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Abstract

There is precisely one complete language processing system to date: the human brain.
Though there is debate on how much built-in bias human learners might have, we defi-
nitely acquire language in a primarily unsupervised fashion. On the other hand, compu-
tational approaches to language processing are almost exclusively supervised, relying on
hand-labeled corpora for training. This reliance is largely due to unsupervised approaches
having repeatedly exhibited discouraging performance. In particular, the problem of learn-
ing syntax (grammar) from completely unannotated text has received a great deal of atten-
tion for well over a decade, with little in the way of positive results. We argue that previous
methods for this task have generally underperformed because of the representations they
used. Overly complex models are easily distracted by non-syntactic correlations (such as
topical associations), while overly simple models aren’t rich enough to capture important
first-order properties of language (such as directionality, adjacency, and valence).

In this work, we describe several syntactic representations and associated probabilis-
tic models which are designed to capture the basic character of natural language syntax as
directly as possible. First, we examine a nested, distributional method which induces brack-
eted tree structures. Second, we examine a dependency model which induces word-to-word
dependency structures. Finally, we demonstrate that these two models perform better in
combination than they do alone. With these representations, high-quality analyses can be
learned from surprisingly little text, with no labeled examples, in several languages (we
show experiments with English, German, and Chinese). Our results show above-baseline
performance in unsupervised parsing in each of these languages.

Grammar induction methods are useful since parsed corpora exist for only a small num-
ber of languages. More generally, most high-level NLP tasks, such as machine translation
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and question-answering, lack richly annotated corpora, making unsupervised methods ex-
tremely appealing even for common languages like English. Finally, while the models in
this work are not intended to be cognitively plausible, their effectiveness can inform the
investigation of what biases are or are not needed in the human acquisition of language.
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Chapter 1

Introduction

1.1 The Problem of Learning a Language

The problem of how a learner, be it human or machine, might go about acquiring a hu-
man language has received a great deal of attention over the years. This inquiry raises
many questions, some regarding the human language acquisition process, some regarding
statistical machine learning approaches, and some shared, relating more to the structure
of the language being learned than the learner. While this chapter touches on a variety of
these questions, the bulk of this thesis focuses on the unsupervised machine learning of a
language’s syntax from a corpus of observed sentences.

1.1.1 Machine Learning of Tree Structured Linguistic Syntax

This work investigates learners which induce hierarchical syntactic structures from ob-
served yields alone, sometimes referred to as tree induction. For example, a learner might
observe the following corpus:

the cat stalked the mouse
the mouse quivered
the cat smiled

Given this data, the learner might conclude that the mouse is some kind of unit, since it
occurs frequently and in multiple contexts. Moreover, the learner might posit that the cat is
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2 CHAPTER 1. INTRODUCTION

somehow similar to the mouse, since they are observed in similar contexts. This example is
extremely vague, and its input corpus is trivial. In later chapters, we will present concrete
systems which operate over substantial corpora.

Compared to the task facing a human child, this isolated syntax learning task is eas-
ier in some ways but harder in others. On one hand, natural language is an extremely
complex phenomenon, and isolating the learning of syntax is a simplification. A com-
plete knowledge of language includes far more than the ability to group words into nested
units. There are other components to syntax, such as sub-word morphology, agreement,
dislocation/non-locality effects, binding and quantification, exceptional constructions, and
many more. Moreover, there are crucial components to language beyond syntax, particu-
larly semantics and discourse structure, but also (ordinarily) phonology. A tree induction
system is not forced to simultaneously learn all aspects of language. On the other hand,
the systems we investigate have far fewer cues to leverage than a child would. A child
faced with the utterances above would generally know something about cats, mice, and
their interactions, while, to the syntax-only learner, words are opaque symbols.

Despite being dissimilar to the human language acquisition process, the tree induction
task has received a great deal of attention in the natural language processing and computa-
tional linguistics community (Carroll and Charniak 1992, Pereira and Schabes 1992, Brill
1993, Stolcke and Omohundro 1994). Researchers have justified isolating it in several
ways. First, for researchers interested in arguing empirically against the poverty of the
stimulus, whatever syntactic structure can be learned in isolation gives a bound on how
much structure can be learned by a more comprehensive learner (Clark 2001a). More-
over, to the extent that the syntactic component of natural language is truly modular (Fodor
1983, Jackendoff 1996), one might expect it to be learnable in isolation (even if a human
learner would never have a reason to). More practically, the processing task of parsing
sentences into trees is usually approached as a stand-alone task by NLP researchers. To
the extent that one cares about this kind of syntactic parsing as a delimited task, it is useful
to learn such structure as a delimited task. In addition, learning syntax without either pre-
supposing or jointly learning semantics may actually make the task easier, if less organic.
There is less to learn, which can lead to simpler, more tractable machine learning models
(later chapters argue that this is a virtue).
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1.1.2 Inducing Treebanks and Parsers

There are practical reasons to build tree induction systems for their own sakes. In particu-
lar, one might reasonably be interested in the learned artifact itself – a parser or grammar.
Nearly all natural language parsing is done using supervised learning methods, whereby
a large treebank of hand-parsed sentences is generalized to new sentences using statisti-
cal techniques (Charniak 1996). This approach has resulted in highly accurate parsers for
English newswire (Collins 1999, Charniak 2000) which are trained on the Penn (English)
Treebank (Marcus et al. 1993). Parsers trained on English newswire degrade substantially
when applied to new genres and domains, and fail entirely when applied to new languages.
Similar treebanks now exist for several other languages, but each treebank requires many
person-years of work to construct, and most languages are without such a resource. Since
there are many languages, and many genres and domains within each language, unsuper-
vised parsing methods would represent a solution to a very real resource constraint.

If unsupervised parsers equaled supervised ones in accuracy, they would inherit all
the applications supervised parsers have. Even if unsupervised parsers exhibited more
modest performance, there are plenty of ways in which their noisier output could be useful.
Induction systems might be used as a first pass in annotating large treebanks (van Zaanen
2000), or features extracted from unsupervised parsers could be a “better than nothing”
stop-gap for systems such as named-entity detectors which can incorporate parse features,
but do not require them to be perfect. Such systems will simply make less use of them if
they are less reliable.

1.1.3 Learnability and the Logical Problem of Language Acquisition

Linguists, philosophers, and psychologists have all considered the logical problem of lan-
guage acquisition (also referred to as Plato’s problem) (Chomsky 1965, Baker and Mc-
Carthy 1981, Chomsky 1986, Pinker 1994, Pullum 1996). The logical (distinct from em-
pirical) problem of language acquisition is that a child hears a finite number of utterances
from a target language. This finite experience is consistent with infinitely many possible
targets. Nonetheless, the child somehow manages to single out the correct target language.
Of course, it is not true that every child learns their language perfectly, but the key issue is
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that they eventually settle on the correct generalizations of the evidence they hear, rather
than wildly incorrect generalizations which are equally consistent with that evidence.

A version of this problem was formalized in Gold (1967). In his formulation, we are
given a target language L drawn from a set L of possible languages. A learner C is shown
a sequence of positive examples [si], si ∈ L – that is, it is shown grammatical utterances.1

However, the learner is never given negative examples, i.e., told that some s is ungram-
matical (s /∈ L). There is a guarantee about the order of presentation: each s ∈ L will
be presented at some point i. There are no other guarantees on the order or frequency of
examples.

The learner C maintains a hypothesis L(C, [s0 . . . si]) ∈ L at all times. Gold’s criterion
of learning is the extremely strict notion of identifiability in the limit. A language family
L is identifiable in the limit if there is some learner C such that, for any L ∈ L and
any legal presentation of examples [si], there is some point k such that for all j > k,
L(C, [s0 . . . sk]) = L. In other words, for any target language and example sequence,
the learner’s hypothesis is eventually correct (whether the learner knows it or not). For
example, the family L = {{a}, {a, b}} is learnable by the following algorithm: initially
posit {a}, and switch to {a, b} upon being presented with a b example. The learner is either
correct from the start, or correct as soon as a b example occurs (which is guaranteed).

Gold’s famous results show that a wide variety of language families are not learnable
in this strict sense. In particular, any superfinite family, i.e., a family which contains all
the finite languages and at least one infinite language, is not learnable. Since the family of
regular languages is superfinite, regular languages aren’t identifiable in the limit. Therefore,
neither are context-free languages. This result has often been taken as a strong argument
against practical learnability of human language.

As stated here, Gold’s formalization is open to a wide array of basic objections. First,
as mentioned above, who knows whether all children in a linguistic community actually
do learn exactly the same language? All we really know is that their languages are similar
enough to enable normal communication. Second, for families of probabilistic languages,

1“Grammatical” is a loaded term, but is intended to capture the partially pre-theoretical distinction be-
tween utterances the learner should accept as well-formed at the end of a successful learning process.
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why not assume that the examples are sampled according to the target language’s distribu-
tion? Then, while a very large corpus won’t contain every sentence in the language, it can
be expected to contain the common ones. Indeed, while the family of context-free gram-
mars is unlearnable in the Gold sense, Horning (1969) shows that a slightly softer form of
identification is possible for the family of probabilistic context-free grammars if these two
constraints are relaxed (and a strong assumption about priors over grammars is made).

Another objection one can raise with the Gold setup is the absence of negative exam-
ples. Negative feedback might practically be very powerful, though formal results such
as Angluin (1990) suggest that allowing negative feedback doesn’t completely solve the
problem. They consider the addition of an equivalence oracle, which allows the learner to
present a hypothesis and get a counterexample if that hypothesis is incorrect. Even with
such an oracle, the class of context-free grammars is not identifiable in polynomial time.
The issue of negative feedback is often raised in conjunction with child language acquisi-
tion, where a perennial debate rages as to whether children receive negative feedback, and
what use they make of it if they do (Brown and Hanlon 1970, Marcus 1993). A strong
form of negative feedback would be explicit correction – where the child utters examples
from their hypothesized language L′ and a parent maps those examples into related exam-
ples from the correct language L. There is a large body of evidence that children either do
not receive explicit correction or do not make good use of it when they do (Hirsh-Pasek
et al. 1984, Demetras et al. 1986, Penner 1986). A weaker form of negative feedback is
where the child utters examples from L′, and, if the example is not a well-formed element
of L (with the same meaning), the attempted communication is unsuccessful. This kind of
feedback seems plausible, and even bears a resemblance to Angluin’s equivalence queries.
It also has the advantage that the notion of “related” that maps ungrammatical queries to
grammatical ones, which would be a highly semantic and contextual process, need not be
specified.
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1.1.4 Nativism and the Poverty of the Stimulus

An issue that linguists, and others, have spent a great deal of energy arguing for (and
against) is Chomsky’s hypothesis of the poverty of the stimulus (Chomsky 1965). The logi-
cal problem of language acquisition is, basically, the problem that children make judgments
about examples they haven’t seen, based on examples that they have. This necessitates a
process of generalization. Chomsky’s argument goes along these lines: children learn sub-
tle facts about their language from data which (putatively) does not contain evidence for or
against those facts. The problem of the poverty of the stimulus refers to the lack of cru-
cial relevant data in the learner’s experience. Chomsky’s solution is to appeal to a richness
of constraint. He argues that because human languages are highly constrained, the ac-
tual family of human languages is relatively small (perhaps because of the bias in evolved
special-purpose hardware). Therefore small amounts of data suffice for a learner to sin-
gle out a target language. Down this road often lies strong nativist argumentation, but the
source of such constraints is really an orthogonal issue.

Chomsky also takes a strong position arguing that human language is a symbolic phe-
nomenon, as opposed to a probabilistic one (Chomsky 1965, Chomsky 1986). That is, there
are, of course, trends where we actually say one thing more or less often than some other
thing, but these facts are epiphenomenal to a human’s knowledge of a language. This view-
point is fairly far removed from the viewpoint of this thesis, in which (excepting chapter 4)
the knowledge of syntax is encoded in the parameters of various probabilistic models. The
successes of these kinds of systems in recovering substantial portions of the broad structure
of a language do indicate that the probabilistic trends can be pronounced, detectable, and
usefully exploited. However, such results only serve as indirect evidence for or against
nativism and symbolic theories of language.

1.1.5 Strong vs. Weak Generative Capacity

A useful contrast in linguistic theory is the distinction between the weak and strong gen-
erative capacity of a grammar (Miller 1999). The weak generative capacity of a grammar
is the set of utterances it allows. The strong generative capacity, on the other hand, is the
set of derivations it allows. Two grammars may have the same weak capacity – generate
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the same set of utterances – but have different strong capacities. For example, consider the
following two grammars:

S→ NP VP S→ VP NP

VP→ V NP VP→ NP VP

(a) (b)

From their start symbols S, both grammars produce (only) the subject-verb-object se-
quence NP V NP, and therefore have the same weak generative capacity. However, grammar
(a) does so using a traditional verb-object VP structure, while grammar (b) uses a subject-
verb group, so their strong capacities are different. To the extent that we just want to predict
that NP V NP is a valid English sequence while NP NP V is not, either grammar suffices. If
we care about the tree structures, we may well prefer one grammar over the other; in this
case, a variety of linguistic evidence has led to the general preference of the left grammar
over the right one.

In a probabilistic context, the weak capacity (in the strict symbolic sense) of a grammar
is often uninteresting, since many probabilistic models accept all terminal sequences with
some (possibly very low) probability. Models within the same representational family will
also often accept all derivations, again with possibly vanishing probabilities. In this case,
the straightforward softenings of the weak and strong capacities of a probabilistic model are
the densities that the model assigns to specific derivations (strong capacity), and utterances
(weak capacity).

One can have varying degrees of interest in the strong vs. weak capacities of a proba-
bilistic model. The weak capacity – density over utterances – is the primary prediction of
interest in language modeling tasks, such as for noisy-channel speech or translation mod-
els (Chelba and Jelinek 1998, Charniak et al. 2003). Some work on grammar induction
has specifically aimed to learn good language models in this sense, for example (Baker
1979, Chen 1995). Note that, to the extent that one is interested only in the weak capacity
of a grammar, there is no need to built tree-structured models, or even to have any in-
duced hidden structure at all. One can simply build fully-observed models, such as n-gram
models. In this context, hidden structure, such as parse trees or part-of-speech chains, is
only useful insofar as it enables a better model over the observed structure. In particular,
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it is not necessary or important that the hidden structure induced correspond to linguistic
preconceptions.

In contrast, if one is primarily interested in the induced structures themselves, such
as if one is inducing a tree model with the intention of using induced trees to represent a
certain kind of syntactic structure for use in subsequent processing, then the strong capacity
becomes of primary interest. A minimal goal in this case is that the hidden structures
postulated be consistent – for example, that learned trees either group the subject and verb
together, or group the verb and object together, so long as the chosen analysis is consistent
from sentence to sentence. Amore ambitious goal is to aim for the recovery of linguistically
plausible analyses, in which case we have the added preference for the traditional verb-
object grouping. Of course, it is often far from clear which of several competing analyses
is the linguistically correct one, but in many cases, such as with the verb-object grouping,
particular analyses are supported by the convergence of a good variety of evidence.

In this work, we are interested in inducing grammar models for their strong capac-
ity. The quality of induced structures will thus be evaluated by a mix of comparing how
closely they replicate linguist-annotated treebanks (on the assumption that such treebanks
are broadly correct) and error analysis of the discrepancies (both to illustrate true errors
and to show acceptable behavior that deviates from the goal treebank).

It is important to note that there is at least one other goal one can have for a language
learning system: the cognitively plausible modeling of human language acquisition. This
is essentially an axis orthogonal to the strong/weak issue. In particular, if one wants to
mimic a human learner in a weak way, one can try to mimic the utterances produced,
for example, hoping that the ability to produce various constructions is manifested in the
same order as for a human learner. On the other hand, one can try to reproduce the tree
structures used by human learners, as well, though this requires a greater commitment
to the reality of tree-structure syntax than some psychologists would like. Solan et al.
(2003) is an example of a system which produces non-tree structured grammars, where
the goal is cognitive plausibility, the structures themselves are of interest, but there is no
desire to replicate traditional linguistic analyses. Such authors would likely criticize the
present work as having the wrong objective: too much concern with recovering traditional
linguistic structure, too little concern with human psychology.
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To be clear on this point: the goal of this work is not to produce a psychologically
plausible model or simulation. However, while success at the tree induction task does
not directly speak to the investigation of the human language faculty, it does have direct
relevance to the logical problem of language acquisition, particularly the argument of the
poverty of the stimulus, and therefore an indirect relevance to cognitive investigations. In
particular, while no such machine system can tell us how humans do learn language, it can
demonstrate the presence and strength of statistical patterns which are potentially available
to a human learner.

1.2 Limitations of this Work

This work has several limitations, some of which are purposeful and serve to usefully
delimit the scope of the investigation and some of which are more problematic.

1.2.1 Assumptions about Word Classes

An intentional delimitation of the problem addressed is that the models in this work all as-
sume that in addition to, or, more often instead of, a sequence of words, one has a sequence
of word classes, for example a sequence of part-of-speech tags. There are several reasons
for this assumption. First, and weakest, it is a traditional simplification, and a good deal
of prior work begins at the word class level, usually because it counteracts sparsity and
reduces the computational scale of most potential solutions. Second, prior work on part-
of-speech induction (see section 3.3) has been successful enough that, even though jointly
learning parts-of-speech and syntax is appealing, an appeal to previous work to provide
initial word classes seems reasonable. Third, as we will argue in chapter 6, models over
word classes are actually more likely to detect valid syntactic configurations in some cases,
because a strong correlation between two specific words is more likely to be evidence of a
topical relationship than a syntactic one. It is entirely possible that there is some advantage
to inducing parts-of-speech jointly with higher level syntax, but for the present work we
keep them separate as a hopefully defensible choice of scope and convenience.
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1.2.2 No Model of Semantics

The most blatant difference between the task facing a child language learner and the sys-
tems presented here is that, for the child, language is highly situated. The utterances have
meaning and communicative purpose, and all agents in the conversation have models of
what the other agents are trying to accomplish. Utterances can be supplemented with other
mechanisms of communication, such as deixis. Combinations of known words are con-
strained by the combinations of their semantics. There are other substantial differences,
such as the gradual increase in complexity of communication over time for children, but
the presence of meaning and intent is the most severe difference between human language
acquisition and form-only machine learning from text.

Learning the syntax of utterances when the meaning of those utterances is already
known is clearly an easier problem than learning syntax without such knowledge. This
constrained learning has been explored in Chang and Gurevich (2004), for example. What
is less clear is whether learning syntax at the same time as learning semantics is easier or
harder than learning the syntax alone, the trade-off being between having a more complex
model (which would tend to make induction more difficult) and having the ability to exploit
orthogonal cues (which could make it easier).

In this work, we try to learn syntax alone, using observed utterances alone. This con-
ception of the language learning task certainly has a long history, and can be defended
on several grounds. First, results on this task inform the debate on the logical problem
of language learning and innateness. A successful grammar induction system provides an
important lower bound on the amount of bias required to recover the syntax of a language.
Without serious cognitive modeling, it is difficult to argue that humans actually use the
same kinds of statistical cues that these systems use to extract grammar from data (though
see Saffran et al. (1996) for some evidence that statistical cues are used in word segmenta-
tion). However, it does show the degree to which those cues exist and it does argue that the
human mechanism does not necessarily need to be more highly biased than the machine
learner. In fact, to the degree that the machine learner is solving in isolation a problem that
humans solve in a situated fashion, we would expect the machine learner to require greater
bias that the human learner.
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Second, and related, it is worth investigating how far one can go in learning syntax
on its own. Empirical evidence suggests that some superficial components of language
can be learned by human learners from purely structural evidence. For example, Saffran
et al. (1996) shows that babies are capable of accurately segmenting streams of nonsense
words on the basis of their statistical distributions, just from hearing the streams playing in
the background for a short time. Of course, it could be that this ability to segment words
distributionally is only a small component of the human word-segmentation faculty, and
that it is even less of a component in the learning of deeper syntactic structures. However,
it is still worth investigating how strong the cues are, regardless of whether such meaning-
free learning is a partial or exclusive mechanism for human learners.

Third, the task of annotating raw text with syntactic structures is an important practical
engineering task. The natural language processing field makes extensive use of syntactic
parsers which assign structures in a meaning-free way. This annotation has been shown to
be a useful stage in a processing pipeline which may or may not be followed by a semantic
processing stage, depending on the application. To the extent that parses, like those that
have been developed for English, are useful, we would like such tools for other languages.
For the small number of languages for which we have treebanks available, supervised pars-
ing techniques can be applied. However, the vast majority of languages have no treebank
resources, and an unsupervised parser based on grammar induction techniques is the only
alternative to the allocation of human expert resources.

Finally, as a matter of scope, the syntax-only learning task is a good way to further the
understanding of how unsupervised inductive methods might effectively learn components
of natural language.

1.2.3 Problematic Evaluation

A serious issue for the present work, as for all grammar induction systems, is evaluation.
Such systems can be thought of as producing two kinds of output. First, they can be seen in
the classical grammar induction view, where the result of the learning process is a grammar
from some grammar family. When the target grammar is known, one can evaluate the
degree to which the hypothesized grammar resembles the target. However, except for toy
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experiments with grammar recovery (where one authors a grammar, generates from that
grammar, then attempts to recover the generating grammar), we do not necessarily know the
target grammar. Additionally, we may not have a satisfactory way to quantify the closeness
of a hypothesis to a target grammar. Moreover, various systems may learn grammars from
different grammar families. One option for evaluating learned grammars, which we will
apply in this work, is to qualitatively evaluate them by inspection. This can be highly
illuminating, but is unsatisfying on its own. Another option, which will also be used in
this work, is to compare the tree structures predicted by the model to gold-standard trees
produced by a linguist. While this measure is not itself subjective, the gold-standard is
open to criticism. The issues and metrics of evaluation will be discussed in more depth in
section 2.2.1.

1.3 Related Work

The work most closely related to this thesis can be broken into several types. A good deal
of classical grammar induction work operated in a primarily symbolic fashion, learning
symbolic context-free grammars, often predating the prevalence of probabilistic context-
free grammars. Examples include Olivier (1968), Wolff (1988), inter alia. These methods
will be discussed in section 4.3. More recent work, at least in the NLP community, has
tended to embrace parameter search methods, usually using the Expectation-Maximization
algorithm (EM) to fit probabilistic models to the data. These methods will be discussed in
section 5.1 and section 6.1.2.



Chapter 2

Experimental Setup and Baselines

This chapter details the data sets used and the evaluation metrics reported in later chapters.

2.1 Input Corpora

The systems presented in this work all take as input a collection of sentences, where each
word of the sentence is tagged with a word classes. The induction algorithms in this work
are sensitive only to the word classes, not to the individual words. In all cases, sentences
are taken from treebanks, which contain both sentences and their phrase-structure parses.
The treebank parses are not used to guide the induction, but rather are used as a gold
standard to evaluate the induction. The preterminal part-of-speech symbols in the treebank
parses can be used as word classes, but need not be. We will describe here the general data
pre-processing used in the context of the English Penn treebank, then briefly describe the
differences for other languages and treebanks.

2.1.1 English data

For experiments on English, the treebank used is the Wall Street Journal (WSJ) section of
the English Penn treebank (Marcus et al. 1993). This corpus is written English newswire,
clearly not representative of the language child language learners are usually exposed to,
but typical of the language generally parsed by supervised parsing systems.

13
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One of the trees in this corpus is

They don’t even want to talk to you.

and its treebank entry is

S

NP-SBJ-1

PRP

They

VP

VBP

do

RB

n’t

ADVP

RB

even

VP

VB

want

S

NP-SBJ

-NONE-

*-1

VP

TO

to

VP

VB

talk

PP-CLR

TO

to

NP

PRP

you

.

.

Some effort, described below, was made to alter this data to better represent the data
available to a human learner, for example by removing empty elements and punctuation.

