a “filter in” regex list which segments must

match, and a “filter out” regex list which segments

must not match.

Emit Matches

Saves segments from a given list to a specified list for future com-

pilation.

Limit Length of segment to store around each match, and

maximum segments to store.

Deduplicate

Ensures a list of segments is free of duplicate or overlapping text

ranges. Merges segments with partial overlaps.

Compile Passage

Merges a list of segments into a single text passage.

Separator String inserted between each segment.

(Continued overleaf)
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Limit Trims passage to a maximum length.

Table 6.9: Overview of Reducer operations.

# Param. Value(s)

01 Extract Segments

Input Transcript (lowercase)

Regex job offer

Limit 1,000 chars centered on each match

02 Filter & Split

Input Operation 01

Regex letter

03 Emit Matches

Input Operation 02: Matches only

Limit 2 segments

E↵ect Emits 2x1,000-char segments which mention

”job o↵er” in proximity to “letter”.

04 Emit Matches

Input Operation 02: Non-matches only

Limit 2 segments, 500 chars centered on each match

E↵ect Emits 2x500-char segments which mention

“job o↵er” but not “letter”.

05 Extract Segments

Input Transcript (lowercase)

Regexes jobs? ([\w,]+ ){2,10}offer OR

offer\w+ ([\w,]+ ){2,10}job
Limit 500 chars centered on each match

06 Emit Matches

Input Operation 05

Limit 2 segments

E↵ect Emits 2x500-char segments in which “job”

and “o↵er” are within ten words of each other.

07 Extract Segments

Input Transcript (lowercase)

Regex (?:find\w+|locat\w+|get\w+) (\w+
){0,5}(?:work |employment|job(?!

offer))

(Continued overleaf)
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# Param. Value(s)

Limit 1,000 chars centered on each match

08 Emit Matches

Input Operation 07

Limit 2 segments

E↵ect Emits 2x1,000-char segments in which a verb

and a noun about job hunting are within five

words of each other.

09 Extract Segments

Input Transcript (lowercase)

Regex (?:job(?! offer)|employ|hire|work)

Limit 1,000 chars centered on each match

10 Filter & Split

Input Operation 09

Regexes letter AND

offer

11 Emit Matches

Input Operation 10: Matches only

Limit 2 segments

E↵ect Emits 2x1,000-char segments which contain a

word about employment in proximity to both

“o↵er” or “letter”.

12 Filter & Split

Input Operation 10: Non-matches only

Regex letter

13 Emit Matches

Input Operation 12: Matches only

Limit 2 segments

E↵ect Emits 2x1,000-char segments which contain a

word about employment in proximity to only

“letter”.

14 Emit Matches

Input Operation 12: Non-matches only

Limit 5 segments

E↵ect Catch-all: Emits 5x1,000-char segments which

contain a word about employment.

(Continued overleaf)
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# Param. Value(s)

15 Deduplicate

Input All emitted segments

16 Compile Passage

Input Operation 15

Separator [SEP]

Limit First 6,500 characters

Table 6.10: Reducer pipeline for job offer.

6.B Improving Data Quality using Silver-Standard Evalua-

tions

Mismatches on silver-standard Reducer evaluations were often a product of real label errors: the

datasets examined in [Northcutt et al., 2021b] had a 3.4% error rate on average, which is a similar

order of magnitude to label errors encountered in our dataset when performing detailed manual

verification.

The parole dataset includes records that span over more than a decade, and labeling has occurred

in several waves over the years. As such, the semantic meanings of labels includes subtle shifts and

inconsistencies. For example, a blank label might mean any one of the following:

• the annotator was uncertain,

• the transcript is unclear,

• the transcript is clear but the situation itself is ambiguous,

• “none” is a reasonable answer in this situation (such as last writeup for a candidate with

zero writeups),

• the feature was not applicable in this situation (such as job offer for a candidate who is not

working age); or

• the feature was simply not fully annotated.

To address these issues, we: (a) write code to correct issues where this is possible, (b) drop entire

sections of low-quality train labels where patterns of errors exist, (c) hand-correct validation labels

and keep track of all manual corrections, and (d) write small data transforms to simplify the job of

the Producer (e.g., fixing common spelling and transcription errors).

6.C Sample Challenging Passages

Table 6.11 provides examples of the complex, challenging passages selected to benchmark language

models in section 6.2.4, trimmed for brevity and redacted as per the conventions described within
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Figure 6.2.

6.D Supplemental Error Analysis: edu level

This section provides a detailed breakdown of the error analysis for a single field and data split (edu

level, Validation), in order to illustrate typical patterns of errors encountered in our fine-tuned

models.

This field was fine-tuned with a classification (CLS) prediction head, and correctly classified

89/106 of its labeled examples. Its 17 incorrectly-classified examples are examined in Table 6.12.

The four possible values this field may hold are:

• NA: Did not finish high school

• HS: Completed high school or GED

• SC: Some college classes

• GC: Graduated from college
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Field Passages

risk assess COMM: With respect to violence risk assessment conclusions [...]
the doctor uses a number of measurements. One is the PCL, which
is the psychopathy checklist, and states that, "Overall score
placed Mr. [REDACT] in the moderate range of psychopathy. [...]"
Historically, on the HCR checklist, HCR20, the doctor writes,
"[...] he has risk factors that place him in the low moderate
risk range for future violence [...] The inmate’s overall LS/CMI
score indicates that he is in the medium category." And then the
doctor goes on to discuss the historical domain and concludes,
"[...] the inmate presents a moderate risk for future violence.
[...] In the clinical or more current and dynamic domain of risk
assessment [...] the inmate presents a moderate risk of future
violence. As for the management of future risk domain [...] the
inmate presents as a low risk of future violence. Overall then,
risk assessment estimates suggests that the inmate poses a low
moderate likelihood to become involved in a violent offense if
released to the free community."

edu level COMM: Okay. So, and at the last hearing, it was discussed and I
don’t want to get -- Well, that’s parole plans. We’re not going
to talk about that right now. But, so you’ve taken a number of
courses. It looks like in 2013, 2014, General Studies. Are you
working towards a college degree?

CAND: No. We’re not able to take a college degree where I’m at.

COMM: You say you’ve taken World War II, Europe Civilization,
Ecology. Are these television courses or --

CAND: They’re videotapes, CDs.

job offer COMM: Do you have any job offers if you were to get a parole date?

CAND: Uh, I used to be a mechanic before in, uh, [REDACT], my not
in a company, but uh, in uh, a little shop with my friends.

COMM: Do you have any job offers as a plumber?

CAND: Yes. No, no, no, no, no, no. Not as a plumber. But, uh, I
got, uh, as a mechanic I got offer with my cousin.

COMM: Okay. Yeah. But he’s in the United States, right?

CAND: No, he’s in [REDACT].

last writeup COMM: You’ve had 19 115s, starting in 1996, and most of these
have been covered in prior hearings but, sort of running through
them, couple in 1996, two in 1997, four in 1998, two in 1999,
three in 2001, 2002, 2004, 2005, there was a pair. And then 2008,
disobeying a direct order was your final 115. What was the 2005,
knowingly providing a false claim?

Table 6.11: Examples of complex, challenging passages from parole hearings.
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# Source Type Label Pred. Error Details

1 Dataset
Ambiguous
situation

HS NA
Self-reported overseas high school comple-
tion (no records)

2 Dataset
Ambiguous
situation

SC HS Vocational courses but taken at a college

3 Dataset Mislabeling HS SC
Transcript explicitly discusses college
courses taken

4 Reducer
Reducer pat-
tern miss

NA HS

Did not capture key sentence: “I loved

school. You know, I played the cello, you

know, was ahead in school. I was graduat-

ing. I needed one credit to graduate from

high school.”

5 Producer
Spurious asso-
ciations

NA HS Two discussions about GED

6 Producer
Spurious asso-
ciations

SC HS
Confirms receipt of GED twice plus voca-
tional training, just one brief mention of a
college course

7 Producer
Spurious asso-
ciations

NA HS
Cluster of words: “school”, “high school”,
“GED”

8 Producer
Spurious asso-
ciations

SC HS
Three mentions of graduating high school,
one brief mention of college courses

9 Producer
Spurious asso-
ciations

SC GC
Candidate discusses the future receipt of
an Associate’s degree, later uses word “de-
gree”

10 Producer
Spurious asso-
ciations

NA HS
Mentions “school” twice, “grade” three
times

11 Producer
Spurious asso-
ciations

SC HS
Confirms receipt of GED twice, vocational
training, two mentions of college courses

12 Producer
Spurious asso-
ciations

SC HS
Confirms receipt of GED twice, vocational
training, mentions two colleges but not
classes, units or degrees

13 Producer
Spurious asso-
ciations

NA HS
Mentions “school” three times, “college”
twice

14 Producer
Spurious asso-
ciations

GC SC

Candidate confirms he has been doing col-
lege courses and is close to qualifying for
an AA degree, but later notes he already
has one degree

15 Producer
Spurious asso-
ciations

SC HS
Cluster of discussion around hgh school
diploma, GED (four mentions) and read-
ing scores

16 Producer
Spurious asso-
ciations

SC HS
Four separate mentions of having receiving
GED, one small mention of college courses

17 Producer
Complex
phrasing

NA HS

Description is challenging to interpret: “I

started ditching school and hanging out

when I was in high school. I think part of

the reason for that was because we never

had anything at home, everything was al-

ways, seemed like we’re always struggling

for everything, you know. Our electric bill,

I didn’t want to keep living like that, so I

left, I left when I was 13 years old.”

Table 6.12: Example-level error assessments: edu level.



Chapter 7

Factor-based Findings about

California Parole Hearings

This chapter presents descriptive findings about factors that statistically predict1 parole hearing

outcome. Leveraging the raw and manually annotated data described in Chapter 4 and the NLP-

extracted data described in Chapter 6, we are now able to present the most comprehensive description

of the California parole hearing system to date. We find that outcomes are disproportionately

predicted by multiple factors outside of the candidate’s control, such as which commissioner presides

over the hearing, whether the candidate is represented by private counsel, and whether the district

attorney appears at the hearing. Notably, these relationships are highly significant even when

controlling for case factors.

7.1 Background and Related Work

Computational methods have been broadly applied to study various parts of the American criminal

justice system, which range from policing [Gelman et al., 2007, Pierson et al., 2020], to pre-trial

detention [Arnold et al., 2018], and finally, to sentencing [Klein et al., 1990, Anderson et al., 1999,

Abrams et al., 2012]. However, there have so far been no large-scale studies on the decision-making

that decides parole. In other words, much of the existing empirical literature has focused on the

many decision steps involved in how the criminal justice system incarcerates individuals. How-

ever, comparatively little academic, and even political, attention has focused on the processes that

determine how individuals are released from prison.[Bynum and Paternoster, 2019] One national

large-scale study of parole uses National Corrections Reporting Program data to understand broad

legal and political trends among 237,781 individuals, but only includes those who were conditionally

1We refer the reader to Chapter 2, Section 2.9 for a discussion of the distinction between prediction in the lay
sense and in the sense of the Predictive Approach and prediction in the sense of statistical inference.
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released from prisons. The data available to the study are limited in what they can reveal about

the decision about whether or not to grant parole in the first place.[Bradley and Engen, 2016]

Chapter 3 describes the law and process of parole in California, with special attention to changes

that have occurred during the period of our study. Existing studies of the parole decision process

over those serving life sentences in California have been limited by the data available to each study.

For example, a study that is comprehensive in the number of parole hearings included, are limited by

the number of features available for analysis, is generally restricted to basic information such as the

commitment o↵ense and report basic demographics about the population of individuals serving life

sentences.[Weisberg et al., 2011] Studies that require manual coding of additional features have been

restricted to smaller subsets of hearings, such as a sample of 302 hearings from 2011 to understand

the impact of Marsy’s Law[Friedman and Robinson, 2014], a study of 754 hearings to understand

the decision factors involved in the parole board granting parole[Young et al., 2015], or a study

of criminalized masculinity among 109 hearings from 2017–2018. All studies rely on the Board of

Parole Hearings to release a sample of hearings, which is released at the discretion of the Board and

not necessarily random. A study of youth o↵ender parole hearings included the complete set over

an 18-month period and did not require sampling, but nonetheless is limited to 426 hearings.[Bell,

2019]

7.2 Data

Our dataset includes 34,993 hearing transcripts for which the decision outcome is known, covering

99.7% of all hearings. These transcripts feature 15,747 parole candidates. CDCR records four ethnic

categories and two gender categories and in our dataset we observe 5,102 Black, 4,909 Latinx, 3,931

White, and 1,805 Other candidates. CDCR designates 15,014 of these individuals as male and 733

as female.

