
EFFICIENT AND SCALABLE TRANSFER LEARNING FOR

NATURAL LANGUAGE PROCESSING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Kevin Clark
March 2021



 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      http://creativecommons.org/licenses/by-nc/3.0/us/

 

 

 

This dissertation is online at: http://purl.stanford.edu/nq750zq8333

 

© 2021 by Kevin Stefan Clark. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/nq750zq8333


I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dan Jurafsky

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Quoc Le

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in 
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii



Abstract

Neural networks work best when trained on large amounts of data, but most labeled datasets
in natural language processing (NLP) are small. As a result, neural NLP models often
overfit to idiosyncrasies and artifacts in their training data rather than learning generalizable
patterns. Transfer learning offers a solution: instead of learning a single task from scratch
and in isolation, the model can benefit from the wealth of text on the web or other tasks
with rich annotations. This additional data enables the training of bigger, more expressive
networks. However, it also dramatically increases the computational cost of training, with
recent models taking up to hundreds of GPU years to train.

To alleviate this cost, I develop transfer learning methods that learn much more effi-
ciently than previous approaches while remaining highly scalable. First, I present a multi-
task learning algorithm based on knowledge distillation that consistently improves over
single-task training even when learning many diverse tasks. I next develop Cross-View
Training, which revitalizes semi-supervised learning methods from the statistical era of
NLP (self-training and co-training) while taking advantage of neural methods. The result-
ing models outperform pre-trained LSTM language models such as ELMo while training
10x faster. Lastly, I present ELECTRA, a self-supervised pre-training method for trans-
former networks based on energy-based models. ELECTRA learns 4x–10x faster than
previous approaches such as BERT, resulting in excellent performance on natural language
understanding tasks both when trained at large scale or even when it is trained on a single
GPU.
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Chapter 1

Introduction

1.1 Motivation

Language is a fundamental feature of human intelligence, so unsurprisingly a large subset
of research on artificial intelligence (AI) has focused on improving the ability of Natural
Language Processing (NLP) systems. With much of humanity’s knowledge captured in the
form of text, NLP offers a way to imbue AI systems with information about the world.
Building systems that can intelligently process the incredible volume of text available on
the web also has important practical value: NLP systems could help people navigate, filter,
and understand this ever-growing body of data. Over the past ten years, supervised deep
learning approaches have led to impressive improvements on classic NLP tasks such as
parsing (Chen and Manning, 2014), named entity recognition (Chiu and Nichols, 2016),
and coreference resolution (Wiseman et al., 2015). These methods train multi-layer neu-
ral networks that automatically learn a hierarchy of features and thus reduce the need for
feature engineering. Neural networks have far more parameters than statistical systems,
making neural networks highly expressive such that they can precisely fit their training
data.

However, a big gap remains between these systems and human learning. While su-
pervised neural networks work well on in-distribution data, the success of these systems
is often narrow and brittle. Their expressivity can be a downside because they learn id-
iosyncrasies and artifacts of their training dataset rather than generalizable patterns. For
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CHAPTER 1. INTRODUCTION 2

example, Jia and Liang (2017) show that small content-preserving changes to the test data
can cause these models to fail, and Gururangan et al. (2018) show that even models achiev-
ing high accuracy on natural language understanding benchmarks may in fact be primarily
learning simple superficial patterns. Furthermore, the manner in which these models learn
is far from human development. These systems are trained on large numbers of examples
that have been annotated by a human expert, learning a function that maps inputs to the an-
notations. For every task, such as analyzing the syntactic structure of sentences, answering
questions, or translating documents, a new model is trained from scratch. In contrast, hu-
mans learn in a general and multi-task way; when learning something new, we can draw on
our prior experiences and apply them to learn quickly (Luriia, 1976; Perkins et al., 1992).
Additionally, humans often learn without direct feedback, whereas supervised models re-
quire many examples with the labels provided.

These differences between machine and human learning point to considerable limita-
tions in current NLP systems. Since they learn from scratch, models have to learn every-
thing about language from the often small and un-representative dataset they are provided.
Furthermore, without any prior knowledge to draw on, NLP systems are sample-inefficient,
requiring large amounts of data to learn effectively. Even with large labeled datasets, these
systems can still have big gaps in their capabilities. For example, in question answer-
ing, large datasets containing thousands of questions have been collected (Rajpurkar et al.,
2016). However, the amount of knowledge contained in these datasets is still a minuscule
fraction of the total amount held in human writing. We can’t expect an NLP model to cover
the broad range of questions someone may want answered without having access to much
more information than is available through only labeled datasets.

1.2 Transfer Learning

In this thesis, I argue that a solution to these limitations of supervised learning is transfer

learning and develop methods to make transfer learning more effective. Broadly, transfer
learning methods train the NLP model on additional data sources beyond examples anno-
tated for the task of interest. This data can be annotated for a different but usually related
task (multi-task learning), or be a large source of unlabeled data such as text from the
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web (self-supervised and semi-supervised learning). Instead of learning a single task from
scratch and in isolation, the information the model acquires from the other data source can
be transferred to the task, resulting in more efficient and effective learning. These models
are less limited by the availability of data because they can learn from the vast wealth of
knowledge on the web or from other tasks with rich annotations. Transfer learning is espe-
cially appealing in conjunction with neural networks because neural networks work thrive
when provided large datasets. The central goals of transfer learning are to produce gen-

eral systems that can perform many tasks and generalizable systems that work on diverse
data beyond a small labeled domain. This section provides an overview of commonly used
transfer learning methods; I cover these techniques in more depth in Sections 2.3, 2.4, and
2.5.

Perhaps the most direct way of training a general-purpose NLP system is through multi-

task learning, where the model learns from multiple labeled datasets. Ideally, multi-task
learning not only results in a more broadly applicable system, but also a better one because
learning one task can provide the model knowledge that improves its ability on related
tasks. This moves the model, at least to a small extent, towards the kind of human learning
where drawing on prior experiences let us quickly develop new skills. Multi-task learning
can improve the generalization of models by exposing them to diverse inputs so they are
less likely to overfit to the task data. It introduces an inductive bias provided by the aux-
iliary tasks, which causes the model to prefer hypotheses that explain more than one task.
Early approaches to multi-task learning did feature selection where features useful for mul-
tiple tasks are preferred (Obozinski et al., 2006) or joint prediction where related linguistic
structures are predicted simultaneously. Structures predicted earlier can inform later ones
by providing features (e.g., part-of-speech tags), or constraints (e.g., a named entity cannot
span different subtrees of a syntactic parse). For example, Durrett and Klein (2014) train
a model to jointly perform coreference resolution, entity typing, and entity linking. These
tasks are beneficial because they all involve modeling entities in a document.

Another direction in transfer learning research has been semi-supervised learning, which
aims to use unlabeled data to improve task performance. The key idea is that models can
generalize the patterns in the training data to the unlabeled data and thereby be able to
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learn new patterns. Semi-supervised learning is more scalable than multi-task learning be-
cause it is not limited by the size of human-labeled datasets and can take advantage of the
abundance of text on the web. One of the earliest approaches to semi-supervised learning
is self-training (Scudder, 1965), which has been successfully applied to NLP tasks such
as word-sense disambiguation (Yarowsky, 1995) and parsing (McClosky et al., 2006). In
each round of training, the classifier, acting as a “teacher,” labels some of the unlabeled
data and adds it to the training set. Then, acting as a “student,” it is retrained on the new
training set. This procedure can be repeated iteratively until the model converges, gradually
adding more examples to the training set and expanding the range of examples the model
sees; self-training hopes for a virtuous cycle where each iteration improves the model’s
accuracy. While these self-labeled examples will be noisy, the hope is that the model will
still be able to learn from them and “smooth out” the noise by processing a large enough
volume of data.

The rise of neural networks has greatly enhanced the ways in which transfer learning
can be used. For multi-task learning, neural networks offer a more powerful and direct
means of cross-task transfer beyond feature selection or joint training: the representations
built up by the model can be shared across tasks. A learning update that improves the
representations so they are more effective for one task will hopefully improve the repre-
sentations in general, resulting in a stronger model. Shared features have to be useful for
multiple tasks, causing the model to “focus” on more generalizable features and ignore
features less useful for other tasks. Essentially sharing parameters focuses the hypothesis
space of the model by encouraging the features to be useful for more tasks. The particular
choice of which parameters are shared is a widely researched design decision, often using
linguistic motivations (Søgaard and Goldberg, 2016; Hashimoto et al., 2017) or learned
sharing schemes (Misra et al., 2016; Ruder et al., 2019; Liu et al., 2017).

Neural networks also enable a highly effective way of using unlabeled data: self-

supervised pre-training. Self-supervised pre-training constructs what looks like a super-
vised task from the unlabeled data, such as deleting some input words and training the
model to predict what they were originally. These methods typically operate in two phases.
First, in the pre-training phase, the model performs self-supervised representation learning
over unlabeled corpus. Then during a fine-tuning phase, the learned model is transferred
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to the task of interest. In particular, the pre-trained weights are used as initialization for
a task-specific classifier, with usually a small additional randomly initialized neural net-
work component added on top to make the final classification decisions. In pre-neural
semi-supervised learning methods such as self-training, the model is limited to learning a
pre-specified set of tasks; to build a model for a new task, the expensive procedure of learn-
ing over the large unlabeled corpus has to be repeated again. In contrast, self-supervised
representation learning uses unlabeled data in a more efficient and general-purpose way,
developing general representations that can then be transferred to a variety of tasks. Once
the slow self-supervised learning phase has been performed once, the model can then be
reused for many tasks.

Early self-supervised pre-training approaches in NLP such as word2vec (Mikolov et al.,
2013b) and GloVe (Pennington et al., 2014) learned word embeddings: low-dimensional
vector representations of words. Pre-trained word embeddings quickly became standard
use by the NLP community. Although learned purely from self-supervised learning, they
demonstrate a remarkable ability to capture lexical features. While pre-trained embeddings
have been highly successful, these methods produce a fixed representation of each word.
However, in practice language is highly contextual, with the meaning of a word depending
on its neighbors. For this reason, it can be more effective to pre-train neural networks such
as Transformers and LSTMs that build contextual representations of word tokens rather
than static representations of work types.

Two key pre-training tasks for training models producing contextual word representa-
tions are language modeling and cloze modeling. Language models such as ELMo (Peters
et al., 2018) predict the next word in an utterance based on its left context: the preceding
words. Cloze models such as BERT (Devlin et al., 2019) predict a word given both its
left and right context: the surrounding words. In practice, the cloze task is usually im-
plemented by replacing input words with a special [MASK] token and then training the
model to reconstruct the masked-out words. These tasks are highly effective for represen-
tation learning because they require modeling syntax and semantics to solve. For example,
solving subject-verb number agreement (e.g., predicting “the chef who made the pizzas”
is followed by “is” instead of “are”) requires modeling the hierarchical structure of the
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sentence. In other cases, commonsense reasoning or world knowledge is required, for ex-
ample in predicting “small” follows “It didn’t fit because the suitcase was too” or “France”
follows “Paris is the capital of”. Indeed, analysis of pre-trained models shows that their
representations capture key aspects of syntax (Linzen et al., 2016; Blevins et al., 2018; He-
witt and Manning, 2019), entity recognition (Tenney et al., 2018; Liu et al., 2019c), and
coreference (Tenney et al., 2019), even though they receive no explicit supervision for the
tasks. While once these linguistic features were added to systems through training human-
annotated datasets, self-supervised learning approaches have reduced the need to develop
systems for these tasks previously considered a core part of NLP.

The rise of self-supervised pre-training has been transformative to NLP. Not unlike
how neural methods led to a decrease in engineered features, self-supervised learning com-
bined with powerful neural network architectures such as the Transformer (Vaswani et al.,
2017) have to a large extent ended task-specific engineered architectures because a sin-
gle pre-trained model can be effectively transferred to many tasks. A key advantage of
self-supervised methods is that they scale very well. Bigger neural nets generally per-
form better when enough data is available. However, when learning from small supervised
datasets, large models start overfitting and the performance gains stop. In contrast, pre-
training methods can leverage vast amounts of unlabeled text, enabling the use of more
expressive neural networks with many parameters.

This excellent scaling has led to increasingly large models being pre-trained with in-
creasingly large amounts of compute (see Figure 1.1), resulting in incredible progress on
NLP benchmarks. However, this trend also makes models expensive to train, decreasing
the usability and accessibility of transfer learning. Recent models require hundreds of GPU
years to train, far more compute than most academic research labs or NLP practitioners
have access to. These requirements limit the development of new pre-training methods or
the ability to apply them to specific domains and languages. With AI systems increasingly
performing higher-stakes tasks and becoming more prevalent in the world, democratizing
AI so that any person or group can contribute is becoming increasingly important. Due to
these concerns, a central goal of this thesis is to develop transfer learning methods that are
efficient and work well when using relatively little compute (i.e., that are towards the left
of Figure 1.1 as well as high up).



CHAPTER 1. INTRODUCTION 7

I argue that efficiency is particularly important for highly scalable methods like recent
transfer learning approaches. Figure 1.1 shows that existing methods mostly lie on the
same curve trading off compute for downstream task performance. This raises a question:
are we actually developing better methods, or are we just throwing more compute at the
models? A way to demonstrate clear progress is through achieving better downstream task
performance given the same compute use; in other words, through improving efficiency. If
an efficient method scales as well as these existing approaches, it effectively raises up the
compute vs. accuracy and improves results across the full spectrum of model sizes. From
this perspective, my dissertation develops transfer learning methods that are scalable (i.e.,
also able to benefit from large amounts of compute and data), while still remaining efficient
(i.e., making good use of compute resources and not requiring the massive scale of by other
methods to be effective) to produce general and effective NLP systems.

Figure 1.1: Scores on the GLUE natural language understanding benchmark vs training
times of large-scale NLP models. Each figure is a zoomed-in version of the dashed box to
its right. TPU-Day estimates come from computing the total floating point operations re-
quired to train each of these models and then scaling according to TPUv3 compute. A con-
servative estimate of human performance is around 90 points (Nangia and Bowman, 2019).
Self-supervised pre-training methods, starting in 2018 with ELMo, have completely closed
the gap from far-below-human performance to “superhuman” performance. However, this
progress has largely been driven by massively scaling up the compute used to train these
systems.
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1.3 Research Goals

Broadly, this thesis studies using transfer learning to train effective representations of lan-
guage that can be applied to a diverse range of NLP tasks. Here I lay out three goals that
will be addressed by the approaches proposed in this thesis.

1. Generality: I aim to develop methods that are broadly applicable across a range of
NLP settings. Designing task-specific training algorithms and architectures can lead
to improved results. However, I believe they make little progress towards the sort
of general language understanding humans are capable of. They rely on specific de-
tails of the task and baseline method, which often cannot be easily extended to other
settings. In contrast, human learning is remarkably general, with the connection
between different subjects being learned rather than baked into the underlying hard-
ware of the brain. On the more practical side, improving a general method can lead
to gains across many tasks, or even future tasks that aren’t currently being worked
on, instead of just the single one the method is designed on. Due to these concerns,
I propose transfer learning approaches where the transfer can aid many tasks rather
than just one.