The example here contains the empty element *-1, an empty marker indicating a con-
trolled subject of the lower S. Empty elements in the English treebank can be identified
by the reserved tag -NONE-. All tree nodes dominating no overt elements were pruned
from the tree. Punctuation was similarly pruned, although it is arguable that at least some
punctuation is correlated with information in an acoustic input, e.g. prosody. Words were
considered to be punctuation whenever they were tagged with the following parts-of-speech
(again, for English):

, . : “ ” -LRB- -RRB-

The final change to the yields of the English trees is that the tags $ and # were deleted,
not because their contents are not pronounced, but because they are not pronounced where
the tag occurs. This decision was comparatively arbitrary, but the results are little changed
by leaving these items in. There are other broad differences between this data and spoken
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S

NP

PRP
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VP
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do

RB
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ADVP

RB

even
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want
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VP
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to

VP

VB

talk

PP

TO

to

NP

PRP

you

Figure 2.1: A processed gold tree, without punctuation, empty categories, or functional
labels for the sentence, “They don’t even want to talk to you.”

language, which we make no attempt to alter. For example, it has already been tokenized
in a very particular way, including that here don’t has been split into do and n’t. We leave
this tokenization as it is.

Of course, treebank data is dissimilar to general spoken language in a number of ways,
but we made only these few broad corrections; no spelling-out of numbers or re-ordering
of words was done. Such spelling-out and re-ordering was done in Roark (2001), and could
presumably be of benefit here, as well.1

For the trees themselves, which in fully unsupervised systems are used only for evalua-
tion purposes, we always removed the functional tags from internal nodes. In this example,
the final form of the tree would be as shown in figure 2.1.

From these trees, we extract the preterminal yield, consisting of the part-of-speech
sequence. In this example, the preterminal yield is

1An obvious way to work with input more representative of spoken text would have been to use the
Switchboard section of the the Penn Treebank, rather than the WSJ section. However, the Switchboard
section has added complexities, such as dysfluencies and restarts, which, though clearly present in a child’s
language acquisition experience, complicate the modeling process.



16 CHAPTER 2. EXPERIMENTAL SETUP AND BASELINES

PRP VBP RB RB VB TO VB TO PRP

From the English treebank, we formed two data sets. First, WSJ consists of the preter-
minal yields for all trees in the English Penn treebank. Second, WSJ10 consists of all
preterminal yields of length at most 10 (length measured after the removals mentioned
above). WSJ has 49208 trees, while WSJ10 has 7422 trees. Several experiments also refer
to cutoffs less than or more than 10.

For several experiments, we also used the ATIS section of the English Penn treebank.
The resulting sentences will be referred to as ATIS.

Data sets were similarly constructed from other corpora for experiments on other lan-
guages.

2.1.2 Chinese data

For our Chinese experiments, the Penn Chinese treebank (version 3) was used (Xue et al.
2002). The only tags removed were the empty-element tag -NONE- and the punctuation tag
PU.2 The set of at most 10 word sentences from this corpus will be referred to as CTB10
(2473 sentences).

2.1.3 German data

For our German language experiments, the NEGRA corpus was used (Skut et al. 1998).
This corpus contains substantially more kinds of annotation than the Penn treebank, but we
used the supplied translation of the corpus into Penn treebank-style tree structures. For the
German data, we removed only the punctuation tags ($. $, $*LRB* $*RRB*) and empty-
element tags (tags starting with *). The set of at most 10 word sentences from this corpus
will be referred to as NEGRA10 (2175 sentences).

2.1.4 Automatically induced word classes

For the English data, we also constructed a variant of the English Penn treebank where the
given part-of-speech preterminals were replaced with automatically-induced word classes.

2For some experiments, the punctuation tag was left in; these cases will be mentioned as they arise.
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To induce these tags, we used the simplest method of (Schütze 1995) (which is close to
the methods of (Schütze 1993, Finch 1993)). For (all-lowercased) word types in the Penn
treebank, a 1000 element vector was made by counting how often each co-occurred with
each of the 500 most common words immediately to the left or right in both the Treebank
text and additional 1994–96 WSJ newswire. These vectors were length-normalized, and
then rank-reduced by an SVD, keeping the 50 largest singular vectors. The resulting vectors
were clustered into 200 word classes by a weighted k-means algorithm, and then grammar
induction operated over these classes. We do not believe that the quality of our tags matches
that of the better methods of Schütze (1995), much less the recent results of Clark (2000).

2.2 Evaluation

Evaluation of unsupervised methods is difficult in several ways. First, the evaluation ob-
jective is unclear, and will vary according to the motivation for the grammar induction.

If our aim is to produce a probabilistic language model, we will want to evaluate the
grammar based on a density measure like perplexity of observed strings.

If our aim is to annotate sentences with syntactic markings which are intended to facili-
tate further processing, e.g. semantic analysis or information extraction, then we will want
a way to measure how consistently the learned grammar marks its annotations, and how
useful those annotations are to further processing. This goal would suggest a task-based
evaluation, for example, turning the learned structures into features for other systems.

If our aim is essentially to automate the job of the linguist, then we will want to judge
the learned grammar by whether they describe the structure of language in the way a lin-
guist would. Of course, with many linguists comes many ideas of what the true grammar of
a language is, but, setting this aside, we might compare the learned grammar to a reference
grammar or grammars using some metric of grammar similarity.

In this work, we take a stance in between the latter two desiderata, and compare the
learned tree structures to a treebank of linguistically motivated gold-standard trees. To the
extent that the gold standard is broadly representative of a linguistically correct grammar,
systematic agreement with gold standard structures will indicate linguistic correctness of
the learned models. Moreover, to the extent that the gold standard annotations have been
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proven useful in further processing, matching the gold structures can reasonably be ex-
pected to correlate well with functional utility of the induced structures.

The approach of measuring agreement with the gold treebank – unsupervised parsing
accuracy – is certainly not without its share of problems, as we describe in section 2.2.
Most seriously, grammar induction systems often learn systematic alternate analyses of
common phenomena, which can be devastating to basic bracket-match metrics. Despite
these issues, beginning in section 2.2.1, we describe metrics for measuring agreement be-
tween induced trees and a gold treebank. Comparing two trees is a better-understood and
better-established process than comparing two grammars, and by comparing hypothesized
trees one can compare two systems which do not use the same grammar family, and even
compare probabilistic and symbolic learners. Moreover, comparison of posited structures
is the mechanism used by both work on supervised parsing and much previous work on
grammar induction.

2.2.1 Alternate Analyses

There is a severe liability to evaluating a grammar induction system by comparing induced
trees to human-annotated treebank trees: for many syntactic constructions, the syntactic
analysis is debatable. For example, the English Penn Treebank analyzes an insurance
company with financial problems as

NP

NP

DT

an

NN

insurance

NN

company

PP

IN

with

NP

JJ

financial

NNS

problems

while many linguists would argue for a structure more like
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NP

DT

an

N′

N′

NN

insurance

NN

company

PP

IN

with

NP

JJ

financial

NN

problems

Here, the prepositional phrase is inside the scope of the determiner, and the noun phrase
has at least some internal structure other than the PP (many linguists would want even
more). However, the latter structure would score badly against the former: the N′ nodes,
though reasonable or even superior, are either over-articulations (precision errors) or cross-
ing brackets (both precision and recall errors). When our systems propose alternate analy-
ses along these lines, it will be noted, but in any case it complicates the process of automatic
evaluation.

To be clear what the dangers are, it is worth pointing out that a system which produced
both analyses above in free variation would score better than one which only produced
the latter. However, like choosing which side of the road to drive on, either convention is
preferable to inconsistency.

While there are issues with measuring parsing accuracy against gold standard treebanks,
it has the substantial advantage of providing hard empirical numbers, and is therefore an
important evaluation tool. We now discuss the specific metrics used in this work.

2.2.2 Unlabeled Brackets

Consider the pair of parse trees shown in figure 2.2 for the sentence

0 the 1 screen 2 was 3 a 4 sea 5 of 6 red 7

The tree in figure 2.2(a) is the gold standard tree from the Penn treebank, while the
tree in figure 2.2(b) is an example output of a version of the induction system described
in chapter 5. This system doesn’t actually label the brackets in the tree; it just produces a
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S
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DT
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NN
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VP

VBD
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(a) Gold Tree
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IN
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NN
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(b) Predicted Tree

Figure 2.2: A predicted tree and a gold treebank tree for the sentence, “The screen was a
sea of red.”
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nested set of brackets. Moreover, for systems which do label brackets, there is the problem
of knowing how to match up induced symbols with gold symbols. This latter problem is
the same issue which arises in evaluating clusterings, where cluster labels have no inherent
link to true class labels. We avoid both the no-label and label-correspondence problems by
measuring the unlabeled brackets only.

Formally, we consider a labeled tree T to be a set of labeled constituent brackets, one
for each node n in the tree, of the form (x : i, j), where x is the label of n, i is the index
of the left extent of the material dominated by n, and j is the index of the right extent of
the material dominated by n. Terminal and preterminal nodes are excluded, as are non-
terminal nodes which dominate only a single terminal. For example, the gold tree (a)
consists of the labeled brackets:

Constituent Material Spanned
(NP : 0, 2) the screen
(NP : 3, 5) a sea
(PP : 5, 7) of red
(NP : 3, 7) a sea of red
(VP : 2, 7) was a sea of red
(S : 0, 7) the screen was a sea of red

From this set of labeled brackets, we can define the corresponding set of unlabeled brackets:

brackets(T ) = {⟨i, j⟩ : ∃x s.t. (X : i, j) ∈ T}

Note that even if there are multiple labeled constituents over a given span, there will be only
a single unlabeled bracket in this set for that span. The definitions of unlabeled precision
(UP) and recall (UR) of a proposed corpus P = [Pi] against a gold corpus G = [Gi] are:

UP(P, G) ≡

∑

i |brackets(Pi) ∩ brackets(Gi)|
∑

i |brackets(Pi)|

UR(P, G) ≡

∑

i |brackets(Pi) ∩ brackets(Gi)|
∑

i |brackets(Gi)|
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In the example above, both trees have 6 brackets, with one mistake in each direction, giving
a precision and recall of 5/6.

As a synthesis of these two quantities, we also report unlabeled F1, their harmonic
mean:

UF1(P, G) =
2

UP(P, G)−1 + UR(P, G)−1

Note that these measures differ from the standard PARSEVALmeasures (Black et al. 1991)
over pairs of labeled corpora in several ways: multiplicity of brackets is ignored, brackets
of span one are ignored, and bracket labels are ignored.

2.2.3 Crossing Brackets and Non-Crossing Recall

Consider the pair of trees in figure 2.3(a) and (b), for the sentence a full four-color page in
newsweek will cost 100,980.3

There are several precision errors: due the flatness of the gold treebank, the analysis
inside the NP a full four-color page creates two incorrect brackets in the proposed tree.
However, these two brackets do not actually cross, or contradict, any brackets in the gold
tree. On the other hand, the bracket over the verb group will cost does contradict the
gold tree’s VP node. Therefore, we define several additional measures which count as
mistakes only contradictory brackets. We write b ∼ S for an unlabeled bracket b and a
set of unlabeled brackets S if b does not cross any bracket b′ ∈ S, where two brackets are
considered to be crossing if and only if they overlap but neither contains the other.

The definitions of unlabeled non-crossing precision (UNCP) and recall (UNCR) are

UNCP(P, G) ≡

∑

i |{b ∈ brackets(Pi) : b ∼ brackets(Gi)}|
∑

i |brackets(Pi)|

UNCR(P, G) ≡

∑

i |{b ∈ brackets(Gi) ∩ brackets(Pi)}|
∑

i |brackets(Gi)|

and unlabeled non-crossing F1 is defined as their harmonic mean as usual. Note that these
measures are more lenient than UP/UR/UF1. Where the former metrics count all proposed
analyses of structure inside underspecified gold structures as wrong, these measures count

3Note the removal of the $ from what was originally $ 100,980 here.
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Figure 2.3: A predicted tree and a gold treebank tree for the sentence, “A full, four-color
page in Newsweek will cost $100,980.”
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all such analyses as correct. The truth usually appears to be somewhere in between.
Another useful statistic is the crossing brackets rate (CB), the average number of guessed

brackets per sentence which cross one or more gold brackets:

CB(P, G) ≡

∑

i |{b ∈ brackets(TPi
) : ¬b brackets(TGi

)}|

|P |

2.2.4 Per-Category Unlabeled Recall

Although the proposed trees will either be unlabeled or have labels with no inherent link
to gold treebank labels, we can still report a per-label recall rate for each label in the gold
label vocabulary. For a gold label x, that category’s labeled recall rate (LR) is defined as

LR(x, P, G) ≡

∑

i |(X : i, j) ∈ Gi : j > i + 1 ∧ ⟨i, j⟩ ∈ brackets(Pi)|
∑

i |(X : i, j) ∈ Gi|

In other words, we take all occurrences of nodes labeled x in the gold treebank which
dominate more than one terminal. Then, we count the fraction which, as unlabeled brackets,
have a match in their corresponding proposed tree.

2.2.5 Alternate Unlabeled Bracket Measures

In some sections, we report results according to an alternate unlabeled bracket measure,
which was originally used in earlier experiments. The alternate unlabeled bracket precision
(UP′) and recall (UR′) are defined as

UP′(P, G) ≡
∑

i

|brackets(Pi) ∩ brackets(Gi)|− 1

|brackets(Pi)|− 1

UR′(P, G) ≡
∑

i

|brackets(Pi) ∩ brackets(Gi)|− 1

|brackets(Gi)|− 1

with, F1 (UF1
′) defined as their harmonic mean, as usual. In the rare cases where it oc-

curred, a ratio of 0/0 was taken to be equal to 1. These alternate measures do not count the
top bracket as a constituent, since, like span-one constituents, all well-formed trees contain
the top bracket. This exclusion tended to lower the scores. On the other hand, the scores
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were macro-averaged at the sentence level, which tended to increase the scores. The net
differences were generally fairly slight, but for the sake of continuity we report some older
results by this metric.

2.2.6 EVALB

For comparison to earlier work which tested on the ATIS corpus using the EVALB program
with the supplied unlabeled evaluation settings, we report (though only once) the results
of running our predicted and gold versions of the ATIS sentences through EVALB (see
section 5.3. The difference between the measures above and the EVALB program is that
the program has a complex treatment of multiplicity of brackets, while the measures above
simply ignore multiplicity.

2.2.7 Dependency Accuracy

The models in chapter 6 model dependencies, linkages between pairs of words, rather than
top-down nested structures (although certain equivalences do exist between the two repre-
sentations, see section 6.1.1). In this setting, we view trees not as collections of constituent
brackets, but rather as sets of word pairs. The general meaning of a dependency pair is that
one word either modifies or predicates the other word. For example, in the screen was a
sea of red, we get the following dependency structure:

DT

the

NN

screen

VBD

was

DT

a

NN

sea

IN

of

NN

red

!

Arrows denote dependencies. When there is an arrow from a (tagged) word wh to
another word (tagged) wa, we say that wh is the head of the dependency, while we say
that wa is the argument of the dependency. Unlabeled dependencies like those shown
conflate various kinds of relationships that can exist between words, such as modification,
predication, and delimitation, into a single generic one, in much the same way as unlabeled
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brackets collapse the distinctions between various kinds of constituents.4 The dependency
graphs we consider in this work are all tree-structured, with a reserved root symbol ! at
the head of the tree, which always has exactly one argument (the head of the sentence); that
link forms the root dependency.

All dependency structures for a sentence of n words (not counting the root) will have
n dependencies (counting the root dependency). Therefore, we can measure dependency
accuracy straightforwardly by comparing the dependencies in a proposed corpus against
those in a gold corpus. There are two variations on dependency accuracy in this work:
directed and undirected accuracy. In the directed case, a proposed word pair is correct only
if it is in the gold parse in the same direction. For the undirected case, the order is ignored.
Note that two structures which agree exactly as undirected structures will also agree as
directed structures, since the root induces a unique head-outward ordering over all other
dependencies.

One serious issue with measuring dependency accuracy is that, for the data sets above,
the only human-labeled head information appears in certain locations in the NEGRA cor-
pus. However, for these corpora, gold phrase structure can be heuristically transduced to
gold dependency structures with reasonable accuracy using rules such as in Collins (1999).
These rules are imperfect (for example, in new york stock exchange lawyers, the word
lawyers is correctly taken to be the head, but each of the other words links directly to it,
incorrectly for new, york, and stock). However, for the moment it seems that the accuracy
of unsupervised systems can still be meaningfully compared to this low-carat standard.
Nonetheless, we discuss these issues more when evaluating dependency induction systems.

2.3 Baselines and Bounds

In order to meaningfully measure the performance of our systems, it is useful to have
baselines, as well as upper bounds, to situate accuracy figures. We describe these baselines
and bounds below; figures of their performance will be mentioned as appropriate in later
chapters.

4The most severe oversimplification is not any of these collapses, but rather the treatment of conjunctions,
which do not fit neatly into this word-to-word linkage framework.
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2.3.1 Constituency Trees

The constituency trees produced by the systems in this work are all usually binary branch-
ing. The trees in the gold treebanks, such as in figure 2.1, are, in general, not. Gold trees
may have unary productions because of singleton constructions or removed empty elements
(for example, figure 2.1). Gold trees may also have ternary or flatter productions, either be-
cause such constructions seem correct (for example in coordination structures) or because
the treebank annotation standards left certain structures intentionally flat (for example, in-
side noun phrases, figure 2.3(a)).

Upper Bound on Precision

Unary productions are not much of a concern, since their presence does not change the set
of unlabeled brackets used in the measures of the previous section. However, when the
proposed trees are more articulated that the gold trees, the general result will be a system
which exhibits higher recall than precision. Moreover, for gold trees which have nodes
with three or more children, it will be impossible to achieve a perfect precision. Therefore,
against any treebank which has ternary or flatter nodes, there will be an upper bound on the
precision achievable by a system which produces binary trees only.

Random Trees

A minimum standard for an unsupervised system to claim a degree of success is that it
produce parses which are of higher quality than selecting parse trees at random from some
uninformed distribution.5 For the random baseline in this work, we used the uniform dis-
tribution over binary trees. That is, given a sentence of length n, all distinct unlabeled trees
over n items were given equal weight. This definition is procedurally equivalent to parsing
with a grammar which has only one nonterminal production x → x x with weight 1. To
get the parsing scores according to this random parser, one can either sample a parse or
parses at random or calculate the expected value of the score. Except where noted other-
wise, we did the latter; see appendix B.1 for details on computing the posteriors of this

5Again, it is worth pointing out that a below-random match to the gold treebank may indicate a good
parser if there is something seriously wrong or arbitrary about the gold treebank.
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distribution, which can be done in closed form.

Left- and Right-Branching Trees

Choosing the entirely left- or right-branching structure (B = {⟨0, i⟩ : i ∈ [1, n]} or B =

{⟨i, n⟩ : i ∈ [0, n − 1]}, respectively, see figure 2.4) over a test sentence is certainly an
uniformed baseline in the sense that the posited structure for a sentence independent of any
details of that sentence save its length. For English, right-branching structure happens to be
an astonishingly good baseline. However, it would be unlikely to perform well for a VOS
language like Malagasy or VSO languages like Hebrew; it certainly is not nearly so strong
for the German and Chinese corpora tested in this work. Moreover, the knowledge that
right-branching structure is better for English than left-branching structure is a language-
specific bias, even if only a minimal one. Therefore, while our systems do exceed these
baselines, that has not always been true for unsupervised systems which had valid claims
of interesting learned structure.

2.3.2 Dependency Baselines

For dependency tree structures, all n word sentences have n dependencies, including the
root dependency. Therefore, there is no systematic upper bound on achievable dependency
accuracy. There are sensible baselines, however.

Random Trees

Similarly to the constituency tree case, we can get a lower bound by choosing dependency
trees at random. In this case, we extracted random trees by running the dependency model
of chapter 6 with all local model scores equal to 1.

Adjacent Links

Perhaps surprisingly, most dependencies in natural languages are between adjacent words,
for example nouns and adjacent adjectives or verbs and adjacent adverbs. This actually
suggests two baselines, shown in figure 2.5. In the backward adjacent baseline, each word
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Figure 2.4: Left-branching and right-branching baselines.
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Figure 2.5: Adjacent-link dependency baselines.

takes the word before it as an argument, with the last word of the sentence being the head
of the sentence (i.e., linked to the root). This direction corresponds to left-branching con-
stituent structure. The forward adjacent baseline is the result of making the first word the
head of the sentence and having each word be the argument of the preceding word. This
direction corresponds to right-branching constituent structure. While it is true that most
dependencies are local, it is not true that they are overwhelmingly leftward or rightward in
direction; the adjacent-link baseline is therefore most competitive on the undirected depen-
dency accuracy measure.



Chapter 3

Distributional Methods

One area of language learning which has seen substantial success is the task of inducing
word classes, such as parts-of-speech and semantic fields. This success is largely due to
simple, robust distributional methods, which we define and examine in this chapter. The
basic distributional approach for word classes can be used in several ways to drive tree
induction; we present a more traditional structure-search method in chapter 4 and a much
more successful parameter search approach in chapter 5.

3.1 Parts-of-speech and Interchangeability

The linguistic notion of a part-of-speech is motivated by the fact that there are large sets of
words which are syntactically interchangeable. For example, we have

(a) The cat went over the box.
(b) The cat went under the box.
(c) The cat went inside the box.
(d) ??The cat went among the box.
(d) *The cat went of the box.
(d) *The cat went the the box.

There is class of words, including over, under, and inside, which can be substituted between
the verb and noun phrase in the sentences, changing the meaning but preserving the syntax.

31
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This class is roughly the set of prepositions, though not all linguistic prepositions can occur
equally well here. In particular, of is usually taken to be a preposition, but usually heads
noun- and adjective-modifying prepositional phrases, and cannot occur here. The preposi-
tion among is inappropriate, since it places a mass or plurality requirement on its object.
Nonetheless, a sufficiently large collection of examples in which the set of prepositions are
generally mutually interchangeable can be used to motivate the coherence of prepositions
as a part-of-speech, with finer details distinguishing various subclasses.

3.2 Contexts and Context Distributions

So what does mutual substitutability mean for a learning system? The strong claim behind
the part-of-speech level is that the syntactic behavior of a word depends only on the part-
of-speech of that word, at least broadly speaking.1 Therefore, we should be able to collect
data about which contexts various words occur in, and use this information to detect parts-
of-speech.

The first operational question is how to tell what context a word is in. A particularly
simple definition is to say that the context of a word is the pair of words immediately
adjacent to the left and right. For example, in the sentence the cat went over the box, the
word over occurs in the context ⟨went – the⟩. This is the local linear context, and has the
advantage of being easy to identify (Finch and Chater 1992). Moreover, it is a reasonable
hypothesis that the linear context is sufficient for inducing syntactic classes (cf. discussion
of semantic classes below). Especially if one takes the view that linear context will be
strongly correlated with other notions of context, it is an empirical issue if and how this

1This claim is often taken to be at odds with the success of lexicalization in syntactic modeling (Collins
1999, Charniak 2000) – if we actually need to know what words are in the sentence to parse well, doesn’t
that mean there’s more to the syntax of a word than the part-of-speech indicates? However, there are three
issues here. First, linguists are generally claiming that parts-of-speech suffice for describing which words can
grammatically be substituted, not which words actually are substituted empirically, so there is no statistical
independence claim in linguistic argumentation. Second, linguists consider parts-of-speech at various granu-
larities: nouns, mass nouns, feminine mass nouns, etc. Finer levels influence finer syntactic phenomena. The
broadest levels of nouns, verbs, and adjectives are intended to describe the broadest syntactic phenomena. So
it should not be surprising that knowing that a word is a noun is less useful than knowing it is the noun stocks,
but there are levels in between. Finally, disambiguation is partially semantic, and at that level parts-of-speech
are not intended to reflect interchangeability.
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context might be practically inadequate.
For linguistic argumentation, we generally use more articulated notions of context. For

example, consider the following the sentences.