Factors for extraction and analysis were selected through deliberations with legal experts in

parole, formerly incarcerated individuals, advocacy groups including appellate attorneys, represen-

tatives from the California Governor’s o�ce, as well as BPH2. The list of factors also built on

previous work identifying relevant features including a feature set used to analyze a subset of 754

hearings from October 2007 – January 2010 [Young et al., 2015], also adapted for the analysis of a

subset of 426 youth o↵ender hearings from January 2014 – June 2015 [Bell, 2019].

A traditional study design requires a team of research assistants to read transcripts and manually

record factors. To validate our methodology and findings, we replicated this setup and labeled 55

factors across a sample of 688 hearings (stratified by year).

Through the NLP e↵orts described in Chapter 6, we were able to reliably extract, for all 34,993

hearings, 18 of these factors at near human-level accuracy through an NLP pipeline. These factors

2Discussions with BPH included two conversations with Director of the Board of Parole Hearings Jennifer Sha↵er
in late 2018 and early 2019.
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can only be obtained through computational methods, since no researcher could reasonably tabulate

linguistic statistics for 150-page hearings. Following a court order [Superior Court of California in

and for the County of San Francisco, 2020b], CDCR also provided 8 additional tabular factors.

Table 7.1: Legend for each feature contained in Table 7.2.

Feature Description

Hearing Actors

retained attorney Whether the candidate privately engaged an attorney

commissioner rate⇤ Historical grant rate of the presiding commissioner at the time of

the hearing

victim oppose Does the victim make a statement opposing parole? (Used in the

manual regression but not the NLP regression.)

victim present Victim present at hearing? (Used in the NLP regression in place of

victim oppose.)

district attny oppose Does the DA make a statement opposing parole? (Used in the

manual regression but not the NLP regression.)

district attny

present

DA present at hearing? (Used in the NLP regression in place of

district attny oppose.)

attorney opinion In the closing statement did the candidate’s attorney argue for re-

lease?

Time & Place

initial hearing Is this the candidate’s first hearing?

years since 2007 Year of the hearing (since the first year of the dataset)

years since eligible Number of years candidate has served over their lowest applicable

parole eligibility date

Demographics

ethnicity black CDCR-recorded ethnicity = “Black”

ethnicity latinx CDCR-recorded ethnicity = “Hispanic/Latino”

ethnicity other CDCR-recorded ethnicity = “Other”

gender female CDCR-recorded gender = female (indicated by CDCR number be-

ginning with the letter W)

Pre-Commitment

justice involved Did candidate have prior interaction with the criminal justice sys-

tem? Combines

prior convictions binary, prior supervision, and precommit

prison
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precommit sex abuse Victim of sexual abuse prior to commitment o↵ense?

precommit gang Whether person was involved in gang activity prior to commitment

o↵ense

Commitment O↵ense

offense murder second At least one count of Murder 2 (187)

offense murder

attempt

At least one count of Attempted Murder (664-187 or 217)

offense sex At least one count of rape/sexual assault (261-269)

offense other Other (non Murder 1 baseline) o↵ense

crime gang Was crime rooted in gang activity?

crime drugs alcohol Was the candidate heavily using alcohol/drugs around the time of

the o↵ense?

claim innocence Does the candidate claim innocence in the commitment o↵ense?

Rehabilitation

tabe edu score Most recent TABE score (or grade level equivalent if no TABE),

histogram-bucketed into 3

chronos bucket Number of laudatory chronos received, histogram-bucketed into 3

programming all Total number of programs participated in � 4 (Used in the manual

regression but not the NLP regression)

programming gang Participated in gang programming (Used in the NLP regression,

since it was the only programming variable that we reliably ex-

tracted; in the manual regression, this is included as part of

programming all.)

12steps program

failed

Whether candidate was asked about the 12 steps and did not give

an adequate response

mental illness History of diagnosed mental illness?

mental treatment Currently receiving mental health treatment (medication or coun-

seling)?

Disciplinary

count 115s Total count of 115s (disciplinary writeup forms)

clean time Years since last disciplinary infraction (Form 115 in the NLP re-

gression; Form 115 or prison conviction in the manual regression)

num pris convict buc Number of convictions while in prison, histogram-bucketed 3

prison is level iv Whether hearing took place at a prison where more than half of the

population is level IV

Parole Preparation
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Figure 7.1: Data sources for primary regression analysis in Table 7.2. Factors for analysis were
identified through discussions with legal experts and a broad set of stakeholders in parole. After
hand-labeling a subset of factors and conducting an initial analysis, significant features were identi-
fied. This was followed by NLP extraction model development (using both human labels and weak
supervision with labeling functions) and linguistic modeling.

psych assess Psych Risk Score at most recent comprehensive assessment

job offer Confirmed job o↵er?

Special Designation

youth offender Youth o↵ender parole hearing - 3051/4801/260/261

elderly parole Elderly Parole Designation

Table 7.1 describes each feature used in our analysis.

7.3 Methods

Our primary analysis model is a logistic regression onto the binary parole grant outcome using the

NLP-extracted features. To validate the choice of this model and ensure confidence in its descriptive

results and the insights they provide into the parole process, we construct two additional regression

models:

(A) A regression that follows the traditional methodology of analyzing only the set of 688 manually

coded transcripts. This regression aims to cover the broadest set of factors that are discussed

in the course of a parole hearing. A set of 55 manually extracted factors are reduced and
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bucketed into the 35 factors shown in Table 7.2, selected to remove strong collinearities and

allow for easier interpretation while preserving all information.

(B) A regression that includes all 34,993 hearings but only analyzes the limited tabular labels

provided directly by CDCR as well as fields parsed from the hearing title page.

We call the primary model with NLP-extracted labels regression C. Regression B provides a com-

parison baseline against which regressions A and C can be interpreted, where regression B is free

from noise due to our human or automatic extraction. Under the non-di↵erential error assump-

tion, both models A and C underestimate significance slightly without explicit error-in-variable

corrections [Gustafson, 2003]. For all three models, we validate our variable inclusion choices with

robustness checks in Appendix 7.5. For each model separately, variables were chosen to avoid strong

collinearities. However, ethnicity and gender were included as essential demographic factors for a

descriptive analysis despite known collinearities. We analyze the adjusted odds ratio (AOR) exp(�)

of each factor to provide a descriptive picture of how the factors jointly predict the parole decision.

We assess statistical significance via Wald tests; AORs and p-values for these tests are reported in

Table 7.2 across the three models.

7.4 Results

Can NLP help model parole decisions? We first assess the predictive fit of our models to

validate the explanatory power that we can obtain through automatic extraction. We calculate

the AUC statistic (Area Under the receiving operating Curve) under 10-fold cross validation [Stone,

1974, Geisser, 1975] for each model, shown in the second row of Table 7.2, which provides some model

assessment guarantees [Debruyne et al., 2008, Liu et al., 2014, Beirami et al., 2017, Giordano et al.,

2019, Wilson et al., 2020, Rad and Maleki, 2020]. The manual regression A attains an AUC of 0.804.

The tabular regression B achieves an AUC of 0.730. Even though the tabular regression has access

to a wealth of historical information, the small set of factors available in tabular form fails to explain

parole hearing outcomes in the way that the dense manual regression with many fewer datapoints

can. The NLP regression C achieves the highest AUC of the three models, 0.822. Including the

automatically extracted variables provides a 9-point AUC boost over the tabular regression. While

its feature set is less comprehensive than that of the manual regression, the massive sample size of

the regression with NLP-extracted features enables it to provide the most accurate model of parole

and more powerful estimates of the factor coe�cients.

Are the NLP-based findings consistent with the traditional approach? Having established

that the NLP-based model provides the most accurate descriptive picture of the parole process, we

proceed to compare the consistency of the results across the three models on an item-by-item level.

We observe that AORs overlap substantially for the factors identified as significantly predictive in the
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Table 7.2: Regressions on the parole outcome based on (a) manually coded factors, (b) tabular data,
(c) automatically extracted factors. Adjusted odds ratios (AORs) and Wald p-values are reported
for all factors in parentheses. Significant values bold at p < 0.05.
⇤For historical commissioner grant rate, AOR is reported in units of a 10% increase in grant rate.
For a description of each feature, see Table 7.1.

Data Source (a) Manual (b) Tabular (c) NLP

n (Number of Hearings) 688 34,993 34,993

10-fold AUC 0.804 0.730 0.822

Adjusted Odds Ratio e� (p)

Hearing Actors retained attorney 1.71 (0.06) 2.48 (0.00) 2.11 (0.00)
commissioner rate⇤ 1.74 (0.00) 1.34 (0.00) 1.41 (0.00)
victim oppose 0.31 (0.00) - -
victim present - - 0.42 (0.00)
district attny oppose 0.26 (0.00) - -
district attny present - - 0.69 (0.00)
attorney opinion 0.57 (0.10) - -

Time & Place initial hearing 0.65 (0.24) 0.40 (0.00) 0.45 (0.00)
years since 2007 1.11 (0.06) 1.11 (0.00) 1.16 (0.00)
years since eligible 1.01 (0.75) - 1.00 (0.05)
prison is level iv 0.85 (0.73) 0.32 (0.00) 0.57 (0.00)

Demographics ethnicity black 0.83 (0.55) 0.95 (0.17) 0.95 (0.23)
ethnicity latinx 0.64 (0.18) 1.14 (0.00) 0.91 (0.02)
ethnicity other 0.61 (0.22) 1.24 (0.00) 0.99 (0.78)
gender female 0.92 (0.88) 1.23 (0.00) 1.28 (0.00)

Pre-Commitment justice involved 1.76 (0.02) - -
precommit sex abuse 0.80 (0.57) - -
precommit gang 1.22 (0.58) - 1.25 (0.00)

Commitment O↵ense offense murder second 0.85 (0.53) - 1.13 (0.00)
offense murder attempt 1.06 (0.88) - 1.12 (0.03)
offense sex 0.34 (0.21) - 0.31 (0.02)
offense other 1.04 (0.92) - 1.02 (0.60)
crime gang 1.04 (0.92) - -
crime drugs alcohol 1.04 (0.90) - -
claim innocence 1.01 (0.98) - -

Programs & tabe edu score 1.15 (0.36) - 1.17 (0.00)
Rehabilitation chronos bucket 1.76 (0.01) - -

programming gang - - 1.39 (0.00)
programming all 1.54 (0.18) - -
12steps program failed 0.31 (0.03) - -
mental illness 0.65 (0.06) - -
mental treatment 1.22 (0.54) - -

Disciplinary count 115s 1.00 (0.93) - -
clean time 1.06 (0.00) - 1.02 (0.00)
num pris convict buc 0.77 (0.59) - -

Parole Preparation psych assess 0.49 (0.00) - 0.48 (0.00)
job offer 1.72 (0.04) - 1.38 (0.00)

Special Designation youth offender 0.73 (0.39) - -
elderly parole 0.79 (0.54) - -
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NLP regression C and that all factors identified as significant in the NLP regression attain significance

in the tabular regression B. Significant case factors that further raise chances of a favorable parole

outcome in the manual regression A which are not tracked by the NLP regression include receiving

laudatory chronos from prison programs and having been involved with the criminal justice system

prior to the commitment o↵ense, which may be seen as mitigating circumstances for the crime

particularly for youth o↵enders. A significant additional factor that is not captured by the NLP

model and decreases the chances of a grant under the manual model is failing to correctly answer a

question about the “12 Steps” program of Alcoholics Anonymous/Narcotics Anonymous.

Many case factors in the manual regression do not meet the threshold for statistical significance.