2. Scalability: Transfer learning methods should scale well to large amounts of data
and compute. That is, they should continue to produce better results as model sizes
and datasets get larger. A scalable method will continue to get better “for free” as
more data and compute becomes available. This is important because computing
hardware has consistently been improving over the past decades, and in all likeli-
hood this trend will continue. Being able to take advantage of future advances in
hardware helps ensure the method will be long-lived and continue to remain rele-
vant. Transfer learning has enabled highly scalable training by vastly increasing the
amount of data available to models so they are no longer being limited by the amount
of data available for a specific task. My thesis research therefore develops methods
that work well as models get larger, the number of tasks increases, and the training
dataset gets larger.

3. Efficiency: Scalable methods benefit from as much compute and data as possible,
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but these resources are expensive. Consequently, it is important to develop efficient
methods that get as much value from their compute resources as possible. Histori-
cally, efficiency and accuracy have been considered orthogonal research goals, with
efficiency research aiming to achieve accuracy close to state-of-the-art methods while
requiring less compute. However, the scalability of transfer learning makes efficiency
and accuracy two sides of the same coin; improving efficiency means models are
trained as though they are using more compute resources, which leads to consistent
gains in accuracy. Another important aspect of efficiency is accessibility. Models
costing thousands or even millions of dollars to train are beyond the reach of most
people working on NLP. Having models that can be trained by a academic researcher
or machine learning practitioner working on a narrow domain or low-resource lan-
guage is crucial for ensuring equitable usage of AI. Lastly, in addition to the financial
cost, the environmental impact of training large NLP models is considerable (Strubell
et al., 2019), and improving efficiency alleviates this cost.

1.4 This Dissertation

This thesis aims to realize these goals across the three core types of transfer learning I
discussed above:

• Multi-task learning, where a single model learns from human-labeled data to per-
form multiple distinct NLP tasks. As a single neural network is using the same rep-
resentations for all tasks, knowledge across related tasks can be shared to improve
performance.

• Semi-supervised learning, where the model learns from large amounts of unlabeled
data as well as human-annotated labeled data. Semi-supervised methods can gen-
eralize patterns learned from the labeled data to the unlabeled data to gain better
coverage of the task.

• Self-supervised learning, where the model learns purely from unlabeled data to de-
velop effective representations for text. These representations can then be fine-tuned
on specific tasks of interest.
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While self-supervised learning methods have recently become dominant compared to other
transfer learning types, I believe each of them still has high-value use cases. For example,
recent work shows that multi-task learning (Aghajanyan et al., 2021) and semi-supervised
learning (Du et al., 2020) improve pre-trained model when used at a large enough scale. In
this dissertation, I present a concrete system in each area of transfer learning that achieves
excellent scalability and computational efficiency while being applicable to a general set of
tasks.

Chapter 3: Born-Again Multi-Task Networks (BAM). Building a single model that
jointly learns to perform many tasks effectively has been a long-standing challenge in NLP.
Having one model with a diverse set of capabilities moves towards a more human-like way
of doing NLP. Furthermore, multi-task models also have practical advantages. In the pur-
suit of goal 3 (efficiency), developing, deploying, and running a single multi-task model can
be simpler and faster than doing so with many independent models. However, existing work
in multi-task NLP has had mixed results, with multi-task models often performing worse
than their single-task counterparts (Plank and Alonso, 2017; Bingel and Søgaard, 2017).
While similar pairs of tasks can benefit each other, models performing many tasks exhibit
negative transfer where tasks interfere rather than bolstering each other during learning.
Moving towards goal 1 (generality), I develop a new multi-task learning algorithm called
Born-Again Multi-tasking (BAM) with robust multi-task learning capabilities. Here “ro-
bust” means the multi-task model is never worse than its single-task counterparts, even
across many diverse tasks, but still achieves gains across tasks where multi-tasking is help-
ful. I achieve this goal by applying knowledge distillation (Ba and Caruana, 2014; Hinton
et al., 2015) so that single-task models effectively teach a multi-task model.

Knowledge distillation transfers knowledge from a “teacher” model to a “student”
model by training the student to imitate the teacher’s outputs. In “born-again networks”
(Furlanello et al., 2018), the teacher and student have the same neural architecture and
model size, but surprisingly the student is able to surpass the teacher’s accuracy. My work
extends born-again networks to the multi-task setting. In particular, I first train a single-task
model for each task and then distill them into a multi-task one. Intuitively, the multi-task
model will never perform worse than the single-task one when it can learn directly how
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the single-task one performs the task. I enhance this distillation with a simple teacher-
annealing method that helps the student model outperform its teachers. Teacher annealing
gradually transitions the student from learning from the teacher to learning from the gold
labels. This method ensures the student gets a rich training signal early in training, but is
not limited to only imitating the teacher.

In my experiments, I apply BAM to train large models built on top of BERT. I start
from BERT in order to show the scalability of my method along the vein of goal 2, show-
ing that the method works even on top of a large and already very strong model. BAM
outperforms both standard single-task and multi-task training across 10 diverse natural lan-
guage understanding tasks. Importantly, the gains are consistent, with BAM almost never
performing worse than single-task models. Further analysis shows the multi-task models
benefit from both better regularization and transfer between related tasks. This work was
first presented at ACL 2019 in BAM! Born-Again Multi-Task Networks for Natural Lan-

guage Understanding (Clark et al., 2019b).

Chapter 4: Cross-View Training (CVT). While multi-task learning methods can im-
prove models, they are limited in requiring labeled data from related tasks, hindering them
from realizing goals 1 and 2 (generality and scalability). Cross-view training is a semi-
supervised learning method that instead can make use of lots of unlabeled data. CVT ex-
tends the idea of self-distillation to operating across different views of the input sequence.
It revitalizes old semi-supervised learning methods from the statistical era of NLP (self-
training and co-training) while taking advantage of neural methods.

In self-training, the model learns as normal on labeled examples. On unlabeled exam-
ples, the model acts as both a “teacher” that makes predictions about the examples and a
“student” that is trained on those predictions. Although this process has shown value for
some tasks, it is somewhat tautological: the model already produces the predictions it is
being trained on. Recent research on computer vision addresses this by adding noise to the
student’s input, training the model so it is robust to input perturbations (Sajjadi et al., 2016;
Wei et al., 2018). However, applying noise is difficult for discrete inputs like text. As a
solution, I take inspiration from multi-view learning (Blum and Mitchell, 1998; Xu et al.,
2013) and train the model to produce consistent predictions across different views of the
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input. The “student” parts of the model see only part of the input (e.g., only the left con-
text of a word), so they can learn from the teacher, which sees the whole input. Crucially,
the student and teacher have shared parameters, so as the student learns the teacher will
improve because it is built on the same representations.

More specifically, CVT trains the model on a mix of labeled and unlabeled examples.
On labeled examples, standard supervised learning is used. On unlabeled examples, CVT
teaches auxiliary prediction modules that see restricted views of the input (e.g., only part
of a sentence) to match the predictions of the full model seeing the whole input. These
auxiliary prediction modules are essentially softmax layers placed on top of the main text
encoder. I take advantage of the network structure (in my case a Bi-LSTM) to create the
different views. For example, one auxiliary prediction module for sequence tagging is
attached to only the forward LSTM in the model’s first Bi-LSTM layer, so it makes pre-
dictions without seeing any tokens to the right of the current one. The auxiliary prediction
modules can learn from the full model’s predictions because the full model has a better,
unrestricted view of the input. Since the auxiliary modules and the full model share inter-
mediate representations, this in turn improves the full model.

Importantly, the unlabeled data can be from a different source than the original exam-
ples, making CVT highly scalable (goal 2). CVT also offers efficiency advantages over
self-supervised methods such as ELMo and BERT (goal 3). With CVT, the model learns
representations targeted towards a particular task rather than general-purpose ones, mean-
ing the model can be smaller and trained on less data because its target is narrower. CVT
can be effectively combined with multi-task learning to perform well at many tasks (goal
1), with the unlabeled data being used to learn all the tasks in parallel in a highly efficient
way. In fact, a model with a similar neural architecture to ELMo can be trained for 10%
the time while still performing better across a diverse set of tasks, including dependency
parsing, named entity recognition, and machine translation. This work was first presented
at EMNLP 2018 in Semi-Supervised Sequence Modeling with Cross-View Training (Clark
et al., 2018).

Chapter 5: Efficiently Learning an Encoder that Classifies Token Replacements Ac-
curately (ELECTRA). While CVT yields models that perform well on many tasks, it still
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requires the set of tasks to be specified in advance, limiting the models’ generality (goal
1). Furthermore, CVT requires roughly in-domain data, making it difficult to apply to
some tasks such as question answering, where unlabeled examples are not easy to come by.
Self-supervised learning methods offer a solution, where the model learns as general rep-
resentations as possible from unlabeled data alone. An efficiency advantage over standard
semi-supervised learning is that the long self-supervised pre-training phase only has to be
done once and then the model can be adapted to individual tasks relatively quickly (goal
3).

BERT is a particularly notable self-supervised method due to its improved performance
across many tasks. BERT is trained with the masked language modeling task, where it
corrupts the input by replacing some tokens with [MASK] and then learns to reconstruct
the original tokens. It scales very well (goal 2) and is transferable to many tasks (goal 1)
because of the richness of this task; different word deletions can require many different
linguistic abilities to solve. However, this generality has a downside: BERT requires huge
amounts of compute and unlabeled text to be effective, limiting its efficiency (goal 3).
The main efficiency drawback of BERT comes from masking. Masking too many tokens
causes the input to become corrupted so that predictions are difficult and the input no longer
looks like real text. Therefore BERT only masks out 15% of tokens per input sequence.
In contrast, the earlier pre-training task of language modeling predicts every input token,
providing them much more training signal per example. However, language models auto-
regressively generate text left-to-right, meaning they are “unidirectional” in that they see
only the text to one side of the token they are predicting. I develop a new pre-training
method called ELECTRA that learns from every input token while still being bidirectional,
getting the best of both worlds. ELECTRA learns 4–10x faster than BERT, a substantial
gain in compute efficiency.

Underlying ELECTRA is a sample-efficient pre-training task called replaced token de-
tection that learns much faster than BERT. Instead of masking the input, my approach
corrupts it by replacing some tokens with plausible alternatives sampled from a small gen-
erator network. Then, instead of training a model that predicts the original identities of
the corrupted tokens, I train a discriminative model that predicts whether each token in the
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corrupted input was replaced by a generator sample or not. Crucially, this binary classifica-
tion task is applied to every input token, instead of only a small number of masked tokens,
making replaced token detection more efficient than masked language modeling — the
model needs to see fewer examples to achieve the same performance because it receives
more training signal per example. At the same time, replaced token detection results in
powerful representation learning, because the model must learn an accurate representation
of the data distribution in order to solve the task. Indeed, theoretical analysis shows that
replaced token detection can be viewed as training an energy-based model to perform the
same cloze modeling tasks that yields such rich representations learning in BERT.

Thorough experiments demonstrate replaced token detection is more efficient than masked
language modeling because the task is defined over all input tokens rather than just the
small subset that was masked out. As a result, the contextual representations learned by my
approach substantially outperform the ones learned by BERT given the same model size,
data, and compute. The gains are particularly strong for small models; for example, I train
a model on one GPU for 4 days that outperforms GPT (trained using 30x more compute)
on the GLUE natural language understanding benchmark. However, the method also works
well at scale, where it improved the state-of-the art across several natural language under-
standing tasks, including question answering. This work was presented at ICLR 2020 in
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators (Clark
et al., 2020a) and in EMNLP 2020 in Pre-Training Transformers as Energy-Based Cloze

Models (Clark et al., 2020b).



Chapter 2

Background

This chapter provides background material for the subsequent chapters. It first reviews
a selection of Transformer networks and knowledge distillation, important deep learning
techniques that will be used throughout this dissertation. It is not meant to be a com-
prehensive overview of deep learning: for that, I refer the reader to (Goodfellow et al.,
2016). Next, it provides an overview of prior work on transfer learning, with an empha-
sis on applications to natural language processing. It covers three of the primary kinds of
transfer learning: using additional labeled data (multi-task learning), using unlabeled data
to improve task performance (semi-supervised learning), and using unlabeled data to learn
general representations that can be applied to a variety of tasks (self-supervised learning).
Lastly, it gives an overview of common natural language processing tasks and associated
datasets, which will be used in experiments throughout the rest of this dissertation.

2.1 Transformer Networks

Transformer networks (Vaswani et al., 2017) are highly expressive models for processing
sequences. They have achieved excellent results across computer vision (Carion et al.,
2020), reinforcement learning (Parisotto et al., 2020), and speech recognition (Dong et al.,
2018), as well as in NLP@İ use Transformers for the multi-task learning and self-supervised
pre-training parts of this dissertation.

15
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The key modeling challenge that Transformers address is capturing long-distance de-
pendencies, which can be crucial for modeling text. Before Transformers, most neural
models in NLP were based on recurrent neural networks (RNNs). RNNs process the input
one token at a time, at each step updating the representation of the sequence seen so far.
While appealing in that they can “read” text left to right the way humans do, capturing the
entire context read so far in a single vector has limitations. Analysis shows that the mod-
els “forget” information from far away (Khandelwal et al., 2018) and generally perform
worse as sentences get longer (Bahdanau et al., 2015). Gating mechanisms such as long
short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) can alleviate
this disadvantage, but only partly.

Transformer networks remove recurrence entirely from the network. Instead, it relies on
self-attention to model context. When computing the next representation for a particular to-
ken, self-attention directly references the current representation of every other token in the
input. As a result, Transformers model long-distance dependencies well because they draw
from all tokens regardless of distance. They do not suffer from the problems of vanish-
ing and exploding gradients common in RNNs because the attention causes short gradient
paths. Although self-attention treats all tokens equally, positional information about tokens
is still captured by Transformer networks through simple positional embeddings concate-
nated to each token embedding. The expressivity of Transformers does have a downside,
which is that they generally don’t perform as well in data-poor regimes. Generally, recent
context is most important in language, and Transformers lack the inductive bias favoring
recency that RNNs have. However, Transformers are well suited for the transfer learning
method in this thesis since they are highly scalable.

Transformers were first applied to sequence-to-sequence learning, but in this disserta-
tion I only use Transformer encoders (I refer to these as “Transformers” for brevity) that
operate on a single sequence. A Transformer network maps a sequence of input tokens
x = [x1, x2, ..., xn] to a sequence of vector representations h = [h1, ..., hn]. It consists of n

blocks stacked on top of each other. An overview of a Transformer is shown in Figure 2.1.
Details of full encoder-decoder Transformer networks are similar to those described below.
However, an encoder-decoder Transformer has a decoder network that generates the target
sequence and contains an additional attention mechanism which attends over the source
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sequence. This decoder uses causal attention masking, where tokens are prevented from
attending to future tokens, to enforce left-to-right generation. This same attention masking
is used to train Transformer language models.

Figure 2.1: The Transformer neural architecture. The model consists of input/positional
embeddings followed by N self-attention and feedforward blocks. Figure from (Vaswani
et al., 2017).

Input Encoding. Before being passed into the Transformer, the input is first converted
into a sequence of embeddings. The input words are tokenized using a fixed vocabulary,
either representing rare words with a special UNK token, or more commonly using a word
piece vocabulary (Sennrich et al., 2016a) that splits rare words into multiple sub-words.
Then each token is represented as the concatenation of its token embedding and a position
embedding. The position embedding provides the model with the ordering of the sequence.
There are many choices for position embeddings, but I generally use a learned vector for
each position.