(a) The cat went over the box.
(b) The cat jumps over people’s feet.
(a) The cat thinks that/*over the box will support it.

Both (a) and (b) are examples of over occurring in roughly the same context (between a
verb and a noun phrase), while (c) is an example of a different context (between a verb and
a subordinate clause), despite the fact that the local linear context is in fact more similar
between (a) and (c). In linguistic argumentation, we actually present the entire picture of
a grammar all at once, and essentially argue for its coherence, which is problematic for
automated methods, and most work on part-of-speech learning has used the local linear
context. We will discuss a hierarchical definition of context in section 3.4, but for now we
consider surface contexts.

A few more notes about contexts. In the local linear context, each occurrence of a
word corresponds to a single context (the adjacent word pair). However, we can consider
that context to be either atomic or structured (joint or factored). In the structured view,
we might break ⟨went – the⟩ down into multiple context events. For example, Finch and
Chater (1992) and Schütze (1995) break these contexts into a left event ⟨went – ⟩ and a right
event ⟨ – the⟩. For non-local contexts, this decomposition is virtually obligatory. Consider
the 100-word linear context, consisting of the 100-words on either side of the target. In
this case, the context might be decomposed into 200 position- and direction-free events,
resulting in the bag of words inside that window.

3.3 Distributional Word-Classes

Formally, if w is a word from some vocabulary W , let σ(w), called the signature of w,
denote the counts of each context event in some training corpus, with context events ranging
over a vocabulary X . There is a great deal of work which uses such signatures to detect
word classes; we discuss only a few examples here.
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The general approach of distributional clustering is to view the data as a |W | × |X|

matrixM , where there is a row for each wordw, and a column for each context event type x.
Equivalently, one can think ofM as the result of stacking together all the signatures σ(w).
Here, work varies, but most approaches attempt to find a low dimensional representation of
M .

The basic method of Schütze (1995) uses the decomposed local linear context (instead
of joint counts) and restricts context events to the most frequent n words. He then row-
normalizes M (so the rows are probability distributions over those context events), and
uses a truncated singular-value decomposition to write M = UΣV ′, where the top r left
eigenvectors (columns in U) are retained. U is then a |W | × r matrix, with each column
representing a component weight in one of r latent dimensions. The rows ofU are clustered
using the k-means algorithm into flat clusters. This approach operates under the assumption
that M is a low-rank matrix distorted by Gaussian noise.2 This brief sketch of Schütze’s
paper omits the crucial innovation of that work, which was a mechanism for contextually
disambiguating words which belong to multiple classes, which is crucial if one is hoping
to reconstruct word classes that look like traditional parts-of-speech.3

Since the signatures have a probabilistic interpretation, it is reasonable to think of M

as an empirical sample from a joint probability over words and their contexts. This kind of
approach is taken in Pereira et al. (1993), inter alia. Here, we think of M as having been
sampled from P(W, X). We assume a hidden class variable and write

P(W, X) = P(C)P(W |C)P(X|C)

We then try to find estimates which maximize the likelihood ofM , either using EM or spe-
cialized cluster-reassignment algorithms (Clark 2000). The appeal of using a probabilistic
divergence instead of least-squares is somewhat offset by the fact that not only are the in-
dependence assumptions in the latent model false (as always), the samples aren’t even IID
– one word’s left context is another word’s right context.

2We used this method to produce our own word-clusters in some experiments; in those cases, we used
r = 100 and k = 200.

3Without the ability to represent ambiguous words as mixtures of multiple simple classes, words such as
to, which can be either a preposition or an infinitive marker, show up as belonging to completely separate
classes which represent that ambiguity mixture.
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It’s worth pointing out that if one considers the context to be the entire document and
uses the position- and direction-free bag-of-words decomposition into context events, these
two sketched approaches correspond to LSA (Landauer et al. 1998) (modulo normaliza-
tions) and PLSA (Hofmann 1999), with words rather than documents as the row indices.
One still gets word classes out of such contexts; they’re just semantic or topical classes
rather than the more syntactic classes produced by local contexts.

Again, there has been a lot of work in this area, much of it providing substantial ex-
tensions to the above methods. Two particularly interesting and successful extensions are
presented in Clark (2000) and Clark (2003). The latter employs a model of P(W |C) in
which words, rather than being generated as opaque symbols, are generated with internal
character/morpheme-level structure. Thus, there is pressure for words which share suffixes,
for example, to be put into the same class. The innovation presented in Clark (2000) is that,
rather than consider the context of a word to be the adjacent words (as in Finch and Chater
(1992)), or the classes of the adjacent words according to a preliminary clustering (as in
Schütze (1995)), he considers it to be the classes according to the current model. This def-
inition is circular, since the word classes are exactly what’s being learned, and so there is
an iterative process of reclustering followed by signature refinement.

To raise a point that will be revisited in chapter 5, one can compare the context clus-
tering approaches above with HMM induction. After describing the Clark (2000) work,
it might seem obvious that learning an HMM is the “correct” way of learning a model in
which words are fully mediated by their classes and a word’s class interacts directly with
the preceding and following classes. There are at least three reasons, one practical, one
empirical, and one conceptual, why there is a healthy amount of successful work on lo-
cal clustering, but not on HMM induction. The practical reason is that signatures are often
built using massive amounts of text, e.g. years of newswire. The full word-signature matrix
is far too big to store, and so only counts over frequent contexts are retained. This short-
cut is easier to work into a local clustering approach. The empirical reason is that, while
even very early attempts at distributional clustering provided reasonably good word classes
(Finch and Chater 1992), early attempts at inducing HMMs were disappointing, even when
highly constrained (Merialdo 1994). Our experience with learning HMMs with EM sug-
gests a conceptual explanation for these findings. Because word classes are a highly local
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kind of syntax – local in the sense that they are not intended to encode any sentence- or
phrase-wide syntax. However, HMMs are most certainly capable of encoding global state,
such as whether the sentence has many numbers or many capitalized words. Such global
indicators can be multiplied into the state space, resulting in strange learned classes. For
these reasons, a model which does not properly represent a global structure can actually
learn better local classes, at the possible cost of feeling less aesthetically satisfying.

3.4 Distributional Syntax

Distributional methods can be applied above the word level. For example, we can consider
sequences of word classes, such as the part-of-speech sequences in a tagged corpus.

Figure 3.1 shows the most frequent local linear contexts for the parts-of-speech occur-
ring in the WSJ corpus. These signatures encapsulate much of the broad linear syntactic
trends of English, in essentially the same way a markov model over tag sequences would.
For example, determiners generally precede nouns and follow prepositions, verbs, and sen-
tence boundaries, just as one would expect. What is additionally useful about these signa-
tures, and what is implicitly used in word-clustering approaches, is that similarity between
local linear signatures correlates with syntactic relatedness. Figure 3.2 shows the top pairs
of treebank part-of-speech tags, sorted by the Jensen-Shannon divergence between the two
tags’ signatures:

DJS(p, q) =
1

2
DKL(p|

p + q

2
) +

1

2
DKL(q|

p + q

2
)

where DKL is the Kullback-Leibler divergence:

DKL(p|q) =
∑

x

p(x) log
p(x)

q(x)

The lowest divergence (highest similarity) pairs are primarily of two types. First, there are
pairs like ⟨VBD, VBZ⟩ (past vs. 3sg present tense finite verbs) and ⟨NN, NNS⟩ (singular
vs. plural common nouns) where the original distinction was morphological, with minimal
distributional reflexes. Second, there are pairs like ⟨DT, PRP$⟩ (determiners vs. possessive
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Tag Top Linear Contexts by Frequency
CC ⟨NNP – NNP⟩, ⟨NN – NN⟩, ⟨NNS – NNS⟩, ⟨CD – CD⟩, ⟨NN – JJ⟩
CD ⟨IN – CD⟩, ⟨CD – IN⟩, ⟨IN – NN⟩, ⟨IN – NNS⟩, ⟨TO – CD⟩
DT ⟨IN – NN⟩, ⟨IN – JJ⟩, ⟨IN – NNP⟩, ⟨⋄ – NN⟩, ⟨VB – NN⟩
EX ⟨⋄ – VBZ⟩, ⟨⋄ – VBP⟩, ⟨IN – VBZ⟩, ⟨⋄ – VBD⟩, ⟨CC – VBZ⟩
FW ⟨NNP – NNP⟩, ⟨NN – FW⟩, ⟨DT – FW⟩, ⟨FW – NN⟩, ⟨FW – FW⟩
IN ⟨NN – DT⟩, ⟨NN – NNP⟩, ⟨NNS – DT⟩, ⟨NN – NN⟩, ⟨NN – JJ⟩
JJR ⟨DT – NN⟩, ⟨IN – IN⟩, ⟨RB – IN⟩, ⟨IN – NNS⟩, ⟨VBD – IN⟩
JJS ⟨DT – NN⟩, ⟨IN – CD⟩, ⟨POS – NN⟩, ⟨DT – NNS⟩, ⟨DT – JJ⟩
JJ ⟨DT – NN⟩, ⟨IN – NNS⟩, ⟨IN – NN⟩, ⟨JJ – NN⟩, ⟨DT – NNS⟩
LS ⟨⋄ – VB⟩, ⟨⋄ – JJ⟩, ⟨⋄ – IN⟩, ⟨⋄ – NN⟩, ⟨⋄ – PRP⟩
MD ⟨NN – VB⟩, ⟨PRP – VB⟩, ⟨NNS – VB⟩, ⟨NNP – VB⟩, ⟨WDT – VB⟩
NNPS ⟨NNP – NNP⟩, ⟨NNP – ⋄⟩, ⟨NNP – VBD⟩, ⟨NNP – IN⟩, ⟨NNP – CC⟩
NNP ⟨NNP – NNP⟩, ⟨IN – NNP⟩, ⟨⋄ – NNP⟩, ⟨NNP – VBD⟩, ⟨DT – NNP⟩
NNS ⟨JJ – IN⟩, ⟨JJ – ⋄⟩, ⟨NN – IN⟩, ⟨IN – IN⟩, ⟨NN – ⋄⟩
NN ⟨DT – IN⟩, ⟨JJ – IN⟩, ⟨DT – NN⟩, ⟨NN – IN⟩, ⟨JJ – ⋄⟩
PDT ⟨IN – DT⟩, ⟨VB – DT⟩, ⟨⋄ – DT⟩, ⟨RB – DT⟩, ⟨VBD – DT⟩
POS ⟨NNP – NN⟩, ⟨NN – NN⟩, ⟨NNP – JJ⟩, ⟨NNP – NNP⟩, ⟨NN – JJ⟩
PR$ ⟨IN – NN⟩, ⟨IN – JJ⟩, ⟨IN – NNS⟩, ⟨VB – NN⟩, ⟨VBD – NN⟩
PRP ⟨⋄ – VBD⟩, ⟨⋄ – VBP⟩, ⟨⋄ – VBZ⟩, ⟨IN – VBD⟩, ⟨VBD – VBD⟩
RBR ⟨NN – ⋄⟩, ⟨DT – JJ⟩, ⟨RB – JJ⟩, ⟨RB – IN⟩, ⟨NN – IN⟩
RBS ⟨DT – JJ⟩, ⟨POS – JJ⟩, ⟨CC – JJ⟩, ⟨PR$ – JJ⟩, ⟨VBZ – JJ⟩
RB ⟨MD – VB⟩, ⟨NN – IN⟩, ⟨RB – IN⟩, ⟨VBZ – VBN⟩, ⟨VBZ – JJ⟩
RP ⟨VB – DT⟩, ⟨VBN – IN⟩, ⟨VBD – IN⟩, ⟨VB – IN⟩, ⟨VBD – DT⟩
SYM ⟨⋄ – IN⟩, ⟨⋄ – VBZ⟩, ⟨⋄ – NN⟩, ⟨⋄ – JJ⟩, ⟨⋄ – VBN⟩
TO ⟨NN – VB⟩, ⟨NNS – VB⟩, ⟨VBN – VB⟩, ⟨VBD – VB⟩, ⟨JJ – VB⟩
UH ⟨⋄ – PRP⟩, ⟨⋄ – DT⟩, ⟨⋄ – ⋄⟩, ⟨⋄ – UH⟩, ⟨UH – ⋄⟩
VBD ⟨NNP – DT⟩, ⟨NN – DT⟩, ⟨NN – VBN⟩, ⟨NN – IN⟩, ⟨NNP – PRP⟩
VBG ⟨IN – DT⟩, ⟨NN – DT⟩, ⟨DT – NN⟩, ⟨IN – NNS⟩, ⟨IN – NN⟩
VBN ⟨NN – IN⟩, ⟨VBD – IN⟩, ⟨NNS – IN⟩, ⟨VB – IN⟩, ⟨RB – IN⟩
VBP ⟨NNS – VBN⟩, ⟨NNS – RB⟩, ⟨PRP – RB⟩, ⟨NNS – DT⟩, ⟨NNS – IN⟩
VBZ ⟨NN – VBN⟩, ⟨NN – RB⟩, ⟨NN – DT⟩, ⟨NNP – VBN⟩, ⟨NNP – DT⟩
VB ⟨TO – DT⟩, ⟨TO – IN⟩, ⟨MD – DT⟩, ⟨MD – VBN⟩, ⟨TO – JJ⟩
WDT ⟨NN – VBZ⟩, ⟨NNS – VBP⟩, ⟨NN – VBD⟩, ⟨NNP – VBZ⟩, ⟨NN – MD⟩
W$ ⟨NNP – NN⟩, ⟨NNP – NNS⟩, ⟨NN – NN⟩, ⟨NNS – NNS⟩, ⟨NNP – JJ⟩
WP ⟨NNS – VBP⟩, ⟨NNP – VBD⟩, ⟨NNP – VBZ⟩, ⟨NNS – VBD⟩, ⟨NN – VBZ⟩
WRB ⟨NN – DT⟩, ⟨NN – PRP⟩, ⟨⋄ – DT⟩, ⟨⋄ – PRP⟩, ⟨NN – NNS⟩

Figure 3.1: The most frequent left/right tag context pairs for the part-of-speech tags in the
Penn Treebank.
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pronouns) and ⟨WDT, WP⟩ (wh-determiners vs. wh-pronouns) where the syntactic role is
truly different at some deep level, but where the syntactic peculiarities of English prevent
there from being an easily detected distributional reflex of that difference. For example,
English noun phrases can begin with either a DT like the in the general idea or a PRP$
like his in his general idea. However, they both go in the same initial position and can-
not co-occur.4 However, in general, similar signatures do reflect broadly similar syntactic
functions.

One might hope that this correlation between similarity of local linear context signa-
tures and syntactic function would extend to units of longer length. For example, DT JJ NN
and DT NN, both noun phrases, might be expected to have similar signatures. Figure 3.2
shows the top pairs of multi-tag subsequences by the same signature divergence metric.5

Of course, linguistic arguments of syntactic similarity involve more than linear con-
text distributions. For one, traditional argumentation places more emphasis on potential
substitutability (what contexts items can be used in) and less emphasis on empirical substi-
tutability (what contexts they are used in) (Radford 1988). We might attempt to model this
in some way, such as by flattening the empirical distribution over context counts to blunt
the effects of non-uniform empirical usage of grammatical contexts. For example, we could
use as our context signatures the distribution which is uniform over observed contexts, and
zero elsewhere.

Another difference between linear context distributions and traditional linguistic no-
tions of context is that traditional contexts refer to the surrounding high-level phrase struc-
ture. For example, the subsequence factory payrolls in the sentence below is, linearly,
followed by fell (or, at the tag level, VBD). However, in the treebank parse

4Compare languages such as Italian where the PRP$ would require a preceding DT, as in la sua idea, and
where this distributional similarity would not appear.

5The list of candidates was restricted to pairs of items each of length at most 4 and each occurring at least
50 times in the treebank – otherwise the top examples are mostly long singletons with chance zero divergence.
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Rank Tag Pairs Sequence Pairs
1 ⟨ VBZ, VBD ⟩ ⟨ NNP NNP, NNP NNP NNP ⟩
2 ⟨ DT, PRP$ ⟩ ⟨ DT JJ NN IN, DT NN IN ⟩
3 ⟨ NN, NNS ⟩ ⟨ NNP NNP NNP NNP, NNP NNP NNP ⟩
4 ⟨WDT, WP ⟩ ⟨ DT NNP NNP, DT NNP ⟩
5 ⟨ VBG, VBN ⟩ ⟨ IN DT JJ NN, IN DT NN ⟩
6 ⟨ VBP, VBD ⟩ ⟨ DT JJ NN, DT NN NN ⟩
7 ⟨ VBP, VBZ ⟩ ⟨ DT JJ NN, DT NN ⟩
8 ⟨ EX, PRP ⟩ ⟨ IN JJ NNS, IN NNS ⟩
9 ⟨ POS, WP$ ⟩ ⟨ IN NN IN, IN DT NN IN ⟩
10 ⟨ RB, VBN ⟩ ⟨ IN NN, IN JJ NN ⟩
11 ⟨ CD, JJ ⟩ ⟨ DT JJ NN NN, DT NN NN ⟩
12 ⟨ NNPS, NNP ⟩ ⟨ IN NNP, IN NNP NNP ⟩
13 ⟨ CC, IN ⟩ ⟨ IN JJ NNS, IN NN NNS ⟩
14 ⟨ JJS, JJR ⟩ ⟨ NN IN DT, NN DT ⟩
15 ⟨ RB, VBG ⟩ ⟨ IN DT NNP NNP, IN DT NNP ⟩
16 ⟨ JJR, JJ ⟩ ⟨ IN DT NN IN, IN NNS IN ⟩
17 ⟨ JJR, VBG ⟩ ⟨ NNP NNP POS, NNP POS ⟩
18 ⟨ CC, VBD ⟩ ⟨ NNP NNP IN, NNP IN ⟩
19 ⟨ JJR, VBN ⟩ ⟨ TO VB DT, TO DT ⟩
20 ⟨ DT, JJ ⟩ ⟨ IN NN IN, IN NNS IN ⟩
21 ⟨ CD, VBG ⟩ ⟨ NNS MD, NN MD ⟩
22 ⟨ LS, SYM ⟩ ⟨ JJ NNS, JJ NN NNS ⟩
23 ⟨ NN, JJ ⟩ ⟨ JJ NN NN, JJ JJ NN ⟩
24 ⟨ VBG, JJ ⟩ ⟨ NN NNS, JJ NNS ⟩
25 ⟨ JJR, RBR ⟩ ⟨ PRP VBZ, PRP VBD ⟩
26 ⟨ CC, VBZ ⟩ ⟨ NN IN NNP, NN IN NNP NNP ⟩
27 ⟨ CC, RB ⟩ ⟨ NNP NNP CC, NNP CC ⟩
28 ⟨ DT, CD ⟩ ⟨ NN VBZ, NN VBD ⟩
29 ⟨ NN, NNP ⟩ ⟨ IN NNP NNP NNP, IN NNP NNP ⟩
30 ⟨ VBG, VBD ⟩ ⟨ IN DT JJ NN, IN DT NN NN ⟩
31 ⟨ CC, VBG ⟩ ⟨ DT JJ NNS, DT NNS ⟩
32 ⟨ TO, CC ⟩ ⟨ JJ NN, JJ JJ NN ⟩
33 ⟨WRB, VBG ⟩ ⟨ DT JJ JJ, PR$ JJ ⟩
34 ⟨ CD, NNS ⟩ ⟨ VBZ DT, VBD DT ⟩
35 ⟨ IN, VBD ⟩ ⟨ DT JJ JJ, DT JJ ⟩
36 ⟨ RB, NNS ⟩ ⟨ CC NNP, CC NNP NNP ⟩
37 ⟨ RP, JJR ⟩ ⟨ JJ NN, JJ NN NN ⟩
38 ⟨ VBZ, VBG ⟩ ⟨ DT NNP NN, DT NN NN ⟩
39 ⟨ RB, RBR ⟩ ⟨ NN IN, NN NN IN ⟩
40 ⟨ RP, RBR ⟩ ⟨ NN IN DT, NNS IN DT ⟩

Figure 3.2: The most similar part-of-speech pairs and part-of-speech sequence pairs, based
on the Jensen-Shannon divergence of their left/right tag signatures.
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the corresponding NP node in the tree is followed by a verb phrase. Since we do have
gold-standard parse trees for the sentences in the Penn Treebank, we can do the following
experiment. For each constituent node x in each treebank parse tree t, we record the yield
of x as well as its context, for two definitions of context. First, we look at the local linear
context as before. Second, we define the left context of x to be the left sibling of the lowest
ancestor of x (possibly x itself) which has a left sibling, or ⋄ if x is sentence-initial. We de-
fine the right context symmetrically. For example, in the parse tree above, factory payrolls
is a noun phrase whose lowest right sibling is the VP node, and whose lowest left sibling is
the beginning of the sentence. This is the local hierarchical context. Figure 3.3 shows the
most similar pairs of frequent sequences according to Jensen-Shannon divergence between
signatures for these two definitions of context. Since we only took counts for tree nodes x,
these lists only contain sequences which are frequently constituents. The lists are relatively
similar, suggesting that the patterns detected by the two definitions of context are fairly
well correlated, supporting the earlier assumption that the local linear context should be
largely sufficient. This correlation is fortunate – some of the methods we will investigate
are greatly simplified by the ability to appeal to linear context when hierarchical context
might be linguistically more satisfying (see chapter 5).