This may of course be attributed to its smaller sample size. Factors that attain significance in

the larger model but not the manual model include whether the hearing is an initial parole hear-

ing, whether the prison is considered max-security, the original o↵ense, educational score, the total

amount of programming, attorney representation status (marginally significant in regression A),

ethnicity, and hearing year. The amount of time a candidate has served in prison does not appear to

influence the parole outcome across either regression that track the variable. The legislature intro-

duced two special designations for parole candidates in recent years: “youth o↵enders” and “elderly

parole.” These are tracked in the manual regression and neither designation attains significance.3

The NLP-extracted regression uses victim and district attorney presence instead of victim and

district attorney opposition, respectively, because the machine learning classifier for opposition was

unable to outperform a baseline for presence due to the strong class imbalance—victim representa-

tives and district attorneys almost always oppose parole if they attend a hearing. In the manual

regression, we use the more granular variables indicating whether the district attorney or victim

made a statement opposing parole. We see that the manual regression attains higher-magnitude

coe�cients for these variables, but the signs, order of magnitude, and significance level match.

Finally, candidate ethnicity is significantly predictive of the parole outcome as an isolated variable

in regressions B and C with inconsistent coe�cients. However, the impact of race and ethnicity in

parole cannot be studied merely through an independent regression variable, since we know that the

independence assumption does not hold. For example, while ethnicity does not attain significance in

regression A, many of the case factors considered have strong collinearities with ethnicity. Table 7.4

reveals that ethnicity significantly predicts the psychological risk assessment score candidates receive,

the most predictive case factor in our models across all models. The regression analysis does not

conclude that race or any other variable is (or is not) causing parole to be granted or denied. The

analysis does, however, illuminate structural patterns in parole decision-making that undoubtedly

call for further research into the causal e↵ect of race in parole.

3This e↵ect prevails in a robustness checks that restricts the hearing years of the regression to the years after the
legislative change went into e↵ect.
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Figure 7.2: Adjusted odds ratios (AORs) for factors that achieve p < 0.05 significance in a Wald test
in a regression modeling hearing outcome. For historical commissioner grant rate, AOR is reported
in units of a 10% increase in grant rate. For a description of each feature, see Table 7.1. Table 7.2
shows complete regression coe�cients.

Which factors most predict parole outcome? The factors in our analysis broadly fall into two

categories: those that pertain to the parole case, such as a candidate’s rehabilitational programming

and disciplinary history, and factors which are generally outside of the candidate’s control. Factors

outside of candidates’ control include demographics and factors that only become known at the time

of the hearing, such as whether the district attorney is present, whether a victim representative

appears, which year the hearing takes place, and which commissioner presides over the hearing.

In Figure 7.2, we plot the adjusted odds ratios for factors that attain significance in predicting

parole outcomes. The past grant rate of the presiding commissioner administering a hearing signifi-

cantly predicts the probability of a grant. A commissioner at the 10th percentile of grant rates has,

at the time of the hearing, a historical grant rate of 4.76%. A commissioner at the 90th percentile of

grant rates has a rate of 34.37%. Using only raw numbers, this is a ratio of 7.2x. Controlling for all

other extracted factors, being assigned to a 90th percentile granting commissioner as opposed to a

10th percentile commissioner improves a candidate’s chances of parole by 2.8x. The prison in which

the parole candidate is held also significantly predicts the probability of a grant, motivating Study

2 below.

The dominating case factor in predicting the parole outcome in the model is the psychological risk

assessment score. Under our model, candidates who score a “high” on the assessment are 19.4x less

likely to receive a grant than candidates who score a “low,” controlling for other factors. Similarly,

candidates who score a “moderate” are 4.4x less likely to be released than candidates who score

a “low.” These di↵erences can be explained in part by the fact that the psychological assessment
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may account for some of the measured and unmeasured factors considered in a hearing, since it is

conducted by a forensic psychologist with knowledge of various factors.4 Nonetheless, the extent to

which parole decisions align with psychological assessments is striking when compared to other case

factors.

Examining other factors in the regression model, each additional year of clean time (the number

of years since a candidate’s last disciplinary infraction) improves the chances of a parole grant by

only 2%. The amount of time a candidate has served in prison does not appear to predict the

parole outcome. Candidates who retain an attorney are 2.2x as likely to receive a parole grant

as candidates who are represented by a board-appointed attorney or elect to attend their hearings

without an attorney. If a victim representative or the district attorney appears at the hearing (in

almost all cases to make a statement opposing parole), each of them reduces the probability of a

grant outcome by approximately half.

Significant case factors that further raise chances of a favorable parole outcome include a higher

“TABE score,” which measures a candidate’s reading level grade equivalent, a pre-commitment

gang a�liation, which may be seen as mitigating circumstances for the crime, and a parole plan:

for example, having secured a job o↵er increases a candidate’s chances of being granted parole by a

factor of 1.4x. The nature of the original crime significantly impacts the chances of a favorable parole

outcome, with second degree and attempted murder improving parole chances slightly compared to

first degree murder5, and sex o↵enders being 3.2x less likely to receive a parole grant.

Limitations

A descriptive regression analysis explains whether factors are predictive of the parole outcome, but

not the mechanisms that underlie the relationship. One factor that illustrates this limitation is

ethnicity. Controlling for the other case factors, Latinx candidates are half (0.55x) as likely to

receive a parole grant as white candidates under the model. However, this adjusted odds ratio does

not explain what other case factors mediate the e↵ect of Latinx or other ethnicities. We hypothesize,

but do not demonstrate, the existence of such mediators through variables that are significant in

our regression. Research suggests that systemic racism plays a role in determining which candidates

incur disciplinary infractions while in prison [Poole and Regoli, 1979, Heinz et al., 1976]. Racial

bias has been documented in risk assessment [Angwin et al., 2016, Van Eijk, 2017, Mayson, 2018,

Arnold et al., 2021]; Table 7.4 reveals that ethnicity significantly predicts the psychological risk

assessment score candidates receive in our parole data as well. Another potential mediator that has

4The psychological risk assessment may be postulated to mediate the e↵ects of other case factors. To validate our
model, we separately regress the assessment score onto the variables reasonably known to the psychologist to evaluate
the residual impact of the risk assessment. See Appendix 7.5.

5First degree murder is the most common o↵ense in our population and is therefore used as the baseline o↵ense in
the regression. The adjusted odds ratios are relative to first degree murder. Attempted and second degree murder are
“lower” o↵enses here. About 13% of hearings fall into the “other” o↵ense category, which include controlling o↵enses
such as kidnapping, etc.
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been less studied in existing literature is the role of participation in a hearing. Figure 8.5 shows

that speaking times di↵er significantly by ethnicity. When we augment the regression with various

linguistic measures of participation, we find many of them to contribute additional predictive power

even after controlling for case factors. The specific coe�cients are reported in Table 8.3. One final

mediator is the legal representation a↵orded to parole candidates, which is the focus of Study 3

below. Our analysis illuminates structural patterns in parole decision-making that undoubtedly

warrant further research, including careful consideration of the causal arc of the variables and how

race influences each one of them.

7.5 Regression Validation

7.5.1 Model Setup

We use a logistic regression model, where the dependent variable is the binary hearing outcome – a

grant of parole, or a denial. Logistic regression takes on the following form:

Pr[Y ] = �(�0 + �Tx),

where Y = 0 refers to a denial of parole of any length, and Y = 1 refers to a grant of parole,

�(t) = 1

1+e�t is the standard logistic function, x 2 Rn is a representation of n features, and �0 2
R,� 2 Rn are the parameters estimated. We interpret each �j in the model as the additive e↵ect on

the log-odds of Y for each unit increase in xj . We assess the significance of the coe�cients identified

by the model using Wald tests.

Since a few missing entries remain (even after the feature transformations detailed in Chapter 4,

in the case of Table 7.2) and because our set of variables is large, we impute missing values with the

column means. While this choice slightly underestimates the variance in the variables, it ensures

that we do not overestimate the significance or e↵ect sizes indicated by the coe�cients for individual

variables.

7.5.2 Robustness Checks on Table 7.2

We perform several tests to ascertain our choice of variables and justify their inclusion in the primary

model:

1. Because our analysis covers a large time period that has seen much change across the leg-

islative standard and case law that is relevant to parole in California as well as two changes

in administration, we re-run our analyses using only data extracted for hearings from 2014

onwards. The results are given in Table 7.3.
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2. The psychological assessment may account for many of the factors considered in a hearing since

it is conducted by a forensic psychologist with knowledge of the case factors. In Table 7.4, we

run a separate regression onto the psychologist’s “comprehensive risk assessment” score using

only those variables reasonably known to the psychologist. We can then attempt to assess the

residual impact of the psychologist’s opinion by subtracting the regressed score from actual

value of the psych assess feature. The results for these models are given in Table 7.5.

3. To validate our choice of summing and bucketing programming participation into the prog

bucket variable, we re-run the manual regression specification with the prog bucket variable

replaced by the individual programming variables progang, progartfit, progedu, proggang,

progoth, progparent, progphil, progrel, progsubst, progther, progvictim, and progvoc.

The results for this model is given in Table 7.6.

4. To validate our findings about commissioner variability, we replace the commissioner rate

variable with 52 individual indicator variables corresponding to the 52 commissioners in our

dataset who conducted at least 50 hearings. Each variable indicates that the specified commis-

sioner has conducted the hearing. We find that several of the commissioner indicator variables

are significantly predictive of the parole outcome, some with positive and some with nega-

tive coe�cients, controlling for the same case factors. The results for this model are given in

Table 7.8.

5. Similarly, to validate our choice of the prison level iv variable, we replace this variable with

40 indicator variables corresponding to the 40 di↵erent prisons covered by our dataset. We

find that several of the prisons that we identified as housing more than 50% of its population

at security level IV are significantly predictive of parole denials. The results for this model are

given in Table 7.9.

6. In our manual labeling e↵ort, we tracked whether the board considered confidential information

in their decision through the confidential information field. As a check, we re-run the

manual specification with all hearings excluded where the board stated that they considered

confidential information without explicitly stating that they did not rely on the information

to arrive at the decision. The results are given in Table 7.11.

7. To better understand the e↵ects of distributional drift that may be caused by our sampling

of manually annotated hearings, we run formulations (a) and (c) only on the 688 manually

labeled documents. The results are given in Table 7.12.

8. Because a candidates education level is collinear with their TABE score, our primary regression

does not include the edu level feature. We repeat our analysis using edu level in place of

TABE. Table 7.13 contains the results.
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Table 7.3: Robustness check of Table 7.2. The hearings included are only those held in 2014 or later,
which is when the youth o↵ender and elderly parole designations started being used.

Data Source (a) Manual (b) Tabular (c) NLP

n (Number of Hearings) 451 17,287 17,287

Adjusted Odds Ratio e� (p)
retained attorney 1.54 (0.20) 2.25 (0.00) 1.95 (0.00)
initial hearing 0.65 (0.26) 0.51 (0.00) 0.59 (0.00)
years since 2007 0.78 (0.02) 1.06 (0.00) 1.09 (0.00)
ethnicity black 0.63 (0.22) 0.98 (0.63) 0.92 (0.11)
ethnicity latinx 0.88 (0.74) 1.21 (0.00) 0.98 (0.72)
ethnicity other 0.91 (0.84) 1.34 (0.00) 1.08 (0.23)
gender female 0.91 (0.87) 1.30 (0.00) 1.39 (0.00)
commissioner rate 1.63 (0.01) 1.27 (0.00) 1.34 (0.00)
prison is level iv 0.68 (0.46) 0.33 (0.00) 0.57 (0.00)
offense murder second 0.84 (0.57) - 0.93 (0.18)
offense murder attempt 0.97 (0.94) - 1.10 (0.14)
offense sex 0.18 (0.05) - 0.29 (0.01)
offense other 1.79 (0.14) - 0.96 (0.45)
years since eligible 0.99 (0.53) - 1.01 (0.00)
precommit gang 0.74 (0.54) - 1.29 (0.00)
tabe edu score 1.27 (0.16) - 1.14 (0.00)
psych assess 0.41 (0.00) - 0.48 (0.00)
clean time 1.08 (0.00) - 1.00 (0.13)
job offer 1.48 (0.24) - 1.26 (0.00)
programming gang - - 1.33 (0.00)
programming all 1.36 (0.42) - -
12steps program failed 0.34 (0.11) - -
victim oppose 0.23 (0.00) - -
victim present - - 0.41 (0.00)
district attny oppose 0.28 (0.00) - -
district attny present - - 0.75 (0.00)
youth offender 1.67 (0.20) - -
elderly parole 1.39 (0.44) - -
crime gang 2.05 (0.20) - -
crime drugs alcohol 0.54 (0.11) - -
precommit sex abuse 0.64 (0.39) - -
justice involved 2.70 (0.00) - -
num pris convict buc 0.76 (0.61) - -
mental illness 0.78 (0.43) - -
mental treatment 1.40 (0.39) - -
count 115s 1.01 (0.64) - -
chronos bucket 2.16 (0.01) - -
attorney opinion 1.16 (0.69) - -
claim innocence 1.16 (0.81) - -
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Table 7.4: Regressions onto psychological risk assessment outcome based on the subset of factors
that are reasonably determined at the time of the assessment.