Multi-Headed Attention. The key mechanism by which Transformers contextualize rep-
resentations is multi-headed attention (see Figure 2.2). Attention (Bahdanau et al., 2015)
dynamically assigns a weight to every pair of words in the sequence, indicating how much
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the model should “pay attention to” the first word when computing the representation of the
second. Attention has been a highly successful neural network component for processing
text (Luong et al., 2015b), video (Sharma et al., 2016), image (Xu et al., 2015), and speech
(Chorowski et al., 2015) data.

Transformers use multiple attention heads in parallel, where each head can potentially
capture a completely different word-word relation. Transformers aggregate the informa-
tion from each head to produce a single output vector representation for each word in the
sequence. I provide more mathematical detail below.

Given a query q and a set of n items {x1, ..., xn}, the attention mechanism Bahdanau
et al. (2015) induces a probability distribution ↵ over the item set, and then produces an
expectation (weighted sum) of the items as the output. Intuitively, attention makes a soft
selection of which item xi is the best fit for the query q. More formally, each item xi

is represented by two vectors: key ki and value vi. The key ki is used to determine the
distribution ↵ via an inner product with the query vector q, normalized by a softmax:

↵i =
exp q

>
kiPn

`=1 exp q>k`

The output y is then the expectation over the value vectors vi:

y =
Xn

i=1
↵ivi

The Transformer network (Vaswani et al., 2017) uses a flavor of this mechanism called
self-attention, where each input word plays a dual role as both a query and a selectable item.
This is implemented by passing the vector representation of every word xi through three
different linear transformations, resulting in query qi, key ki, and value vi vectors. Each
query qj can then attend over all the key-value pairs (ki, vi) in the sequence, producing a
different attention distribution ↵

j (i.e., ↵
j
i denotes the attention weight towards position i

from position j) and output yj for each word, as shown in Figure 2.2.
Each head computes its own independent attention weights and output vectors; the

output vectors across heads are concatenated when producing a layer’s output.

Feed Forward Layer. In addition to the self-attention sub-layer, each block contains a
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Figure 2.2: An overview of the neural attention mechanism. For simplicity, here I only
show a single attention head applied to a single position in the input sequence. Attention
induces weights over the previous hidden states, causing the model to “pay attention to”
salient information in the context.

fully connected feedforward network. The network consists of two layers, typically with a
ReLU (Nair and Hinton, 2010) activation:

FFN(x) = W2ReLU(W1x + b1) + b2

The intermediary layer’s size generally is larger than the input size, providing an expressive
transformation while not making the other parts of the block too expensive.

Layer Norm and Residual Connection. The self-attention and feed-forward components
both make use of layer normalization and residual connections. Layer normalization (Ba
et al., 2016) stabilizes training by “standardizing” the layer’s output so it has zero mean and
unit variance. The residual connection improves gradient flow by adding a “shortcut” from
the layer’s input to its output, allowing the network to be deep without having exploding or
vanishing gradients (He et al., 2016). If the component’s input is a d-dimensional vector x
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and its output is denoted as f(x), the transformation is

Output = LayerNorm(f(x) + x) where

LayerNorm(x) = a(x� µ)/� + b µ =
1

d

dX

i=1

xi � =

vuut1

d

dX

i=1

(xi � µ)2

where a and b are trainable scalars adding a learned bias and scaling factor to the layer.

2.2 Knowledge Distillation

Having discussed the primary neural architecture used in this dissertation, this section
switches gears towards an important training technique for neural networks. Knowledge
distillation (Ba and Caruana, 2014; Hinton et al., 2015) is a method for transferring knowl-
edge from a “teacher” neural network to a “student” network. The key idea is to train the
student to imitate the teacher’s output distribution. Knowledge distillation can be applied
to train an effective small model by having it learn from an accurate but computationally
expensive model, such as an ensemble or model with many parameters. In this dissertation,
I apply knowledge distillation to improve multi-task models by having single-task mod-
els act as teachers. I also use a form of “self-distillation” as a semi-supervised learning
method.

For simplicity, I present knowledge distillation for classification problems. Let D =

{(x1, y1), ..., (xn, yn)} denote the training set for the classification task and f✓(x) denote
the output distribution over classes produced by a neural network with parameters ✓ on the
input x. This distribution f✓ is a k-dimensional vector with elements summing to 1 where
k is the number of classes, typically produced by a softmax layer. Standard supervised
learning trains ✓ to minimize the loss on the training set:

L(✓) =
X

xi,yi2D

`(yi, f✓(x))

where for classification tasks ` is usually cross-entropy.
Knowledge distillation trains the model to instead match the predictions of a teacher
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model f
0
✓0 with parameters ✓

0:

L(✓) =
X

xi,yi2D

`(f 0✓0(x), f✓(x))

This teacher network is typically trained with standard supervised learning over the data.
Interestingly, knowledge distillation improves over standard supervised training. This

finding is surprising because the targets provided by the teacher network are not even guar-
anteed to be correct the way gold labels are. Perhaps even more surprising is the phe-
nomenon of self-distillation. Training a network ✓

0 and then distilling it into a new network
✓ improves the second network even if it has exactly the same neural architecture and hy-
perparameters as ✓

0!
Furlanello et al. (2018) investigate the surprising effectiveness of these “born-again

networks” and point to two explanations. First, distillation is effective because the teacher’s
output distribution over classes provides more training signal than a one-hot label; Hinton
et al. (2015) suggest that teacher outputs contain “dark knowledge” capturing additional
information about training examples. Secondly, the output distribution implicitly provides
weights for examples: on more challenging examples where the correct class isn’t obvious,
the model is trained to be more uncertain, with the teacher putting less weight on the correct
class in its output distribution.

2.3 Multi-Task Learning

Machine learning models are generally trained to perform a single task. As discussed in the
introduction, this paradigm incurs significant drawbacks in terms of generality (the model
only learns a single task and is unlikely to perform well in other settings) and scalability

(the model is limited by the potentially small amount of annotated data available for the
task). Multi-task learning enables models to benefit from the knowledge that comes from
the training signal of related tasks. Compared to single-task learning, it is also closer to the
kind of learning that humans do, where drawing on prior experiences lets us quickly learn
new skills. From a more practical perspective, having a single multi-task model can be
easier to develop and deploy than having many single-task models. Multi-task models are
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at less risk for over-fitting than single-task ones because they are exposed to many diverse
inputs. Caruana (1997) argues that multi-task learning provides a valuable inductive bias to
the model. An inductive bias is anything that causes the learner to prefer some hypotheses
over others. In the case of multi-task learning, the features or representations learned are
encouraged to be useful for many tasks. As a result, features specific to particular tasks
which are not likely to generalize well (e.g., dataset artifacts) will be less used by the
model.

Pre-Neural Methods. A simple use of multi-task learning is for feature selection (Obozin-
ski et al., 2006), where features useful for multiple tasks are preferred. However, in NLP
a more common multi-task learning method is joint prediction. These methods train the
model to predict multiple related structures. Information from a predicted structure can im-
prove the prediction of other ones through new features (e.g., knowing a word is a proper
noun makes it more likely to be a named entity) or hard constraints (e.g., a named entity
cannot cross phrase boundaries). For example, Durrett and Klein (2014) train a model to
jointly perform entity linking, entity typing, and coreference resolution. Entity types can
improve coreference because mentions of different types will not be coreferent (e.g., the
company “Freddie Mac” and the personal pronoun “him”). Similarly, coreference can im-
prove entity typing because coreference decisions can provide new information about an
entity (e.g., knowing that “Dell” corefers with “the company” means “Dell” is more likely
to refer to an organization than the last name of a person).

A simple method for joint prediction is pipelining, where structures are predicted one-
at-a-time with earlier predictions informing later ones. Generally. lower-level linguistic
structures are predicted first. For example, it is common practice to first predict part-of-
speech tags before dependency parsing a sentence for both neural and statistical models
(Yamada and Matsumoto, 2003; Chen and Manning, 2014). A more sophisticated approach
is to relate the structure in a probabilistic model and perform inference using belief prop-
agation (Smith and Eisner, 2008; Durrett and Klein, 2014). Lastly, rather than predicting
multiple separate models, a multi-task model can also learn single joint structure capturing
multiple tasks. For example Finkel and Manning (2009) jointly perform parsing and named
entity recognition by learning a grammar augmented with named entity types.
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Figure 2.3: Hard vs. soft parameter sharing for neural multi-task learning. In hard parame-
ter sharing, different tasks use the same network weights. In soft parameter sharing, weights
are task-specific but are constrained or regularized to be similar, allowing for knowledge to
transfer across tasks. Figure from Ruder (2017)

Neural Methods. Deep learning has fundamentally changed how multi-task learning is
done because it allows for shared representations between tasks. There are two primary
ways of sharing parameters. In hard parameter sharing (Caruana, 1993), the same neural
parameters are used to build up features for different tasks, with additional task-specific
parameters added to go from the features to the final prediction. The particular choice
of which parameters are shared is a widely researched design decision. The earliest ap-
proaches simply shared word embeddings between tasks Collobert and Weston (2008).
Søgaard and Goldberg (2016) and Hashimoto et al. (2017) train many-task models where
the tasks are arranged hierarchically according to their linguistic level. The models are
multi-layer neural networks, with prediction modules attaches to each layer. Lower lay-
ers do lower-level tasks such as part-of-speech tagging, while deeper layers in the network
to more complex tasks, a strategy reminiscent of earlier pipelined NLP systems. Other
works (Misra et al., 2016; Ruder et al., 2019; Liu et al., 2017) have proposed complicated
architectures designed to ensure only beneficial information is shared across tasks. These
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generally have a mixture of shared and task-specific parameters, with regularizers encour-
aging cross-task features to be shared. In contrast with hard parameter sharing, in soft
parameter sharing each task has its own model with its own parameters. The distance be-
tween the model parameters is then regularized in order to encourage the parameters to be
similar. For example Duong et al. (2015) use an L2 penalty to improve cross-lingual de-
pendency parsing. I use hard parameter instead of soft parameter sharing in this thesis due
to the goal of efficiency. Soft parameter sharing does not scale as well because it requires
more task-specific parameters for each task, which makes the model larger as the number
of tasks increases.

Underlying these neural multi-task methods is the idea that shared features can be more
useful than independently learned ones. First, shared features have to be effective for mul-
tiple tasks, causing the model to “focus” on more generalizable features and ignore features
less useful for other tasks. Essentially sharing parameters constrains the model’s hypoth-
esis space by encouraging the features to be useful for more tasks. Feature sharing can
also improve performance because some features may be easier to learn from one task than
another. Hence, combining tasks provides the model access to easier learning of more
features.

Generally, prior work in multi-task learning has focused on a small number of closely
related tasks. For example, Luong et al. (2016) add a single auxiliary task to improve a pri-
mary one during seq2seq learning, Miwa and Bansal (2016) jointly learn entity detection
and relation extraction, Rei (2017) learns language modeling with sequence tagging, Peng
et al. (2017) learn three semantic parsing tasks, Zhang and Weiss (2016) jointly learn POS
tagging and dependency parsing, and Søgaard and Goldberg (2016) jointly learn syntac-
tic tagging tasks. When tasks are unrelated, performance drops considerably (Bingel and
Søgaard, 2017; Plank and Alonso, 2017). In contrast, following the goal of generality, the
multi-task work in this thesis generally focuses on learning many diverse tasks.

2.4 Semi-Supervised Learning

Semi-supervised learning uses unlabeled data such as text from the web to improve models
on tasks of interest. The models learn on a mix of labeled and unlabeled data. Labeled
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examples teach the model about the task. They then generalize what they learn to unla-
beled examples, which provide the model with more coverage of the data manifold – the
full range of examples they may see at test time. Semi-supervised learning is particularly
advantageous from the perspective of scalability. Labeled data is often scarce, but there
is abundant unlabeled text on the web and in books. While training a model using multi-
task learning gives it access to a bit more data, there can be orders of magnitudes more
unlabeled data. This scalability is particularly important in the context of neural methods,
which especially benefit from large amounts of data.

Self-Training. Many semi-supervised learning algorithms rely on variants of self-training
(Scudder, 1965) (see Figure 2.4b). Historically, self-training has successfully been applied
to NLP tasks such as word-sense disambiguation (Yarowsky, 1995) and parsing (McClosky
et al., 2006). In each round of training, the classifier, acting as a “teacher,” labels some
of the unlabeled data and adds it to the training set. Then, acting as a “student,” it is
retrained on the new training set. This procedure can be repeated iteratively until the model
converges, gradually adding more examples to the training set and expanding the range
of examples the model sees. While these “pseudo-labeled” examples will be noisy, the
hope is that the model will still be able to learn from them and “smooth out” the noise
by processing a large enough volume of examples. Self-training uses unlabeled data to
progressively unlock new features for a task. For example, a named entity recognition may
learn that “Seattle” is a location by seeing it in the indicative context “I traveled to Seattle”
and therefore being provided the right pseudo-label. Then, it can use that new knowledge
to learn a new indicative feature (the word “population” occurring near locations) from
“Seattle has a large population.” Continuing to use the labeled training data is essential
for avoiding the problem of semantic drift. A model learning from incorrect pseudo-labels
will get worse at the task, which can lead to further incorrect pseudo-labels. Instead, self-
training hopes for a beneficial feedback loop where pseudo-labels improve the model such
that future pseudo-labels will be more accurate.

While alternating between generating a whole new training set and learning on it is
necessary for batch training methods, this process can be inefficient with neural nets using
minibatch gradient descent. A solution is to perform “online” self-training, where during
each training step a minibatch of unlabeled examples is pseudo-labeled and learned from.
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Figure 2.4: An illustration of how few popular semi-supervised learning methods work
on the toy “two moons” dataset. Part a gives an overview of the dataset and b shows
how standard supervised learning fails to learn the correct function from only the labeled
examples. Parts c, d, and e demonstrate how self-training, consistency regularization, and
pre-training can allow the model to learn a correct decision boundary for the dataset.
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In particular, given a minibatch of labeled examples (xi, yi) and minibatch of labeled ex-
amples x

u
i , the loss function is

 
 
 
 

standard 
supervised loss 

self-training loss 

pseudo-label 

where CE denotes cross-entropy loss. Many approaches (including the consistency regu-
larization methods discussed below) train the student with soft targets from the teacher’s
output distribution rather than a hard one-hot label (i.e., deleting the argmax), making the
procedure more akin to knowledge distillation. As discussed in Section 2.2, soft targets
can provide a richer training signal to the model. Another strategy for improving self-
training is using a stronger teacher than the model itself. The goal of this idea is to produce
better pseudo-labels for the student. For example, tri-training (Zhou and Li, 2005; Ruder
and Plank, 2018) uses an ensemble of three models as the teacher and Mean Teacher (Tar-
vainen and Valpola, 2017a) uses an exponential moving average of the student’s weights as
the teacher.

Consistency Regularization. Standard self-training appears a bit circular: the model is
learning from the exact predictions it already makes, raising concerns that the model will
not actually learn much new from the unlabeled data. Indeed, if we replace the one-hot
pseudo-label in the self-training loss with the output distribution f✓(xu

i ), the two terms in
the cross entropy loss become the same!1 Methods using consistency regularization (see
Figure 2.4d) address this issue. Consistency regularization adds noise (e.g., drawn from
a Gaussian distribution) or applies stochastic transformations (e.g., horizontally flipping
an image) to the student’s inputs. Under consistency regularization, the self-training loss
become CE(f✓(noised(xu

i )), f✓(x
u
i )), This approach makes the learning task harder for the

student network because it is learning from a corrupted input. Due to this more challeng-
ing task, the student is more likely to learn from the teacher (often itself, but without the
input noise). Another view is that consistency regularization encourages the model to give
consistent predictions to nearby data points. This induces “distributional smoothness” or

1Although in fact, this approach still works as a semi-supervised learning method called entropy mini-
mization (Grandvalet and Bengio, 2005).
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“Lipschitz continuity” in the model, i.e., a small change to the input does not change the
output, regularizing the model. In fact, methods like L2 regularization can be viewed as
crude ways of also inducing this sort of model smoothness.