A final important point is that traditional linguistic argumentation for constituency goes
far beyond distributional facts (substitutability). Some arguments, like the tendency of
targets of dislocation to be constituents might have distributional correlates. For exam-
ple, dislocatable sequences might be expected to occur frequently at sentence boundary
contexts, or have high context entropy. Other arguments for phrasal categories, like those
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Rank Constituent Sequences by Linear Context Constituent Sequences by Hierarchical Context
1 ⟨ NN NNS, JJ NNS ⟩ ⟨ NN NNS, JJ NNS ⟩
2 ⟨ IN NN, IN DT NN ⟩ ⟨ IN NN, IN DT NN ⟩
3 ⟨ DT JJ NN, DT NN ⟩ ⟨ IN DT JJ NN, IN JJ NNS ⟩
4 ⟨ DT JJ NN, DT NN NN ⟩ ⟨ VBZ VBN, VBD VBN ⟩
5 ⟨ IN DT JJ NN, IN DT NN ⟩ ⟨ NN NNS, JJ NN NNS ⟩
6 ⟨ NN NNS, JJ NN NNS ⟩ ⟨ DT JJ NN NN, DT NN NN ⟩
7 ⟨ IN JJ NNS, IN NNS ⟩ ⟨ IN DT JJ NN, IN DT NN ⟩
8 ⟨ DT JJ NN NN, DT NN NN ⟩ ⟨ IN JJ NNS, IN DT NN ⟩
9 ⟨ NNP NNP POS, NNP POS ⟩ ⟨ DT JJ NN, DT NN ⟩
10 ⟨ IN JJ NNS, IN JJ NN ⟩ ⟨ DT JJ NN, DT NN NN ⟩
11 ⟨ IN NNP, IN NNP NNP ⟩ ⟨ IN NNS, IN NN NNS ⟩
12 ⟨ JJ NNS, JJ NN NNS ⟩ ⟨ IN NNP, IN NNP NNP ⟩
13 ⟨ IN DT JJ NN, IN JJ NNS ⟩ ⟨ IN DT NN, IN NNP ⟩
14 ⟨ IN NNS, IN NN NNS ⟩ ⟨ IN JJ NNS, IN JJ NN ⟩
15 ⟨ IN JJ NNS, IN DT NN ⟩ ⟨ DT NNP NNP, DT NNP ⟩
16 ⟨ DT NNP NNP, DT NNP ⟩ ⟨ IN JJ NNS, IN NNS ⟩
17 ⟨ JJ NNS, DT NNS ⟩ ⟨ IN JJ NNS, IN NNP ⟩
18 ⟨ DT JJ NNS, DT NNS ⟩ ⟨ VBZ VBN, MD VB ⟩
19 ⟨ IN JJ NNS, IN NN ⟩ ⟨ JJ NNS, JJ NN NNS ⟩
20 ⟨ NN NNS, DT NNS ⟩ ⟨ IN DT NN NN, IN DT NN ⟩
21 ⟨ IN DT JJ NN, IN NN ⟩ ⟨ IN DT NN NN, IN DT NNS ⟩
22 ⟨ JJ JJ NNS, JJ NN NNS ⟩ ⟨ IN JJ NNS, IN NN ⟩
23 ⟨ DT NN POS, NNP NNP POS ⟩ ⟨ DT JJ NN, JJ NNS ⟩
24 ⟨ IN NNS, IN JJ NN ⟩ ⟨ DT NNP NN, DT NN NN ⟩
25 ⟨ JJ NN, DT JJ NN ⟩ ⟨ JJ NNS, DT NN NN ⟩
26 ⟨ IN DT NN NN, IN DT NN ⟩ ⟨ DT NNS, DT NN NN ⟩
27 ⟨ IN NN NNS, IN JJ NN ⟩ ⟨ IN JJ NNS, IN NN NNS ⟩
28 ⟨ DT NNP NN, DT NN NN ⟩ ⟨ NN NNS, DT NNS ⟩
29 ⟨ IN JJ NNS, IN NN NNS ⟩ ⟨ IN DT NN NN, IN JJ NN ⟩
30 ⟨ IN NN, IN NNS ⟩ ⟨ IN DT JJ NN, IN NNP ⟩
31 ⟨ IN NN, IN JJ NN ⟩ ⟨ IN DT NN NN, IN NN NNS ⟩
32 ⟨ JJ NN, DT NN NN ⟩ ⟨ DT NNP NNP, DT NNP NN ⟩
33 ⟨ VB DT NN, VB NN ⟩ ⟨ IN DT NN NN, IN JJ NNS ⟩
34 ⟨ IN DT NN NN, IN JJ NN ⟩ ⟨ JJ JJ NNS, JJ NN NNS ⟩
35 ⟨ DT NN, DT NN NN ⟩ ⟨ VBD VBN, VBD JJ ⟩
36 ⟨ DT NNP NNP, DT NNP NN ⟩ ⟨ IN NN, IN NNP ⟩
37 ⟨ JJ JJ NNS, JJ NNS ⟩ ⟨ VB DT NN, VB NN ⟩
38 ⟨ IN DT JJ NN, IN DT NN NN ⟩ ⟨ IN NN NNS, IN JJ NN ⟩
39 ⟨ JJ NN, NN NN ⟩ ⟨ NN NNS, DT NN NN ⟩
40 ⟨ DT JJ NNS, JJ NN NNS ⟩ ⟨ IN NN NNS, IN NNP NNP ⟩

Figure 3.3: The most similar sequence pairs, based on the Jensen-Shannon divergence of
their signatures, according to both a linear and a hierarchical definition of context.
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which reference internal consistency (e.g., noun phrases all having a nominal head), are not
captured by distributional similarity, but can potentially be captured in other ways. How-
ever, scanning figure 3.2, it is striking that similar pairs do tend to have similar internal
structure – the chief difficulty isn’t telling that DT JJ NN IN is somehow similar to DT NN
IN, it’s telling that neither is a constituent.



Chapter 4

A Structure Search Experiment

A broad division in statistical methods for unsupervised grammar induction is between
structure search methods and parameter search methods. In structure search, the primary
search operator is a symbolic change to the grammar. For example, one might add a pro-
duction to a context-free grammar. In parameter search, one takes a parameterized model
with a fixed topology, and the primary search operator is to nudge the parameters around
a continuous space, using some numerical optimization procedure. Most of the time, the
optimization procedure is the expectation-maximization algorithm, and it is used to fit a pa-
rameterized probabilistic model to the data. A classic instance of this method is estimating
the production weights for a PCFG with an a priori fixed set of rewrites.

Of course, the division is not perfect – a parameter search can have symbolic effects,
for example by zeroing out certain rewrites’ probabilities, and a structure search proce-
dure often incorporates parameter search inside each new guess at the symbolic structure.
Nonetheless, the distinction is broadly applicable, and the two approaches have contrast-
ing motivations. We will discuss the potential merits of parameter search methods later
(section 5.1, section 6.1.2), but their disadvantages are easy to see.

First, the historical/empirical stigma: early attempts at parameter search were extremely
discouraging, even when applied to toy problems. Lari and Young (1990) report that, when
using EM to recover extremely simple context-free grammars, the learned grammar would
require several times the number of non-terminals to recover the structure of a target gram-
mar, and even then it would often learn weakly equivalent variants of that target grammar.

43
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When applied to real natural language data, the results were, unsurprisingly, even worse.
Carroll and Charniak (1992) describes experiments running the EM algorithm from ran-
dom starting points, resulting in widely varying grammars of extremely poor quality (for
more on these results, see section 5.1).

Second, parameter search methods all essentially maximize the data likelihood, either
conditioned on the model or jointly with the model. Of course, outside of language mod-
eling scenarios, we don’t generally care about data likelihood for its own sake – we want
our grammars to parse accurately, or be linguistically plausible, or we have some goal ex-
trinsic to the training corpus in front of us. While it’s always possible data likelihood in
our model family will correspond to whatever our real goal is, in practice it’s not guaran-
teed, and often demonstrably false. As far as it goes, this objection holds equally well for
structure search methods which are guided by data- or model-posterior-likelihood metrics.
However, in structure search methods one only needs a local heuristic for evaluating sym-
bolic search actions. This heuristic can be anything we want – whether we understand what
it’s (greedily) maximizing or not. This property invites an approach to grammar induction
which is far more readily available in structure search approaches than in parameter search
approaches: dream up a local heuristic, grow a grammar using greedy structure search, and
hope for the best. To the extent that we can invent a heuristic that embodies our true goals
better than data likelihood, we might hope to win out with structure search.1

The following chapter is a good faith attempt to engineer just such a structure search
system, using the observations in chapter 3. While the system does indeed produce en-
couragingly linguistically sensible context-free grammars, the structure search procedure
turns out to be very fragile and the grammars produced do not successfully cope with the
complexities of broad-coverage parsing. Some flaws in our system are solved in various
other works; we will compare our system to other structure-search methods in section 4.3.
Nonetheless, our experiences with structure search led us to the much more robust param-
eter search systems presented in later chapters.

1Implicit in this argument is the assumption that inventing radical new objectives for parameter search
procedures is much harder, which seems to be the case.



4.1. APPROACH 45

4.1 Approach

At the heart of any structure search-based grammar induction system is a method, implicit
or explicit, for deciding how to update the grammar. In this section, we attempt to engineer
a local heuristic which identifies linguistically sensible grammar changes, then use that
heuristic to greedily construct a grammar. The core idea is to use distributional statistics to
identify sequences which are likely to be constituents, to create categories (grammar non-
terminals) for those sequences, and to merge categories which are distributionally similar.

Two linguistic criteria for constituency in natural language grammars motivate our
choices of heuristics (Radford 1988):

1. External distribution: A constituent is a sequence of words which appears in various
structural positions (within larger constituents).

2. Substitutability: A constituent is a sequence of words with (simple) variants which
can be substituted for that sequence.

To make use of these intuitions, we use a local notion of distributional context, as
described in chapter 3. Let α be a part-of-speech tag sequence. Every occurrence of α will
be in some context x α y, where x and y are the adjacent tags or sentence boundaries. The
distribution over contexts in which α occurs is called its signature, which we denote by
σ(α).

Criterion 1 regards constituency itself. Consider the tag sequences IN DT NN and IN
DT. The former is a canonical example of a constituent (of category PP), while the later,
though strictly more common, is, in general, not a constituent. Frequency alone does not
distinguish these two sequences, but Criterion 1 points to a distributional fact which does.
In particular, IN DT NN occurs in many environments. It can follow a verb, begin a sentence,
end a sentence, and so on. On the other hand, IN DT is generally followed by some kind of
a noun or adjective.

This argument suggests that a sequence’s constituency might be roughly indicated by
the entropy of its signature,H(σ(α)). Entropy, however, turns out to be only a weak indica-
tor of true constituency. To illustrate, figure 4.1 shows the actual most frequent constituents
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in the WSJ10 data set (see section 2.1.1), along with their rankings by several other mea-
sures. Despite the motivating intuition of constituents occurring in many contexts, entropy
by itself gives a list that is not substantially better-correlated with the true list than simply
listing sequences by frequency. There are two primary causes for this. One is that un-
common but possible contexts have little impact on the tag entropy value, yet in classical
linguistic argumentation, configurations which are less common are generally not taken to
be less grammatical.

To correct for the empirical skew in observed contexts, let σu(α) be the uniform distri-
bution over the observed contexts for α. This signature flattens out the information about
what contexts are more or less likely, but preserves the count of possible contexts. Us-
ing the entropy of σu(α) instead of the entropy of σ(α) would therefore have the direct
effect of boosting the contributions of rare contexts, along with the more subtle effect of
boosting the rankings of more common sequences, since the available samples of com-
mon sequences will tend to have collected nonzero counts of more of their rare contexts.
However, while H(σ(α)) presumably converges to some sensible limit given infinite data,
H(σu(α)) will not, as noise eventually makes all or most counts non-zero. Let u be the
uniform distribution over all contexts. The scaled entropy

Hs(σ(α)) = H(σ(α))[H(σu(α))/H(u)]

turned out to be a useful quantity in practice.2 Multiplying entropies is not theoretically
meaningful, but this quantity does converge to H(σ(α)) given infinite (noisy) data. The
list for scaled entropy still has notable flaws, mainly relatively low ranks for common NPs,
which does not hurt system performance, and overly high ranks for short subject-verb se-
quences, which does.

The other fundamental problem with these entropy-based rankings stems from the con-
text features themselves. The entropy values will change dramatically if, for example,
all noun tags are collapsed, or if functional tags are split. This dependence on the tagset

2There are certainly other ways to balance the flattened and unflattened distribution, including interpola-
tion or discounting. We found that other mechanisms were less effective in practice, but little of the following
rests crucially on this choice.
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Sequence Actual Freq Entropy Scaled Boundary
DT NN 1 2 4 2 1
NNP NNP 2 1 - - 4
CD CD 3 9 - - -
JJ NNS 4 7 3 3 2
DT JJ NN 5 - - - 10
DT NNS 6 - - - 9
JJ NN 7 3 - 7 6
CD NN 8 - - - -
IN NN 9 - - 9 10
IN DT NN 10 - - - -
NN NNS - - 5 6 3
NN NN - 8 - 10 7
TO VB - - 1 1 -
DT JJ - 6 - - -
MD VB - - 10 - -
IN DT - 4 - - -
PRP VBZ - - - - 8
PRP VBD - - - - 5
NNS VBP - - 2 4 -
NN VBZ - 10 7 5 -
RB IN - - 8 - -
NN IN - 5 - - -
NNS VBD - - 9 8 -
NNS IN - - 6 - -

Figure 4.1: Candidate constituent sequences by various ranking functions. Top non-trivial
sequences by actual constituent counts, raw frequency, raw entropy, scaled entropy, and
boundary scaled entropy in the WSJ10 corpus. The upper half of the table lists the ten most
common constituent sequences, while the bottom half lists all sequences which are in the
top ten according to at least one of the rankings.
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for constituent identification is very undesirable. One appealing way to remove this de-
pendence is to distinguish only two tags: one for the sentence boundary (#) and another
for words. Scaling entropies by the entropy of this reduced signature produces the im-
proved list labeled “Boundary.” This quantity was not used in practice because, although
it is an excellent indicator of NP, PP, and intransitive S constituents, it gives too strong a
bias against other constituents, which do not appear so frequently both sentence-initially
and sentence-finally. However, the present system is not driven exclusively by the entropy
measure used, and duplicating the above rankings more accurately did not always lead to
better end results.

In summary, we have a collection of functions of distributional signatures which loosely,
but very imperfectly, seem to indicate the constituency of a sequence.

Criterion 2 suggests we then use similarity of distributional signatures to identify when
two constituent sequences are of the same constituent type. This seems reasonable enough
– NNP and PRP are both NP yields, and occur in similar environments characteristic of NPs.
This criterion has a serious flaw: even if our data were actually generated by a PCFG, it
need not be the case that all possible yields of a symbol X will have identical distribu-
tions. As a concrete example, PRP and NNP differ in that NNP occurs as a subsequence of
longer NPs like NNP NNP, while PRP generally doesn’t. The context-freedom of a PCFG
process doesn’t guarantee that all sequences which are possible NP yields have identical
distributions; it only guarantees that the NP occurrences of such sequences have identical
distributions. Since we generally don’t have this kind of information available in a struc-
ture search system, at least to start out with, one generally just has to hope that signature
similarity will, in practice, still be reliable as an indicator of syntactic similarity. Figure 3.2
shows that if two sequences have similar raw signatures, then they do tend to have similar
syntactic behavior. For example, DT JJ NN and DT NN have extremely similar signatures,
and both are common noun phrases. Also, NN IN and NN NN IN have very similar signa-
tures, and both are primarily non-constituents.

Given these ideas, section 4.2 discusses a system, called GREEDY-MERGE, whose
grammar induction steps are guided by sequence entropy and interchangeability. The out-
put of GREEDY-MERGE is a symbolic CFG suitable for partial parsing. The rules it learns
appear to be of high linguistic quality (meaning they pass the dubious “glance test”, see
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figures 4.4 and 4.5), but parsing coverage is very low.

4.2 GREEDY-MERGE

GREEDY-MERGE is a precision-oriented system which, to a first approximation, can be
seen as an agglomerative clustering process over sequences, where the sequences are taken
from increasingly structured analyses of the data. A run of the system shown in figure 4.3
will be used as a concrete example of this process.

We begin with all subsequences occurring in the WSJ10 corpus. For each pair of such
sequences, a scaled divergence is calculated as follows:

d(α, β) = DJS(σ(α),σ(β))
Hs(σ(α))+Hs(σ(β))

Small scaled divergence between two sequences indicates some combination of similarity
between their signatures and high rank according to the scaled entropy “constituency” heu-
ristic. The pair with the least scaled divergence is selected for merging.3 In this case, the
initial top candidates were

3We required that the candidates be among the 250 most frequent sequences. The exact threshold was not
important, but without some threshold, long singleton sequences with zero divergence were always chosen.
This suggests that we need a greater bias towards quantity of evidence in our basic method.
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Rank Proposed Merge
1 NN NN NN
2 NNP NNP NNP
3 NN JJ NN
4 NNS NN NNS
5 NNP NNP NNP NNP NNP
6 DT NN DT JJ NN
7 JJ NN NN NN
8 DT PRP$
9 DT DT JJ
10 VBZ VBD
11 NN NNS
12 PRP VBD PRP VBZ
13 VBD MD VB
14 NNS VBP NN VBZ
15 DT NN DT NN NN
16 VBZ VBZ RB
17 NNP NNP NNP NNP
18 DT JJ PRP$
19 IN NN IN DT NN
20 RB RB RB

Note that the top fewmerges are all linguistically sensible noun phrase or N unit merges.
Candidates 8, 10, and 11 are reasonable part-of-speech merges, and lower on the list (19)
there is good prepositional phrase pair. But the rest of the list shows what could easily go
wrong in a system like this one. Candidate 9 suggests a strange determiner-adjective group-
ing, and many of the remaining candidates either create verb-(ad)verb groups or subject-
verb groupings instead of the standard verb-object verb phrases. Either of these kinds of
merges will take the learned grammar away from the received linguistic standard. While
admittedly neither mistake is really devastating provided the alternate analysis is system-
atic in the learned grammar, this system has no operators for backing out of early mistakes.
At this point, however, only the single pair ⟨NN, NN NN⟩ is selected.

Merging two sequences involves the creation of a single new non-terminal category for
those sequences, which rewrites as either sequence. These created categories have arbitrary
names, such as z17, though in the following exposition, we give them useful descriptors.
In this case, a category z1 is created, along with the rules

z1→ NN
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z1→ NN NN

Unary rules are disallowed in this system; a learned unary is instead interpreted as a merge
of the parent and child grammar symbols, giving

NN→ NN NN

This single rule forms the entire grammar after the first merge, and roughly captures how
noun-noun compounding works in English: any sequence NN∗ is legal, and can internally
group in any way. The grammar rules are unweighted.

At this point, all the input sentences are re-parsed with the current grammar, using a
shallow parser which selects an arbitrary minimum-fragments parse. Most sentences will
be almost entirely flat, except for sequences of multiple adjacent nouns, which will be
analyzed into chunks by this first rule. Once there are non-terminal categories, and the
parses aren’t entirely flat, the definitions of sequences and contexts become slightly more
complex. The sequences in the model are now contiguous siblings in the current round’s
parses, including, in general, non-terminal symbols in addition to the original terminal set.
The contexts of a sequence can either be the linear context, or the hierarchical context, as
defined in section 3.4. To illustrate, in figure 4.2, the sequence VBZ RB can be considered in
the local context [NN. . . ⋄] or the hierarchical context [Z1. . . ⋄]. The hierarchical context
performed slightly better, and was used for the present experiments. The new sequences
and their new signatures were tallied, and another pair was selected for merging.

To fully specify the merging rules, each merge creates a new grammar symbol. Any
unaries are treated as collapsing the parent and child symbols. Note that this means that
whenever the candidate pair contains a length-one sequence, as in the first merge, the newly
created symbol is immediately collapsed and discarded. Furthermore, merging two length-
one sequences collapses the two symbols in the grammar, so actually reduces the non-
terminal vocabulary by one. In the present example, this situation happens for the first time
on step 4, where the verbal tags VBZ and VBD are merged. After a merge, re-analysis of
the right hand sides of the grammar rules is in general necessary. Any rule which can be
parsed by the other rules of the grammar is parsed and simplified. For example, in step 14,
common noun phrases with and without determiners are identified, triggering a re-parsing



52 CHAPTER 4. A STRUCTURE SEARCH EXPERIMENT

of the ZNP→ DT JJ NN rule into ZNP→ DT ZNP.4

Eyeballing the merges chosen, the initial choices of this procedure look plausible. Noun
chunks are identified (1,2), then determiner-bearing noun phrases (3), then some tag dis-
tinctions which encode feature and tense are collapsed (4,5). Prepositional phrases are
identified in (7), verb-object verb phrases in (10), and NP/VP sentence structures in (20).
Some (relatively minor) missteps along the way include a non-standard verb group chunk in
(6) and a (worse) determiner-adjective chunk in (12). Then there is a combination of these
categories being fleshed out (usually sensibly) and merged together (usually overly aggres-
sively). Starting on merge (45), the system begins imploding, merging nouns with noun
phrases, then adverbs, and so on, until merge (54), where nouns (along with most other
tags) are merged with verbs. At this point, all the top matches are longer, as-yet-unanalyzed
sequences, but the initially promising grammar has mostly collapsed into itself. This be-
havior underscores that for the GREEDY-MERGE system, stopping at the correct point is
critical. Since our greedy criterion is not a measure over entire grammar states, we have
no way to detect the optimal point beyond heuristics (the same category appears in sev-
eral merges in a row, for example) or by using a small supervision set to detect a parse
performance drop.

In addition to eyeballing the merges and grammars at each stage, a more quantifiable
way to monitor the coverage and accuracy of our grammar as it grows is to take the out-
put of the partial parser, and compare those (initially shallow) trees to the gold standard.
Figure 4.3 shows unlabeled precision and recall after each stage. These figures ignore the
labels on the proposed trees, and ignore all brackets of size one (but not full-sentence brack-
ets, which all partial parses have, which gives the non-zero initial recall). Overall, as the
grammar grows, we trade the initially perfect precision for recall, substantially increasing
F1 until step (15). Then, the trade-off continues, with F1 more constant until about step
(27), at which point F1 begins to decline. By step (54) where nouns et al. are merged with
verbs et al., F1 has dropped from a high of 56.5 down to a low of 33.7.

4This is a case where we really would rather preserve a unary that represents a null determiner.
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TOP

# z1

DT NN

VBZ RB #

Figure 4.2: Two possible contexts of a sequence: linear and hierarchical.

4.2.1 Grammars learned by GREEDY-MERGE

Figure 4.4 shows a snapshot of the grammar at one stage of a run of GREEDY-MERGE on
the WSJ10 corpus.5 The non-terminal categories proposed by the systems are internally
given arbitrary designations, but we have relabeled them to indicate what standard classes
they best correspond to.

Categories corresponding to NP, VP, PP, and S are learned, although some are split
into sub-categories (transitive and intransitive VPs, proper NPs and two kinds of common
NPs, and so on).6 NPs have internal structure where adnominal modifiers are grouped with
nouns, determiners attached higher, and verbs are chunked into verb groups (contrary to
most but not all traditional linguistic argumentation, (Halliday 1994, Radford 1988)). Pro-
vided one is willing to accept such a verb-group analysis, this grammar seems sensible,
though quite a few constructions, such as relative clauses, are missing entirely.

Figure 4.5 shows a grammar learned at one stage of a run when verbs were split by
transitivity. This grammar is similar, but includes analyses of sentential coordination and
adverbials, and subordinate clauses. The only rule in this grammar which seems overly
suspect is ZVP→ IN ZS which analyzes complementized subordinate clauses as VPs.

In general, the major mistakes the GREEDY-MERGE system makes are of three sorts:

• Mistakes of omission. Even though the grammar snapshots shown have correct, re-
cursive analyses of many categories, neither has rules which can non-trivially incor-
porate a number (CD). There is also no analysis for many common constructions,
including relative clauses, comparatives, and, most worryingly, conjunctions.

5This grammar, while very similar, does not exactly match the full run shown in figure 4.3, but reflects
slightly different parameter settings.