Data Source Manual Tabular NLP

n (Number of Transcripts) 688 34,993 34,993

Adjusted Odds Ratio e� (p)
initial hearing 1.26 (0.06) 1.48 (0.00) 1.44 (0.00)
prison is level iv 1.72 (0.00) 2.68 (0.00) 2.46 (0.00)
years since 2007 1.03 (0.07) 1.04 (0.00) 1.03 (0.00)
ethnicity black 0.89 (0.30) 1.24 (0.00) 1.18 (0.00)
ethnicity latinx 0.84 (0.16) 1.01 (0.68) 1.02 (0.20)
ethnicity other 0.75 (0.05) 0.84 (0.00) 0.84 (0.00)
gender female 0.92 (0.64) 0.71 (0.00) 0.70 (0.00)
offense murder second 1.02 (0.87) - 0.91 (0.00)
offense murder attempt 1.30 (0.07) - 1.10 (0.00)
offense sex 1.45 (0.09) - 1.52 (0.01)
offense other 1.22 (0.14) - 1.02 (0.39)
years since eligible 1.01 (0.10) - 1.00 (0.00)
precommit gang 1.23 (0.12) - 1.09 (0.00)
tabe edu score 0.95 (0.33) - 0.89 (0.00)
clean time 0.97 (0.00) - 1.00 (0.00)
job offer 0.96 (0.71) - 0.69 (0.00)
programming gang - - 0.88 (0.00)
programming all 0.85 (0.11) - -
youth offender 0.78 (0.10) - -
elderly parole 0.86 (0.38) - -
crime gang 0.86 (0.36) - -
crime drugs alcohol 0.88 (0.23) - -
claim innocence 1.21 (0.17) - -
justice involved 1.32 (0.00) - -
num pris convict buc 1.09 (0.61) - -
mental illness 1.32 (0.00) - -
mental treatment 1.69 (0.00) - -
count 115s 1.02 (0.00) - -
chronos 0.82 (0.02) - -
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Table 7.5: Robustness check of Table 7.2. Using the residual variable psych resid instead of psych
assess. Note that regression (b) does not include this feature, so its results remain una↵ected.

Data Source (a) Manual (c) NLP

n (Number of Hearings) 688 34,993

Adjusted Odds Ratio e� (p)
retained attorney 1.68 (0.04) 2.11 (0.00)
initial hearing 0.46 (0.02) 0.34 (0.00)
years since 2007 1.10 (0.08) 1.13 (0.00)
ethnicity black 0.90 (0.72) 0.84 (0.00)
ethnicity latinx 0.88 (0.67) 0.89 (0.01)
ethnicity other 0.96 (0.92) 1.12 (0.03)
gender female 1.00 (1.00) 1.67 (0.00)
commissioner rate 1.75 (0.00) 1.41 (0.00)
prison is level iv 0.50 (0.10) 0.29 (0.00)
offense murder second 0.83 (0.45) 1.21 (0.00)
offense murder attempt 0.65 (0.26) 1.04 (0.43)
offense sex 0.16 (0.03) 0.23 (0.00)
offense other 1.17 (0.62) 1.01 (0.81)
years since eligible 0.99 (0.73) 1.00 (0.23)
precommit gang 0.91 (0.80) 1.17 (0.00)
tabe edu score 1.33 (0.04) 1.28 (0.00)
psych resid 0.46 (0.00) 0.48 (0.00)
clean time 1.09 (0.00) 1.02 (0.00)
job offer 2.02 (0.01) 1.81 (0.00)
programming gang - 1.53 (0.00)
programming all 1.24 (0.46) -
12steps program failed 0.30 (0.02) -
victim oppose 0.30 (0.00) -
victim present - 0.42 (0.00)
district attny oppose 0.26 (0.00) -
district attny present - 0.69 (0.00)
youth offender 1.03 (0.93) -
elderly parole 0.92 (0.84) -
crime gang 1.48 (0.36) -
crime drugs alcohol 0.63 (0.08) -
precommit sex abuse 0.76 (0.48) -
justice involved 1.17 (0.51) -
num pris convict buc 0.64 (0.36) -
mental illness 0.58 (0.02) -
mental treatment 0.77 (0.41) -
count 115s 0.98 (0.12) -
chronos bucket 1.82 (0.00) -
attorney opinion 0.87 (0.64) -
claim innocence 0.78 (0.50) -
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Table 7.6: Regressions on the parole outcome using individual programming variables instead of the
prog bucket variable.

Factor Adjusted Odds Ratio e� (p)

n (Number of Hearings) 688

retained attorney 1.99 (0.02)
initial hearing 0.69 (0.33)
years since 2007 1.04 (0.47)
ethnicity black 0.66 (0.21)
ethnicity latinx 0.50 (0.06)
ethnicity other 0.60 (0.23)
gender female 0.66 (0.53)
commissioner rate 1.94 (0.00)
prison is level iv 1.02 (0.97)
offense murder second 0.89 (0.67)
offense murder attempt 1.12 (0.79)
offense sex 0.42 (0.33)
offense other 1.03 (0.93)
years since eligible 1.02 (0.23)
precommit gang 1.03 (0.94)
tabe edu score 1.17 (0.36)
psych assess 0.48 (0.00)
clean time 1.06 (0.01)
job offer 1.91 (0.02)
12steps program failed 0.28 (0.02)
victim oppose 0.28 (0.00)
district attny oppose 0.28 (0.00)
youth offender 0.67 (0.32)
elderly parole 0.70 (0.38)
crime gang 0.95 (0.91)
crime drugs alcohol 1.04 (0.91)
precommit sex abuse 0.71 (0.41)
justice involved 2.29 (0.00)
num pris convict buc 0.70 (0.51)
mental illness 0.68 (0.13)
mental treatment 1.10 (0.79)
count 115s 1.00 (0.81)
chronos bucket 1.74 (0.01)
attorney opinion 0.56 (0.13)
claim innocence 1.02 (0.96)
progang 1.35 (0.30)
progartfit 2.27 (0.02)
progedu 0.95 (0.83)
programming gang 2.41 (0.01)
progparent 0.72 (0.29)
progphil 1.65 (0.12)
progrel 1.41 (0.18)
progsubst 0.83 (0.62)
progther 0.97 (0.92)
progvictim 1.81 (0.03)
progvoc 0.87 (0.69)
progoth 0.92 (0.78)
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Table 7.7: Robustness check of Table 7.2. Rather than use commissioner rate to measure presiding
commissioners, we use a fixed e↵ect on the individual commissioners.

Data Source (a) Manual (b) Tabular (c) NLP

n (Number of Hearings) 688 34,993 34,993

Adjusted Odds Ratio e� (p)
retained attorney 2.14 (0.02) 2.48 (0.00) 2.11 (0.00)
initial hearing 0.52 (0.11) 0.40 (0.00) 0.46 (0.00)
years since 2007 1.21 (0.00) 1.11 (0.00) 1.20 (0.00)
ethnicity black 0.91 (0.78) 0.95 (0.17) 0.96 (0.27)
ethnicity latinx 0.73 (0.40) 1.14 (0.00) 0.90 (0.01)
ethnicity other 0.58 (0.22) 1.24 (0.00) 0.98 (0.73)
gender female 1.00 (1.00) 1.23 (0.00) 1.29 (0.00)
prison is level iv 1.24 (0.67) 0.32 (0.00) 0.55 (0.00)
offense murder second 0.92 (0.79) - 1.13 (0.00)
offense murder attempt 1.04 (0.93) - 1.13 (0.02)
offense sex 0.38 (0.29) - 0.31 (0.02)
offense other 1.18 (0.67) - 1.05 (0.26)
years since eligible 1.01 (0.76) - 1.00 (0.05)
precommit gang 1.10 (0.80) - 1.25 (0.00)
tabe edu score 1.11 (0.55) - 1.16 (0.00)
psych assess 0.42 (0.00) - 0.47 (0.00)
clean time 1.07 (0.00) - 1.02 (0.00)
job offer 1.65 (0.08) - 1.37 (0.00)
programming gang - - 1.39 (0.00)
programming all 1.53 (0.22) - -
12steps program failed 0.34 (0.06) - -
victim oppose 0.24 (0.00) - -
victim present - - 0.42 (0.00)
district attny oppose 0.23 (0.00) - -
district attny present - - 0.68 (0.00)
youth offender 0.79 (0.56) - -
elderly parole 0.95 (0.91) - -
crime gang 1.22 (0.67) - -
crime drugs alcohol 0.94 (0.86) - -
precommit sex abuse 0.85 (0.71) - -
justice involved 1.80 (0.03) - -
num pris convict buc 0.98 (0.97) - -
mental illness 0.83 (0.46) - -
mental treatment 1.42 (0.32) - -
count 115s 1.00 (0.86) - -
chronos bucket 1.84 (0.01) - -
attorney opinion 0.55 (0.11) - -
claim innocence 1.18 (0.70) - -
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Table 7.8: Continuation of Table 7.7. Reports the value of the fixed e↵ect for each commissioner,
whose names have been hidden.

Data Source (a) Manual (b) Tabular (c) NLP

Fixed E↵ect Adjusted Odds Ratio e� (p)
anonymous commissioner 0.13 (0.06) 0.71 (0.00) 0.63 (0.00)
anonymous commissioner 0.44 (0.68) 1.36 (0.14) 1.40 (0.14)

anonymous commissioner 0.06 (0.04) 0.24 (0.00) 0.19 (0.00)
anonymous commissioner 0.05 (0.03) 0.25 (0.00) 0.21 (0.00)
anonymous commissioner 0.19 (0.02) 0.68 (0.00) 0.62 (0.00)
anonymous commissioner 0.05 (0.00) 0.79 (0.01) 0.78 (0.02)
anonymous commissioner 0.18 (0.03) 0.70 (0.00) 0.68 (0.00)
anonymous commissioner 0.18 (0.15) 1.03 (0.85) 1.08 (0.62)

anonymous commissioner 0.00 (1.00) 0.15 (0.00) 0.13 (0.00)
anonymous commissioner 0.39 (0.36) 2.00 (0.00) 2.08 (0.00)
anonymous commissioner 0.31 (0.31) 1.04 (0.74) 0.89 (0.41)

anonymous commissioner 0.32 (0.43) 0.59 (0.01) 0.47 (0.00)
anonymous commissioner 0.05 (0.03) 0.36 (0.00) 0.31 (0.00)
anonymous commissioner 1.00 (0.00) 0.62 (0.28) 0.89 (0.79)

anonymous commissioner 0.70 (0.78) 0.76 (0.02) 0.75 (0.03)
anonymous commissioner 0.00 (1.00) 0.14 (0.00) 0.11 (0.00)
anonymous commissioner 1.00 (0.00) 0.00 (0.94) 0.00 (0.94)

anonymous commissioner 0.00 (0.99) 0.47 (0.00) 0.52 (0.01)
anonymous commissioner 0.02 (0.00) 0.62 (0.00) 0.49 (0.00)
anonymous commissioner 0.00 (1.00) 1.14 (0.55) 1.26 (0.33)