Consistency regularization has been very successful for computer vision applications
(Bachman et al., 2014; Laine and Aila, 2017; Tarvainen and Valpola, 2017b). It works
especially well when the noise is selected adversarially (Miyato et al., 2016) or when com-
bined with other smoothness regularizers such as MixUp (Zhang et al., 2018; Berthelot
et al., 2019). However, stochastic input alterations are more difficult to apply to discrete
data like text, making consistency regularization less used for natural language process-
ing. Continuous noise can’t be added to discrete words, and there are not simple meaning-
preserving transformations like cropping or flipping for text. One solution is to add noise to
the model’s word embeddings (Miyato et al., 2017a). Another solution is ensuring consis-
tent predictions across different views, or subsets of the input features. Co-training (Blum
and Mitchell, 1998) and co-regularization (Sindhwani and Belkin, 2005), which train two
models with disjoint views of the input, take this approach. On unlabeled data, each one
acts as a “teacher” for the other model. The models can learn from each other because of
their different views. I apply this idea to semi-supervised NLP in Cross-View Training.

2.5 Self-Supervised Learning

Semi-supervised learning allows a model to benefit from large amounts of unlabeled data.
However, the model is still limited to learning a pre-specified set of tasks. To build a
model for a new task, the expensive procedure of learning over the large unlabeled corpus
has to be repeated again. Self-supervised representation learning uses unlabeled data in
a more general-purpose way. Rather than learning representations useful for a particular
task, self-supervised learning seeks to learn general representations that are transferable
to a variety of tasks. Once the slow self-supervised learning phase has been performed
once, the model can be reused for many tasks. Self-supervised methods construct what
looks like a supervised task from the unlabeled data. For example, deleting some of the
input and predicting what it was originally creates a supervised learning problem from the
unlabeled data. These tasks are designed to be challenging and general, so they produce



CHAPTER 2. BACKGROUND 29

Method Encoder Prediction Pre-Train Params GLUE
Task Compute Score

GloVe Word vector Neighboring words 7.2e15 5M-50M 68.6
ELMo Bi-LSTM LM 3.4e18 96M 71.2
GPT Transformer (Dec) LM 4.0e19 117M 78.8
BERT Transformer Cloze 1.9e20 335M 84.0
RoBERTa Transformer Cloze 3.2e21 356M 88.9
XLNet Transformer Any-order LM 3.8e21 360M 89.2
ALBERT Transformer Cloze 3.1e22 235M 89.9
T5-11b Transformer (Enc-Dec) Seq2Seq Cloze 4.6e22 11B 90.7
GPT-3 Transformer (Dec) LM 5.1e23 175B –

Table 2.1: Statistics for selected pre-training methods in NLP. Compute is measured in
the total number of pre-training floating point operations. Enc-Dec means encoder-decoder
model. Methods are ordered according to the publication date. While rapid progress on
GLUE is apparent, the progress has been driven by larger models and increasing amount of
pre-training compute.

good representations. There has been rapid growth in the size and ability of these models.
See Figure 2.5 for a taxonomy of pre-trained models and Table 2.1 for statistics on some of
the more significant methods.

Self-supervised learning methods typically operate in two phases. First, there is a pre-

training phase where the model learns from the unlabeled corpus. Then during a fine-

tuning phase, the learned model is transferred to the task of interest. Specifically, the
pre-trained weights are used as initialization for a task-specific classifier, with usually a
small additional randomly initialized neural network component added on top to make
the final classification decisions. The goal of the pre-training is to learn neural network
weights that provide a much better initialization for supervised models than random ones.
The pre-trained model weights can be updated during the task-specific training, or held
fixed for faster but typically less accurate training. The expensive self-supervised pre-
training phase only has to occur once, and pre-trained models are relatively quick to fine-
tune (often converging in 3 epochs or less) due to their initialization from effective weights.
This advantage makes self-supervised pre-training much easier to use in practice than other
methods. Pre-training does not have to be self-supervised – for example, CoVe (McCann
et al., 2017) pre-trains LSTMs to perform machine translation. However, self-supervised
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Figure 2.5: A (non-exhaustive) taxonomy of neural pre-training methods for NLP. Black
regions correspond to the type of pre-trained model, blue to neural architectures, red to
types of pre-training tasks, and green to other details of the models.
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methods are now by far more common than supervised pre-training in NLP because of the
abundance of unlabeled data.

2.5.1 Learning Word Embeddings

Early applications of self-supervised pre-training learned word embeddings: low-dimensional
vector representations of words. Such embeddings became widely used in the NLP com-
munity due to their remarkable ability to capture lexical features (see Figure 2.6) despite
receiving no human supervision signal. A key advantage of dense word embeddings over
sparse lexical features (e.g., unigrams) is in improved generalization to rare or unseen
words. A statistical sentiment analysis classifier with bag-of-words features won’t learn
that “abominable” has negative sentiment if the word isn’t present in the training set. How-
ever, a model built from word embeddings can generalize from a related word – perhaps
“terrible” and “horrible” are in the training set and have a similar embedding to “abom-
inable.”

Figure 2.6: An example of lexical features learned by GloVe: a direction in the embedding
space corresponds to male/female. Figure from (Pennington et al., 2014).

A pre-neural approach to dealing with this sort of data sparsity in text data is Brown
clustering (Brown et al., 1992). Brown clustering groups words into clusters where words
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occurring in similar contexts are placed in the same cluster. These word clusters are use-
ful as features for statistical systems. Neural methods for learning embeddings are also
inspired by the distributional hypothesis that words that occur in similar contexts tend to
have similar meanings. For example, the self-supervised tasks for pre-training word em-
beddings often rely on predicting words based on their contexts. Alternatively, they can
be viewed as performing low-rank approximations of the matrix of word co-occurrences.
Collobert and Weston (2008) developed the first neural word embedding method, where a
neural network is trained to distinguish words in their context from negative samples cho-
sen at random. Perhaps the best-known word embedding method is word2vec, which uses
a training objective called skip-gram (Mikolov et al., 2013b). Skip-gram is simpler and
faster than the approach from Collobert and Weston (2008). It learns a context vector c

and word vector v for each word (these two vectors are typically summed after training,
resulting in a single vector per word). Instead of using a neural network, the training ob-
jective simply encourages word vectors to have a high dot product with the context vectors
of nearby words. After pre-training, the context and word vectors are summed up to get a
single embedding for each word. If C is the matrix of all context vectors, the Skip-Gram
objective is

L(✓) =
X

w2D

X

w02window(w)

� log softmax(Cvw)w0

Where w and w
0 are the indices of words in the vocabulary and window(w) refers to the

words within a fixed distance (typically 5) of w. In practice, the full softmax over all
context vectors is very expensive. Instead, word2vec makes use of negative sampling, a
technique similar to noise-contrastive estimation. Rather than lowering the dot product
with all context vectors not in the window, negative sampling selects a small set of random
words to lower in score. Subsequent word embeddings such as GloVe (Pennington et al.,
2014) and FastText (Bojanowski et al., 2017) use improved training objectives but with
the same underlying idea. There has also been extensive research in learning cross-lingual
word embeddings that are aligned across languages such that the embedding of a word is
close to the embedding of its translation (Faruqui and Dyer, 2014; Luong et al., 2015a;
Gouws et al., 2015).
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2.5.2 Language Modeling

While methods for pre-training embeddings have been highly successful, these approaches
produce a fixed representation of each word. However, in practice, language is highly
contextual, with the meaning of a word depending on its neighbors. A clear illustration
of this is in polysemous words with many senses: bat can refer to an animal, a piece
of sporting equipment, or an action depending on its context. For this reason, it can be
more effective to pre-train neural networks such as Transformers and LSTMs that build
contextual representations of words rather than static representations. An advantage of pre-
training text encoders is that the number of randomly initialized parameters in the model
can be much smaller, reducing over-fitting. Furthermore, self-supervised tasks have access
to much more data than supervised ones, allowing for larger text encoders than can be
effectively trained on supervised datasets. Pre-training methods for text encoders typically
use the contextualized representations of part of the input to predict another part of the
input. Language models were among the first such pre-training task.

Language models (LMs) model the probability p(x) of a piece of text x = [x1, x2, ..., xn]

consisting of n words. Self-supervised transfer learning methods train language models
that each use a neural network with parameters ✓ to estimate the probability. Applying the
chain rule of probability, the probability of a text can be decomposed as

p(x) = p(x1)p(x2|x1)p(x3|x1x2)... =
nY

t=1

p(xt|x<t)

This decomposition is useful because it breaks up p(x) into terms that are easier to esti-
mate. While estimating p(x) directly is intractable because it requires normalizing over the
space of all possible sentences x, the probability p(xt|x<t) just requires normalizing over
all words in the vocabulary. A neural LM outputs an estimate p✓(xt|x<t). In other words,
it is trained to predict the next token given the previous context to that token’s left. First, a
neural network first encodes the input sequence into a sequence of contextualized represen-
tations h = [h1, ..., hn] where each representation is a d-dimensional vector corresponding
to an input token. The network runs left-to-right, which means each ht only depends on
previous tokens x<t. This can be achieved by using a recurrent network such as an LSTM
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(Hochreiter and Schmidhuber, 1997) or applying causal masking to a Transformer.
The LM then uses a softmax layer to estimate token probabilities:

p✓(xt|x<t) = exp(hT
t ext)/

X

x02vocab

exp(hT
t ex0)

where ext denotes a token embedding. The estimated probability of a sentence x is then

p✓(x) =
nY

t=1

p✓(xt|x<t)

Given a dataset D of text, the models are trained to minimize the negative log-likelihood
loss

L(✓) =
X

x2D

� log p✓(x) =
X

x2D

� log
nY

t=1

p✓(xt|x<t) =
X

x2D

nX

t=1

� log p✓(xt|x<t)

using mini-batch gradient descent.
Language models can be used to generate text one token at a time. At each step, the

model outputs a token xt given the previous context x<t by sampling from p✓(xt|x<t).2

The generated token is then added to the context and the process repeats. These models
are called autoregressive due to this process of making predictions based on their previous
outputs. However, instead of generation, I focus on the use of the parameters ✓ or repre-
sentations x to be incorporated into downstream supervised tasks. For this use, language
models have a big drawback in that they are uni-directional: the representation for a par-
ticular token only depends on previous tokens. As a result, the representations are less
contextual than they could be: for example, the first token of the input is not contextual at
all and is therefore no more useful than a static word embedding. A solution is to train two
language models, one that operates left-to-right and one that operates right-to-left. Com-
bining both models by concatenating the left-to-right and right-to-left states results in better
contextualized representations for each token.

2It is possible to improve generation quality by using more sophisticated methods than sampling from the
distribution. Examples include using a temperature, using beam search, or using top-k sampling (Fan et al.,
2018) / nucleus sampling (Holtzman et al., 2020)
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Language model pre-training was first proposed by (Dai and Le, 2015), although their
experiments were relatively small-scale. A significant breakthrough was ELMo (Peters
et al., 2018), which (1) used both directions of language modeling, and (2) trained much
larger models on much larger datasets. ELMo representations were typically held fixed
(i.e., treated as static word embeddings) and passed into existing strong models for the task.
Radford et al. (2018) proposed GPT (Generative Pre-training), which scaled up models
further, using a large Transformer network instead of LSTMs. Furthermore, GPT (along
with the prior ULMFit (Howard and Ruder, 2018) method) fine-tuned the whole LM rather
than only using it to produce static feature vectors. GPT was a breakthrough because it
demonstrated how these models could be easily applied to many tasks without task-specific
add-ons.

As a generative task, language modeling is especially useful for pre-training text gen-
eration models such as text summarization or chit-chat dialogue systems. However, large
language models such as GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020) have
shown that language modeling alone can train general models that learn, at least shallowly,
many tasks. This property is demonstrated through few-shot or zero-shot transfer of the
models to NLP datasets.

2.5.3 Cloze Modeling

While combining the representations from left-to-right and right-to-left LMs results in a
bidirectional model, such a model is only bidirectional in a “shallow” way, with the left and
right context of each token just being combined through concatenating states. In contrast, a
Transformer encoder can be much more expressive because every token “sees” every other
token during training. Having this kind of cross attention across the input is very beneficial
for tasks such as reading comprehension, where it is beneficial to build up representations
of the question based on the context and vice versa. Consequently, many variants of “co-
attention” have been developed (Xiong et al., 2017; Seo et al., 2017) to improve reading
comprehension models.

An effective pre-training task for bidirectional Transformers (i.e., Transformer encoders
without causal masking) is the cloze task. The goal of the cloze task is to predict a word’s
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Figure 2.7: An overview of masked language modeling. First, words in the input are
randomly masked out. Then a Transformer network embeds the sequence as contextualized
vectors. The final representations are used to predict the identities of the masked-out input
words.

identity given both its left and right context (as opposed to only one side in an LM). It is
commonly used as a teaching method for people learning a second language. It also proves
very effective for teaching neural models about language.

More formally, cloze models learn the probability pdata(xt|x\t) of a token xt occur-
ring in the surrounding context x\t = [x1, ..., xt�1, xt+1, ..., xn]. Masked language model
(MLM) training (see Figure 2.7) is the standard approach for learning in these models.
They select a small subset of the unlabeled input sequence (typically 15%), mask the iden-
tities of those tokens by replacing them with a special [MASK] token, and then train the
network to recover the original input. Specifically, MLMs represents the context as [x1,
... , xt�1, [MASK], xt+1, ... , xn], the input sequence with xt replaced by a special
[MASK]placeholder token. This masked sequence is encoded into vector representations
by a Transformer network. Then the representation at position t is passed into a softmax
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layer to produce a distribution over tokens p✓(xt|x\t) for the position. The negative log-
likelihood loss for the model over a dataset of unlabeled text D is

LMLM(✓) =
1

|D|
X

x2D

1

|x|

xX

t=1

� log p✓(xt|x\t)

To improve efficiency, masked language models like BERT typically mask out k tokens
at once from each example rather than only one. In particular, on each sentence x, the
MLM selects R, a randomly chosen set of k unique positions 1  r  |x| to replace with
[MASK]. The loss then becomes

LMLE(✓) =
1

|D|
X

x2D

1

|S|
X

R2S

1

|R|
X

t2R

� log p✓(xt|REPLACE(x, R,[MASK]))

where REPLACE(x, R,[MASK]) denotes replacing the tokens at positions in R with
[MASK] and S = {R : R ⇢ [n] ^ |R| = k} contains all possible selections of k

unique positions in the input sequence to mask out. In practice, the second sum is approxi-
mated by a taking a single random selection for R. These two losses are only equivalent if
� log p✓(xt|x\t) = � log p✓(xt|REPLACE(x, R,[MASK])), i.e., the additional masked-out
tokens do not change the model’s outputs. In practice, k is set to a small value (for BERT,
k = d0.15ne, i.e., 15% of the tokens are masked out per example) to reduce this discrep-
ancy. If many more tokens were masked out, the input would become unusable because
too much context would be missing.