6Splits often occur because unary rewrites are not learned in this system.
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Step Merged Sequences Resulting Rules UPrec. URec. F1

0 (original) (none) 100.0 20.5 34.1
1 NN NN NN NN→ NN NN 92.3 21.0 34.2
2 NNP NNP NNP NNP→ NNP NNP 83.8 23.8 37.1
3 DT NN DT JJ NN zNP→ DT NN, zNP→ DT JJ NN 85.6 31.2 45.7
4 VBZ VBD (merge) 85.6 31.2 45.7
5 NNS NN (merge) 83.8 33.7 48.1
6 VBZ MD VB VBZ→MD VB 81.4 33.8 47.8
7 IN NNS IN zNP zPP→ IN NNS, zPP→ IN zNP 81.1 37.0 50.8
8 DT PRP$ (merge) 81.5 38.2 52.1
9 VBZ VBP (merge) 81.6 38.3 52.1
10 VBZ NNS VBZ zNP zVP→ VBZ NNS, zVP→ VBZ zNP 78.4 39.7 52.7
11 VBZ VBZ RB VBZ→ VBZ RB 74.1 40.1 52.0
12 DT DT JJ DT→ DT JJ 72.7 40.4 52.0
13 DT NNP POS DT→ NNP POS 71.0 41.6 52.5
14 zNP JJ NNS zNP→ JJ NNS 71.0 45.2 55.2
15 zVP VBZ zPP zVP→ VBZ zPP 70.8 45.6 55.5
16 VBZ VBZ VBN VBZ→ VBZ VBN 69.0 46.8 55.8
17 zVP VBZ JJ zVP→ VBZ JJ 68.7 47.9 56.5
18 VBZ VBZ VBG VBZ→ VBZ VBG 67.7 48.5 56.5
19 zVP RB zVP zVP→ RB zVP 67.1 48.5 56.4
20 PRP zVP zNP zVP zS→ PRP zVP, zS→ zNP zVP 64.8 48.9 55.7
21 zS NNP zVP zS→ NNP zVP 64.0 48.9 55.5
22 zS DT zVP zS→ DT zVP 63.8 48.9 55.4
23 VBZ VBZ TO VB VBZ→ VBZ TO VB 63.1 49.4 55.4
24 zS RB zS zS→ RB zS 63.0 49.5 55.4
25 zPP IN NNP zPP→ IN NNP 63.1 50.6 56.2
26 zNP DT NNP NNS zNP→ DT NNP NNS 63.1 51.1 56.5
27 zS NNS zVP zS→ NNS zVP 62.4 51.2 56.3
28 zNP VBZ NNP VBZ zSi→ zNP VBZ, zSi→ NNP VBZ 60.1 51.2 55.3
29 PRP VBZ zSi zSi→ PRP VBZ 58.9 51.5 54.9
30 zSi RB zSi zSi→ RB zSi 58.8 51.5 54.9
31 zS zS zPP zS→ zS zPP 58.3 51.5 54.7
32 VBZ MD RB VB VBZ→MD RB VB 58.0 51.8 54.7
33 VBG VBN (merge) 58.0 51.8 54.7
34 VBG TO VB VBG→ TO VB 57.8 52.0 54.7
35 VBZ zVP (merge) 53.6 50.9 52.2
36 zS zSi (merge) 53.3 50.6 51.9
37 RB VBG (merge) 53.2 50.7 51.9
38 zS VBZ zS zS zX→ zS VBZ, zX→ zS zS 52.8 50.8 51.8
39 zS zX (merge) 52.8 50.8 51.8
40 MD MD RB MD→MD RB 52.6 50.8 51.7
41 zS DT zS zS→ DT zS 51.8 50.3 51.1
42 zS zPP zS zS→ zPP zS 51.6 50.3 50.9
43 zS NNP zS zS→ NNP zS 51.0 50.0 50.5
44 NNP NNPS (merge) 50.9 50.2 50.6
45 zS CC zS zS→ CC zS 50.4 50.2 50.3
46 NNS zNP (merge) 50.4 50.6 50.5
47 NNS RB (merge) 47.8 49.7 48.8
48 NNS JJ (merge) 46.5 48.8 47.6
49 NNS zPP (merge) 41.8 44.7 43.2
50 NNS JJR (merge) 41.9 45.1 43.5
51 NNS DT (merge) 36.3 39.4 37.8
52 NNS IN (merge) 33.9 37.5 35.6
53 NNS JJS (merge) 33.5 37.3 35.3
54 VBZ zS (merge) 34.1 38.0 35.9
55 NNS VBZ (merge) 31.7 35.9 33.7
56 RBR TO LS NNS LS z111→ RBR TO, z111→ LS NNS LS 31.8 36.1 33.8
57 VB VB VB WRB NNS RP z113→ VB VB VB, z113→WRB NNS RP 31.9 36.2 33.9
58 SYM NNS CD CD NNS WP NNS CD z115→ SYM NNS CD CD, z115→ NNS WP NNS CD 32.3 36.7 34.4
59 WRB NNS PRP VB NNS PDT NNS TO z117→WRB NNS PRP VB, z117→ NNS PDT NNS TO 32.5 36.9 34.5
60 117 WRB NNS TO z117→WRB NNS TO 32.6 37.0 34.7
61 NNS 113 NNS PRP VB PRP z121→ NNS z113, z121→ NNS PRP VB PRP 32.7 37.1 34.7
62 z115 NNS VB NNS RBR z115→ NNS VB NNS RBR 32.9 37.4 35.0
63 z115 NNS VB NNS WRB z115→ NNS VB NNS WRB 32.6 37.0 34.7
64 z117 NNS UH TO z117→ NNS UH TO 33.0 37.5 35.1
65 z115 NNS VB NNS VB z115→ NNS VB NNS VB 32.8 37.2 34.9

Figure 4.3: A run of the GREEDY-MERGE system.



4.2. GREEDY-MERGE 55

N-bar or zero determiner NP
zNN→ NN | NNS
zNN→ JJ zNN
zNN→ zNN zNN

NP with determiner
zNP→ DT zNN
zNP→ PRP$ zNN

Proper NP
zNNP→ NNP | NNPS
zNNP→ zNNP zNNP

PP
zPP→ zIN zNN
zPP→ zIN zNP
zPP→ zIN zNNP

verb groups / intransitive VPs
zV→ VBZ | VBD | VBP
zV→MD VB
zV→MD RB VB
zV→ zV zRB
zV→ zV zVBG

Transitive VPs
(complementation)
zVP→ zV JJ
zVP→ zV zNP
zVP→ zV zNN
zVP→ zV zPP

Transitive VPs
(adjunction)
zVP→ zRB zVP
ZVP→ zVP zPP

Intransitive S
zSi→ PRP zV
zSi→ zNP zV
zSi→ zNNP zV

Transitive S
zS→ zNNP zVP
zS→ zNN zVP
zS→ PRP zVP

Figure 4.4: A grammar learned by GREEDY-MERGE.



56 CHAPTER 4. A STRUCTURE SEARCH EXPERIMENT

N-bar or zero-determiner NP
zNN→ NN | NNS
zNN→ zNN zNN
zNN→ JJ zNN

Common NP with determiner
zNP→ DT zNN
zNP→ PRP$ zNN

Proper NP
zNNP→ zNNP zNNP
zNNP→ NNP

PP
zPP→ zIN zNN
zPP→ zIN zNP
zPP→ zIN zNNP

Transitive Verb Group
zVt→ VBZt | VBDt | VBPt
zVt→MD zVBt
zVt→ zVt RB

Intransitive Verb Group
zVP→ VBZ | VBD | VBP
zVP→MD VB
zVP→ zVP zVBN 1

VP adjunction
zVP→ RB zVP
zVP→ zVP RB
zVP→ zVP zPP
zVP→ zVP zJJ

VP complementation
zVP→ zVt zNP
zVP→ zVt zNN

S
zS→ zNNP zVP
zS→ zNN zVP
zS→ zNP zVP
zS→ DT zVP

zS→ CC zS
zS→ RB zS

S-bar
zVP→ IN zS 2

1 - wrong attachment level
2 - wrong result category

Figure 4.5: A grammar learned by GREEDY MERGE (with verbs split by transitivity).
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• Alternate analyses. The system almost invariably forms verb groups, merging MD
VB sequences with single main verbs to form verb group constituents (argued for at
times by some linguists (Halliday 1994)). Also, PPs are sometimes attached to NPs
below determiners (which is in fact a standard linguistic analysis (Abney 1987)). It
is not always clear whether these analyses should be considered mistakes.

• Over-merging. These errors are the most serious. Since at every step two sequences
are merged, the process will eventually learn the grammar where X → X X and
X→ (any terminal). However, very incorrect merges are sometimes made relatively
early on (such as merging VPs with PPs, or merging the sequences IN NNP IN and
IN).

A serious issue with GREEDY-MERGE is that the grammar learned is symbolic, not
probabilistic. Any disambiguation is done arbitrarily. Therefore, even adding a linguisti-
cally valid rule can degrade numerical performance (sometimes dramatically) by introduc-
ing ambiguity to a greater degree than it improves coverage. This issue, coupled with the
many omissions in these grammars, emphasizes the degree to which eyeballing grammar
snapshots can be misleadingly encouraging.

4.3 Discussion and Related Work

There is a great deal of previous work on structure-search methods, and it must be em-
phasized that while the preceding system is broadly representative, many of its flaws are
overcome by some prior work or other. Wolff (1988) presents an overview of much of
Wolff’s work up to that point. His program SNPR is a chunking system, which has two
operations: folding, which is like the merge above, and generalization, which is like the re-
parsing step above. His system is not statistical, though it does prioritize operations based
on corpus frequency. The most striking idea present in his work which is missing here
is that generalizations which are not fully attested can be retracted in a repair operation,
allowing, in principle, for early mistakes to be undone later in the process. His work is in-
tended to be a cognitively plausible account of language acquisition using minimal native
bias. Other authors guide structure searches using an explicit compression-based criterion,
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preferring to introduce rules which increase the likelihood of the grammar given the data.
(Stolcke and Omohundro 1994) describes Bayesian model-merging, where the increase in
data likelihood is balanced against an MDL-style prior over models (which prefers simpler
models). Chen (1995), Kit (1998), and Langley and Stromsten (2000) present more recent
MDL approaches; these methods have in common that they do not seem to scale to real text,
and can suffer from the tendency to chunk common functional units, like IN DT, together
early on. As Alex Clark has pointed out (Clark 2001b), it is not the use of MDL that is prob-
lematic, but rather its greedy use. Magerman and Marcus (1990), which is otherwise along
the same lines, has an innovative mal-rule approach which forbids certain such problematic
sequences from being wrongly analyzed as constituents. Finally, Clark (2001a) presents a
hybrid system which uses an MDL search in conjunction with distributional methods (see
chapter 3). For a more thorough survey, see Clark (2001b).



Chapter 5

Constituent-Context Models

5.1 Previous Work

In contrast with the relative success of word-class learning methods, induction of syntax
has proven to be extremely challenging. Some of the earliest and most important signs
of discouragement from statistical parameter search methods were the results of Lari and
Young (1990). Their work showed that even simple artificial grammars could not be re-
liably recovered using EM over the space of PCFGs (using the inside-outside algorithm:
see Manning and Schütze (1999) for an introduction). The problem wasn’t with the model
family: Charniak (1996) showed that a maximum-likelihood PCFG read off of a treebank
could parse reasonably well, and most high-performance parsers have, strictly speaking,
been in the class of PCFG parsing. Therefore the problem was either with the use of EM
as a search procedure or with some mismatch between data likelihood and grammar qual-
ity. Either way, their work showed that simple grammars were hard to recover in a fully
unsupervised manner.

Carroll and Charniak (1992) tried the PCFG induction approach on natural language
data, again with discouraging results. They used a structurally restricted PCFG in which
the terminal symbols were parts-of-speech and the non-terminals were part-of-speech pro-
jections. That is, for every part-of-speech X there was a non-terminal X, with the rewrites
restricted to the forms X→ X Y and X → Y X (plus unary terminal rewrites of the form X

→ X). These configurations can be thought of as head-argument attachments, where X is

59
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End Span Label Constituent Context
⟨0,5⟩ S NN NNS VBD IN NN ⋄ – ⋄
⟨0,2⟩ NP NN NNS ⋄ – VBD
⟨2,5⟩ VP VBD IN NN NNS – ⋄
⟨3,5⟩ PP IN NN VBD – ⋄
⟨0,1⟩ NN NN ⋄ – NNS
⟨1,2⟩ NNS NNS NN – VBD
⟨2,3⟩ VBD VBD NNS – IN
⟨3,4⟩ IN IN VBD – NN
⟨4,5⟩ NN NNS IN – ⋄

(a) (b) (c)

Figure 5.1: Parses, bracketings, and the constituent-context representation for the sentence,
“Factory payrolls fell in September.” Shown are (a) an example parse tree, (b) its associated
bracketing, and (c) the yields and contexts for each constituent span in that bracketing.
Distituent yields and contexts are not shown, but are modeled.

the head. In fact, trees in this grammar are isomorphic to dependency trees which specify
the attachment order for heads with multiple arguments (Miller 1999). The hope was that,
while the symbols in an arbitrary PCFG do not have any a priori meaning or structural
role, symbols in this dependency grammar are not structurally symmetric – each one is
anchored to a specific terminal symbol. Carroll and Charniak describe experiments where
many such grammars were weighted randomly, then re-estimated using EM. The result-
ing grammars exhibited wide variance in the structures learned and in the data likelihood
found. Parsing performance was consistently poor (according to their qualitative evalua-
tion). Their conclusion was that the blame lay with the structure search problem: EM is a
local maximization procedure, and each initial PCFG converged to a different final gram-
mar. Regardless of the cause, the results did not suggest that PCFG induction was going to
be straightforwardly effective.

Other related parameter search work is discussed in section 6.1.2, but it is worth further
considering the Carroll and Charniak experiments and results here. One important advan-
tage of their formulation (that they did not exploit) is that random initial rule weights are not
actually needed. In the case of unrestricted binary-branching PCFGs, such as with the Lari
and Young (1990) experiments, one considers a full binary grammar over symbols {Xi}.
If all rules Xi → Xj Xk have exactly equal initial probability, that initial parameter vector
will be an unstable symmetric fixed point for EM. Therefore random noise is required for
symmetry-breaking, to get the optimization started. That is not the case for the Carroll and
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Charniak grammars. While the parameter space is certainly riddled with local maxima, and
therefore the initial grammar weights do matter, there is an obvious uniform starting point,
where all rules have equal starting probability. Beginning from that uniform initializer, EM
will find some solution which we might hope will correspond to a higher quality grammar
than most random initializations produce. This hope is borne out in practice: as figure 5.4
shows under the name DEP-PCFG, their method substantially outperforms a random base-
line. It does not break the right-branching baseline, however, and we can ask why that
might be. One cause is certainly that the grammar itself is representationally lacking; we
will discuss this further in chapter 6. Section 5.3.6 discusses another possible issue: a flat
grammar initialization gives rise to a very un-language-like posterior over trees.

The distributional clustering of words (chapter 3) has proven remarkably robust for
discovering patterns which at least broadly approximate classical parts-of-speech. It is
therefore very appealing to try to extend linear distributional techniques to levels of syn-
tax higher than word-classes. Recall the left column of figure 3.3, which shows the most
similar tag sequences according to the Jensen-Shannon divergence of their local linear tag
signatures. This list makes one optimistic that constituent sequences with very similar
contexts will tend to be of the same constituent type. For example, the top three pairs are
noun groups, prepositional phrases, and determiner-carrying noun phrases. The subsequent
examples include more correct noun and prepositional phrase pairs, with some possessive
constructions and verb phrases scattered among them. Indeed, the task of taking constituent
sequences and clustering them into groups like noun-phrases and verb phrases is not much
harder than clustering words into word classes. The problem is that to produce lists like
these, we need to know which subspans of each sentence are constituents. If we simply
consider all subspans of the sentences in our corpus, most sequence tokens will not be con-
stituent tokens. The right column of figure 3.2 shows the sequence pairs with most similar
contexts, using all subspans instead of constituent subspans. Again we see pairs of similar
constituents, like the first pair of proper noun phrases. However, we also see examples
like the second pair, which are two non-constituent sequences. It’s no surprise these non-
constituent, or distituent, pairs have similar context distributions – if we had to classify
them, they are in some sense similar. But a successful grammar induction system must
somehow learn which sequence types should be regularly used in building trees, and which
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should not. That is, we need to form coherent tree-structured analyses, and distributional
clustering of sequences, robust though it may be, will not give us trees.

One way to get around this limitation of distributional clustering is to first group se-
quences into types by signature similarity, then differentiate the “good” and “bad” con-
stituent types by some other mechanism. A relatively successful approach along these
lines is described in Clark (2001a). Clark first groups sequence types, then uses a mutual
information criterion to filter constituents from distituents. The good sequences are then
used to build up a PCFG according to a MDL measure. The experimental results of Clark’s
system are discussed later in this chapter, but the overall parsing performance is rather low
because the discovered grammars are extremely sparse.

5.2 A Generative Constituent-Context Model

In this chapter, we describe a model which is designed to combine the robustness of dis-
tributional clustering with the coherence guarantees of parameter search. It is specifically
intended to produce a more felicitous search space by removing as much hidden structure
as possible from the syntactic analyses. The fundamental assumption is a much weak-
ened version of a classic linguistic constituency tests (Radford 1988): constituents appear
in constituent context. A particular linguistic phenomenon that the system exploits is that
long constituents often have short, common equivalents, or proforms, which appear in sim-
ilar contexts and whose constituency is easily discovered (or guaranteed). Our model is
designed to transfer the constituency of a sequence directly to its containing context, which
is intended to then pressure new sequences that occur in that context into being parsed as
constituents in the next round. The model is also designed to exploit the successes of dis-
tributional clustering, and can equally well be viewed as doing distributional clustering in
the presence of no-overlap constraints.
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5.2.1 Constituents and Contexts

Unlike a PCFG, our model describes all contiguous subsequences of a sentence (spans),
including empty spans, whether they are constituents or distituents. A span encloses a se-
quence of terminals, or yield, α, such as DT JJ NN. A span occurs in a context x, such as
⋄–VBZ, where x is the ordered pair of preceding and following terminals (⋄ denotes a sen-
tence boundary). A bracketing of a sentence is a boolean matrix B, which indicates which
spans are constituents and which are not. Figure 5.1 shows a parse of a short sentence, the
bracketing corresponding to that parse, and the labels, yields, and contexts of its constituent
spans.

Figure 5.2 shows several bracketings of the sentence in figure 5.1. A bracketing B of
a sentence is non-crossing if, whenever two spans cross, at most one is a constituent in
B. A non-crossing bracketing is tree-equivalent if the size-one terminal spans and the full-
sentence span are constituents, and all size-zero spans are distituents. Figure 5.2(a) and
(b) are tree-equivalent. Tree-equivalent bracketings B correspond to (unlabeled) trees in
the obvious way. A bracketing is binary if it corresponds to a binary tree. Figure 5.2(b) is
binary. We will induce trees by inducing tree-equivalent bracketings.

Our generative model over sentences S has two phases. First, we choose a bracketingB

according to some distribution P(B) and then generate the sentence given that bracketing:

P(S, B) = P(B)P(S|B)

Given B, we fill in each span independently. The context and yield of each span are inde-
pendent of each other, and generated conditionally on the constituency Bij of that span.

P(S|B) =
∏

⟨i,j⟩∈spans(S)
P(αij , xij |Bij)

=
∏

⟨i,j⟩
P(αij |Bij)P(xij |Bij)

The distribution P(αij |Bij) is a pair of multinomial distributions over the set of all possible
yields: one for constituents (Bij = c) and one for distituents (Bij = d). Similarly for
P(xij |Bij) and contexts. The marginal probability assigned to the sentence S is given by
summing over all possible bracketings of S: P(S) =

∑

B P(B)P(S|B). Note that this is
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Figure 5.2: Three bracketings of the sentence “Factory payrolls fell in September.” Con-
stituent spans are shown in black. The bracketing in (b) corresponds to the binary parse
in figure 5.1; (a) does not contain the ⟨2,5⟩ VP bracket, while (c) contains a ⟨0,3⟩ bracket
crossing that VP bracket.

a more severe set of independence assumptions than, say, in a naive-bayes model. There,
documents positions are filled independently, and the result can easily be an ungrammatical
document. Here, the result need not even be a structurally consistent sentence.1

To induce structure, we run EM over this model, treating the sentences S as observed
and the bracketings B as unobserved. The parameters Θ of the model are the constituency-
conditional yield and context distributions P(α|b) and P(x|b). If P(B) is uniform over all
(possibly crossing) bracketings, then this procedure will be equivalent to soft-clustering
with two equal-prior classes.

There is reason to believe that such soft clusterings alone will not produce valuable
distinctions, even with a significantly larger number of classes. The distituents must neces-
sarily outnumber the constituents, and so such distributional clustering will result in mostly
distituent classes. Clark (2001a) finds exactly this effect, and must resort to a filtering heu-
ristic to separate constituent and distituent clusters. To underscore the difference between
the bracketing and labeling tasks, consider figure 5.3. In both plots, each point is a frequent
tag sequence, assigned to the (normalized) vector of its context frequencies. Each plot has
been projected onto the first two principal components of its respective data set. The left

1Viewed as a model generating sentences, this model is deficient, placing mass on yield and context
choices which will not tile into a valid sentence, either because specifications for positions conflict or because
yields of incorrect lengths are chosen. We might in principle renormalize by dividing by the mass placed on
proper sentences and zeroing the probability of improper bracketings. In practice, there does not seem to be
an easy way to carry out this computation.
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NP
VP
PP

Usually a Constituent
Rarely a Constituent

(a) Constituent Types (b) Constituents vs. Distituents

Figure 5.3: Clustering vs. detecting constituents. The most frequent yields of (a) three
constituent types and (b) constituents and distituents, as context vectors, projected onto
their first two principal components. Clustering is effective at labeling, but not detecting,
constituents.

plot shows the most frequent sequences of three constituent types. Even in just two dimen-
sions, the clusters seem coherent, and it is easy to believe that they would be found by a
clustering algorithm in the full space. On the right, sequences have been labeled according
to whether their occurrences are constituents more or less of the time than a cutoff (of 0.2).
The distinction between constituent and distituent seems much less easily discernible.

We can turn what at first seems to be distributional clustering into tree induction by
confining P(B) to put mass only on tree-equivalent bracketings. In particular, consider
Pbin(B) which is uniform over binary bracketings and zero elsewhere. If we take this
bracketing distribution, then when we sum over data completions, we will only involve
bracketings which correspond to valid binary trees. This restriction is the basis for the next
algorithm.

5.2.2 The Induction Algorithm

We now essentially have our induction algorithm. We take P(B) to be Pbin(B), so that all
binary trees are equally likely. We then apply the EM algorithm:

E-Step: Find the conditional completion likelihoods P(B|S, Θ) according to the current
Θ.

M-Step: Fix P(B|S, Θ) and find the Θ′ which maximizes
∑

B P(B|S, Θ) log P(S, B|Θ′).
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Figure 5.4: Bracketing F1 for various models on the WSJ10 data set.

The completions (bracketings) cannot be efficiently enumerated, and so a cubic dynamic
program similar to the inside-outside algorithm is used to calculate the expected counts of
each yield and context, both as constituents and distituents (see the details in appendix A.1).
Relative frequency estimates (which are the ML estimates for this model) are used to set
Θ′.

5.3 Experiments

The experiments that follow used the WSJ10 data set, as described in chapter 2, using the
alternate unlabeled metrics described in section 2.2.5, with the exception of figure 5.15
which uses the standard metrics, and figure 5.6 which reports numbers given by the EVALB
program. The basic experiments do not label constituents. An advantage to having only a
single constituent class is that it encourages constituents of one type to be proposed even
when they occur in a context which canonically holds another type. For example, NPs
and PPs both occur between a verb and the end of the sentence, and they can transfer
constituency to each other through that context.
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Figure 5.5: Scores for CCM-induced structures by span size. The drop in precision for span
length 2 is largely due to analysis inside NPs which is omitted by the treebank. Also shown
is F1 for the induced PCFG. The PCFG shows higher accuracy on small spans, while the
CCM is more even.

Figure 5.4 shows the F1 score for various methods of parsing. RANDOM chooses a tree
uniformly at random from the set of binary trees.2 This is the unsupervised baseline. DEP-
PCFG is the result of duplicating the experiments of Carroll and Charniak (1992), using
EM to train a dependency-structured PCFG. LBRANCH and RBRANCH choose the left-
and right-branching structures, respectively. RBRANCH is a frequently used baseline for
supervised parsing, but it should be stressed that it encodes a significant fact about English
structure, and an induction system need not beat it to claim a degree of success. CCM is our
system, as described above. SUP-PCFG is a supervised PCFG parser trained on a 90-10 split
of this data, using the treebank grammar, with the Viterbi parse right-binarized.3 UBOUND
is the upper bound of how well a binary system can do against the treebank sentences,
which are generally flatter than binary, limiting the maximum precision.

CCM is doing quite well at 71.1%, substantially better than right-branching structure.
One common issue with grammar induction systems is a tendency to chunk in a bottom-
up fashion. Especially since the CCM does not model recursive structure explicitly, one
might be concerned that the high overall accuracy is due to a high accuracy on short-span

2This is different from making random parsing decisions, which gave a higher score of 35%.
3Without post-binarization, the F1 score was 88.9.
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System UP UR F1 CB
EMILE 51.6 16.8 25.4 0.84
ABL 43.6 35.6 39.2 2.12
CDC-40 53.4 34.6 42.0 1.46
RBRANCH 39.9 46.4 42.9 2.18
CCM 55.4 47.6 51.2 1.45

Figure 5.6: Comparative ATIS parsing results.

constituents. Figure 5.5 shows that this is not true. Recall drops slightly for mid-size con-
stituents, but longer constituents are as reliably proposed as short ones. Another effect
illustrated in this graph is that, for span 2, constituents have low precision for their recall.
This contrast is primarily due to the single largest difference between the system’s induced
structures and those in the treebank: the treebank does not parse into NPs such as DT JJ

NN, while our system does, and generally does so correctly, identifying N units like JJ NN.
This overproposal drops span-2 precision. In contrast, figure 5.5 also shows the F1 for
DEP-PCFG, which does exhibit a drop in F1 over larger spans.