anonymous commissioner 0.12 (0.00) 0.73 (0.00) 0.62 (0.00)
anonymous commissioner 0.05 (0.02) 0.14 (0.00) 0.14 (0.00)
anonymous commissioner 0.35 (0.32) 0.60 (0.00) 0.51 (0.00)
anonymous commissioner 0.00 (0.99) 0.10 (0.00) 0.09 (0.00)
anonymous commissioner 0.10 (0.00) 0.65 (0.00) 0.56 (0.00)
anonymous commissioner 0.02 (0.00) 0.38 (0.00) 0.28 (0.00)
anonymous commissioner 0.00 (0.99) 0.51 (0.00) 0.41 (0.00)
anonymous commissioner 0.14 (0.15) 0.16 (0.00) 0.15 (0.00)
anonymous commissioner 0.17 (0.03) 0.59 (0.00) 0.48 (0.00)
anonymous commissioner 0.00 (0.99) 0.51 (0.00) 0.48 (0.00)
anonymous commissioner 0.10 (0.06) 0.67 (0.00) 0.59 (0.00)
anonymous commissioner 0.06 (0.00) 0.59 (0.00) 0.49 (0.00)
anonymous commissioner 0.04 (0.00) 0.49 (0.00) 0.42 (0.00)
anonymous commissioner 0.09 (0.09) 0.85 (0.28) 0.82 (0.23)

anonymous commissioner 0.10 (0.01) 0.71 (0.00) 0.67 (0.00)
anonymous commissioner 0.16 (0.02) 0.88 (0.16) 0.78 (0.01)
anonymous commissioner 0.00 (1.00) 0.44 (0.01) 0.46 (0.02)
anonymous commissioner 0.06 (0.01) 0.47 (0.00) 0.39 (0.00)
anonymous commissioner 3.13 (0.52) 0.77 (0.16) 0.75 (0.16)

anonymous commissioner 0.12 (0.08) 0.94 (0.63) 0.79 (0.10)

anonymous commissioner 0.00 (0.99) 0.55 (0.00) 0.46 (0.00)
anonymous commissioner 0.13 (0.17) 0.41 (0.00) 0.33 (0.00)
anonymous commissioner 0.04 (0.02) 0.65 (0.00) 0.52 (0.00)
anonymous commissioner 0.00 (0.99) 0.25 (0.00) 0.21 (0.00)
anonymous commissioner 0.00 (0.99) 0.48 (0.00) 0.33 (0.00)
anonymous commissioner 0.00 (0.99) 0.14 (0.00) 0.14 (0.00)
anonymous commissioner 0.00 (1.00) 0.81 (0.30) 0.69 (0.09)

anonymous commissioner 0.26 (0.07) 1.04 (0.63) 1.02 (0.82)

anonymous commissioner 0.00 (1.00) 0.73 (0.18) 0.68 (0.13)

anonymous commissioner 0.21 (0.36) 0.33 (0.00) 0.28 (0.00)
anonymous commissioner 0.29 (0.29) 0.57 (0.00) 0.50 (0.00)
anonymous commissioner 0.06 (0.03) 0.70 (0.00) 0.58 (0.00)
anonymous commissioner - 0.00 (0.93) 0.00 (0.93)

anonymous commissioner - 0.00 (0.98) 0.00 (0.98)

anonymous commissioner - 0.00 (0.98) 0.00 (0.98)

anonymous commissioner - 0.00 (0.95) 0.00 (0.95)

anonymous commissioner - 0.00 (0.98) 0.00 (0.98)

anonymous commissioner - 0.00 (0.96) 0.00 (0.95)

anonymous commissioner - 0.00 (0.98) 0.00 (0.98)

anonymous commissioner - 0.00 (0.98) 0.00 (0.98)

anonymous commissioner - 0.64 (0.34) 0.55 (0.25)

anonymous commissioner - 0.12 (0.04) 0.13 (0.05)
anonymous commissioner - 0.00 (0.97) 0.00 (0.96)
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Table 7.9: Robustness check of Table 7.2. Rather than use prison is level iiv to measure
prisons, we use a fixed e↵ect on the individual prisons.

Data Source (a) Manual (b) Tabular (c) NLP

n (Number of Hearings) 688 34,993 34,993

Adjusted Odds Ratio e� (p)
retained attorney 1.66 (0.09) 2.49 (0.00) 2.13 (0.00)
initial hearing 0.68 (0.32) 0.40 (0.00) 0.45 (0.00)
years since 2007 1.13 (0.04) 1.12 (0.00) 1.16 (0.00)
ethnicity black 0.73 (0.33) 0.93 (0.04) 0.94 (0.10)
ethnicity latinx 0.60 (0.16) 1.09 (0.02) 0.89 (0.01)
ethnicity other 0.58 (0.20) 1.18 (0.00) 0.96 (0.42)
gender female 0.73 (0.80) 1.13 (0.34) 1.04 (0.78)
commissioner rate 1.66 (0.00) 1.32 (0.00) 1.40 (0.00)
offense murder second 0.83 (0.52) - 1.12 (0.00)
offense murder attempt 1.25 (0.60) - 1.12 (0.05)
offense sex 0.24 (0.13) - 0.32 (0.02)
offense other 1.02 (0.95) - 1.02 (0.67)
years since eligible 1.00 (0.97) - 1.00 (0.05)
precommit gang 1.35 (0.42) - 1.25 (0.00)
tabe edu score 1.17 (0.35) - 1.17 (0.00)
psych assess 0.48 (0.00) - 0.48 (0.00)
clean time 1.07 (0.00) - 1.02 (0.00)
job offer 1.83 (0.03) - 1.35 (0.00)
programming gang - - 1.40 (0.00)
programming all 1.41 (0.33) - -
12steps program failed 0.29 (0.03) - -
victim oppose 0.32 (0.00) - -
victim present - - 0.42 (0.00)
district attny oppose 0.23 (0.00) - -
district attny present - - 0.66 (0.00)
youth offender 0.70 (0.36) - -
elderly parole 0.76 (0.51) - -
crime gang 1.17 (0.72) - -
crime drugs alcohol 1.08 (0.81) - -
precommit sex abuse 0.87 (0.74) - -
justice involved 2.04 (0.01) - -
num pris convict buc 1.14 (0.80) - -
mental illness 0.74 (0.24) - -
mental treatment 1.43 (0.30) - -
count 115s 1.01 (0.62) - -
chronos bucket 1.87 (0.00) - -
attorney opinion 0.64 (0.22) - -
claim innocence 1.03 (0.94) - -
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Table 7.10: Continuation of Table 7.9. Reports the value of the fixed e↵ect for each prison. SATF
stands for Substance Abuse Treatment Facility. Eagle Mountain is short for Eagle Mountain Commu-
nity Correctional Facility. Golden State is short for Golden State Medium Community Correctional
Facility.

Data Source (a) Manual (b) Tabular (c) NLP

Fixed E↵ect Adjusted Odds Ratio e� (p)
California City Correctional Center - 0.47 (0.33) 0.48 (0.36)
California Correctional Center - 0.23 (0.16) 0.37 (0.37)
California Correctional Institution 0.34 (0.48) 0.76 (0.02) 0.90 (0.45)
California Health Care Facility 1.82 (0.48) 0.71 (0.00) 0.94 (0.55)
California Institution for Men 0.55 (0.64) 0.67 (0.00) 0.74 (0.02)
California Institution for Women 1.57 (0.77) 0.90 (0.48) 1.17 (0.33)
California Medical Facility 1.28 (0.72) 0.59 (0.00) 0.77 (0.00)
California Men’s Colony 1.27 (0.67) 0.95 (0.46) 1.08 (0.26)
California Rehabilitation Center - 2.11 (0.20) 1.61 (0.44)
California State Prison, Centinela 0.00 (1.00) 0.63 (0.10) 0.80 (0.44)
California State Prison, Corcoran 2.43 (0.23) 0.37 (0.00) 0.65 (0.00)
California State Prison, Los Angeles County 2.03 (0.44) 0.60 (0.00) 1.09 (0.49)
California State Prison, Sacramento 0.72 (0.81) 0.25 (0.00) 0.55 (0.00)
California State Prison, Solano 0.85 (0.75) 0.83 (0.00) 0.93 (0.24)
California SATF 1.66 (0.48) 0.73 (0.00) 0.84 (0.03)
Calipatria State Prison 0.00 (1.00) 0.27 (0.00) 0.53 (0.00)
Central California Women’s Facility 1.65 (0.70) 1.02 (0.87) 1.28 (0.09)
Chuckawalla Valley State Prison 1.89 (0.28) 1.38 (0.00) 1.39 (0.00)
Correctional Training Facility 1.49 (0.43) 1.09 (0.17) 1.13 (0.06)
Deuel Vocational Institution 6.83 (0.02) 0.95 (0.64) 1.02 (0.85)
Eagle Mountain - 4.52 (0.24) 36.25 (0.01)
Folsom State Prison 1.19 (0.79) 0.77 (0.00) 0.79 (0.01)
Golden State - 0.00 (0.94) 0.00 (0.94)
High Desert State Prison 0.00 (0.99) 0.18 (0.00) 0.39 (0.00)
Ironwood State Prison 0.16 (0.22) 0.80 (0.05) 0.96 (0.73)
Kern Valley State Prison 0.00 (0.99) 0.09 (0.00) 0.18 (0.00)
Mule Creek State Prison 0.45 (0.35) 0.64 (0.00) 0.69 (0.00)
North Kern State Prison 0.00 (1.00) 0.37 (0.02) 0.56 (0.19)
Pelican Bay State Prison 0.00 (0.99) 0.09 (0.00) 0.22 (0.00)
Pleasant Valley State Prison 0.00 (0.99) 0.51 (0.00) 0.67 (0.01)
Richard J. Donovan Correctional Facility 0.64 (0.65) 0.62 (0.00) 0.93 (0.51)
Salinas Valley State Prison 0.00 (0.99) 0.16 (0.00) 0.34 (0.00)
San Quentin State Prison 3.10 (0.07) 0.97 (0.71) 0.99 (0.85)
Sierra Conservation Center 0.00 (1.00) 0.76 (0.14) 0.83 (0.36)
Valley State Prison 1.58 (0.60) 0.92 (0.35) 0.93 (0.46)
Ventura Youth Correctional Facility - 0.00 (0.96) 0.00 (0.96)
Wasco State Prison - Reception Center - 0.00 (0.95) 0.00 (0.96)
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Table 7.11: Robustness check of Table 7.2. Regressions on the parole outcome for the manual
specification, excluding cases where the board indicated that they considered confidential information
without explicitly stating that they did not rely on the information to arrive at the decision.

Factor Adjusted Odds Ratio e� (p)

n (Number of Hearings) 569

(Intercept) 0.11 (0.01)
retained attorney 1.88 (0.05)
initial hearing 0.74 (0.46)
years since 2007 1.11 (0.09)
ethnicity black 0.90 (0.76)
ethnicity latinx 0.61 (0.19)
ethnicity other 0.79 (0.59)
gender female 0.80 (0.72)
commissioner rate 1.62 (0.00)
prison is level iv 0.67 (0.46)
offense murder second 0.81 (0.48)
offense murder attempt 1.17 (0.73)
offense sex 0.56 (0.50)
offense other 1.07 (0.87)
years since eligible 1.01 (0.57)
precommit gang 1.04 (0.92)
tabe edu score 1.10 (0.58)
psych assess 0.52 (0.00)
clean time 1.07 (0.00)
job offer 1.48 (0.17)
programming all 1.45 (0.30)
12steps program failed 0.37 (0.07)
victim oppose 0.35 (0.00)
district attny oppose 0.23 (0.00)
youth offender 0.64 (0.27)
elderly parole 0.61 (0.24)
crime gang 1.02 (0.97)
crime drugs alcohol 1.16 (0.68)
precommit sex abuse 0.64 (0.33)
justice involved 1.95 (0.02)
num pris convict buc 1.13 (0.81)
mental illness 0.68 (0.13)
mental treatment 1.09 (0.82)
count 115s 1.01 (0.43)
chronos bucket 1.73 (0.02)
attorney opinion 0.45 (0.05)
claim innocence 0.86 (0.71)
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Table 7.12: Robustness check of Table 7.2. We run all three regression specifications over the 688
manually labeled documents, rather than all 34,993.