Cloze modeling has proven very effective as a self-supervised learning method, yielding
rapid gains on NLP benchmarks. A series of masked language models, including BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019e), XLNet (Yang et al., 2019), and AL-
BERT (Lan et al., 2020), have pushed this training method to larger and larger scales.
However, this scaling has primarily been done by increasing model size and training times.
In this thesis, I propose ELECTRA, a more efficient pre-training method inspired by the
cloze task. It alleviates a substantial efficiency drawback of masking, where the model only
learns from 15% of input tokens per example. Given the remarkable scalability of recent
pre-training methods, I argue that improving efficiency should be the primary concern of
self-supervised pre-training methods because improving efficiency consistently improves
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downstream task performance.

2.5.4 Phrase-Level and Sentence-Level Objectives

The self-supervised learning methods discussed so far learn vector representations for in-
dividual word tokens. But what about larger units of text such as sentences? In practice,
having effective word representations seems sufficient to achieve good performance on
many tasks: during fine-tuning, the model can learn to combine them. In fact, state-of-the-
art models such as RoBERTa (Liu et al., 2019e), XLNet (Yang et al., 2019) and T5 (Raffel
et al., 2020) only use token-level tasks. Nevertheless, this section will briefly detail some
of the most notable representation learning objectives for larger text units.

A simple method for producing a sentence embedding is a “bag of vectors” approach
the averages or sums up word embeddings (learned using the techniques discussed in Sec-
tion 2.5.1) for the constituent words. Arora et al. (2017) show that this approach is surpris-
ingly effective and can be improved by using techniques based on PCA to assign weights to
the word vectors when taking the sum. Sentence-level and paragraph-level self-supervised
tasks were also explored prior to the widespread use of language model and cloze model
pre-training. Paragraph vector (Le and Mikolov, 2014) learns paragraph representations
that are predictive of the words in the paragraph, skip-thought (Kiros et al., 2015) learns
sentence vectors that can be passed into decoders such that the decoders generate the pre-
vious or next sentence, and Sequential Denoising Autoencoders (SDAE; Hill et al. (2016))
train a sentence encoder that embeds a sentence corrupted through word deletions and
swaps into a vector from which a decoder can recover the original (uncorrupted) sentence.
Supervised approaches to learning sentence embeddings such as from natural language in-
ference, (Conneau et al., 2017), paraphrase (Wieting et al., 2016), or translation (Artetxe
and Schwenk, 2019) data have also been explored.

Since BERT, there have been several approaches combining cloze modeling with higher-
level self-supervised tasks. BERT itself included a “next-sentence prediction” task. For this
task, the input consists of two text segments concatenated together. The second segment is
either the text following the first or a random segment from another document. BERT is
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then trained to predict from its first output vector3, which is considered the embedding for
the whole text, if the second segment is the following text or a random one. In practice, this
task has actually been shown to decrease the performance of pre-trained transformers (Liu
et al., 2019e; Yang et al., 2019), likely because (1) this task is very easy for most random
segments and (2) the random segments provide irrelevant context that interferes with the
cloze task. However, similar but more challenging tasks have been shown to improve per-
formance slightly. ALBERT (Lan et al., 2020) uses a sentence ordering task where the two
segments are either in order or switched, StructBERT (Wang et al., 2020) uses a combina-
tion of sentence order and next sentence prediction, and PEGASUS (Zhang et al., 2020)
masks out important sentences in the input and trains a decoder to reconstruct them, which
particularly improves text summarization performance.

There also have been self-supervised tasks proposed to learn representations for spans
or chunks of text. For example, MASS (Song et al., 2019) masks out contiguous chunks
of text to provide a more challenging reconstruction task to the model, and StructBERT
(Wang et al., 2020) shuffles tri-grams in the input sequence and trains the model to recover
the original ordering. SpanBERT (Joshi et al., 2019) masks out spans and then trains the
model to predict the masked-out tokens from the hidden state bordering each masked span.
It shows improvements on span selection tasks such as question answering and coreference
resolution.

2.5.5 Extensions and Analysis of Pre-Trained Transformers

The effectiveness of self-supervised pre-training combined with the expressive Transformer
architecture (see Section 2.1) has led to a significant paradigm shift in NLP. Their gener-
ality has greatly reduced the need for task-specific engineering: rather than designing a
model for a specific task, it is now often possible to download a pre-trained model that
will work well on it out-of-the-box. Pre-trained models also make NLP tasks centered
around linguistic structure such as dependency parsing less relevant because these mod-
els learn much about language structure as a by-product of their self-supervised training.
This finding has been observed through “BERTology,” an emerging area in NLP focused

3This vector corresponds to a special [CLS] token that is prepended to the text before BERT processes
it.
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on analyzing pre-trained models.
One line of research examines the outputs of language models or cloze models on care-

fully chosen input sentences (Linzen et al., 2016; Khandelwal et al., 2018; Gulordava et al.,
2018). For example, a model’s performance at subject-verb agreement (generating the cor-
rect number of a verb far away from its subject) provides a measure of the model’s syntactic
ability. Another line of work investigates the internal vector representations of the model
(Adi et al., 2017; Zhang and Bowman, 2018), often using probing classifiers. Probing
classifiers are simple neural networks that take the vector representations of a pre-trained
model as input and are trained to do a supervised task (e.g., part-of-speech tagging). If a
probing classifier achieves high accuracy, it suggests that the input representations reflect
the corresponding aspect of language (e.g., low-level syntax). These studies have demon-
strated that pre-trained models such as BERT model aspects of syntax (Shi et al., 2016;
Hewitt and Manning, 2019; Goldberg, 2019) or coreference (Tenney et al., 2018; Liu et al.,
2019a) without explicitly being trained for the tasks. Some of my own research has looked
at BERT’s attention mechanisms, and found attention heads capturing aspects of syntax
and coreference remarkably well (Clark et al. (2019a), see Figure 2.8). Together, these
results show the remarkable effectiveness of self-supervised pre-training for learning rich
representations of language.

The success of pre-training on language data has led to cross-modal self-supervised
learning methods that add other modalities. For example, LXMERT (Tan and Bansal,
2019), ViLVERT (Lu et al., 2019), and VisualBERT (Li et al., 2019) learn joint representa-
tions of images and text using data such as captioned images while VideoBERT (Sun et al.,
2019b) learns to represent videos and text from captioned videos. Another direction has
been pre-training multi-lingual models that can be then applied to machine translation or
zero-shot language transfer, where the model is fine-tuned on labeled data in one language,
but then is evaluated at performing the task for other languages. These methods often make
use of translation data as well as monolingual to improve performance, but still commonly
employ variants of the cloze task (Lample and Conneau, 2019; Feng et al., 2020a; Xue
et al., 2020).

With the goal of extending pre-trained models to text generation tasks, another line of
research has developed methods for sequence-to-sequence pre-training. A simple method



CHAPTER 2. BACKGROUND 41

 

Head 9-6 
 

- Prepositions attend to their objects 
 

- 76.3% accuracy at the pobj relation 

Head 8-11 
 

- Noun modifiers (e.g., determiners) attend 
  to their noun 
 

- 94.3% accuracy at the det relation 

Head 8-10 
 

- Direct objects attend to their verbs 
 

- 86.8% accuracy at the dobj relation 

Head 7-6 
 

- Possessive pronouns and apostrophes 
  attend to the head of the corresponding NP 
 

- 80.5% accuracy at the poss relation 

Head 4-10 
 

- Passive auxiliary verbs attend to the 
  verb they modify 
 

- 82.5% accuracy at the auxpass relation 

Head 5-4 
 

- Coreferent mentions attend to their antecedents 
 

- 65.1% accuracy at linking the head of a  
  coreferent mention to the head of an antecedent 

Figure 2.8: BERT attention heads that correspond to linguistic phenomena. The darkness
of a line indicates the strength of the attention weight. All attention to/from red words
is colored red to highlight attention head behaviors. Despite not being explicitly trained
on these tasks, BERT’s attention heads perform remarkably well, illustrating how syntax-
sensitive behavior can emerge from self-supervised training alone. See Clark et al. (2019a)
for more details on this analysis.



CHAPTER 2. BACKGROUND 42

is UniLM (Dong et al., 2019), which adds an additional objective to a cloze model Trans-
former where for part of the sequence it (1) predicts the next token instead of the current
one and (2) it uses causal masking so these predictions are left-to-right. Other approaches
change the model architecture to being full encoder-decoder Transformers. These meth-
ods typically pass a masked input into the encoder like cloze models. Then the decoder
is trained to predict either the original (unmasked) input sequence as in BART (Lewis
et al., 2020) or only the masked-out tokens as in MASS (Song et al., 2019) and T5 (Raf-
fel et al., 2020). A related task is gap sentences generation (Zhang et al., 2020), where
input sentences are masked out and a decoder is trained to reproduce them. Pre-trained
sequence-to-sequence models generally do not work better on downstream tasks than pre-
trained Transformer encoders, but have the significant advantage of being applicable to text
generation problems.

Inference is expensive with large pre-trained transformers, making these models diffi-
cult to use in practice. Consequently, there has been substantial research on compressing
these models through distillation (Sun et al., 2020; Sanh et al., 2019; Jiao et al., 2020) or
quantization (Shen et al., 2020; Zafrir et al., 2019). This thesis focuses more on training
efficiency, an aspect of pre-training that also remains very costly. However, the models I
present could be combined with these compression techniques to improve inference speed.

2.6 Natural Language Processing Tasks and Datasets

With the goal of generality in mind, I evaluate the transfer learning methods presented in
this thesis on a diverse range of natural language processing tasks. This section details the
tasks and their corresponding datasets. Statistics on the datasets are shown in Table 2.2.

2.6.1 Syntactic Tasks

Syntactic tasks involve predicting the grammatical structure of the sentence. Syntactic
tasks are generally less useful intrinsically compared to semantic tasks involving sentence
meaning. Historically, syntactic analysis has been used as a step in a pipeline performing
a deeper analysis of a sentence (e.g., for sentiment analysis, understanding the scope of
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negations is crucial). With the rise of end-to-end deep learning, this use of syntactic tasks
is less common. While modeling the syntactic structure of a sentence is an essential step of
natural language understanding, end-to-end systems have shown an ability to automatically
learn the aspects of syntax needed for the task without human-provided labels (Blevins
et al., 2018). However, syntactic analysis can still be useful for other kinds of analysis.
For example, tracking the adjectives that often modify a noun over a corpus of text can
be used to automatically collect properties of the object (i.e., information extraction) or
what people think of the object (opinion mining). Similarly, if there is no training data
for a task, syntactic structure is useful for defining a rule-based system, such as collecting
subject-verb-object triples for relation extraction.

In this dissertation, I use syntactic tasks of various granularities, going from classifying
words, to groups of words, to relationships between the words in a sentence. Most of the
datasets are derived from the Penn Treebank (Marcus et al., 1993), which is a large corpus
of Wall Street Journal articles annotated with syntax trees.

Part-of-Speech (POS) Tagging: Labeling words with their syntactic categories (e.g., de-
terminer, adjective, etc.). POS tagging is an example of a tagging tagging task where each
word in a sentence is assigned a label. I use the Wall Street Journal (WSJ) portion of the
Penn Treebank (Marcus et al., 1993) and report word-level accuracy.

Text Chunking: Dividing a sentence into syntactically correlated parts (e.g., a noun phrase
followed by a verb phrase). While the labeling is over groups of words, text chunking is
often converted into a tagging task using a method such as BIO encoding (see named entity
recognition below for details). I use the CoNLLL-2000 shared task data (Tjong Kim Sang
and Buchholz, 2000) and report F1 over predicted chunks.

There is a problem.   Acceptable There are a problem.   Unacceptable

The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.

Combinatory Categorial Grammar (CCG) Supertagging: Labeling words with CCG
supertags, lexical categories that encode information about the sentence’s predicate-argument
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structure. CCG is widely used in syntactic and semantic parsing. I use data from CCGBank
(Hockenmaier and Steedman, 2007) and report word-level accuracy.

Dependency Parsing: Inferring a tree-structure describing the syntax of a sentence. In
a dependency parse, words in a sentence are treated as nodes in a graph. Typed directed
edges connect the words, forming a tree structure describing the syntactic structure of the
sentence. In particular, each word in the sentence receives exactly one in-going edge going
from another word (the “head) to it (the “dependent) of a particular type (the “relation”).
There is an additional special root node whose edge points to the head of the sentence.
I use the Penn Treebank converted to Stanford Dependencies (version 3.3.0) and report
labeled attachment score (LAS). LAS measures the percent of edges that have both the
correct head and relation type.

2.6.2 General Language Understanding Benchmark Tasks

The next set of tasks capture a broader set of datasets covering natural language understand-
ing (NLU). They are derived from the General Language Understanding (GLUE, Wang
et al. (2019)) benchmark, which is a collection of NLU tasks. The tasks are designed to
cover a diverse range of NLU, with datasets of different domains, sizes, and difficulties
covering a range of the many facets of natural language understanding.

CoLA: Corpus of Linguistic Acceptability (Warstadt et al., 2018). The task is to determine
whether a given sentence is grammatical or not. The dataset contains 8.5k train examples
from books and journal articles on linguistic theory.

There is a problem.   Acceptable There are a problem.   Unacceptable

The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.SST: Stanford Sentiment Treebank (Socher et al., 2013). The tasks is to determine if the

sentence is positive or negative in sentiment. The dataset contains 67k train examples from
movie reviews.
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The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.

MRPC: Microsoft Research Paraphrase Corpus (Dolan and Brockett, 2005). The task is
to predict whether two sentences are semantically equivalent or not. The dataset contains
3.7k train examples from online news sources.

There is a problem.   Acceptable There are a problem.   Unacceptable

The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.

STS: Semantic Textual Similarity (Cer et al., 2017). The tasks is to predict how semanti-
cally similar two sentences are on a 1–5 scale. The dataset contains 5.8k train examples
drawn from new headlines, video and image captions, and natural language inference data.

There is a problem.   Acceptable There are a problem.   Unacceptable

The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.

What is America’s largest city? 
Is a paraphrase of
Which city in the U.S. has the 
biggest population?

What is America’s largest city? 
Is not a paraphrase of
What is America’s capitol?

All of the animals escaped the zoo. 
Relatedness score: 4
The lion escaped its cage.

All of the animals escaped the zoo. 
Relatedness score: 3
The animals went on a journey.

QQP: Quora Question Pairs (Iyer et al., 2017). The task is to determine whether a pair of
questions are semantically equivalent. The dataset contains 364k train examples from the
community question-answering website Quora.

There is a problem.    Acceptable There are a problem.    Unacceptable

The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.

What is America’s largest city? 
Is a paraphrase of
Which city in the U.S. has the 
biggest population?

What is America’s largest city? 
Is not a paraphrase of
What is America’s capital?

All of the animals escaped the zoo. 
Relatedness score: 4
The lion escaped its cage.

All of the animals escaped the zoo. 
Relatedness score: 3
The animals went on a journey.

MNLI: Multi-genre Natural Language Inference (Williams et al., 2018). Given a premise
sentence and a hypothesis sentence, the task is to predict whether the premise entails the
hypothesis, contradicts the hypothesis, or neither. The dataset contains 393k train examples
drawn from ten different sources.
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There is a problem.   Acceptable There are a problem.   Unacceptable

The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.

QNLI: Question Natural Language Inference; constructed from SQuAD (Rajpurkar et al.,
2016). The task is to predict whether a context sentence contains the answer to a question
sentence. The dataset contains 108k train examples from Wikipedia.