The top row of figure 5.8 shows the recall of non-trivial brackets, split according the
brackets’ labels in the treebank. Unsurprisingly, NP recall is highest, but other categories
are also high. Because we ignore trivial constituents, the comparatively low S represents
only embedded sentences, which are somewhat harder even for supervised systems.

To facilitate comparison to other recent work, figure 5.6 shows the accuracy of our
system when trained on the same WSJ data, but tested on the ATIS corpus, and evaluated
according to the EVALB program. EMILE and ABL are lexical systems described in (van Za-
anen 2000, Adriaans and Haas 1999), both of which operate on minimal pairs of sentences,
deducing constituents from regions of variation. CDC-40, from (Clark 2001a), reflects
training on much more data (12M words), and is describe in section 5.1. The F1 numbers
are lower for this corpus and evaluation method.4 Still, CCM beats not only RBRANCH (by
8.3%), but the next closest unsupervised system by slightly more.

4The primary cause of the lower F1 is that the ATIS corpus is replete with span-one NPs; adding an extra
bracket around all single words raises our EVALB recall to 71.9; removing all unaries from the ATIS gold
standard gives an F1 of 63.3%.



5.3. EXPERIMENTS 69

Rank Overproposed Underproposed
1 JJ NN NNP POS
2 MD VB TO CD CD
3 DT NN NN NNS
4 NNP NNP NN NN
5 RB VB TO VB
6 JJ NNS IN CD
7 NNP NN NNP NNP POS
8 RB VBN DT NN POS
9 IN NN RB CD
10 POS NN IN DT

Figure 5.7: Constituents most frequently over- and under-proposed by our system.

5.3.1 Error Analysis

Parsing figures can only be a component of evaluating an unsupervised induction system.
Low scores may indicate systematic alternate analyses rather than true confusion, and the
Penn treebank is a sometimes arbitrary or even inconsistent gold standard. To give a better
sense of the kinds of errors the system is or is not making, we can look at which se-
quences are most often overproposed, or most often underproposed, compared to the tree-
bank parses.

Figure 5.7 shows the 10 most frequently over- and under-proposed sequences. The sys-
tem’s main error trends can be seen directly from these two lists. It forms MD VB verb
groups systematically, and it attaches the possessive particle to the right, like a determiner,
rather than to the left.5 It provides binary-branching analyses within NPs, normally result-
ing in correct extra N constituents, like JJ NN, which are not bracketed in the treebank.
More seriously, it tends to attach post-verbal prepositions to the verb and gets confused by
long sequences of nouns. A significant improvement over some earlier systems (both ours
and other researchers’) is the absence of subject-verb groups, which disappeared when we
switched to Psplit(B) for initial completions (see section 5.3.6); the more balanced subject-
verb analysis had a substantial combinatorial advantage with Pbin(B).

5Linguists have at times argued for both analyses: Halliday (1994) and Abney (1987), respectively.
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5.3.2 Multiple Constituent Classes

We also ran the system with multiple constituent classes, using a slightly more complex
generative model in which the bracketing generates a labeling L (a mapping from spans to
label classes C) which then generates the constituents and contexts.

P(S, L, B) = P(B)P(L|B)P(S|L)

P(L|B) =
∏

⟨i,j⟩∈spans(S)
P(Lij |Bij)

P(S|L) =
∏

⟨i,j⟩∈spans(S)
P(αij , xij|Lij)

=
∏

⟨i,j⟩
P(αij |Lij)P(xij |Lij)

The set of labels for constituent spans and distituent spans are forced to be disjoint, so
P(Lij |Bij) is given by

P(Lij |Bij) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 if Bij = false ∧ Lij = d

0 if Bij = false ∧ Lij ̸= d

0 if Bij = true ∧ Lij = d

1/|C − 1| if Bij = true ∧ Lij ̸= d

where d is a distinguished distituent-only label, and the other labels are sampled uniformly
at each constituent span.

Intuitively, it seems that more classes should help, by allowing the system to distinguish
different types of constituents and constituent contexts. However, it seemed to slightly hurt
parsing accuracy overall. Figure 5.8 compares the performance for 2 versus 12 classes; in
both cases, only one of the classes was allocated for distituents. Overall F1 dropped very
slightly with 12 classes, but the category recall numbers indicate that the errors shifted
around substantially. PP accuracy is lower, which is not surprising considering that PPs
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Classes Tags Precision Recall F1 NP Recall PP Recall VP Recall S Recall
2 Treebank 63.8 80.2 71.1 83.4 78.5 78.6 40.7
12 Treebank 63.6 80.0 70.9 82.2 59.1 82.8 57.0
2 Induced 56.8 71.1 63.2 52.8 56.2 90.0 60.5

Figure 5.8: Scores for the 2- and 12-class model with Treebank tags, and the 2-class model
with induced tags.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
NNP NNP NN VBD DT NN NNP NNP CD CD VBN IN MD VB JJ NN
NN IN NN NN JJ NNS NNP NNP NNP CD NN JJ IN MD RB VB JJ NNS
IN DT NNS VBP DT NNS CC NNP IN CD CD DT NN VBN IN JJ JJ NN
DT JJ NNS VBD DT JJ NN POS NN CD NNS JJ CC WDT VBZ CD NNS
NN VBZ TO VB NN NNS NNP NNP NNP NNP CD CD IN CD CD DT JJ NN JJ IN NNP NN

Figure 5.9: Most frequent members of several classes found.

tend to appear rather optionally and in contexts in which other, easier categories also fre-
quently appear. On the other hand, embedded sentence recall is substantially higher, pos-
sibly because of more effective use of the top-level sentences which occur in the context
⋄–⋄.

The classes found, as might be expected, range from clearly identifiable to nonsense.
Note that simply directly clustering all sequence types into 12 categories based on their
local linear distributional signatures produced almost entirely the latter, with clusters rep-
resenting various distituent types. Figure 5.9 shows several of the 12 classes. Class 0 is the
model’s distituent class. Its most frequent members are a mix of obvious distituents (IN DT,
DT JJ, IN DT, NN VBZ) and seemingly good sequences like NNP NNP. However, there are
many sequences of 3 or more NNP tags in a row, and not all adjacent pairs can possibly be
constituents at the same time. Class 1 is mainly common NP sequences, class 2 is proper
NPs, class 3 is NPs which involve numbers, and class 6 is N sequences, which tend to be
linguistically right but unmarked in the treebank. Class 4 is a mix of seemingly good NPs,
often from positions like VBZ–NN where they were not constituents, and other sequences
that share such contexts with otherwise good NP sequences. This is a danger of not jointly
modeling yield and context, and of not modeling any kind of recursive structure: our model
cannot learn that a sequence is a constituent only in certain contexts (the best we can hope
for is that such contexts will be learned as strong distituent contexts). Class 5 is mainly
composed of verb phrases and verb groups. No class corresponded neatly to PPs: perhaps
because they have no signature contexts. The 2-class model is effective at identifying them
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only because they share contexts with a range of other constituent types (such as NPs and
VPs).

5.3.3 Induced Parts-of-Speech

A reasonable criticism of the experiments presented so far, and some other earlier work,
is that we assume treebank part-of-speech tags as input. This criticism could be two-fold.
First, state-of-the-art supervised PCFGs do not perform nearly so well with their input
delexicalized. We may be reducing data sparsity and making it easier to see a broad picture
of the grammar, but we are also limiting how well we can possibly do. It is certainly worth
exploring methods which supplement or replace tagged input with lexical input. However,
we address here the more serious criticism: that our results stem from clues latent in the
treebank tagging information which are conceptually posterior to knowledge of structure.
For instance, some treebank tag distinctions, such as particle (RP) vs. preposition (IN) or
predeterminer (PDT) vs. determiner (DT) or adjective (JJ), could be said to import into the
tag set distinctions that can only be made syntactically.

To show results from a complete grammar induction system, we also did experiments
starting with an automatic clustering of the words in the treebank (details in section 2.1.4.
We do not believe that the quality of our tags matches that of the better methods of Schütze
(1995), much less the recent results of Clark (2000). Nevertheless, using these tags as
input still gave induced structure substantially above right-branching. Figure 5.8 shows
the performance with induced tags compared to correct tags. Overall F1 has dropped, but,
interestingly, VP and S recall are higher. This seems to be due to a marked difference
between the induced tags and the treebank tags: nouns are scattered among a dispropor-
tionately large number of induced tags, increasing the number of common NP sequences,
but decreasing the frequency of each.

5.3.4 Convergence and Stability

A common issue with many previous systems is their sensitivity to initial choices. While
the model presented here is clearly sensitive to the quality of the input tagging, as well
as the qualitative properties of the initial completions, it does not suffer from the need to
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Figure 5.10: F1 is non-decreasing until convergence.

inject noise to avoid an initial saddle point. Training on random subsets of the training data
brought lower performance, but constantly lower over equal-size splits.

Figure 5.10 shows the overall F1 score and the data likelihood according to our model
during convergence.6 Surprisingly, both are non-decreasing as the system iterates, indicat-
ing that data likelihood in this model corresponds well with parse accuracy.7 Figure 5.12
shows recall for various categories by iteration. NP recall exhibits the more typical pattern
of a sharp rise followed by a slow fall, but the other categories, after some initial drops, all
increase until convergence.8 These graphs stop at 40 iterations. The time to convergence
varied according to smoothing amount, number of classes, and tags used, but the system
almost always converged within 80 iterations, usually within 40.

5.3.5 Partial Supervision

For many practical applications, supplying a few gold parses may not be much more expen-
sive than deploying a fully unsupervised system. To test the effect of partial supervision,
we trained the CCM model on 90% of the WSJ10 corpus, and tested it on the remaining

6The data likelihood is not shown exactly, but rather we show the linear transformation of it calculated by
the system (internal numbers were scaled to avoid underflow).

7Pereira and Schabes (1992) find otherwise for PCFGs.
8Models in the next chapter also show good correlation between likelihood and evaluation metrics, but

generally not monotonic as in the present case.
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Figure 5.11: Partial supervision

10%. Various fractions of that 90% were labeled with their gold treebank parses; during
the learning phase, analyses which crossed the brackets of the labeled parses were given
zero weight (but the CCM still filled in binary analyses inside flat gold trees). Figure 5.11
shows F1 on the held-out 10% as supervision percent increased. Accuracy goes up initially,
though it drops slightly at very high supervision levels. The most interesting conclusion
from this graph is that small amounts of supervision do not actually seem to help the CCM
very much, at least when used in this naive fashion.

5.3.6 Details

There are several details necessary to get good performance out of this model.

Initialization

The completions in this model, just as in the inside-outside algorithm for PCFGs, are dis-
tributions over trees. For natural language trees, these distributions are very non-uniform.
Figure 5.13 shows empirical bracketing distributions for three languages. These distribu-
tions show, over treebank parses of 10-word sentences, the fraction of trees with a con-
stituent over each start and end point. On the other hand, figure 5.14 (b) shows the bracket
fractions in a distribution which puts equal weight on each (unlabeled) binary tree. The
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Figure 5.12: Recall by category during convergence.

most important difference between the actual and tree-uniform bracketing distributions is
that uniform trees are dramatically more likely to have central constituents, while in natural
language constituents tend to either start at the beginning of a sentence or end at the end of
the sentence.

What this means for an induction algorithm is important. Most “uniform” grammars,
such as a PCFG in which all rewrites have equal weight, or our current proposal with the
constituent and context multinomials being uniform, will have the property that all trees
will receive equal scores (or roughly so, modulo any initial perturbation). Therefore, if we
begin with an E-step using such a grammar, most first M-steps will be presented with a
posterior that looks like figure 5.14(b). If we have a better idea about what the posteriors
should look like, we can begin with an E-step instead, such as the one where all non-
trivial brackets are equally likely, shown in figure 5.14(a) (this bracket distribution does
not correspond to any distribution over binary trees).

Now, we don’t necessarily know what the posterior should look like, and we don’t want
to bias it too much towards any particular language. However, we found that another rel-
atively neutral distribution over trees made a good initializer. In particular, consider the
following uniform-splitting process of generating binary trees over k terminals: choose
a split point at random, then recursively build trees by this process on each side of the
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Figure 5.13: Empirical bracketing distributions for 10-word sentences in three languages
(see chapter 2 for corpus descriptions).
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Figure 5.14: Bracketing distributions for several notions of “uniform”: all brackets having
equal likelihood, all trees having equal likelihood, and all recursive splits having equal
likelihood.
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Initialization Precision Recall F1 CB
Tree Uniform 55.5 70.5 62.1 1.58
Bracket Uniform 55.6 70.6 62.2 1.57
Split Uniform 64.7 82.2 72.4 0.99
Empirical 65.5 83.2 73.3 1.00

Figure 5.15: CCM performance on WSJ10 as the initializer is varied. Unlike other num-
bers in this chapter, these values are micro-averaged at the bracket level, as is typical for
supervised evaluation, and give credit for the whole-sentence bracket).

split. This process gives a distribution Psplit which puts relatively more weight on unbal-
anced trees, but only in a very general, non language-specific way. The posterior of the
split-uniform distribution is shown in figure 5.14 (c). Another useful property of the split
distribution is that it can be calculated in closed form (details in appendix B.2).

In figure 5.13, aside from the well-known right-branching tendency of English (and
Chinese), a salient characteristic of all three languages is that central brackets are relatively
rare. The split-uniform distribution also shows this property, while the bracket-uniform
distribution and the “natural” tree-uniform distribution do not. Unsurprisingly, results
when initializing with the bracket-uniform and tree-uniform distributions were substan-
tially worse than using the split-uniform one. Using the actual posterior was, interestingly,
only slightly better (see figure 5.15).

While the split distribution was used as an initial completion, it was not used in the
model itself. It seemed to bias too strongly against balanced structures, and led to entirely
linear-branching structures.

Smoothing

The smoothing used was straightforward, but very important. For each yield α or context
x, we added 10 counts of that item: 2 as a constituent and 8 as a distituent. This reflected
the relative skew of random spans being more likely to be distituents.
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Sentence Length

A weakness of the current model is that it performs much better on short sentences than
longer ones: F1 drops all the way to 53.4% on sentences of length up to 15 (see figure 6.9 in
section 6.3). One likely cause is that as spans get longer, span type counts get smaller, and
so the parsing is driven by the less-informative context multinomials. Indeed, the primary
strength of this system is that it chunks simple NP and PP groups well; longer sentences are
less well-modeled by linear spans and have more complex constructions: relative clauses,
coordination structures, and so on. The improved models in chapter 6 degrade substantially
less with increased sentence length (section 6.3).

5.4 Conclusions

We have presented a simple generative model for the unsupervised distributional induction
of hierarchical linguistic structure. The system achieves the above-baseline unsupervised
parsing scores on the WSJ10 and ATIS data sets. The induction algorithm combines the
benefits of EM-based parameter search and distributional clustering methods. We have
shown that this method acquires a substantial amount of correct structure, to the point that
the most frequent discrepancies between the induced trees and the treebank gold standard
are systematic alternate analyses, many of which are linguistically plausible. We have
shown that the system is not overly reliant on supervised POS tag input, and demonstrated
increased accuracy, speed, simplicity, and stability compared to previous systems.



Chapter 6

Dependency Models

6.1 Unsupervised Dependency Parsing

Most recent work (and progress) in unsupervised parsing has come from tree or phrase-
structure based models, but there are compelling reasons to reconsider unsupervised depen-
dency parsing as well. First, most state-of-the-art supervised parsers make use of specific
lexical information in addition to word-class level information – perhaps lexical informa-
tion could be a useful source of information for unsupervised methods. Second, a central
motivation for using tree structures in computational linguistics is to enable the extraction
of dependencies – function-argument and modification structures – and it might be more
advantageous to induce such structures directly. Third, as we show below, for languages
such as Chinese, which have few function words, and for which the definition of lexical
categories is much less clear, dependency structures may be easier to detect.

6.1.1 Representation and Evaluation

An example dependency representation of a short sentence is shown in figure 6.1(a), where,
following the traditional dependency grammar notation, the regent or head of a dependency
is marked with the tail of the dependency arrow, and the dependent is marked with the ar-
rowhead (Mel′čuk 1988). It will be important in what follows to see that such a represen-
tation is isomorphic (in terms of strong generative capacity) to a restricted form of phrase

79
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structure grammar, where the set of terminals and nonterminals is identical, and every rule
is of the form X→ X Y or X→ Y X (Miller 1999), giving the isomorphic representation
of figure 6.1(a) shown in figure 6.1(b).1 Depending on the model, part-of-speech categories
may be included in the dependency representation, as suggested here, or dependencies may
be directly between words (bilexical dependencies). Below, we will assume an additional
reserved nonterminal ROOT, whose sole dependent is the head of the sentence. This sim-
plifies the notation, math, and the evaluation metric.

A dependency analysis will always consist of exactly as many dependencies as there are
words in the sentence. For example, in the dependency structure of figure 6.1(b), the depen-
dencies are {(ROOT, fell), (fell, payrolls), (fell, in), (in, September), (payrolls, Factory)}.
The quality of a hypothesized dependency structure can hence be evaluated by accuracy as
compared to a gold-standard dependency structure, by reporting the percentage of depen-
dencies shared between the two analyses.

It is important to note that the Penn treebanks do not include dependency annotations;
however, the automatic dependency rules from (Collins 1999) are sufficiently accurate to be
a good benchmark for unsupervised systems for the time being (though see below for spe-
cific issues). Similar head-finding rules were used for Chinese experiments. The NEGRA
corpus, however, does supply hand-annotated dependency structures.

Where possible, we report an accuracy figure for both directed and undirected depen-
dencies. Reporting undirected numbers has two advantages: first, it facilitates comparison
with earlier work, and, more importantly, it allows one to partially obscure the effects of
alternate analyses, such as the systematic choice between a modal and a main verb for the
head of a sentence (in either case, the two verbs would be linked, but the direction would
vary).

6.1.2 Dependency Models

The dependency induction task has received relatively little attention; the best known work
is Carroll and Charniak (1992), Yuret (1998), and Paskin (2002). All systems that we are

1Strictly, such phrase structure trees are isomorphic not to flat dependency structures, but to specific
derivations of those structures which specify orders of attachment among multiple dependents which share a
common head.
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Figure 6.1: Three kinds of parse structures.

• • • • • ROOT

Figure 6.2: Dependency graph with skeleton chosen, but words not populated.

aware of operate under the assumption that the probability of a dependency structure is the
product of the scores of the dependencies (attachments) in that structure. Dependencies
are seen as ordered (head, dependent) pairs of words, but the score of a dependency can
optionally condition on other characteristics of the structure, most often the direction of the
dependency (whether the arrow points left or right).

Some notation before we present specific models: a dependency d is a pair ⟨h, a⟩ of a
head and an argument, which are words in a sentence s, in a corpus S. For uniformity of
notation with chapter 5, words in s are specified as size-one spans of s: for example the
first word would be 0s1. A dependency structure D over a sentence is a set of dependen-
cies (arcs) which form a planar, acyclic graph rooted at the special symbol ROOT, and in
which each word in s appears as an argument exactly once. For a dependency structureD,
there is an associated graph G which represents the number of words and arrows between
them, without specifying the words themselves (see figure 6.2). A graph G and sentence
s together thus determine a dependency structure. The dependency structure is the object
generated by all of the models that follow; the steps in the derivations vary from model to



82 CHAPTER 6. DEPENDENCY MODELS

model.

Existing generative dependency models intended for unsupervised learning have chosen
to first generate a word-free graph G, then populate the sentence s conditioned on G. For
instance, the model of Paskin (2002), which is broadly similar to the semi-probabilistic
model in Yuret (1998), first chooses a graph G uniformly at random (such as figure 6.2),
then fills in the words, starting with a fixed root symbol (assumed to be at the rightmost
end), and working down G until an entire dependency structure D is filled in (figure 6.1a).
The corresponding probabilistic model is

P(D) = P(s, G)

= P(G)P(s|G)

= P(G)
∏

(i,j,dir)∈G

P(i−1si|j−1sj, dir) .

In Paskin (2002), the distributionP(G) is fixed to be uniform, so the only model parameters
are the conditional multinomial distributions P(a|h, dir) that encode which head words
take which other words as arguments. The parameters for left and right arguments of
a single head are completely independent, while the parameters for first and subsequent
arguments in the same direction are identified.

In those experiments, the model above was trained on over 30Mwords of raw newswire,
using EM in an entirely unsupervised fashion, and at great computational cost. However,
as shown in figure 6.3, the resulting parser predicted dependencies at below chance level
(measured by choosing a random dependency structure). This below-random performance
seems to be because the model links word pairs which have high mutual information (such
as occurrences of congress and bill) regardless of whether they are plausibly syntactically
related. In practice, high mutual information between words is often stronger between
two topically similar nouns than between, say, a preposition and its object (worse, it’s also
usually stronger between a verb and a selected preposition than that preposition and its
object).
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Model Dir. Undir.
English (WSJ)
Paskin 01 39.7
RANDOM 41.7
Charniak and Carroll 92-inspired 44.7
ADJACENT 53.2
DMV 54.4
English (WSJ10)
RANDOM 30.1 45.6
ADJACENT 33.6 56.7
DMV 43.2 63.7
German (NEGRA10)
RANDOM 21.8 41.5
ADJACENT 32.6 51.2
DMV 36.3 55.8
Chinese (CTB10)
RANDOM 35.9 47.3
ADJACENT 30.2 47.3
DMV 42.5 54.2

Figure 6.3: Parsing performance (directed and undirected dependency accuracy) of various
dependency models on various treebanks, along with baselines.

i

−→
h

j

a

k

−→
h

i

a

j

←−−→
h

k

←−−→
h

i

−→
h

j

←−−→
h

STOP

i

←−−→
h

j

h

STOP

(a) (b) (c) (d)

Figure 6.4: Dependency configurations in a lexicalized tree: (a) right attachment, (b) left
attachment, (c) right stop, (d) left stop. h and a are head and argument words, respectively,
while i, j, and k are positions between words. Not show is the step (if modeled) where
the head chooses to generate right arguments before left ones, or the configurations if left
arguments are to be generated first.
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The specific connection which argues why this model roughly learns to maximize mu-
tual information is that in maximizing

P(D) = P(G)
∏

(i,j,dir)∈G

P(i−1si|j−1sj, dir)

it is also maximizing

P(D)

P′(D)
=

P(G)
∏

(i,j,dir)∈G P(i−1si|j−1sj , dir)

P(G)
∏

i P(i−1si)

which, dropping the dependence on directionality, gives

P(D)

P′(D)
=

P(G)
∏

(i,j)∈G P(i−1si|j−1sj)

P(G)
∏

i P(i−1si)

=
∏

(i,j)∈G

P(i−1si,j−1 sj)

P(i−1si)P(j−1sj)

which is a product of (pointwise) mutual information terms.
One might hope that the problem with this model is that the actual lexical items are

too semantically charged to represent workable units of syntactic structure. If one were
to apply the Paskin (2002) model to dependency structures parameterized simply on the
word-classes, the result would be isomorphic to the “dependency PCFG” models described
in Carroll and Charniak (1992) (see section 5.1). In these models, Carroll and Charniak
considered PCFGs with precisely the productions (discussed above) that make them iso-
morphic to dependency grammars, with the terminal alphabet being simply parts-of-speech.
Here, the rule probabilities are equivalent to P(Y|X, right) and P(Y|X, left) respectively.2

The actual experiments in Carroll and Charniak (1992) do not report accuracies that we
can compare to, but they suggest that the learned grammars were of extremely poor quality.
As discussed earlier, a main issue in their experiments was that they randomly initialized
the production (attachment) probabilities. As a result, their learned grammars were of very

2There is another, more subtle distinction: in the Paskin work, a canonical ordering of multiple attach-
ments was fixed, while in the Carroll and Charniak work all attachment orders are considered to be different
(equal scoring) structures when listing analyses, giving a relative bias in the Carroll and Charniak work to-
wards structures where heads take more than one argument.
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poor quality and had high variance. However, one nice property of their structural con-
straint, which all dependency models share, is that the symbols in the grammar are not
symmetric. Even with a grammar in which the productions are initially uniform, a sym-
bol X can only possibly have non-zero posterior likelihood over spans which contain a
matching terminal X. Therefore, one can start with uniform rewrites and let the interac-
tion between the data and the model structure break the initial symmetry. If one recasts
their experiments in this way, they achieve an accuracy of 44.7% on the Penn treebank,
which is higher than choosing a random dependency structure, but lower than simply link-
ing all adjacent words into a left-headed (and right-branching) structure (53.2%). That this
should outperform the bilexical model is in retrospect unsurprising: a major source of non-
syntactic information has been hidden from the model, and accordingly there is one fewer
unwanted trend that might be detected in the process of maximizing data likelihood.