Data Source Manual Tabular NLP

n (Number of Transcripts) 688 688 688

Adjusted Odds Ratio e� (p)
retained attorney 1.71 (0.06) 1.85 (0.01) 1.63 (0.07)
initial hearing 0.65 (0.24) 0.58 (0.03) 0.64 (0.18)
years since 2007 1.11 (0.06) 1.04 (0.28) 1.04 (0.38)
ethnicity black 0.83 (0.55) 1.00 (0.99) 0.86 (0.60)
ethnicity latinx 0.64 (0.18) 0.89 (0.66) 0.62 (0.13)
ethnicity other 0.61 (0.22) 0.98 (0.95) 0.58 (0.15)
gender female 0.92 (0.88) 0.46 (0.11) 0.71 (0.54)
commissioner rate 1.74 (0.00) 1.42 (0.00) 1.76 (0.00)
prison is level iv 0.85 (0.73) 0.42 (0.02) 0.86 (0.72)
offense murder second 0.85 (0.53) - 0.85 (0.51)
offense murder attempt 1.06 (0.88) - 0.94 (0.87)
offense sex 0.34 (0.21) - 0.24 (0.08)
offense other 1.04 (0.92) - 1.06 (0.87)
years since eligible 1.01 (0.75) - 1.00 (0.79)
precommit gang 1.22 (0.58) - 1.00 (0.99)
tabe edu score 1.15 (0.36) - 1.19 (0.25)
psych assess 0.49 (0.00) - 0.45 (0.00)
clean time 1.06 (0.00) - 1.06 (0.00)
job offer 1.72 (0.04) - 2.15 (0.00)
programming gang - - 2.41 (0.00)
programming all 1.54 (0.18) - -
12steps program failed 0.31 (0.03) - -
victim oppose 0.31 (0.00) - -
victim present - - 0.33 (0.00)
district attny oppose 0.26 (0.00) - -
district attny present - - 0.81 (0.59)
youth offender 0.73 (0.39) - -
elderly parole 0.79 (0.54) - -
crime gang 1.04 (0.92) - -
crime drugs alcohol 1.04 (0.90) - -
precommit sex abuse 0.80 (0.57) - -
justice involved 1.76 (0.02) - -
num pris convict buc 0.77 (0.59) - -
mental illness 0.65 (0.06) - -
mental treatment 1.22 (0.54) - -
count 115s 1.00 (0.93) - -
chronos bucket 1.76 (0.01) - -
attorney opinion 0.57 (0.10) - -
claim innocence 1.01 (0.98) - -



CHAPTER 7. FACTOR-BASED FINDINGS ABOUT CALIFORNIA PAROLE HEARINGS 141

Table 7.13: Robustness check of Table 7.2 using education level instead of the TABE score.

Data Source Manual Tabular NLP

n (Number of Transcripts) 688 34,993 34,993

Adjusted Odds Ratio e� (p)
retained attorney 1.70 (0.06) 2.48 (0.00) 2.05 (0.00)
initial hearing 0.69 (0.31) 0.40 (0.00) 0.45 (0.00)
years since 2007 1.11 (0.06) 1.11 (0.00) 1.15 (0.00)
ethnicity black 0.83 (0.54) 0.95 (0.17) 0.95 (0.16)
ethnicity latinx 0.64 (0.19) 1.14 (0.00) 0.95 (0.20)
ethnicity other 0.62 (0.22) 1.24 (0.00) 0.99 (0.89)
gender female 0.88 (0.82) 1.23 (0.00) 1.25 (0.00)
commissioner rate 1.70 (0.00) 1.34 (0.00) 1.42 (0.00)
prison is level iv 0.85 (0.73) 0.32 (0.00) 0.58 (0.00)
offense murder second 0.86 (0.58) - 1.14 (0.00)
offense murder attempt 1.04 (0.92) - 1.12 (0.03)
offense sex 0.29 (0.16) - 0.30 (0.01)
offense other 0.99 (0.97) - 1.03 (0.45)
years since eligible 1.00 (0.77) - 1.00 (0.05)
precommit gang 1.29 (0.49) - 1.24 (0.00)
education level 1.30 (0.06) - 1.21 (0.00)
psych assess 0.50 (0.00) - 0.48 (0.00)
clean time 1.06 (0.00) - 1.02 (0.00)
job offer 1.71 (0.04) - 1.36 (0.00)
programming gang - - 1.38 (0.00)
programming all 1.48 (0.23) - -
12steps program failed 0.33 (0.03) - -
victim oppose 0.30 (0.00) - -
victim present - - 0.41 (0.00)
district attny oppose 0.26 (0.00) - -
district attny present - - 0.68 (0.00)
youth offender 0.75 (0.41) - -
elderly parole 0.78 (0.52) - -
crime gang 1.06 (0.90) - -
crime drugs alcohol 1.09 (0.78) - -
precommit sex abuse 0.80 (0.57) - -
justice involved 1.82 (0.02) - -
num pris convict buc 0.81 (0.66) - -
mental illness 0.64 (0.05) - -
mental treatment 1.23 (0.52) - -
count 115s 1.00 (0.80) - -
chronos bucket 1.73 (0.01) - -
attorney opinion 0.59 (0.13) - -
claim innocence 1.00 (0.99) - -
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7.6 Commissioner Variability in Granting Parole

Commissioner grant rates naturally vary depending on the prisons where they preside (di↵erent

prisons house di↵erent populations) and the period they have served (due to various reforms, such

as those described in Chapter 3). Consider two hypothetical commissioners with the same decision

making process. If one commissioner primarily presides over hearings at California Men’s Colony,

which has minimum and medium security classes, and the other primarily presides over hearings at

Pelican Bay State Prison, a “supermax” prison, we expect the two commissioners to have di↵erent

empirical grant rates, even if there is no underlying di↵erence in their decision-making. Similarly, a

commissioner who served only in 2007–2008 would likely have a lower empirical grant rate than an

identical commissioner who served in 2015–2019.

Commissioners are not assigned to hearings uniformly at random over all historical hearings. But,

for a given prison in a given year, hearings can plausibly be considered to be assigned as-if random

within that subset of commissioners. Rather than test the null hypothesis that all commissioner

grant rates are equal across all prisons and years, we test the following null hypothesis: in a given

prison and in a given year, grant rates are independent of the commissioner.

Using a Monte Carlo randomization inference [Abrams et al., 2012], we assess commissioner

variability by testing the following null hypothesis: in a given year and in a given prison, grant rates

are independent of the presiding commissioner.

That is, a commissioner’s assignment to a hearing, with a fixed prison and year, does not depend

on other case factors. For example, suppose that a parole candidate is scheduled for a hearing in

June 2015, at some prison. We assume that this candidate may just as likely have been scheduled

for May 2015; the fact that they are scheduled for June 2015 is not dependent on characteristics of

the case, and therefore, that candidate’s hearing is just as likely to have gone before a commissioner

presiding over hearings at that prison in May, as before a commissioner presiding over hearings at

that prison in June.

Therefore, any variation in grant rates conditioned on prison and year can be attributed to

underlying commissioner variability. To test commissioner variability, we sample from this null

distribution using Monte Carlo randomization inference.

In each sample, commissioner i does the same number of hearings at prison j in year k as in the

original, historical data. It is only which hearings at prison j in year k that may di↵er. Under the

null hypothesis, these are hearings that commissioner i may plausibly have presided over instead;

they were still doing hearings at the “same place” (prison j) at the “same time” (year k). The only

reason that commissioner i wasn’t assigned them is due to random assignment. This null hypothesis

considerably constricts how far any sample di↵ers from the empirical data. Consider a prison j and

year k in which only one hearing occurred. The same commissioner will be assigned to this hearing

in every sample, which is also the same assignment as in the empirical data.
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Figure 7.3: Grant rates of 52 individual commissioners. The blue bar shows the empirical grant rate
of a commissioner. The black vertical bar shows the 0.05–99.95 percentile range of the grant rate
for that commissioner under a null hypothesis where the grant rates are equal within a given prison
in a given year, independent of presiding commissioner. The commissioners are sorted left to right
in increasing order of the median null grant rate.

For each assignment sample, we calculate each commissioner’s grant rate (excluding commis-

sioners who have presided over fewer than 50 hearings during their tenure). We consider 10,000

assignments sampled under the null distribution for each of 52 commissioners and the resulting

grant rates under this null distribution.

We reject the null hypothesis across commissioners at a family-wise error rate of ↵ = 0.05. We

find that 14 of the 52 commissioners fall outside their Bonferoni-corrected intervals at this ↵ = 0.05

level, shown in Figure 7.3 as the 0.05–99.95 percentile range. That is, the 14 commissioners have

higher or lower grant rates than expected assuming that prison and year are the sole sources of

variation in a commissioner’s grant rate.



Chapter 8

Linguistic Discrepancies Among

Parole Attorneys

The right to legal counsel is guaranteed in a number of legal jurisdictions and contexts, such for

criminal defendants in U.S. federal court through the Sixth Amendment of the U.S. Constitution.1

In many such jurisdictions, the right is guaranteed through the availability of free civil counsel.

However, the quality and legitimacy of the representation o↵ered by such counsel has been called

into question for reasons such as lack of funding, case overload, and conflict of interest [Ovalle, 2021].

Studying the quality of representation from a lexical perspective is crucial to understanding

representation as component of procedural justice, but existing analyses of free counsel rely on

measuring outcomes, such as incarceration rate or sentence length for public defenders [Hartley et al.,

2010, Williams, 2013, Cohen, 2014], or on perceptions of public defenders [Posner and Yoon, 2010].

Such studies provide valuable insights into the e↵ectiveness of counsel, but they are nonetheless

indirect measures of attorneys’ behavior.

We provide an analysis that is unique in two ways: first, we show the e↵ectiveness of supervised

and unsupervised text-based methods in understanding attorney representation, and second, we

study attorneys in California’s parole hearing system for individuals who are already incarcerated,

unlike the vast majority of existing studies on the U.S., which focus on public defenders in the

criminal trial system.

We study di↵erences between board-appointed and retained attorneys in a corpus of 35,105 parole

hearings from the State of California for individuals serving life sentences between 2007 and 2019. At

a high level, the two types of attorneys di↵er in their speaking time, lexical complexity, and syntactic

complexity. We further study their lexical di↵erences using two methods. The first is unsupervised

and identifies distinguishing words used by either type of attorney. The second measures di↵erences

1A broad basis for a civil right to counsel is given in Article 10 of the International Declaration of Human Rights.
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in a lexicon designed by parole scholars.

Finally, for all identified di↵erences between board-appointed and retained attorneys, we show

that they predict the outcome of the parole hearing, even when controlling for case factors.

This analysis is particularly relevant today as recent debate in the California legislature has

concerned the e↵ectiveness, compensation, and training of board-appointed attorneys [Committee

on Revision of the Penal Code, 2020].

8.1 Data

We study discrepancies in attorney speech across the 34,993 parole hearing transcripts described in

Chapter 4. Of the hearings, the candidate is represented by a board-appointed attorney in 6,825

of them, and by a retained attorney in 25,542. The attorney status is unknown in 2,626 hearings.

Unless otherwise stated, the analyses in this chapter study the subset of 32,367 hearings in which

attorney status is known.

8.2 Who Gets Retained Counsel?

Our data show substantial demographic discrepancies in attorney representation. For example,

only 17.7% and 18.3% of hearings with Black and Latinx candidates, respectively, have a retained

attorney, compared to 27.2% of hearings with White candidates. In other words, Black and Latinx

candidates are two-thirds as likely as White candidates to be represented by a retained attorney.

Similarly, 43.6% of hearings with female parole candidates have a retained attorney, compared to

20.0% of hearings with male candidates, making female candidates just more than twice as likely as

male candidates to have a retained attorney.

To better understand how demographic factors and other hearing factors correlate with attorney

representation, we perform logistic regressions to predict whether or not a candidate will obtain

private legal representation. Similar to the methodology described in Section 7.3, we perform three

regressions, where the first includes only the manually coded transcripts, the second includes all

transcripts (with known attorney status) but only with tabular features provided by CDCR, and

the third includes all transcripts (with known attorney status) with NLP-extracted features.

For full definitions and descriptions of all features, see Table 7.1. Compared to the analyses in

Chapter 7, we restrict the analysis in the present chapter to the subset of factors that are reasonably

known to the candidate and their support network at the time at which they decide whether to

retain an attorney.

Table 8.1 presents adjusted odds ratios (AORs) and Wald p-values for each feature for each of

the three regressions. For readability, we have plotted the AORs of all features that achieve p < 0.05

significance in the regression with NLP-extracted features. Case factors that make it more likely for
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Table 8.1: Regressions onto attorney representation based on the subset of factors that are reasonably
known to the candidate at the time they decide whether to retain an attorney, over the set of hearings
where attorney representation status is known.