There is a problem.   Acceptable There are a problem.   Unacceptable

The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.

RTE: Recognizing Textual Entailment (Giampiccolo et al., 2007). Given a premise sen-
tence and a hypothesis sentence, the task is to predict whether the premise entails the hy-
pothesis or not. The dataset contains 2.5k train examples from a series of annual textual
entailment challenges.

WNLI: Winograd schema (Levesque, 2011). The goal is to correctly pick a pronoun’s
antecedent out of two possibilities. Winograd schema are deliberately constructed so that
a small change to the sentence changes the Winograd schema (e.g., changing “small” to
“large” below). This property makes the task challenging because surface-level features
alone will not suffice to make a correct prediction.

Metrics: I report Spearman correlation for STS, Matthews correlation coefficient (MCC)
for CoLA and accuracy for the other tasks.

2.6.3 Question Answering

Question answering is an NLP application with potentially great value. Most people inter-
act with the vast amount of information available on the web through information retrieval,
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but this has limitations. It usually requires visiting and reading the retrieved page, which
is slow and poorly suited for small phone screens and spoken language interfaces (e.g.,
asking a question to a smartphone). Furthermore, it can be cumbersome to use when an-
swering multi-hop reasoning questions that require multiple web searches to answer. It is
also poor with highly specific information, such as answering a novel question about a par-
ticular document. General question answering systems offer an appealing alternative. In
this thesis, I focus on reading comprehension, a kind of question answering where the an-
swer is known to be contained in a particular document. Reading comprehension systems
can be combined with retrieval to build open domain question systems or can be useful for
quickly providing information on a specific document. Reading comprehension can also be
considered a core test of natural language understanding: one sign of truly understanding a
piece of text is being able to answer arbitrary questions about its content and meaning.

SQuAD 1.1: Stanford Question Answering Dataset (Rajpurkar et al., 2016). Given a con-
text paragraph (e.g., part of a Wikipedia article) and a question (e.g., about the article’s
subject), the task is to select the span of text in the paragraph answering the question. The
span is a contiguous sequence of words, so the task can be viewed as using a highlighter
to denote the answer to a question, making the task easier to learn for models and easier to
evaluate than generation-based question answering, where the answer can be paraphrased
or synthesized from the context. The dataset contains 88k train examples from Wikipedia.
I report F1 and Exact Match. EM requires that the predicted span exactly matches the
human-provided one while F1 offers partial credit where a predicted span partially over-
lapping the gold-standard span still gets some points.

There is a problem.   Acceptable There are a problem.   Unacceptable

The movie drags at first, but the 
climactic ending is worth it.         

Positive 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too small.

Antecedent 
of it

All of the animals escaped the zoo. 
Implies
The lion escaped its cage

… France defeated Brazil in the finals. 
Answers
Who won the 1998 World Cup?

Question: Who won the 1998 World Cup?
Context: … France defeated Brazil in the finals … 

All of the animals escaped the zoo. 
Is a paraphrase of
The zoo’s animals broke free. 

The party will be pretty great
NP ADJPVP

An amazingly dull film. Negative 
Sentiment

The trophy didn’t fit in the suitcase 
because it was too big.

Antecedent 
of it

Answer

… France defeated Brazil in the finals. 
Does not answer
Who won the battle of Agincourt?

All of the animals escaped the zoo. 
Contradicts
The lion was left trapped in its cage.

All of the animals escaped the zoo. 
Is not a paraphrase of
The zoo’s animals went on a journey.

SQuAD 2.0: Stanford Question Answering Dataset version 2.0 (Rajpurkar et al., 2018).
This task adds additional questions to SQuAD whose answer does not exist in the context;
models have to recognize when these questions occur and not return an answer for them.
This task was designed so simple heuristics such as “answer a who question with the first
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person in the article” aren’t always reliable, making the task more challenging. The no-
answer questions were created adversarially by specifically creating misleading questions
that models are likely to make a prediction on. The dataset contains 130k train examples
from Wikipedia (approximately 50k unanswerable questions added on top of SQuAD 1.1).
I report F1 and Exact Match.

2.6.4 Other Tasks

I lastly use named entity recognition and machine translation tasks in my experiments.
While less directly related to natural language understanding, these are two of the most
widely used NLP tasks in the world.

Named Entity Recognition (NER): Identifying named entities in a sentence and classify-
ing each as a location, organization, person, or miscellaneous entity. I use the CoNLL-2003
data (Tjong Kim Sang and De Meulder, 2003) dataset. I also use the OntoNotes (Hovy
et al., 2006) dataset for more fine-grained analysis of entities (FGN). This dataset contains
18 instead of 4 types, such as “Facility” and “Geo Political Entity.”

NER can be converted to a tagging task using an encoding such BIO. In BIO, each word
is labeled as a Beginning, Interior, or Outside word of an entity. From these tags, the actual
entities can be recovered. In practice, it sometimes helps to use BIOES encoding, which
also marks the Endings of entities or Singleton entities that consist of a single token. I
report entity-level F1 score, which computes the precision and recall of completely getting
all the words in an entity as well as predicting the correct type.

Machine Translation: Machine translation is the task of automatically converting text
from one language to another while preserving the meaning. I use the English-Vietnamese
translation dataset from IWSLT 2015 (Cettolo et al., 2015), which contains translations
of TED talks. I report (tokenized) BLEU scores on the tst2013 test set. BLEU measures
the overlap between the predicted and reference translation. The score combines overlap
measures (a variant of precision) for various numbers of n-grams ranging from unigrams
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(are the same words in the reference and prediction?) to 4-grams (is every 4-word chunk
in the reference in the prediction?), with 4-grams providing a stricter measure, but one that
captures word order better.
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Corpus |Train| |Test| Task Metric Domain
Syntactic Tasks

POS 38k 5.5k Part-of-speech tagging Acc. News
Chunk 9k 2k Text chunking F1. News
CCG 40k 2.4k CCG-supertagging Acc. News
Dep 40k 2.4k Dependency Parsing LAS News

Named Entity Recognition
NER 15k 3.7k Named entity recognition F1 News
FGN 29k 4k Fine-grained NER F1 Misc

Single-Sentence Tasks
CoLA 8.5k 1k Acceptability MCC Misc.
SST 67k 1.8k Sentiment Acc. Movie reviews

Similarity and Paraphrase
MRPC 3.7k 1.7k Paraphrase Detection Acc. News
STS 7k 1.4k Sentence Similarity Spearman Misc.
QQP 364k 391k Question Paraphrase Detection Acc. Social QA

Natural Language Inference Tasks
MNLI 400k 20k Natural Language Inference Acc. Misc.
QNLI 5.4k 1.8k Question-Answer Entailment Acc. Wikipedia
RTE 3.7k 1.7k Natural Language Inference Acc. News, Wikipedia
WNLI 634 146 Pronominal Anaphora Acc. Fiction Books

Reading Comprehension
SQuAD 1.1 88k 20k Answer Selection F1/EM Wikipedia
SQuAD 2.0 130k 20k Answer Selection / Answerability F1/EM Wikipedia

Machine Translation
En-Vi 400k 20k English to Vietnamese Translation BLEU TED Talks

Table 2.2: Summary and basic statistics of the datasets used in this dissertation. Dataset
sizes are given in terms of the number of sentences.



Chapter 3

Robust Multi-Task Learning with
Born-Again Multi-Task Networks

With the goal of building general-purpose NLP systems that can perform many tasks, the
most direct approach is simply to train multi-task models. When tasks are related, it is
intuitive that multi-task learning can improve performance: knowledge the model learns
about one task can be transferred to improve its ability at a related task. Indeed, much
work in multi-task learning for NLP has focused on learning a small number of closely
related tasks such as POS tagging and dependency parsing (Zhang and Weiss, 2016) or
entity detection and relation extraction (Miwa and Bansal, 2016). But with the broader
goal of highly general systems, I am interested in building models that can perform a large
number of tasks that are potentially quite different. A many-task NLP model also has
efficiency advantages: one multi-task model can be faster and easier to develop and deploy
than having many single-task ones.

Ideally, multi-task learning across many tasks would improve over single-task models
when tasks are closely related but never perform worse than a single-task model. After
all, the additional tasks are only adding more training data to the model during learn-
ing. However, in practice, multi-task models often perform worse than their single-task
counterparts when going beyond carefully selected related tasks. For example, Bingel and
Søgaard (2017) train two-task models across all combinations of 10 tasks, but only find
improvements in 38 of 90 task pairs and Plank and Alonso (2017) explore using a variety
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Figure 3.1: An overview of Born-Again Multi-Task Networks (BAM). The multi-task
model is trained on a mixture of soft targets from single-task teacher networks (distilla-
tion) and the task labels (standard training). � is increased linearly from 0 to 1 over the
course of training.

of auxiliary tasks to improve sequence prediction, but only obtained significant improve-
ments for 1 of 5 tasks. McCann et al. (2018) develop a benchmark of 10 natural language
understanding tasks with the goal of facilitating multi-task research, but their multi-task
baseline underperforms single-task ones.

In this chapter, I propose a method for robust multi-task learning where the multi-
task model never under-performs its single-task counterparts while still achieving gains
from related tasks. The key idea is to use knowledge distillation (Ba and Caruana, 2014;
Hinton et al., 2015) so that a single-task model “teaches” the multi-task model. Intuitively,
the multi-task model will never perform worse than the single-task one when it can learn
directly how the single-task one performs the task.

Knowledge distillation transfers knowledge from a “teacher” model to a “student”
model by training the student to imitate the teacher’s outputs. In “born-again networks”
(Furlanello et al., 2018), the teacher and student have the same neural architecture and
model size, but surprisingly the student is able to surpass the teacher’s accuracy. Intuitively,
distillation is effective because the teacher’s output distribution over classes provides more
training signal than a one-hot label; Hinton et al. (2015) suggest that teacher outputs contain
“dark knowledge” capturing additional information about training examples.

This work extends born-again networks to the multi-task setting. I compare Single!
Multi1 born-again distillation with several other variants (Single!Single and Multi!Multi),

1I use Single!Multi to indicate distilling single-task “teacher” models into a multi-task “student” model.
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and also explore performing multiple rounds of distillation (Single!Multi!Single!Multi).
Furthermore, I propose a simple teacher annealing method that helps the student model
outperform its teachers. Teacher annealing gradually transitions the student from learning
from the teacher to learning from the gold labels. This method ensures the student gets a
rich training signal early in training, but is not limited to only imitating the teacher.

My experiments multi-task fine-tune BERT (Devlin et al., 2019) to perform the tasks
from the GLUE natural language understanding benchmark (Wang et al., 2019). My train-
ing method, which I call Born-Again Multi-tasking (BAM)2, consistently outperforms stan-
dard single-task and multi-task training. Further analysis shows the multi-task models ben-
efit from both better regularization and transfer between related tasks.

3.1 Previous Work

This section discusses several closely related previous works; for a thorough overview of
prior work in multi-task learning, refer to background section 2.3. Distilling large models
into small models (Kim and Rush, 2016; Mou et al., 2016) or ensembles of models into sin-
gle models (Kuncoro et al., 2016; Liu et al., 2019b) has been shown to improve results for
many NLP tasks. There has also been some work on using knowledge distillation to aid in
multi-task learning. In reinforcement learning, knowledge distillation has been used to reg-
ularize multi-task agents (Parisotto et al., 2016; Teh et al., 2017). In NLP, Tan et al. (2019)
distill single-language-pair machine translation systems into a many-language system, but
they focus on multilingual rather than multi-task learning, use a more complex training
procedure, and only experiment with Single!Multi distillation. Several other works also
explore fine-tuning BERT using multiple tasks (Phang et al., 2018; Liu et al., 2019c; Keskar
et al., 2019b). However, they use only standard transfer or multi-task learning, instead fo-
cusing on finding beneficial task pairs or designing improved task-specific components on
top of BERT.

2Code is available at https://github.com/google-research/google-research/tree/
master/bam

https://github.com/google-research/google-research/tree/master/bam
https://github.com/google-research/google-research/tree/master/bam
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3.2 Method

3.2.1 Multi-Task Setup

Model. All of my models are built on top of BERT (Devlin et al., 2019). This model
passes byte-pair-tokenized (Sennrich et al., 2016b) input sentences through a Transformer
network (Vaswani et al., 2017), producing a contextualized representation for each token.
The vector corresponding to the first input token (for BERT this is a special token [CLS]
that is prepended to each input sequence.) c is passed into a task-specific classifier. For
classification tasks, I use a standard softmax layer: softmax(Wc). For regression tasks, I
normalize the labels so they are between 0 and 1 and then use a size-1 NN layer with a
sigmoid activation: sigmoid(wT

c). In my multi-task models, all of the model parameters
are shared across tasks except for these classifiers on top of BERT, which means less than
0.01% of the parameters are task-specific. Following BERT, the token embeddings and
Transformer are initialized with weights from a self-supervised pre-training phase.3 I chose
to build on top of BERT instead of train a model from scratch because (1) BERT is widely
used since it produces stronger models and (2) it provides a sterner test for the benefits
of multi-task learning because BERT already has a large amount of knowledge from its
pre-training phase.

Training. Single-task training is performed as in Devlin et al. (2019). For multi-task
training, examples of different tasks are shuffled together, even within minibatches. The
summed loss across all tasks is minimized. For efficiency on TPU hardware, I run all task-
specific classifiers over all examples and mask out all of the losses except the particular
task the example is from. The extra computation from producing predictions for the other
tasks is negligible because running a single softmax layer is very cheap compared with the
rest of BERT.

3For BERT code and weights, see https://github.com/google-research/bert.

https://github.com/google-research/bert
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3.2.2 Knowledge Distillation

To provide a clearer understanding of multi-task distillation, I first briefly review standard
single-task knowledge distillation (for details on knowledge distillation see background
section 2.2). I use D⌧ = {(x1

⌧ , y
1
⌧ ), ..., (x

N
⌧ , y

N
⌧ )} to denote the training set for a task ⌧ and

f⌧ (x, ✓) to denote the output for task ⌧ produced by a neural network with parameters ✓ on
the input x. Standard supervised learning trains ✓ to minimize the loss on the training set:

L(✓) =
X
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⌧ ,y

i
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where for classification tasks ` is usually cross-entropy. Knowledge distillation trains the
model to instead match the predictions of a teacher model with parameters ✓

0:
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X
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Note that my distilled networks are “born-again” in that the student has the same model
architecture as the teacher, i.e., all of my models have the same prediction function f⌧ for
each task. For regression tasks, I train the student to minimize the L2 distance between its
prediction and the teacher’s instead of using cross-entropy loss.

Multi-Task Distillation. Given a set of tasks T , I train a single-task model with parameters
✓⌧ on each task ⌧ . For most experiments, I use the single-task models to teach a multi-task
model with parameters ✓:

L(✓) =
X

⌧2T

X

xi
⌧ ,y

i
⌧2D⌧

`(f⌧ (x
i
⌧ , ✓⌧ ), f⌧ (x

i
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This method is denoted as Single!Multi distillation in the rest of this chapter. However, I
experiment with other distillation strategies as well.