A huge limitation of both of the above models, however, is that they are incapable
of encoding even first-order valence facts, valence here referring in a broad way to the
regularities in number and type of arguments a word or word class takes (i.e., including
but not limited to subcategorization effects). For example, the former model will attach all
occurrences of “new” to “york,” even if they are not adjacent, and the latter model learns
that nouns to the left of the verb (usually subjects) attach to the verb. But then, given a
NOUN NOUN VERB sequence, both nouns will attach to the verb – there is no way that
the model can learn that verbs have exactly one subject. We now turn to an improved
dependency model that addresses this problem.

6.2 An Improved Dependency Model

The dependency models discussed above are distinct from dependency models used inside
high-performance supervised probabilistic parsers in several ways. First, in supervised
models, a head outward process is modeled (Eisner 1996, Collins 1999). In such processes,
heads generate a sequence of arguments outward to the left or right, conditioning on not
only the identity of the head and direction of the attachment, but also on some notion of
distance or valence. Moreover, in a head-outward model, it is natural to model stop steps,
where the final argument on each side of a head is always the special symbol STOP. Models
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like Paskin (2002) avoid modeling STOP by generating the graph skeletonG first, uniformly
at random, then populating the words of s conditioned on G. Previous work (Collins 1999)
has stressed the importance of including termination probabilities, which allows the graph
structure to be generated jointly with the terminal words, precisely because it does allow
the modeling of required dependents.

We propose a simple head-outward dependency model over word classes which in-
cludes a model of valence, which we call DMV (for dependency model with valence). We
begin at the ROOT. In the standard way (see below), each head generates a series of non-
STOP arguments to one side, then a STOP argument to that side, then non-STOP arguments
to the other side, then a second STOP.

For example, in the dependency structure in figure 6.1, we first generate a single child of
ROOT, here fell. Then we recurse to the subtree under fell. This subtree begins with gener-
ating the right argument in. We then recurse to the subtree under in (generating September
to the right, a right STOP, and a left STOP). Since there are no more right arguments after
in, its right STOP is generated, and the process moves on to the left arguments of fell.

In this process, there are two kinds of derivation events, whose local probability factors
constitute the model’s parameters. First, there is the decision at any point whether to termi-
nate (generate STOP) or not: PSTOP(STOP|h, dir, adj). This is a binary decision conditioned
on three things: the head h, the direction (generating to the left or right of the head), and
the adjacency (whether or not an argument has been generated yet in the current direction,
a binary variable). The stopping decision is estimated directly, with no smoothing. If a
stop is generated, no more arguments are generated for the current head to the current side.
If the current head’s argument generation does not stop, another argument is chosen us-
ing: PCHOOSE(a|h, dir). Here, the argument is picked conditionally on the identity of the
head (which, recall, is a word class) and the direction. This term, also, is not smoothed in
any way. Adjacency has no effect on the identity of the argument, only on the likelihood
of termination. After an argument is generated, its subtree in the dependency structure is
recursively generated.

This process should be compared to what is generally done in supervised parsers (Collins
1999, Charniak 2000, Klein and Manning 2003). The largest difference is that supervised
parsers condition actions on the identity of the head word itself. The lexical identity is a
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good feature to have around in a supervised system, where syntactic lexical facts can be
learned effectively. In our unsupervised experiments, having lexical items in the model led
to distant topical associations being preferentially modeled over class-level syntactic pat-
terns, though it would clearly be advantageous to discover a mechanism for acquiring the
richer kinds of models used in the supervised case. Supervised parsers’ decisions to stop or
continue generating arguments are also typically conditioned on finer notions of distance
than adjacent/non-adjacent (buckets or punctuation-defined distance). Moreover, decisions
about argument identity are conditioned on the identity of previous arguments, not just a
binary indicator of whether there were any previous ones. This richer history allows for
the explicit modeling of inter-argument correlations, such as subcategorization/selection
preferences and argument ordering trends. Again, for the unsupervised case, this much
freedom can be dangerous. We did not use such richer histories, their success in supervised
systems suggests that they could be exploited here, perhaps in a system which originally
ignored richer context, then gradually began to model it.

Formally, for a dependency structureD, let each word h have left dependents depsD(h, l)

and right dependents depsD(h, r). The following recursion defines the probability of the
fragmentD(h) of the dependency tree rooted at h:

P(D(h)) =
∏

dir∈{l,r}

∏

a∈depsD(h,dir)

PSTOP(¬STOP|h, dir, adj)

PCHOOSE(a|h, dir)P(D(a))

PSTOP(STOP|h, dir, adj)

One can view a structure generated by this derivational process as a “lexicalized”
tree composed of the local binary and unary context-free configurations shown in fig-
ure 6.4.3 Each configuration equivalently represents either a head-outward derivation step
or a context-free rewrite rule. There are four such configurations. Figure 6.4(a) shows a
head h taking a right argument a. The tree headed by h contains h itself, possibly some right

3It is lexicalized in the sense that the labels in the tree are derived from terminal symbols, but in our
experiments the terminals were word classes, not individual lexical items.
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arguments of h, but no left arguments of h (they attach after all the right arguments). The
tree headed by a contains a itself, along with all of its left and right children. Figure 6.4(b)
shows a head h taking a left argument a – the tree headed by hmust have already generated
its right stop to do so. Figure 6.4(c) and figure 6.4(d) show the sealing operations, where
STOP derivation steps are generated. The left and right marks on node labels represent left
and right STOPs that have been generated.4

The basic inside-outside algorithm (Baker 1979) can be used for re-estimation. For
each sentence s ∈ S, it gives us cs(x : i, j), the expected fraction of parses of s with a node
labeled x extending from position i to position j. The model can be re-estimated from these
counts. For example, to re-estimate an entry of PSTOP(STOP|h, left, non-adj) according to
a current model Θ, we calculate two quantities.5 The first is the (expected) number of

trees headed by
←−−→
h whose start position i is strictly left of h. The second is the number of

trees headed by h with start position i strictly left of h. The ratio is the MLE of that local
probability factor:

PSTOP(STOP|h, left, non-adj) =
∑

s∈S

∑

i<loc(h)

∑

k c(h : i, k)

∑

s∈S

∑

i<loc(h)

∑

k c(
←−−→
h : i, k)

This can be intuitively thought of as the relative number of times a tree headed by h had al-
ready taken at least one argument to the left, had an opportunity to take another, but didn’t.6

Section A.2 has a more detailed exposition of the details of calculating the necessary ex-
pectations.

Initialization is important to the success of any local search procedure. As in chapter 5,
we chose to initialize EM not with an initial model, but with an initial guess at posterior
distributions over dependency structures (completions). For the first-round, we constructed

4Note that the asymmetry of the attachment rules enforces the right-before-left attachment convention.
This is harmless and arbitrary as far as dependency evaluations go, but imposes an X-bar-like structure on the
constituency assertions made by this model. This bias/constraint is dealt with in section 6.3.

5To simplify notation, we assume each word h occurs at most one time in a given sentence, between
indexes loc(h) and loc(h) + 1.

6As a final note, in addition to enforcing the right-argument-first convention, we constrained ROOT to
have at most a single dependent, by a similar device.
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a somewhat ad-hoc “harmonic” completion where all non-ROOT words took the same num-
ber of arguments, and each took other words as arguments in inverse proportion to (a con-
stant plus) the distance between them. The ROOT always had a single argument and took
each word with equal probability. This structure had two advantages: first, when testing
multiple models, it is easier to start them all off in a common way by beginning with an
M-step, and, second, it allowed us to point the model in the vague general direction of
what linguistic dependency structures should look like. It should be emphasized that this
initialization was important in getting reasonable patterns out of this model.

On the WSJ10 corpus, the DMV model recovers a substantial fraction of the broad de-
pendency trends: 43.2% of guessed directed dependencies were correct (63.7% ignoring
direction). To our knowledge, this is the first published result to break the adjacent-word
heuristic (at 33.6% for this corpus). Verbs are the sentence heads, prepositions take fol-
lowing noun phrases as arguments, adverbs attach to verbs, and so on. Figure 6.5 shows
the most frequent discrepancies between the test dependencies and the model’s guesses.
Most of the top mismatches stem from the model systematically choosing determiners to
be the heads of noun phrases, where the test trees have the rightmost noun as the head.
The model’s choice is supported by a good deal of linguistic research (Abney 1987), and is
sufficiently systematic that we also report the scores where the NP headship rule is changed
to percolate determiners when present. On this adjusted metric, the score jumps hugely to
55.7% directed (and 67.9% undirected). There are other discrepancy types, such as modals
dominating main verbs, choice of the wrong noun as the head of a noun cluster, and having
some sentences headed by conjunctions.

This model also works on German and Chinese at above-baseline levels (55.8% and
54.2% undirected, respectively), with no modifications whatsoever. In German, the largest
source of errors is also the systematic postulation of determiner-headed noun-phrases.
The second largest source is that adjectives are (incorrectly) considered to be the head
in adjective-noun units. The third source is the incorrect attachment of adjectives into de-
terminers inside definite NPs. Mistakes involving verbs and other classes are less common,
but include choosing past participles rather than auxiliaries as the head of periphrastic verb
constructions. In Chinese, there is even more severe confusion inside nominal sequences,
possibly because the lack of functional syntax makes the boundaries between adjacent NPs
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English using DMV
Overproposals Underproposals

DT← NN 3083 DT→ NN 3079
NNP← NNP 2108 NNP→ NNP 1899
CC→ ROOT 1003 IN← NN 779
IN← DT 858 DT→ NNS 703
DT← NNS 707 NN→ VBZ 688
MD→ VB 654 NN← IN 669
DT→ IN 567 MD← VB 657
DT→ VBD 553 NN→ VBD 582
TO→ VB 537 VBD← NN 550
DT→ VBZ 497 VBZ← NN 543

English using CCM+DMV
Overproposals Underproposals

DT← NN 3474 DT→ NN 3079
NNP← NNP 2096 NNP→ NNP 1898
CD→ CD 760 IN← NN 838
IN← DT 753 NN→ VBZ 714
DT← NNS 696 DT→ NNS 672
DT→ IN 627 NN← IN 669
DT→ VBD 470 CD← CD 638
DT→ VBZ 420 NN→ VBD 600
NNP→ ROOT 362 VBZ← NN 553
NNS→ IN 347 VBD← NN 528

Figure 6.5: Dependency types most frequently overproposed and underproposed for En-
glish, with the DMV alone and with the combination model.
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unclear. For example, temporal nouns often take adjacent proper nouns as arguments – all
other classes of errors are much less salient.

This dependency induction model is reasonably successful. However, the model can be
substantially improved by paying more attention to syntactic constituency, at the same time
as modeling dependency structure. To this end, we next present a combined model that
exploits kinds of structure. As we will see, the combined model finds correct dependencies
more successfully than the model above, and finds constituents more successfully than the
model of chapter 5.

6.3 A Combined Model

The CCM and the DMV models have a common ground. Both can be seen as models over
lexicalized trees composed of the configurations in figure 6.4. For the DMV, it is already a
model over these structures. At the “attachment” rewrite for the CCM in (a/b), we assign
the quantity:

P(isk|true)P(i−1si ∼ ksk+1|true)
P(isk|false)P(i−1si ∼ ksk+1|false)

which is the odds ratio of generating the subsequence and context for span ⟨i, k⟩ as a con-
stituent as opposed to as a non-constituent. If we multiply all trees’ attachment scores
by

∏

⟨i,j⟩
P(isj|false)P(i−1si ∼ jsj+1|false)

the denominators of the odds ratios cancel, and we are left with each tree being assigned
the probability it would have received under the CCM.7

In this way, both models can be seen as generating either constituency or dependency
structures. Of course, the CCM will generate fairly random dependency structures (con-
strained only by bracketings). Getting constituency structures from the DMV is also prob-
lematic, because the choice of which side to first attach arguments on has ramifications on
constituency – it forces x-bar-like structures – even though it is an arbitrary convention as

7This scoring function as described is not a generative model over lexicalized trees, because it has no
generation step at which nodes’ lexical heads are chosen. This can be corrected by multiplying in a “head
choice” factor of 1/(k − j) at each final “sealing” configuration (d). In practice, this correction factor was
harmful for the model combination, since it duplicated a strength of the dependency model, badly.
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far as dependency evaluations are concerned. For example, if we attach right arguments
first, then a verb with a left subject and a right object will attach the object first, giving
traditional VPs, while the other attachment order gives subject-verb groups. To avoid this
bias, we alter the DMV in the following ways. When using the dependency model alone,
we allow each word to have even probability for either generation order, this order being
chosen as the first step in a head’s outward dependency generation process (in each actual
head derivation, only one order occurs). When using the models together, better perfor-
mance was obtained by releasing the one-side-attaching-first requirement entirely.8

In figure 6.6, we give the behavior of the CCM constituency model and the DMV
dependency model on both constituency and dependency induction. Unsurprisingly, their
strengths are complementary. The CCM is better at recovering constituency (except for
Chinese where neither is working particularly well), and the dependency model is better
at recovering dependency structures. It is reasonable to hope that a combination model
might exhibit the best of both. In the supervised parsing domain, for example, scoring a
lexicalized tree with the product of a simple lexical dependency model and a PCFG model
can outperform each factor on its respective metric (Klein and Manning 2003).

In the combined model, we score each tree with the product of the probabilities from
the individual models above. We use the inside-outside algorithm to sum over all lexi-
calized trees, similarly to the situation in section 6.2. The tree configurations are shown
in figure 6.4. For each configuration, the relevant scores from each model are multiplied
together. For example, consider figure 6.4(a). From the CCM we generate isk as a con-
stituent and its corresponding context. From the dependency model, we pay the cost of
h taking a as a right argument (PCHOOSE), as well as the cost of not stopping (PSTOP). The
other configurations are similar. We then run the inside-outside algorithm over this product
model. From the results, we can extract the statistics needed to re-estimate both individual
models.9

The models in combination were initialized in the same way as when they were run
individually. Sufficient statistics were separately taken off these individual completions.
From then on, the resulting models were used together during re-estimation.

8With no one-side-first constraint, the proper derivation process chooses whether to stop entirely before
each dependent, and if not choose a side to generate on, then generate an argument to that side.

9The product, like the CCM itself, is mass-deficient.
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Constituency Dependency
Model UP UR UF1 Dir Undir
English (WSJ10 – 7422 Sentences)
LBRANCH/RHEAD 25.6 32.6 28.7 33.6 56.7
RANDOM 31.0 39.4 34.7 30.1 45.6
RBRANCH/LHEAD 55.1 70.0 61.7 24.0 55.9
DMV 46.6 59.2 52.1 43.2 62.7
CCM 64.2 81.6 71.9 23.8 43.3
DMV+CCM (POS) 69.3 88.0 77.6 47.5 64.5
DMV+CCM (DISTR.) 65.2 82.8 72.9 42.3 60.4
UBOUND 78.8 100.0 88.1 100.0 100.0
German (NEGRA10 – 2175 Sentences)
LBRANCH/RHEAD 27.4 48.8 35.1 32.6 51.2
RANDOM 27.9 49.6 35.7 21.8 41.5
RBRANCH/LHEAD 33.8 60.1 43.3 21.0 49.9
DMV 38.4 69.5 49.5 40.0 57.8
CCM 48.1 85.5 61.6 25.5 44.9
DMV+CCM 49.6 89.7 63.9 50.6 64.7
UBOUND 56.3 100.0 72.1 100.0 100.0
Chinese (CTB10 – 2437 Sentences)
LBRANCH/RHEAD 26.3 48.8 34.2 30.2 43.9
RANDOM 27.3 50.7 35.5 35.9 47.3
RBRANCH/LHEAD 29.0 53.9 37.8 14.2 41.5
DMV 35.9 66.7 46.7 42.5 54.2
CCM 34.6 64.3 45.0 23.8 40.5
DMV+CCM 33.3 62.0 43.3 55.2 60.3
UBOUND 53.9 100.0 70.1 100.0 100.0

Figure 6.6: Parsing performance of the combined model on various treebanks, along with
baselines.
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Figure 6.6 summarizes the results. The combined model beats the CCM on English
F1: 77.6 vs. 71.9. To give a concrete indication of how the constituency analyses differ
with and without the addition of the dependency model, figure 6.7 shows the sequences
which were most frequently overproposed and underproposed as constituents, as well as
the crossing proposals, which are the overproposals which actually cross a gold bracket.
Note that in the combination model, verb groups disappear and adverbs are handled more
correctly (this can be seen in both mistake summaries).

Figure 6.6 also shows the combination model’s score when using word classes which
were induced entirely automatically, using the same induced classes as in chapter 5. These
classes show some degradation, e.g. 72.9 F1, but it is worth noting that these totally unsu-
pervised numbers are better than the performance of the CCM model running off of Penn
treebank word classes. Again, if we modify the gold standard so as to make determiners
the head of NPs, then this model with distributional tags scores even better with 50.6% on
directed and 64.8% on undirected dependency accuracy.

On the German data, the combination again outperforms each factor alone, though
while the combination was most helpful at boosting constituency quality for English, for
German it provided a larger boost to the dependency structures. Figure 6.8 shows the
common mistake sequences for German, with and without the DMV component. The most
dramatic improvement is the more consistent use of verb-object VPs instead of subject-
verb groups. Note that for the German data, the gold standard is extremely flat. This is
why the precision is so low (49.6% in the combination model) despite the rather high recall
(89.7%): in fact the crossing bracket rate is extremely low (0.39, cf. 0.68 for the English
combination model).

Finally, on the Chinese data, the combination did substantially boost dependency accu-
racy over either single factor, but actually suffered a small drop in constituency.10 Overall,
the combination is able to combine the individual factors in an effective way.

To point out one final advantage of the combined model over the CCM (though not the
DMV), consider figure 6.9, which shows how the accuracy of the combined model degrades
with longer maximum sentence length (10 being WSJ10). On the constituency F1 measure,

10This seems to be partially due to the large number of unanalyzed fragments in the Chinese gold standard,
which leave a very large fraction of the posited bracketings completely unjudged.
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English using CCM
Overproposals Underproposals Crossing
JJ NN 1022 NNP NNP 183 MD VB 418

NNP NNP 453 TO CD CD 159 RB VB 306
MD VB 418 NNP POS 159 IN NN 192
DT NN 398 NN NNS 140 POS NN 172
RB VB 349 NN NN 101 CD CD IN CD CD 154
JJ NNS 320 CD CD 72 MD RB VB 148
NNP NN 227 IN CD 69 RB VBN 103
RB VBN 198 TO VB 66 CD NNS 80
IN NN 196 RB JJ 63 VNB TO 72
POS NN 172 IN NNP 62 NNP RB 66

English using CCM+DMV
Overproposals Underproposals Crossing
JJ NN 1022 NNP NNP 167 CD CD IN CD CD 154

NNP NNP 447 TO CD CD 154 NNS RB 133
DT NN 398 IN NN 76 NNP NNP NNP 67
JJ NNS 294 IN DT NN 65 JJ NN 66
NNP NN 219 IN CD 60 NNP RB 59
NNS RB 164 CD NNS 56 NNP NNP NNP NNP 51

NNP NNP NNP 156 NNP NNP NNP 54 NNP NNP 50
CD CD IN CD CD 155 IN NNP 54 NNS DT NN 41

TO CD CD IN CD CD 154 NN NNS 49 IN PRP 41
CD NN TO CD CD IN CD CD 120 RB JJ 47 RB PRP 33

Figure 6.7: Sequences most frequently overproposed, underproposed, and proposed in lo-
cations crossing a gold bracket for English, for the CCM and the combination model.
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German using CCM
Overproposals Underproposals Crossing
ADJA NN 461 APPR ART NN 97 ADJA NN 30
ART NN 430 APPR NN 84 ART NN VVPP 23

ART ADJA NN 94 APPR NE 46 CARD NN 18
KON NN 71 NE NE 32 NN VVPP 16
CARD NN 67 APPR ADJA NN 31 NE NE 15
PPOSAT NN 37 ADV ADJD 24 VVPP VAINF 13
ADJA NN NE 36 ADV ADV 23 ART NN PTKVZ 12
APPRART NN 33 APPR ART ADJA NN 21 NE NN 12

NE NE 30 NN NE 20 NE VVPP 12
ART NN VVPP 29 NN KON NN 19 ART NN VVINF 11

German using CCM+DMV
Overproposals Underproposals Crossing
ADJA NN 461 NE NE 30 ADJA NN 30
ART NN 430 NN KON NN 22 CARD NN 18

ART ADJA NN 94 NN NE 12 NE NE 17
KON NN 71 APPR NE 9 APPR NN 15
APPR NN 68 ADV PTKNEG 9 ART NN ART NN 14
CARD NN 67 VVPP VAINF 9 NE ADJA NN 11
NE ADJA NN 62 ADV ADJA 9 ADV ADJD 9
NE NE 38 ADV CARD 9 NN APPR NN 8

PPOSAT NN 37 ADJD ADJA 8 ADV NN 7
APPR ART NN 36 CARD CARD 7 APPRART NN NN 7

Figure 6.8: Sequences most frequently overproposed, underproposed, and proposed in lo-
cations crossing a gold bracket for German, for the CCM and the combination model.
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Figure 6.9: Change in parse quality as maximum sentence length increases: (a) CCM alone
vs. combination and (b) DMV alone vs. combination.

the combination degrades substantially more slowly with sentence length than the CCM
alone. This is not too surprising: the CCM’s strength is finding common short constituent
chunks: the DMV’s representation is less scale sensitive at inference time. What is a little
surprising is that the DMV and the combination actually converge in dependency accuracy
as sentences get longer – this may well be because as sentences get longer, the pressure
from the CCM gets relatively weaker: it is essentially agnostic about longer spans.

6.4 Conclusion

We have presented a successful new dependency-based model for the unsupervised in-
duction of syntactic structure, which picks up the key ideas that have made dependency
models successful in supervised statistical parsing work. We proceeded to show that it
works cross-linguistically. We then demonstrated how this model could be combined with
the constituent-induction model of chapter 5 to produce a combination which, in general,
substantially outperforms either individual model, on either metric. A key reason that these
models are capable of recovering structure more accurately than previous work is that they
minimize the amount of hidden structure that must be induced. In particular, neither model
attempts to learn intermediate, recursive categories with no direct connection to surface
statistics. For example, the CCM models nesting but not recursion. The dependency model
is a recursive model, but each tree node is headed by one of the leaves it dominates, so no
hidden categories must be posited. Moreover, in their basic forms presented here, neither
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model (nor their combination) requires any symmetry-breaking perturbations at initializa-
tion.



Chapter 7

Conclusions

There is a great deal of structure in human languages that is not explicit in the observed
input. One way or another, human language learners figure out how to analyze, process,
generalize, and produce languages to which they are exposed. If we wish to build systems
which interact with natural languages, we either have to take a supervised approach and
supply detailed annotation which makes all this hidden structure explicit, or we have to
develop methods of inducing this structure automatically. The former problem is well-
studied and well-understood; the latter problem is merely well-studied. This work has
investigated a specific corner of the language learning task: inducing constituency and
dependency tree structured analyses given only observations of grammatical sentences (or
word-class sequences). We have demonstrated for this task several systems which exceed
previous systems’ performance in extracting linguistically reasonable structure. Hopefully,
we have also provided some useful ideas about what does and does not work for this task,
both in our own systems and in other researchers’ work.