Data Source (a) Manual (b) Tabular (c) NLP

n (Number of Transcripts) 623 32,349 32,349

Adjusted Odds Ratio e� (p)
initial hearing 1.84 (0.03) 0.91 (0.01) 0.91 (0.01)
prison is level iv 0.51 (0.10) 0.89 (0.01) 0.98 (0.60)
years since 2007 0.95 (0.17) 0.97 (0.00) 0.97 (0.00)
ethnicity black 0.46 (0.01) 0.61 (0.00) 0.59 (0.00)
ethnicity latinx 0.53 (0.03) 0.65 (0.00) 0.55 (0.00)
ethnicity other 0.58 (0.11) 0.90 (0.02) 0.81 (0.00)
gender female 2.77 (0.00) 2.86 (0.00) 3.40 (0.00)
offense murder second 0.93 (0.75) - 0.92 (0.03)
offense murder attempt 0.85 (0.65) - 0.90 (0.04)
offense sex 0.41 (0.18) - 0.39 (0.04)
offense other 0.78 (0.44) - 0.84 (0.00)
years since eligible 1.04 (0.01) - 1.00 (0.78)
precommit gang 0.81 (0.58) - 1.15 (0.00)
tabe edu score 1.05 (0.74) - 1.22 (0.00)
clean time 1.02 (0.31) - 1.00 (0.97)
job offer 1.62 (0.06) - 2.07 (0.00)
programming gang - - 1.34 (0.00)
programming all 1.07 (0.79) - -
youth offender 1.65 (0.15) - -
elderly parole 0.73 (0.46) - -
crime gang 1.61 (0.27) - -
crime drugs alcohol 0.59 (0.04) - -
claim innocence 0.29 (0.01) - -
justice involved 0.71 (0.13) - -
num pris convict buc 0.88 (0.78) - -
mental illness 1.21 (0.42) - -
mental treatment 0.88 (0.69) - -
count 115s 1.00 (0.75) - -
chronos 1.75 (0.01) - -
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Figure 8.1: Adjusted odds ratios (AORs) for factors that achieve p < 0.05 significance in a Wald test
in a regression modeling attorney status. For a description of each feature, see Table 7.1. Table 8.1
shows complete regression coe�cients.
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a candidate to retain counsel include having a confirmed job o↵er and laudatory chronos from prison

sta↵. Candidates who claim to be innocent of their commitment o↵ense are 3.4x less likely to retain

an attorney. Female candidates are 3.4x more likely to hire a retained attorney than male candidates.

As mentioned above, without controlling for other features, female candidates were instead found

to be 2.1x more likely to be represented by a retained attorney. Black and Latinx candidates are

approximately 0.5x as likely as white candidates to attend their hearing with a privately retained

lawyer, controlling for the other factors.

8.3 Discrepancies in Attorney Language

In the following sections, we measure di↵erences between board-appointed and retained attorneys

across three sets of features. Each section defines the features used and the methods used to de-

termine those features. In addition to describing the discrepancies, we also measure whether the

discrepancies are predictive of the eventual parole outcome. The method for doing so is the same for

each section. We use logistic regression to predict the binary outcome variable of the parole hearing

(a grant or a denial of parole), based on a set of existing case factors associated with the dataset.

In other words, we use the set of tabular and NLP-extracted features defined in Table 7.1, which

are available for all hearings. In addition to the twenty-two existing tabular and NLP-extracted

features, for each discrepancy we identify in the sections below (e.g. speaking time), we include the

feature as a twenty-third feature in the logistic regression.

8.3.1 Speaking Time

Feature definitions

Procedural justice holds that the recipients of justice ought to have the opportunity to make their

voices and perspectives heard [Tyler, 2003, Solum, 2004]. We now explore how the voices of the

actors involved in a parole hearing influence the decision outcome.2

Three participants typically dominate the dialogue of a parole hearing: the candidate, their

attorney, and the commissioner. We calculate three psycholinguistic measures of voice for each

speaker. The first measure, speaking time (calculated as the absolute and relative number of words

spoken), is a measure of quantity: “how much is said” by each participant. The other two measures

are of quality and encode “how it is said.” Lexical complexity is computed via the mean Age of

Acquisition (AOA) statistic [Kuperman et al., 2012], referring to the age at which a word is typically

learned. Syntactic complexity is computed through the mean sentence length [Szmrecsanyi, 2004]

2Parole hearings are procedural interrogations of the parole candidate through the commissioner. While victim
representatives, district attorneys, and lawyers for the candidate are permitted to make closing statements, they may
not converse directly with the candidate. Only the commissioners may direct questions to the candidate. Should the
candidate’s attorney wish to ask a question, the attorney must direct it to the commissioners who may then ask the
candidate.
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Figure 8.2: Speaking time of various individuals in a hearing, broken down by attorney status. All
mean di↵erences are statistically significant (p < 0.05) in a Chi-squared test.

Figure 8.3: Speaking times for candidates, counsel, and commissioners conditioned on counsel status
and restricted to hearings in which the candidate is identified as male.

of the speaker. Together, lexical complexity and syntactic complexity o↵er a view into the kinds of

language used by a given speaker.

Fig. 8.2 shows that speaking times for the parole candidate, attorney, and commissioner are

greater for hearings conducted with a private attorney vs. a board-appointed attorney. Private

attorneys speak almost twice as many words as board-appointed attorneys and candidates speak

25% more in the presence of a privately retained attorney, with 18% longer hearings overall. These

di↵erences persist when accounting for candidate ethnicity and gender as shown in Figures 8.5,

8.3, and 8.4. We find that private attorneys speak with significantly higher lexical and syntactic

complexity than board-appointed attorneys (Table 8.2). Table 8.5 shows that both speaking time

and lexical and syntactic predict hearing outcome when controlling for other case factors.

We now investigate the breakdown of measures of voice in the population of parole candidates.

Fig. 8.5 shows speaking proportions by ethnicity. All non-white candidate groups have lower hearing

participation than white candidates. Latinx parole candidates and their lawyers speak fewer than
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Figure 8.4: Speaking times for candidates, counsel, and commissioners conditioned on counsel status
and restricted to hearings in which the candidate is identified as female.

Table 8.2: Average speaking time, lexical complexity, and syntactic complexity by attorney status.

Linguistic Factor Privately Retained Board-Appointed

cand speaking raw 5380.87 6606.69
attn speaking raw 1289.35 2285.47
comm speaking raw 4720.39 5218.42

cand avg acq score 4.82 4.86
attn avg acq score 5.41 5.47
comm avg acq score 5.19 5.19

cand avg sent len 9.23 9.95
attn avg sent len 14.90 15.20
comm avg sent len 9.68 9.74

Figure 8.5: Speaking time by word count for parole hearings by parole candidate ethnicity (all
di↵erences statistically significant (p < 0.05) in t-tests). Latinx parole candidates speak on average
20% or 1,058 fewer words than white ones, which may predict their parole outcome as Table 8.3
shows.
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Table 8.3: Regression on the parole outcome with linguistic markers of hearing participation. Each
row is a rerun of the regression in Table 7.2 column (c) (n = 34, 993) with the linguistic feature
of inquiry added for the three speakers. (Therefore, the � coe�cients are comparable across the
columns but not the rows.) Each independent regression controls for all factors from Table 1(c). See
Table 8.4 for all coe�cients.

Coe�cient � (Wald test p)
Factor Regression Candidate Attorney Comm.

Speaking Time (105 words) 2.35 (0.00) 1.98 (0.18) -4.32 (0.00)
Syntactic Complexity 0.39 (0.00) 0.28 (0.00) 0.54 (0.00)
Lexical Complexity 0.06 (0.00) 0.00 (0.16) -0.03 (0.00)

white candidates and their lawyers, both proportionally, when compared to parole commissioners,

and in absolute counts. White candidates speak an average of 24% or 1,058 more words than Latinx

candidates in their hearings.

Regressions onto the parole hearing outcome

We analyze how hearing participation impacts the hearing outcome by regressing onto the parole

outcome. We run three regressions, one for each measure. Each regression assesses the impact of one

linguistic factor for the three speakers, controlled for all analysis factors in the NLP regression from

Study 1 over 34,993 documents. The coe�cients extracted from the three regressions are shown in

the corresponding rows of Table 8.3. Controlling for case and hearing factors, all three measures

significantly predict hearing outcomes for some participants. For both parole candidates and their

attorneys, longer and more complex speech is more likely to lead to a grant in parole. The more the

commissioner speaks, the more likely the hearing is to result in a denial. A candidate in the 10th

percentile of participation speaks 1,592 words per hearing, while a candidate in the 90th percentile

speaks 9,993 words. Other factors being equal, the candidate in the 90th percentile of speaking

times is 22% more likely to be granted parole than the candidate in the 10th percentile. This e↵ect

suggests that one way in which race and ethnicity modulate parole outcomes is by determining whose

voices get heard in the hearing procedure.

8.3.2 Word Polarity Analysis

We now investigate what private attorneys say that distinguishes them from board-appointed lawyers.

We first conduct an exploratory word polarity analysis. Using the model-based word score method

derived from normalized log odd ratios [?], we identify the most polar words that explain the di↵er-

ence between private and board attorney speech.
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Table 8.4: Regressions on the parole outcome based on linguistic features of voice, controlling for
case and hearing factors. Each column is a rerun of the regression in Table 7.2 column (c) with
the linguistic feature of inquiry added for the three speakers. (Therefore, the � coe�cients are
comparable across the rows but not the columns.)

Linguistic Factor Speak. Time Lex. Complex. Synt. Complex.

n (Number of Hearings) 34,993

Speaking Time Coe�cient � (p)
attn speaking raw 1.98 (0.18) - -
cand speaking raw 2.35 (0.00) - -
comm speaking raw -4.32 (0.00) - -

Lexical Complexity
attn lexical complexity - 0.28 (0.00) -
cand lexical complexity - 0.39 (0.00) -
comm lexical complexity - 0.54 (0.00) -

Syntactic Complexity
attn syntactic complexity - - 0.01 (0.16)
cand syntactic complexity - - 0.06 (0.00)
comm syntactic complexity - - -0.03 (0.00)

Control Variables
retained attorney 0.73 (0.00) 0.71 (0.00) 0.71 (0.00)
initial hearing -0.79 (0.00) -0.78 (0.00) -0.80 (0.00)
years since 2007 0.15 (0.00) 0.15 (0.00) 0.14 (0.00)
ethnicity black -0.04 (0.33) -0.03 (0.48) -0.03 (0.41)
ethnicity latinx -0.08 (0.07) -0.04 (0.38) -0.05 (0.22)
ethnicity other 0.00 (0.95) 0.03 (0.57) 0.03 (0.61)
gender female 0.25 (0.00) 0.25 (0.00) 0.25 (0.00)
commissioner rate 0.33 (0.00) 0.34 (0.00) 0.33 (0.00)
prison is level iv -0.55 (0.00) -0.55 (0.00) -0.56 (0.00)
offense murder second 0.12 (0.00) 0.13 (0.00) 0.13 (0.00)
offense murder attempt 0.11 (0.04) 0.12 (0.03) 0.12 (0.03)
offense sex -1.15 (0.02) -1.20 (0.01) -1.14 (0.02)
offense other 0.02 (0.68) 0.01 (0.74) 0.02 (0.59)
years since eligible 0.00 (0.05) 0.00 (0.05) 0.00 (0.05)
precommit gang 0.22 (0.00) 0.21 (0.00) 0.20 (0.00)
tabe edu score 0.14 (0.00) 0.14 (0.00) 0.13 (0.00)
psych assess -0.74 (0.00) -0.73 (0.00) -0.73 (0.00)
clean time 0.02 (0.00) 0.02 (0.00) 0.02 (0.00)
job offer 0.32 (0.00) 0.29 (0.00) 0.29 (0.00)
programming gang 0.32 (0.00) 0.32 (0.00) 0.31 (0.00)
victim present -0.86 (0.00) -0.88 (0.00) -0.87 (0.00)
district attny present -0.37 (0.00) -0.39 (0.00) -0.40 (0.00)
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Feature definitions

We model word usage as follows:

y ⇠ Multinomial(n,⇡)

where y is the vector of term word counts for the entire corpus, n is the total number of words in the

corpus, and ⇡ is the vector of probabilities for each word in the vocabulary. To account for inherent

di↵erences in word usage not based on the examined feature, the model is typically instantiated with

a Dirichlet prior with parameter vector ↵, a vector of counts for each word in the corpus. Intuitively,

↵ can be thought of as the number of times each word has been encountered before examining the

corpus. For our experiments, we set ↵ to be the vector of word counts across all attorney speech in

all hearings, regardless of the attorney’s status.