Teacher Annealing. In knowledge distillation, the student is trained to imitate the teacher.
This raises the concern that the student may be limited by the teacher’s performance and not
be able to substantially outperform the teacher. To address this, I propose teacher anneal-

ing, which mixes the teacher prediction with the gold label during training. Specifically,
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Model Avg. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
Single 84.0 60.6 93.2 88.0 90.0 91.3 86.6 92.3 70.4
Multi 85.5 60.3 93.3 88.0 89.8 91.4 86.5 92.2 82.1
Single!Single 84.3 61.7⇤⇤ 93.2 88.7⇤ 90.0 91.4 86.8⇤⇤ 92.5⇤⇤⇤ 70.0
Multi!Multi 85.6 60.9 93.5 88.1 89.8 91.5⇤ 86.7 92.3 82.0
Single!Multi 86.0⇤⇤⇤ 61.8⇤⇤ 93.6⇤ 89.3⇤⇤ 89.7 91.6⇤ 87.0⇤⇤⇤ 92.5⇤⇤⇤ 82.8⇤

Table 3.1: Comparison of distillation strategies on the GLUE dev set. ⇤, ⇤⇤, and ⇤⇤⇤ indicate
statistically significant (p < .05, p < .01, and p < .001) improvements over both Single
and Multi according to bootstrap hypothesis tests. For all statistical tests I use the Holm-
Bonferroni method (Holm, 1979) to correct for multiple comparisons.

the term in the summation becomes

`(�y
i
⌧ + (1� �)f⌧ (x

i
⌧ , ✓⌧ ), f⌧ (x

i
⌧ , ✓))

where � is linearly increased from 0 to 1 throughout training. Early in training, the model
is mostly distilling to get as useful of a training signal as possible. Towards the end of
training, the model is mostly relying on the gold-standard labels so it can learn to surpass
its teachers.

3.3 Experiments

Data. I use the General Language Understanding Evaluation (GLUE) benchmark (Wang
et al., 2019), which consists of 9 natural language understanding tasks on English data (see
background section 2.6 for details on GLUE).

Training Details. Rather than simply shuffling the datasets for my multi-task models, I
follow the task sampling procedure from Bowman et al. (2018), where the probability of
training on an example for a particular task ⌧ is proportional to |D⌧ |0.75. This ensures that
tasks with very large datasets don’t overly dominate the training.

I also use the layerwise-learning-rate trick from Howard and Ruder (2018). If layer
0 is the NN layer closest to the output, the learning rate for a particular layer d is set to
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BASE LR · ↵
d (i.e., layers closest to the input get lower learning rates). The intuition is

that pre-trained layers closer to the input learn more general features, so they shouldn’t be
altered much during training.

Hyperparameters. For single-task models, I use the same hyperparameters as in the orig-
inal BERT experiments except I pick a layerwise-learning-rate decay ↵ of 1.0 or 0.9 on the
dev set for each task. For multi-task models, I train the model for longer (6 epochs instead
of 3) and with a larger batch size (128 instead of 32), using ↵ = 0.9 and a learning rate of
1e-4. All models use the BERT-Large pre-trained weights.

Reporting Results. Dev set results report the average score (Spearman correlation for STS,
Matthews correlation for CoLA, and accuracy for the other tasks) on all GLUE tasks except
WNLI, for which methods can’t outperform a majority baseline. Results show the median
score of at least 20 trials with different randoms seeds. I found that using a large number
of trials is essential because results can vary significantly for different runs. For example,
standard deviations in score are over ±1 for CoLA, RTE, and MRPC for multi-task models.
Single-task standard deviations are even larger.

3.4 Results

Main Results. I compare models trained with single-task learning, multi-task learning,
and several varieties of distillation in Table 3.1. While standard multi-task training im-
proves over single-task training for RTE (likely because it is closely related to MNLI),
there is no improvement on the other tasks. In contrast, Single!Multi knowledge distil-
lation improves or matches the performance of the other methods on all tasks except STS,
the only regression task in GLUE. I believe distillation does not work well for regression
tasks because there is no distribution over classes passed on by the teacher to aid learning.

The gain for Single!Multi over Multi is larger than the gain for Single!Single over
Single, suggesting that distillation works particularly well in combination with multi-task
learning. Interestingly, Single!Multi works substantially better than Multi!Multi dis-
tillation. I speculate it may help that the student is exposed to a diverse set of teachers
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Model GLUE score
BERT-Base (Devlin et al., 2019) 78.5
BERT-Large (Devlin et al., 2019) 80.5
BERT on STILTs (Phang et al., 2018) 82.0
MT-DNN (Liu et al., 2019c) 82.2
Span-Extractive BERT on STILTs (Keskar et al., 2019b) 82.3
Snorkel MeTaL ensemble 83.2
MT-DNNKD* (Liu et al., 2019b) 83.7

BERT-Large + BAM 82.3

Table 3.2: Comparison of BAM with previous methods on the GLUE test set. *MT-
DNNKD is distilled from a diverse ensemble of models.

in the same way ensembles benefit from a diverse set of models, but future work is re-
quired to fully understand this phenomenon. In addition to the models reported in the
table, I also trained Single!Multi!Single!Multi models. However, the difference with
Single!Multi was not statistically significant, suggesting there is little value in multiple
rounds of distillation.

Overall, a key benefit of my method is robustness: while standard multi-task learn-
ing produces mixed results, Single!Multi distillation consistently outperforms standard
single-task and multi-task training. I also note that in some trials single-task training re-
sulted in models that score quite poorly (e.g., less than 91 for QQP or less than 70 for
MRPC), while the multi-task models have more dependable performance.

Test Set Results. I compare against previous work by submitting to the GLUE leaderboard.
I use Single!Multi distillation. Following the procedure used by BERT, I train multiple
models and submit the one with the highest average dev set score to the test set. BERT
trained 10 models for each task (80 total); I trained 20 multi-task models. Results are
shown in Table 3.2.

BAM outperforms or matches existing published results that do not rely on ensembling.
However, due to the variance between trials discussed under “Reporting Results,” I think
these test set numbers should be taken with a grain of salt, as they only show the perfor-
mance of individual training runs (which is further complicated by tricks such as dev set
model selection). I believe significance testing over multiple trials would be needed to have
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Model Avg. Score
Multi 85.5

+Single-Task Fine-Tuning +0.3
Single!Multi 86.0

+Single-Task Fine-Tuning +0.1

Table 3.3: Combining multi-task training with single-task fine-tuning. Improvements are
statistically significant (p < .01) according to Mann-Whitney U tests.

a definitive comparison.

Single-Task Fine-Tuning. A crucial difference distinguishing my work from the STILTs,
Snorkel MeTaL, and MT-DNNKD methods in Table 3.2 is that I do not single-task fine-
tune my model. That is, I do not further train the model on individual tasks after the
multi-task training finishes. While single-task fine-tuning improves results, I think to some
extent it defeats the purpose of multi-task learning: the result of training is one model for
each task instead of a model that can perform all of the tasks. Compared to having many
single-task models, a multi-task model is simpler to deploy, faster to run, and arguably
more scientifically interesting from the perspective of building general language-processing
systems.

I evaluate the benefits of single-task fine-tuning in Table 3.3. Single-task fine-tuning
initializes models with multi-task-learned weights and then performs single-task training.
Hyperparameters are the same as for my single-task models except I use a smaller learning
rate of 1e-5. While single-task fine-tuning unsurprisingly improves results, the gain on top
of Single!Multi distillation is small, reinforcing the claim that distillation provides many
of the benefits of single-task training while producing a single unified model instead of
many task-specific models.

Ablation Study. I show the importance of teacher annealing and the other training tricks in
Table 3.4. I found them all to significantly improve scores. Using pure distillation without
teacher annealing (i.e., fixing � = 0) performs no better than standard multi-task learning,
demonstrating the importance of the proposed teacher annealing method.

Comparing combinations of tasks. Training on a large number of tasks is known to help
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Model Avg. Score
Single!Multi 86.0

No layer-wise LRs �0.3
No task sampling �0.4
No teacher annealing: � = 0 �0.5
No teacher annealing: � = 0.5 �0.3

Table 3.4: Ablation Study. Differences from Single!Multi are statistically significant
(p < .001) according to Mann-Whitney U tests.

Trained Tasks RTE score
RTE 70.0
RTE + MNLI 83.4
RTE + QQP + CoLA + SST 75.1
All GLUE 82.8

Table 3.5: Which tasks help RTE? Pairwise differences are statistically significant (p < .01)
according to Mann-Whitney U tests.

regularize multi-task models (Ruder, 2017). A related benefit of multi-task learning is the
transfer of learned “knowledge” between closely related tasks. I investigate these two bene-
fits by comparing several models on the RTE task, including one trained with a very closely
related task (MNLI, a much large textual entailment dataset) and one trained with fairly un-
related tasks (QQP, CoLA, and SST). I use Single!Multi distillation (Single!Single in
the case of the RTE-only model). Both sets of auxiliary tasks improve RTE performance,
suggesting that both benefits are playing a role in improving multi-task models. Interest-
ingly, RTE + MNLI alone slightly outperforms the model performing all tasks, perhaps
because training on MNLI, which has a very large dataset, is already enough to sufficiently
regularize the model.
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3.5 Discussion

I have shown that Single!Multi distillation combined with teacher annealing produces
results consistently better than standard single-task or multi-task training. Achieving ro-
bust multi-task gains across many tasks has remained elusive in previous research, so this
method makes multi-task learning more broadly useful within NLP. In particular, it opens
the door to easily training models on many tasks without needing to think carefully about
the tasks and worrying about task interference. However, with the exception of closely
related tasks with small datasets (e.g., MNLI helping RTE), the overall size of the gains
from my multi-task method are small compared to the gains provided by transfer learning
from self-supervised tasks (i.e., BERT). It remains to be fully understood to what extent
“self-supervised pre-training is all you need” and where transfer/multi-task learning from
supervised tasks can still provide substantial value. Overall, my feeling is that a small
number of examples from a related task still might fade to insignificance in their utility
compared to billions of tokens of unlabeled text, especially because the unsupervised ob-
jectives performed over unlabeled text tend to be very rich (e.g., text generation) compared
to supervised tasks (e.g., binary classification of sentences on a specific phenomenon like
sentiment). However, this work shows that even on top of BERT there are large gains to be
had when datasets are small and tasks are closely related.



Chapter 4

Scalable Semi-Supervised Learning with
Cross-View Training

As explained in Chapter 3, multi-task learning enables NLP models to learn from more
data: instead of a single human-labeled dataset, they are trained on many. Nevertheless,
creating human-labeled datasets is costly, with many consisting of less than one hundred
examples. Due to the range of different phenomena in language and vast amounts of world
knowledge needed for challenging NLP tasks, it is unlikely there will ever be enough la-
beled data to capture it all. Luckily, unlabeled text data is abundant on the web. Given how
deep learning methods thrive when given many examples, can we use this unlabeled text to
provide our models with much more data?

This chapter draws inspiration from traditional semi-supervised learning techniques
such as self-training and co-training to develop a powerful algorithm for using unlabeled
data to improve models. These methods have historically been effective for NLP (Yarowsky,
1995; McClosky et al., 2006), but have been less commonly employed with neural mod-
els. Specifically, I will present Cross-View Training (CVT), a self-training algorithm that
works well with deep learning models because it takes advantage of the ability for neural
networks to have shared representations. CVT is much faster than concurrent pre-training
methods such as ELMo and achieves excellent results on a variety of NLP tasks.

Currently, the dominant way of using unlabeled data for NLP systems is pre-training
(see Section 2.5). These methods perform unsupervised representation learning on a large
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corpus of unlabeled data followed by supervised training. I developed CVT before the
widespread adoption of pre-trained text encoders. Although pre-training has since be-
come the primary way of using unlabeled data, I believe there still is value in other semi-
supervised learning approaches.

In particular, a disadvantage of pre-training is that the first representation learning phase
does not take advantage of labeled data – the model attempts to learn generally effective
representations rather than ones that are targeted towards a particular task. This is a limita-
tion in efficiency: the model has to essentially learn much more than it actually needs for
the specific task of interest. Semi-supervised learning algorithms like self-training do not
suffer from this problem because they continually learn about a task on a mix of labeled
and unlabeled data and focus much more narrowly on particular task(s).

In self-training, the model learns as normal on labeled examples. On unlabeled exam-
ples, the model acts as both a “teacher” that makes predictions about the examples and a
“student” that is trained on those predictions. Although this process can achieve gains by
allowing the learning of new predictive words or features from contexts, it is somewhat
tautological: the model already produces the predictions it is being trained on. Methods in
computer vision addresses this by adding noise to the student’s input, training the model so
it is robust to input perturbations (Sajjadi et al., 2016; Wei et al., 2018). However, applying
noise is difficult for discrete inputs like text.

As a solution, I take inspiration from multi-view learning (Blum and Mitchell, 1998; Xu
et al., 2013) and train the model to produce consistent predictions across different views of
the input. Instead of only training the full model as a student, CVT adds auxiliary prediction
modules – neural networks that transform vector representations into predictions – to the
model and also trains them as students. The input to each student prediction module is
a subset of the model’s intermediate representations corresponding to a restricted view of
the input example. For example, one auxiliary prediction module for sequence tagging
is attached to only the “forward” LSTM in the model’s first Bi-LSTM layer, so it makes
predictions without seeing any tokens to the right of the current one.

CVT works by improving the model’s representation learning. The auxiliary prediction
modules can learn from the full model’s predictions because the full model has a better,
unrestricted view of the input. As the auxiliary modules learn to make accurate predictions
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despite their restricted views of the input, they improve the quality of the representations
they are built on top of. This in turn improves the full model, which uses the same shared
representations. In short, my method combines the idea of representation learning on unla-
beled data with classic self-training.

CVT can be applied to a variety of tasks and neural architectures, but I focus on se-
quence modeling tasks where the prediction modules are attached to a shared Bi-LSTM
encoder. I propose auxiliary prediction modules that work well for sequence taggers, graph-
based dependency parsers, and sequence-to-sequence models. I evaluate my approach on
English dependency parsing, combinatory categorial grammar supertagging, named entity
recognition, part-of-speech tagging, and text chunking, as well as English-to-Vietnamese
machine translation. CVT improves over previous results on all these tasks. Furthermore,
CVT can easily and effectively be combined with the multi-task learning we previously
explored through adding additional prediction modules for the different tasks on top of
the shared Bi-LSTM encoder. Training a unified model to jointly perform all of the tasks
except machine translation improves results while decreasing the total training time. The
resulting model1 is comparable to ELMo (Peters et al., 2018) in terms of architecture and
unlabeled data source, but scores better while training 10x faster. This efficient learning
demonstrates the utility of self-training as an alternative to pre-training in NLP.

4.1 Method

I first present Cross-View Training and describe how it can be combined effectively with
multi-task learning. See Figure 4.1 for an overview of the training method.