Many open questions and avenues of research remain, ranging from the extremely tech-
nical to the extremely broad. On the narrow side, machine learning issues exist for the
present models. Aside from the multi-class CCM, the models have the virtue that symbol
symmetries do not arise, so randomness is not needed at initialization. However, all models
are sensitive to initialization to some degree. Indeed, for the CCM, one of the contributions
of this work is the presentation of a better uniform initializer. In addition, the CCM model
family is probabilistically mass deficient; it redundantly generates the observations, and,
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most severely, its success may well rely on biases latent in this redundant generation. It
performs better on corpora with shorter sentences than longer sentences; part of this issue
is certainly that the linear sequences get extremely sparse for long sentences.

A little more broadly, the DMVmodels, which are motivated by dependency approaches
that have performed well in the supervised case, still underperform the theoretically less
satisfying CCM models. Despite an enduring feeling that lexical information beyond
word-class must be useful for learning language, it seems to be a statistical distraction
in some cases. General methods for starting with low-capacity models and gradually re-
leasing model parameters are needed – otherwise we will be stuck with a trade-off between
expressivity and learnability that will cap the achievable quality of inducible models.

Much more broadly, an ideal language learning system should not be disconnected from
other aspects of language understanding and use, such as the context in which the utterances
are situated. Without attempting to learn the meaning of sentences, success at learning their
grammatical structure is at best an illuminating stepping stone to other tasks and at worst
a data point for linguists interested in nativism. Moreover, from the standpoint of an NLP
researcher in need of a parser for a language lacking supervised tools, approaches which
are weakly supervised, requiring, say 100 or fewer example parses, are likely to be just as
reasonable as fully unsupervised methods, and one could reasonably hope that they would
provide better results. In fact, from an engineering standpoint, supplying a few parses is
generally much easier than tuning an unsupervised algorithm for a specific language.

Nonetheless, it is important to emphasize that this work has shown that much progress
in the unsupervised learning of real, broad-coverage parsers can come from careful under-
standing of the interaction between the representation of a probabilistic model and what
kinds of trends it detects in the data. We can not expect that unsupervised methods will
ever exceed supervised methods in cases where there is plenty of labeled training data,
but we can hope that, when only unlabeled data is available, unsupervised methods will
be important, useful tools, which additionally can shed light on how human languages are
structured, used, and learned.



Appendix A

Calculating Expectations for the Models

A.1 Expectations for the CCM

In estimating parameters for the CCM model, the computational bottleneck is the E-step,
where we must calculate posterior expectations of various tree configurations according
to a fixed parameter vector (chapter 5). This section gives a cubic dynamic program for
efficiently collecting these expectations.

The CCM model family is parameterized by two kinds of multinomials: the class-
conditional span generation terms PSPAN(α|c) and the class-conditional context generation
terms PCONTEXT(β|c), where c is a boolean indicating the constituency of the span, α is the
sequence filling that span, and β is the local linear context of that span. The score assigned
to a sentence s0,n under a single bracketing B is

P(s, B) = PTREE(B)
∏

⟨i,j⟩

PSPAN(α(i, j, s)|Bij)PCONTEXT(β(i, j, s)|Bij)

In PTREE(B), the bracketingsB with non-zero mass are in one-to-one correspondence with
the set of binary tree structures T . Therefore, we can rewrite this expression in terms of the
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constituent brackets in the tree T (B).

P(s, B) = PTREE(B)
∏

⟨i,j⟩∈T (B)

PSPAN(α(i, j, s)|true)PCONTEXT(β(i, j, s)|true)

∏

⟨i,j⟩/∈T (B)

PSPAN(α(i, j, s)|false)PCONTEXT(β(i, j, s)|false)

Since most spans in any given tree are distituents, we can also calculate the score for a
bracketing B by starting with the score for the all-distituent bracketing and multiplying in
correction factors for the spans which do occur as constituents in B:

P(s, B) = PTREE(B)
∏

⟨i,j⟩

PSPAN(α(i, j, s)|false)PCONTEXT(β(i, j, s)|false)

∏

⟨i,j⟩∈T (B)

PSPAN(α(i, j, s)|false)PCONTEXT(β(i, j, s)|false)
PSPAN(α(i, j, s)|true)PCONTEXT(β(i, j, s)|true)

Since all binary trees have the same score in PTREE, and the all-distituent product does not
depend on the bracketing, we can write this as

P(s, B) = K(s)
∏

⟨i,j⟩∈T (B)

φ(i, j, s)

where
φ(i, j, s) =

PSPAN(α(i, j, s)|true)PCONTEXT(β(i, j, s)|true)
PSPAN(α(i, j, s)|false)PCONTEXT(β(i, j, s)|false)

and K(s) is some sentence-specific constant. This expression for P(s, B) now factors ac-
cording to the nested tree structure of T (B). Therefore, we can define recursions analogous
to the standard inside/outside recurrences and use these to calculate the expectations we’re
interested in.

First, we define I(i, j, s), which is analogous to the inside score in the inside-outside
algorithm for PCFGs.

I(i, j, s) =
∑

T∈T (j−i)

∏

⟨a,b⟩:⟨a−i,b−i⟩∈T

φ(s, a, b)
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0 i k j n

I(i, k) I(k, j)

φ(i, j)

I(i, j)

0 i j k n

O(i, k)

I(j, k)
O(i, j)

(a) Inside recurrence (b) Outside recurrence

Figure A.1: The inside and outside configurational recurrences for the CCM.

In other words, this is the sum, over all binary tree structures T spanning ⟨i, j⟩, of the
products of the local φ scores of the brackets in those trees (see figure A.1). This quantity
has a nice recursive decomposition:

I(i, j, s) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

φ(i, j, s)
∑

i<k<j I(i, k, s)I(k, j, s) if j − i > 1

φ(i, j, s) if j − i = 1

0 if j − i = 0

From this recurrence, either a dynamic programming solution or a memoized solution for
calculating the table of I scores in time O(n3) and space O(n2) is straightforward.

Similarly, we define O(i, j, s), which is analogous to the outside score for PCFGs:

O(i, j, s) =
∑

T∈T (n−(j−i−1))

∏

⟨a,b⟩̸=⟨i,j⟩:⟨a,b−(j−i−1)⟩∈T

φ(a, b, s)

This quantity is the sum of the scores of all tree structures outside the ⟨i, j⟩ bracket (again
see figure A.1). Note that here, O excludes the factor for the local score at ⟨i, j⟩. The
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outside sum also decomposes recursively:

O(i, j, s) =

⎧

⎨

⎩

φ(i, j, s)
∑

0≤k<i I(k, i, s)O(k, j, s) +
∑

j<k≤n I(j, k, s)O(i, k, s) if j − i < n

1 if j − i = n

Again, the table of O values can be computed by dynamic programming or memoization.

The expectations we need for reestimation of the CCM are the posterior bracket counts
PBRACKET(i, j|s), the fraction of trees (bracketings) that contain the span ⟨i, j, ⟩ as a con-
stituent.

PBRACKET(i, j|s) =

∑

B:B(i,j)=true P (s, B)
∑

B P (s, B)

We can calculate the terms in this expression using the I and O quantities. Since the set
of trees containing a certain bracket is exactly the cross product of partial trees inside that
bracket and partial trees outside that bracket, we have

∑

B:B(i,j)=true

P (s, B) = K(s)I(i, j, s)O(i, j, s)

and
∑

B

P (s, B) = K(s)I(0, n, s)O(0, n, s)

Since the constantsK(s) cancel and O(0, n, s) = 1, we have

PBRACKET(i, j|s) =
I(i, j, s)O(i, j, s)

I(0, n, s)

A.2 Expectations for the DMV

The DMV model can be most simply (though not most efficiently) described as decom-
posing over a lexicalized tree structure, as shown in figure A.2. These trees are essen-
tially context-free trees in which the terminal symbols are w ∈ W for some terminal
vocabulary W (here, W is the set of word-classes). The non-terminal symbols are −→w ,
←−w ,
←−−→w ,
−→←−w , and w, for w ∈ W ∪ {!}. The productions are of the following forms:
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!

←−−→
!

fell
←−−→
fell

stocks
←−−−−−−→
stocks
−−−→
stocks

stocks

←−−→
fell
−→
fell

−→
fell

fell

yesterday
←−−−−−−−−−−−−→
yesterday
−−−−−−→
yesterday

yesterday

←−−→
!

−→
!

!

Figure A.2: A lexicalized tree in the fully articulated DMV model.
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Head choice (right-first) −→w → w

Head choice (left-first) ←−w → w

Right-first right attachment
−→
h →

−→
h a

Right-first right stop
←−−→
h →

−→
h

Right-first left attachment
←−−→
h → a

←−−→
h

Right-first seal h→
←−−→
h

Left-first left attachment
←−
h → a

←−
h

Left-first left stop
−→←−
h →

←−
h

Left-first right attachment
−→←−
h →

−→←−
h a

Left-first seal h→
−→←−
h

We imagine all sentences to end with the symbol !, and treat ! as the start symbol.
Trees with root h are called sealed trees, since their head h cannot take any further argu-

ments in this grammar topology. Trees with roots
←−−→
h and

−→←−
h are called half-sealed trees,

since they can only take arguments to the final attachment side (left and right, respectively).
Trees rooted at

−→
h and

←−
h are called unsealed since they can take arguments to either side

(eventually).

Derivations of a sentence in the DMV dependency model correspond to parses with
the above grammar. However, each configuration is scored according to a head-outward
derivation (Collins 1999), rather than a top-down rewrite. For example, the right-first head
choice is thought of as deciding, given the head, that in this derivation the head will attach
its right arguments before its left arguments. This configuration incurs the probability
factor PORDER(right-first|w). The other configurations indicate attachments or stopping
probabilities, as described in section 6.2.

We define inside and outside recurrences over items (X : i, j) in the standard way. The
base cases are projections of terminals, which represent the point where we decide whether
a word w will take its arguments to the right then left, or left then right, X-bar style.

PINSIDE(x, i, i + 1) =

⎧

⎨

⎩

PORDER(left-first|w) if x =←−w

PORDER(right-first|w) if x = −→w
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For spans greater than one, we have to sum over the various decompositions. Sealed scores
are expressed in terms of half-sealed scores:

PINSIDE(w, i, j) = PSTOP(stop|w, left, adj(i, w))PINSIDE(
←−−→w , i, j) +

PSTOP(stop|w, right, adj(j, w))PINSIDE(
−→←−
[ w, i, j)

Half-sealed scores are expressed in terms of either smaller half-sealed scores or unsealed
scores:

PINSIDE(
←−−→w , i, j) =

(

∑

k

∑

a

PSTOP(¬stop|w, left, adj(k, w))PATTACH(a|w, left)×

PINSIDE(a, i, k)PINSIDE(
←−−→w , k, j)

)

+

PSTOP(stop|w, right, adj(j, w))PINSIDE(−→w , i, j)

PINSIDE(
−→←−w , i, j) =

(

∑

k

∑

a

PSTOP(¬stop|w, right, adj(k, w))PATTACH(a|w, right)×

PINSIDE(
−→←−w , i, k)PINSIDE(a, k, j)

)

+

PSTOP(stop|w, left, adj(i, w))PINSIDE(←−w , i, j)

Note the dependency on adjacency: the function adj(i, w) indicates whether the index i

is adjacent to word w (on either side).1 Unsealed scores (for spans larger than one) are

1Note also that we’re abusing notation so thatw indicates not just a terminal symbol, but a specific instance
of that symbol in the sentence.
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expressed in terms of smaller unsealed scores:

PINSIDE(−→w , i, j) =
∑

k

∑

a

PSTOP(¬stop|w, right, adj(k, w))PATTACH(a|w, right)×

PINSIDE(−→w , i, k)PINSIDE(a, k, j)

PINSIDE(←−w , i, j) =
∑

k

∑

a

PSTOP(¬stop|w, left, adj(k, w))PATTACH(a|w, left)×

PINSIDE(a, i, k)PINSIDE(−→w , k, j)

The outside recurrences for POUTSIDE(x, i, j) are similar. Both can be calculated in
O(n5) time using the standard inside-outside algorithms for headed (lexicalized) PCFGs or
memoization techniques. Of course, the O(n4) and O(n3) techniques of Eisner and Satta
(1999) apply here, as well, but not in the case of combination with the CCM model, and
are slightly more complex to present.

In any case, once we have the inside and outside scores, we can easily calculate the
fraction of trees over a given sentence which contain any of the structural configurations
which are necessary to re-estimate the model multinomials.

A.3 Expectations for the CCM+DMV Combination

For the combination of the CCM and DMV models, we used the simplest technique which
admitted a dynamic programming solution. For any lexicalized derivation tree structure
of the form shown in figure A.2, we can read off a list of DMV derivation stops (stops,
attachments, etc.). However, we can equally well read off a list of assertions that certain
sequences and their contexts are constituents or distituents. Both models therefore assign a
score to a lexicalized derivation tree, though multiple distinct derivation trees will contain
the same set of constituents.
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To combine the models, we took lexicalized derivation trees T and scored them with

PCOMBO(T ) = PCCM(T )PDMV(T )

The quantity PCOMBO is a deficient probability function, in that, even if PCCM were not
itself deficient, the sum of probabilities over all trees T will be less than one.2

Calculating expectations with respect to PCOMBO is almost exactly the same as working
with PDMV. We use a set of O(n5) recurrences, as in section A.2. The only difference is
that we must premultiply all our probabilities by the CCM base product

∏

⟨i,j⟩

PSPAN(α(i, j, s)|false)PCONTEXT(β(i, j, s)|false)

and we must multiply in the local CCM correction factor φ(i, j, s) at each constituent that
spans more than one terminal. To do the latter, we simply adjust the binary-branching
recurrences above. Instead of:

PINSIDE(
←−−→w , i, j) =

(

∑

k

∑

a

PSTOP(¬stop|w, left, adj(k, w))PATTACH(a|w, left)×

PINSIDE(a, i, k)PINSIDE(
←−−→w , k, j)

)

+

PSTOP(stop|w, right, adj(j, w))PINSIDE(−→w , i, j)

PINSIDE(
−→←−w , i, j) =

(

∑

k

∑

a

PSTOP(¬stop|w, right, adj(k, w))PATTACH(a|w, right)×

PINSIDE(
−→←−w , i, k)PINSIDE(a, k, j)

)

+

PSTOP(stop|w, left, adj(i, w))PINSIDE(←−w , i, j)

2Except in degenerate cases, such as if both components put mass one on a single tree.
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we get

I(
←−−→w , i, j|s) =

(

∑

k

∑

a

PSTOP(¬stop|w, left, adj(k, w))PATTACH(a|w, left)PINSIDE(a, i, k)×

PINSIDE(
←−−→w , k, j)φ(i, j, s)

)

+

PSTOP(stop|w, right, adj(j, w))PINSIDE(−→w , i, j)

I(
−→←−w , i, j|s) =

(

∑

k

∑

a

PSTOP(¬stop|w, right, adj(k, w))PATTACH(a|w, right)×

PINSIDE(
−→←−w , i, k)PINSIDE(a, k, j)φ(i, j, s)

)

+

PSTOP(stop|w, left, adj(i, w))PINSIDE(←−w , i, j)

and similarly

PINSIDE(−→w , i, j) =
∑

k

∑

a

PSTOP(¬stop|w, right, adj(k, w))PATTACH(a|w, right)×

PINSIDE(−→w , i, k)PINSIDE(a, k, j)

PINSIDE(←−w , i, j) =
∑

k

∑

a

PSTOP(¬stop|w, left, adj(k, w))PATTACH(a|w, left)×

PINSIDE(a, i, k)PINSIDE(−→w , k, j)



A.3. EXPECTATIONS FOR THE CCM+DMV COMBINATION 111

becomes

I(−→w , i, j|s) =
∑

k

∑

a

PSTOP(¬stop|w, right, adj(k, w))PATTACH(a|w, right)×

PINSIDE(−→w , i, k)PINSIDE(a, k, j)φ(i, j, s)

I(←−w , i, j|s) =
∑

k

∑

a

PSTOP(¬stop|w, left, adj(k, w))PATTACH(a|w, left)×

PINSIDE(a, i, k)PINSIDE(−→w , k, j)φ(i, j, s)

Again, the outside expressions are similar. Notice that the scores which were inside proba-
bilities in the DMV case are now only sum-of-products of scores, relativized to the current
sentence, just as in the CCM case.
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Proofs

B.1 Closed Form for the Tree-Uniform Distribution

The tree-uniform distribution, PTREE(T |n), is simply the uniform distribution over the set
of binary trees spanning n leaves. The statistic needed from this distribution in this work
is the posterior bracketing distribution, P(i, j|n), the fraction of trees, according to the tree
distribution, which contain the bracket ⟨i, j⟩. In the case of the tree-uniform distribution,
these posterior bracket counts can be calculated in (basically) closed form.

Since each tree has equal mass, we know that P(i, j|n) is simply the number of trees
containing the ⟨i, j⟩ bracket divided by the total number T (n) of trees over n terminals.
The latter is well-known to be C(n− 1), the (n− 1)st Catalan number:

T (n) = C(n− 1) = (

(

2n− 2

n− 1

)

)/n

So how many trees over n leaves contain a bracket b = ⟨i, j⟩? Each such tree can be
described by the pairing of a tree over j− i leaves, which describes what the tree looks like
inside the bracket b, and another tree, over n − (j − i − 1) leaves, which describes what
the tree looks like outside of the bracket b. Indeed, the choices of inside and outside trees
will give rise to all and only the trees over n symbols containing b. Therefore, the number

112
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of trees with b is T (j − i)T (n− (j − i− 1)), and the final fraction is

PBRACKET(i, j|n) =
T (j − i)T (n− (j − i− 1))

T (n)

B.2 Closed Form for the Split-Uniform Distribution

The split-uniform distribution over the set of binary trees spanning n leaves, PSPLIT(T |n)

is defined (recursively) as follows. If n is 1, there is only the trivial tree, T1, which has
conditional probability 1:

PSPLIT(T1|1) ≡ 1

Otherwise, there are n − 1 options for top-level split points. One is chosen uniformly at
random. This splits the n leaves into a set of k left leaves and n−k right leaves, for some k.
The left and right leaves are independently chosen from PSPLIT(·|k) and PSPLIT(·|n− k).
Formally, for a specific tree T over n leaves consisting of a left child TL over k leaves and
a right child TR over n− k leaves:

PSPLIT(T |n) ≡ P(k|n)PSPLIT(TL|k)PSPLIT(TR|n− k)

where
P(k|n) ≡

1

n− 1

The statistics of this distribution needed in this work are the posterior bracket expectations
P(i, j|n), the fraction of trees over n nodes which contain a given bracket ⟨i, j⟩ according
to this distribution. This quantity can be recursively defined, as well. Since all trees contain
a bracket over the entire sentence,

PBRACKET(0, n|n) ≡ 1

For smaller spans, consider a tree T chosen a random from PSPLIT(·|n). If it contains
a bracket b = ⟨i, j⟩, then the bracket c immediately dominating b must be of the form
c = ⟨i′, j′⟩, where either i′ = i and j < j′ or i′ < i and j = j′. So how likely is it that
T has bracket b? It should be clear that T will contain b if and only if it contains such a c,
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and that c has the right immediate split point to produce b. We know from the top-down
definition of PSPLIT(·|n) that the location of the split point inside a bracket c is independent
of of the chances of having built that c. Therefore, the total probability of a bracket b can
be written (recursively) as:

PBRACKET(i, j|n) =
∑

0≤i′<i

PBRACKET(i′, j|n)P(i− i′|j − i′) +

∑

j<j′≤n

PBRACKET(i, j′|n)P(j′ − j|j′ − i)

The relevant solution to this recurrence is:

PBRACKET(i, j|n) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if i = 0 ∧ j = n

1/(j − i) if i = 0⊕ j = n

2/[(j − i)(j − i + 1) if 0 < i < j < n

This solution was suggested by Noah Smith, p.c., and can be proven by induction as fol-
lows. The base case (i = 0, j = n) holds because all binary trees have a root bracket over
all leaves. Now, assume for some k, all brackets of size |j− i| > k obey the given solution.
Consider b = ⟨i, j⟩, |j − i| = k.

Case I: Assume i = 0. Then, we can express PBRACKET(i, j|n) in terms of larger
brackets’ likelihoods as

PBRACKET(i, j|n) =
∑

j′:j<j′≤n

PBRACKET(0, j′|n)P(j − 0|j′ − 0)

=

[

∑

j′:j<j′<n

1

j′
1

j′ − 1

]

+ 1
1

n− 1

A partial fraction expansion gives

1

x

1

x− 1
=

1

x− 1
−

1

x
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and so the sum telescopes:

PBRACKET(i, j|n) =

[

∑

j′:j<j′≤n

1

j′
1

j′ − 1

]

+
1

n− 1

=

[

(
1

j − 1
−

1

j
) + (

1

j
−

1

j + 1
) + . . . + (

1

n− 2
−

1

n− 1
)

]

+
1

n− 1

=
1

j − 1

and so the hypothesis holds.

Case II:Assume j = n. Since the definition ofPSPLIT is symmetric, a similar argument
holds as in case I.

Case III: Assume 0 < i < j < n. Again we can expand P(i, j|n) in terms of known
quantities:

PBRACKET(i, j|n) =
∑

j′:j<j′≤n

PBRACKET(i, j′|n)P(j − i|j′ − i) +

∑

i′:0≤i′<i

PBRACKET(i′, j|n)P(j − i|j − i′)

It turns out that the two sums are equal:

S1(i, j|n) =
∑

j′:j<j′≤n

PBRACKET(i, j′|n)P(j − i|j′ − i) =
1

(j − i)(j − i + 1)

and

S2(i, j|n) =
∑

i′:0≤i′<i

PBRACKET(i′, j|n)P(j − i|j − i′) =
1

(j − i)(j − i + 1)

We will show the S1 equality; the S2 equality is similar. Substituting the uniform split
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probabilities, we get

S1(i, j|n) =
∑

j′:j<j′≤n

PBRACKET(i, j′|n)
1

j′ − i− 1

and substituting the assumed values for the larger spans, we get

S1(i, j|n) =

[

∑

j′:j<j′<n

PBRACKET(i, j′|n)
1

j′ − i− 1

]

+ PBRACKET(i, n|n)
1

n− i− 1
[

∑

j′:j<j′<n

2

(j′ − i)(j′ − i + 1)

1

j′ − i− 1

]

+
1

n− i

1

n− i− 1

Here, the relevant partial fraction expansion is

2

(x− 1)(x)(x + 1)
=

1

x− 1
−

2

x
+

1

x + 1

Again the sum telescopes:

S1(i, j|n) =

[

∑

j′:j<j′<n

2

(j′ − i)(j′ − i + 1)

1

j′ − i− 1

]

+
1

n− i

1

n− i− 1

=

[(

1

j − i− 1
−

2

j − i
+

1

j − i + 1

)

+

(

1

j − i
−

2

j − i + 1
+

1

j − i + 2

)

+ . . .
(

1

n− i− 2
−

2

n− i− 1
+

1

n− i

)]

+

(

1

n− i− 1
+

1

n− i

)

=

[

1

j − i− 1
−

1

j − i
−

1

n− i− 1
+

1

n− i

]

+

(

1

n− i− 1
+

1

n− i

)

=
1

j − i− 1
−

1

j − i

=
1

(j − i− 1)(j − i)
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Since S2 is similar, we have

P(i, j|n) = S1(i, j|n) + S2(i, j|n)

= 2S1(i, j|n)

=
2

(j − i− 1)(j − i)

and so the hypothesis holds again.
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