Given an observed vector of word counts from the corpus, y, the prior distribution, and the total

number of words in the corpus n, the maximum likelihood estimate of the underlying probability

distribution ⇡ is ⇡̂ = 1

n+↵0
· (y + ↵), where ↵0 is the sum of ↵w for each word w in the corpus.

We let a and b indicate the disjoint subsets of our corpus yielded by the feature under examination

using superscripts, such that y(a) indicates the vector of word counts for that particular subset, with

↵(a) and n(a) defined analogously. Under these specifications, we can estimate the odds of a specific

word w compared to others for a subset a as ⌦̂(a)
w = ⇡̂(a)

w

1�⇡̂(a)
w

. From this, in turn, we can estimate the

log-odds ratio for the word w between the two groups a and b (denoted �̂(a�b)
w ) as follows:

�̂(a�b)
w = log

(y(a)w + ↵(a)
w )

(n(a) + ↵(a)
0

� y(a)w � ↵(a)
w )

� log
(y(b)w + ↵(b)

w )

(n(b) + ↵(b)
0

� y(b)w � ↵(b)
w )

One of the important benefits of using a model-based approach (as opposed to just computing

the log odds ratio directly from the vector of word counts), is that it o↵ers not just a score for each

word, but an estimate of the variance for that score. In particular, the variance is estimated as:

�̂2(�̂(a�b)
w ) =

1

(y(a)w + ↵(a)
w )

+
1

(y(b)w + ↵(b)
w )

.

So, instead of reporting the raw scores for any given word, we can instead report the normalized

z-score, defined as:

z(a�b)
w = �̂(a�b)

w /

q
�̂2(�̂(a�b)

w ).

Fig. 8.7 shows word polarity scores plotted against occurrence frequency. Using word polarity

scores, the top 10 words most indicative of private attorney speech largely include legal terms.
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Figure 8.6: Word polarity score for terms most indicative of retained attorneys (in purple) and
board-appointed attorneys (in purple), respectively, vs. the occurrence frequency of the word.

Regressions onto the parole hearing outcome

Of the top 10 words, we then assess whether each word significantly predicts hearing outcome in

the presence of case factors. Significantly predictive words include district, court and exhibit (all

p < 0.01 with positive coe�cients). Using word polarity scores, the top 10 words indicative of

board-appointed attorney speech include uh, um, yes, sir and inaudible, a term used by hearing

transcribers to code unintelligible speech. Of the top 10 words for board-appointed attorneys, we

also assess whether each word significantly predicts hearing outcome in the presence of case factors.

All ten words significantly predict of the hearing outcome with negative coe�cients at the p < 0.01

level.

8.3.3 Legal Lexicon

Feature definitions

We designed a custom lexical model to investigate the attorney’s usage of specific legal language.

We consulted a legal expert who did not have access to the data to devise a list of terms that would

reasonably be used by attorneys carrying out their representational duties before the board. The list

contains 17 hypothesized terms and covers areas such as evidentiary standards (e.g. some evidence,

reasonable doubt), procedural terms (e.g. objection) and case law establishing precedents for parole

in California (e.g. Lawrence, Shaputis). For each term, we compute the mean occurrence frequency

and the percentage of hearings in which the term is used by the attorney at least once.

Of these terms, 14 of the 17 are used significantly less by board-appointed attorneys in a raw

lexical analysis. Mean occurrences di↵er significantly for all but three of the hypothesized terms

(Miller v Alabama, diminished culpability, reasonable doubt) at a t-test threshold of p < 0.05.
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Figure 8.7: Legal term usage by retained (in orange) vs. board-appointed attorneys (in purple).
For each term that significantly impacts the parole outcome, it is indicated whether mention of that
term increases (+) or decreases (-) the probability of a parole grant in a regression controlling for
case factors and speaking time. Wald test significance is marked as ⇤⇤⇤ for p < 0.001, ⇤⇤ for p < 0.01,
⇤ for p < 0.05.

Regressions onto the parole hearing outcome

We run t-tests to check for significance of the di↵erences between the board-appointed and private

group. We again check whether each term a↵ects the parole outcome by running independent

regressions that assess the impact of the term controlling for case and hearing factors and speaking

time. Fig. 8.7 shows that 6 of the 17 terms significantly predict the parole outcome at a p < 0.01

level in a logistic regression in the presence of other case factors. A mention of all but one of the

6 terms increases the probability of a parole grant (plausible carries a negative coe�cient in the

regression).
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Conclusion

Parole is the heavy gate at the end of the criminal justice system’s long corridor. Its keepers

can tip a sentence from fifteen years to fifty. Many of the mechanisms underlying parole have

remained opaque not only to the public, but even to governmental oversight bodies. Leveraging

the unstructured data recorded in parole hearing transcripts, we employ machine learning tools to

extract and analyze parole case factors and shine a light onto this system.

Our analysis identifies several mechanisms that introduce arbitrariness into the parole decision

process in California. Factors outside of the candidate’s control, such as the historical punitive-

ness of the commissioner at the time of the hearing and whether the district attorney chooses to

attend, have disproportionate weight in explaining the grant outcome after controlling for factors

within the candidate’s control, such as their educational attainment, participation in rehabilitational

programming, disciplinary conduct, and parole plans. There is considerable variability among two

key roles in the parole process: commissioners and attorneys. We measure commissioner variabil-

ity in the presence of non-random assignment to hearings and find significant excess variability in

grant rates beyond what should be expected. Using syntactic and lexical measures, we find that

board-appointed attorneys speak for less of the hearing and use less legal language, both of which

predict denials of parole after controlling for case factors. We uncover that racial disparities limit

the voice a↵orded to non-white parole candidates and their attorneys in the hearing proceedings

and that Black and Latinx candidates are significantly less likely to retain a private attorney, which

may ultimately halve their chances of being granted parole over candidates who can a↵ord private

legal representation. This suggests that race and socioeconomic status may play a significant role

in determining parole outcomes in California.

Our work motivates further studies of parole hearing text as data and studies of causal mecha-

nisms in parole. Future studies can replicate our methodology and use advances in NLP to extract

additional factors of interest. Both present and future extracted factors can be studied using ad-

ditional techniques in causal inference to provide a better understanding of the role that race and
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social status play in parole decision making. Finally, our work motivates more detailed linguistic

studies of the language of parole hearings in a corpus of 5 million pages. A linguistic understanding

of parole dynamics could inform many di↵erent lines of inquiry.

Our study demonstrates that machine learning can be a powerful tool in bringing reconnaissance

to legal decision making. Our approach enables an alternative application for machine learning in

criminal law that stands in contrast to its prevailing use as a risk assessment tool. While predictive

technology is most commonly applied to analyze the subjects of a decision making process, we

propose using it to scrutinize decision making itself Bell et al. [2021]. Our NLP extraction and

analysis methodology can be extended to many other legal processes for which only limited structured

data is available. Examples include asylum proceedings in an immigration context or social security

benefits decisions in an administrative law context.

We believe that two natural next steps follow reconnaissance of parole in California. First, stake-

holders in the parole process should consider the implications of our findings for reform proposals

in the context of current legal scholarship on parole, case analyses, and the stories of those directly

impacted by our justice system. Second, we must identify ways to reconsider the cases of individuals

that have been impacted by past inconsistencies and injustices in parole procedures. This disserta-

tion has taken an analytical, historical lens on parole and variability, but parole is a living system.

Our data covers the cases of 15,852 individuals, several thousand of whom are still in prison today.

The tools we have developed for the present analysis can be used to analyze systems like parole in an

ongoing fashion and to identify cases of individuals for review based on specific factors. Our study

motivates both comprehensive legislative parole reform and establishing an ongoing review system

for parole denials going forward.



Bibliography

R. Abebe, S. Barocas, J. Kleinberg, K. Levy, M. Raghavan, and D. G. Robinson. Roles for com-

puting in social change. In Proceedings of the 2020 Conference on Fairness, Accountability, and

Transparency, pages 252–260, 2020.

Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker,

and N. Tang. Detecting data errors: Where are we and what needs to be done? Proceedings of

the VLDB Endowment, 9(12):993–1004, 2016.

D. S. Abrams, M. Bertrand, and S. Mullainathan. Do judges vary in their treatment of race? The

Journal of Legal Studies, 41(2):347–383, 2012.

H. Adel, B. Roth, and H. Schütze. Comparing convolutional neural networks to traditional models

for slot filling. In Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pages 828–838, San

Diego, California, June 2016. doi: 10.18653/v1/N16-1097.

J. Agley, Y. Xiao, R. Nolan, and L. Golzarri-Arroyo. Quality control questions on Amazon’s Me-

chanical Turk (MTurk): A randomized trial of impact on the USAUDIT, PHQ-9, and GAD-7.

Behavior research methods, pages 1–13, 2021.

G. Algan and I. Ulusoy. Label noise types and their e↵ects on deep learning. arXiv:2003.10471,

2020.

C. Alt, A. Gabryszak, and L. Hennig. TACRED revisited: A thorough evaluation of the TA-

CRED relation extraction task. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, pages 1558–1569, Online, July 2020. Association for Computational

Linguistics. doi: 10.18653/v1/2020.acl-main.142.

K. M. Altenburger and D. E. Ho. Is Yelp actually cleaning up the restaurant industry? A re-

analysis on the relative usefulness of consumer reviews. In The World Wide Web Conference,

pages 2543–2550, 2019.

American Law Institute. Model penal code. The Institute, 2019.

158



BIBLIOGRAPHY 159

E. Amid, M. K. Warmuth, R. Anil, and T. Koren. Robust bi-tempered logistic loss based on Bregman

divergences. Advances in Neural Information Processing Systems, 32, 2019.

J. M. Anderson, J. R. Kling, and K. Stith. Measuring interjudge sentencing disparity: Before and

after the federal sentencing guidelines. The Journal of Law and Economics, 42(S1):271–308, 1999.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. In Ethics of Data and Analytics,

pages 254–264. Auerbach Publications, 2016.

D. Arnold, W. Dobbie, and C. S. Yang. Racial bias in bail decisions. The Quarterly Journal of

Economics, 133(4):1885–1932, 2018.

D. Arnold, W. Dobbie, and P. Hull. Measuring racial discrimination in algorithms. In AEA Papers

and Proceedings, volume 111, pages 49–54, 2021.

N. Asher and L. Vieu. Subordinating and coordinating discourse relations. Lingua, 115(4):591–610,

2005.

S. Azadi, J. Feng, S. Jegelka, and T. Darrell. Auxiliary image regularization for deep CNNs with

noisy labels. arXiv:1511.07069, 2015.

D. Baldus. When symbols clash: Reflections on the future of the comparative proportionality review

of death sentences. Seton Hall L. Rev., 26:1582, 1995.

D. C. Baldus, G. Woodworth, and C. A. Pulaski. Equal justice and the death penalty: A legal and

empirical analysis. Upne, 1990.

N. Bar, T. Koren, and R. Giryes. Multiplicative reweighting for robust neural network optimization.

arXiv:2102.12192, 2021.

C. Barabas, M. Virza, K. Dinakar, J. Ito, and J. Zittrain. Interventions over predictions: Reframing

the ethical debate for actuarial risk assessment. In Conference on fairness, accountability and

transparency, pages 62–76. PMLR, 2018.

S. Barocas, M. Hardt, and A. Narayanan. Fairness in machine learning. NeurIPS tutorial, 1:2, 2017.

L. Barrett. Reasonably suspicious algorithms: predictive policing at the united states border. New

York University Review of Law and Social Change, 41:327, 2017.

A. M. Barry-Jester, B. Casselman, and D. Goldstein. The new science of sentencing.

The Marshall Project, 2015. URL https://www.themarshallproject.org/2015/08/04/

the-new-science-of-sentencing.

https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing


BIBLIOGRAPHY 160
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