4.1.1 Cross-View Training

Let Dl = {(x1, y1), (x2, y2), ..., (xN , yN)} represent a labeled dataset and Dul = {x1, x2,
..., xM} represent an unlabeled dataset. I use p✓(y|xi) to denote the output distribution
over classes produced by the model with parameters ✓ on input xi. During CVT, the model

1Code is available at https://github.com/tensorflow/models/tree/master/

research/cvt_text

https://github.com/tensorflow/models/tree/master/research/cvt_text
https://github.com/tensorflow/models/tree/master/research/cvt_text
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Figure 4.1: An overview of Cross-View Training. The model is trained with standard
supervised learning on labeled examples. On unlabeled examples, auxiliary prediction
modules with different views of the input are trained to agree with the primary prediction
module. This particular example shows CVT applied to named entity recognition. From the
labeled example, the model can learn that “Washington” usually refers to a location. Then,
on unlabeled data, auxiliary prediction modules are trained to reach the same prediction
without seeing some of the input. In doing so, they improve the contextual representations
produced by the model, for example, learning that “traveled to” is usually followed by a
location.

alternates learning on a minibatch of labeled examples and learning on a minibatch of
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unlabeled examples. For labeled examples, CVT uses standard cross-entropy loss:

Lsup(✓) =
1

|Dl|
X

xi,yi2Dl

CE(yi, p✓(y|xi))

CVT adds k auxiliary prediction modules to the model, which are used when learning
on unlabeled examples. A prediction module is usually a small neural network (e.g., a hid-
den layer followed by a softmax layer). Each one takes as input an intermediate represen-
tation h

j(xi) produced by the model (e.g., the outputs of one of the LSTMs in a Bi-LSTM
model). It outputs a distribution over labels p

j
✓(y|xi). Each h

j is chosen such that it only
uses a part of the input xi; the particular choice can depend on the task and model architec-
ture. I propose variants for several tasks in Section 4.2. The auxiliary prediction modules
are only used during training; the test-time prediction come from the primary prediction
module that produces p✓.

On an unlabeled example, the model first produces soft2 targets p✓(y|xi) by performing
inference. CVT trains the auxiliary prediction modules to match the primary prediction
module on the unlabeled data by minimizing

LCVT(✓) =
1

|Dul|
X

xi2Dul

kX

j=1

D(p✓(y|xi), p
j
✓(y|xi))

where D is a distance function between probability distributions (I use KL divergence).
I hold the primary module’s prediction p✓(y|xi) fixed during training (i.e., I do not back-
propagate through it) so the auxiliary modules learn to imitate the primary one, but not
vice versa. CVT works by enhancing the model’s representation learning. As the auxiliary
modules train, the representations they take as input improve so they are useful for making
predictions even when some of the model’s inputs are not available. This in turn improves
the primary prediction module, which is built on top of the same shared representations.

I combine the supervised and CVT losses into the total loss, L = Lsup + LCVT, and
minimize it with stochastic gradient descent. In particular, I alternate minimizing Lsup

over a minibatch of labeled examples and minimizing LCVT over a minibatch of unlabeled
2As in knowledge distillation, soft targets (i.e., distributions over classes) tend to work better than one-hot

hard targets for semi-supervised learning.
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examples.
For most neural networks, adding a few additional prediction modules is computation-

ally cheap compared to the portion of the model building up representations (such as an
RNN or CNN). Therefore my method contributes little overhead to training time over other
self-training approaches for most tasks. CVT does not change inference time or the number
of parameters in the fully-trained model because the auxiliary prediction modules are only
used during training.

4.1.2 Combining CVT with Multi-Task Learning

To make the model more general-purpose, CVT can easily be combined with multi-task
learning by adding additional prediction modules for the other tasks on top of the shared
Bi-LSTM encoder. During supervised learning, I randomly select a task and then update
Lsup using a minibatch of labeled data for that task. When learning on the unlabeled data,
I optimize LCVT jointly across all tasks at once, first running inference with all the primary
prediction modules and then learning from the predictions with all the auxiliary prediction
modules. As before, the model alternates training on minibatches of labeled and unlabeled
examples.

Examples labeled across many tasks are useful for multi-task systems to learn from,
but most datasets are only labeled with one task. A benefit of multi-task CVT is that the
model creates (artificial) all-tasks-labeled examples from unlabeled data. This significantly
improves the model’s data efficiency and training time. Since running prediction modules
is computationally cheap, computing LCVT is not much slower for many tasks than it is for
a single one. However, I find the all-tasks-labeled examples substantially speed up model
convergence. For example, my model trained on six tasks takes about three times as long
to converge as the average model trained on one task, a 50% decrease in total training time.

4.2 Applying Cross-View Training

CVT relies on auxiliary prediction modules that have restricted views of the input. In
this section, I describe specific constructions of the auxiliary prediction modules that are
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effective for sequence tagging, dependency parsing, and sequence-to-sequence learning.

4.2.1 Bi-LSTM Sentence Encoder

All of my models use a two-layer CNN-BiLSTM (Chiu and Nichols, 2016; Ma and Hovy,
2016) sentence encoder. It takes as input a sequence of words xi = [x1

i , x
2
i , ..., x

T
i ]. First,

each word is represented as the sum of an embedding vector and the output of a character-
level Convolutional Neural Network, resulting in a sequence of vectors v = [v1

, v
2
, ..., v

T ].
The encoder applies a two-layer bidirectional LSTM (Graves and Schmidhuber, 2005) to
these representations. The first layer runs a Long Short-Term Memory unit (Hochreiter and
Schmidhuber, 1997) in the forward direction (taking v

t as input at each step t) and the back-
ward direction (taking v

T�t+1 at each step) to produce vector sequences [
�!
h 1

1,
�!
h 2

1, ...
�!
h T

1 ]

and [
 �
h 1

1,
 �
h 2

1, ...
 �
h T

1 ]. The output of the Bi-LSTM is the concatenation of these vectors:
h1 = [

�!
h 1

1 �
 �
h 1

1, ...,
�!
h T

1 �
 �
h T

1 ]. The second Bi-LSTM layer works the same, producing
outputs h2, except it takes h1 as input instead of v.

4.2.2 CVT for Sequence Tagging

In sequence tagging, each token x
t
i has a corresponding label y

t
i . The primary prediction

module for sequence tagging produces a probability distribution over classes for the t
th label

using a one-hidden-layer neural network applied to the corresponding encoder outputs:

p(yt|xi) = NN(ht
1 � h

t
2) = softmax(U · ReLU(W (ht

1 � h
t
2)) + b)

The auxiliary prediction modules take
�!
h 1(xi) and

 �
h 1(xi), the outputs of the forward

and backward LSTMs in the first3 Bi-LSTM layer, as inputs. I add the following four
3Modules taking inputs from the second Bi-LSTM layer would not have restricted views because infor-

mation about the whole sentence gets propagated through the first layer.
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auxiliary prediction modules to the model (see Figure 4.2):

p
fwd
✓ (yt|xi) = NN

fwd(
�!
h t

1(xi))

p
bwd
✓ (yt|xi) = NN

bwd(
 �
h t

1(xi))

p
future
✓ (yt|xi) = NN

future(
�!
h t�1

1 (xi))

p
past
✓ (yt|xi) = NN

past(
 �
h t+1

1 (xi))

The “forward” module makes each prediction without seeing the right context of the current
token. The “future” module makes each prediction without the right context or the current
token itself. Therefore it works like a neural language model that, instead of predicting
which token comes next in the sequence, predicts which class of token comes next. The
“backward” and “past” modules are analogous.

LSTM LSTM

ŷfuture  ŷfwd  ŷ   ŷbwd  ŷpast 
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Predict
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Figure 4.2: Above: auxiliary prediction modules for sequence tagging models. Each one
sees a restricted view of the input. For example, the “future” prediction module does not
see any context to the right of the current token or the current token itself when predicting
that token’s label. For simplicity, I only show a one layer Bi-LSTM encoder and only show
the model’s predictions for a single time step. Below: an illustration of how the prediction
modules take advantage of the neural network architecture to create restricted input views.
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4.2.3 CVT for Dependency Parsing

In a dependency parse, words in a sentence are treated as nodes in a graph. Typed directed
edges connect the words, forming a tree structure describing the syntactic structure of the
sentence. In particular, each word x

t
i in a sentence xi = x

1
i , ..., x

T
i receives exactly one

in-going edge (u, t, r) going from a word x
u
i or additional root token (called the “head”)

to it (the “dependent”) of type r (the “relation”). I use a graph-based dependency parser
similar to the one from Dozat and Manning (2017). This treats dependency parsing as a
classification task where the goal is to predict which in-going edge y

t
i = (u, t, r) connects

to each word x
t
i.

First, the representations produced by a Bi-LSTM encoder for the candidate head and
dependent are passed through separate hidden layers. A bilinear classifier applied to these
representations produces a score for each candidate edge. Lastly, these scores are passed
through a softmax layer to produce probabilities. Mathematically, the probability of an
edge is given as:

p✓((u, t, r)|xi) / e
s(hu

1 (xi)�hu
2 (xi),ht

1(xi)�ht
2(xi),r)

where s is the scoring function:

s(z1, z2, r) = ReLU(Wheadz1 + bhead)(Wr + W )

ReLU(Wdepz2 + bdep)

The bilinear classifier uses a weight matrix Wr specific to the candidate relation as well
as a weight matrix W shared across all relations. Note that unlike in most prior work, my
dependency parser only takes words as inputs, not also part-of-speech tags.

I add four auxiliary prediction modules to my model for cross-view training:

p
fwd-fwd
✓ ((u, t, r)|xi) / e

sfwd-fwd(
�!
h u

1 (xi),
�!
h t

1(xi),r)

p
fwd-bwd
✓ ((u, t, r)|xi) / e

sfwd-bwd(
�!
h u

1 (xi),
 �
h t

1(xi),r)

p
bwd-fwd
✓ ((u, t, r)|xi) / e

sbwd-fwd(
 �
h u

1 (xi),
�!
h t

1(xi),r)

p
bwd-bwd
✓ ((u, t, r)|xi) / e

sbwd-bwd(
 �
h u

1 (xi),
 �
h t

1(xi),r)
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Each one has some missing context (not seeing either the preceding or following words)
for the candidate head and candidate dependent.

4.2.4 CVT for Sequence-to-Sequence Learning

For sequence-to-sequence tasks, I use an LSTM encoder-decoder model with attention
(Sutskever et al., 2014; Bahdanau et al., 2015). Each example consists of an input (source)
sequence xi = x

1
i , ..., x

T
i and output (target) sequence yi = y

1
i , ..., y

K
i . The encoder’s

representations are passed into an LSTM decoder using a bilinear attention mechanism
(Luong et al., 2015b). In particular, at each time step t the decoder computes an attention
distribution over source sequence hidden states as ↵j / e

hjW↵h̄t where h̄
t is the decoder’s

current hidden state. The source hidden states weighted by the attention distribution form
a context vector: ct =

P
j ↵jh

j . Next, the context vector and current hidden state are
combined into an attention vector at = tanh(Wa[ct, ht]). Lastly, a softmax layer predicts
the next token in the output sequence: p(yt

i |y<t
i , xi) = softmax(Wsat).

I add two auxiliary decoders when applying CVT. The auxiliary decoders share embed-
ding and LSTM parameters with the primary decoder, but have different parameters for the
attention mechanisms and softmax layers. For the first one, I restrict its view of the input
by applying attention dropout, randomly zeroing out a fraction of its attention weights. The
second one is trained to predict the next word in the target sequence rather than the cur-
rent one: p

future
✓ (yt

i |y<t
i , xi) = softmax(W future

s a
future
t�1 ). Since there is no target sequence for

unlabeled examples, I cannot apply teacher forcing to get an output distribution over the vo-
cabulary from the primary decoder at each time step. Instead, I produce hard targets for the
auxiliary modules by running the primary decoder with beam search on the input sequence.
This idea has previously been applied to sequence-level knowledge distillation by Kim and
Rush (2016) and makes the training procedure similar to back-translation (Sennrich et al.,
2016a).
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4.3 Experiments

I compare Cross-View Training against several strong baselines on seven tasks: Combina-
tory Categorial Grammar (CCG) Supertagging, Text Chunking, Named Entity Recognition
(NER), Fine-Grained NER (FGN), Part-of-Speech (POS) Tagging, Dependency Parsing,
and Machine Translation. See background section 2.6 for more details on the tasks. I use
the 1 Billion Word Language Model Benchmark (Chelba et al., 2014) as a pool of unlabeled
sentences for semi-supervised learning.

4.3.1 Model Details

I apply dropout during training, but not when running the primary prediction module to
produce soft targets on unlabeled examples. In addition to the auxiliary prediction modules
listed in Section 4.2, I find it slightly improves results to add another one that sees the whole
input rather than a subset (but unlike the primary prediction module, does have dropout
applied to its representations). Unless indicated otherwise, my models have LSTMs with
1024-sized hidden states and 512-sized projection layers.

Sequence Tagging. For Chunking and Named Entity Recognition, I use a BIOES tagging
scheme. I apply label smoothing (Szegedy et al., 2016; Pereyra et al., 2017) with a rate of
0.1 to the target labels when training on the labeled data.

Dependency Parsing. I omit punctuation from evaluation, which is standard practice for
the PTB-SD 3.3.0 dataset. ROOT is represented with a fixed vector hROOT instead of using
a vector from the encoder, but otherwise dependencies coming from ROOT are scored the
same way as the other dependencies.

Machine Translation. I apply dropout to the output of each LSTM layer in the decoder.
My implementation is heavily based off of a Google NMT Tutorial4 (Luong et al., 2017). I
attribute my significantly better results to using pre-trained word embeddings, a character-
level CNN, a larger model, stronger regularization, and better hyperparameter tuning. Tar-
get words occurring 5 or fewer times in the train set are replaced with a UNK token (but
not during evaluation). I use a beam size of 10 when performing beam search. I found it

4
https://github.com/tensorflow/nmt

https://github.com/tensorflow/nmt
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slightly beneficial to apply label smoothing with a rate of 0.1 to the teacher’s predictions
(unlike my other tasks, the teacher only provides hard targets to the students for translation).

Multi-Task Learning. Several of my datasets are constructed from the Penn Treebank.
However, I treat them as separate rather than providing examples labeled across multiple
tasks to my model during supervised training. Furthermore, the Penn Treebank tasks do not
all use the same train/dev/test splits. I ensure the training split of one task never overlaps
the evaluation split of another by discarding the overlapping examples from the train sets.

Other Details. I apply dropout (Hinton et al., 2012) to the word embeddings and outputs
of each Bi-LSTM. I use an exponential-moving-average (EMA) of the model weights from
training for the final model; I found this to slightly improve accuracy and significantly
reduce the variance in accuracy between models trained with different random initializa-
tions. The model is trained using SGD with momentum (Polyak, 1964; Sutskever et al.,
2013). Word embeddings are initialized with GloVe vectors (Pennington et al., 2014) and
fine-tuned during training. The full set of model hyperparameters are listed in Table 4.1.

Parameter Value

Word Embeddings Initializition 300d GloVe 6B
Character Embedding Size 50
Character CNN Filter Widths [2, 3, 4]
Character CNN Num Filters 300 (100 per filter width)
Encoder LSTM sizes 1024 for the first layer, 512 for the second one
Encoder LSTM sizes, “Large” model 4096 for the first layer, 2048 for the second one
LSTM projection layer size 512
Hidden layer sizes 512
Dropout 0.5 for labeled examples, 0.8 for unlabeled examples
EMA coefficient 0.998
Learning rate 0.5/(1 + 0.005t0.5) (t is number of SGD updates so far)
Momentum 0.9
Batch size 64 sentences

Table 4.1: Hyperparameters for the model.
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4.3.2 Baselines

I compare CVT with the following other semi-supervised learning algorithms. Unless in-
dicated otherwise, baselines were run with the same architecture and hyperparameters as
the CVT model.

Word Dropout. In this method, I only train the primary prediction module. When acting
as a teacher it is run as normal, but when acting as a student, I randomly replace some of
the input words with a REMOVED token with probability 0.1. This is similar to CVT in
that it exposes the model to a restricted view of the input. However, it is less data efficient.
By carefully designing the auxiliary prediction modules, it is possible to train the auxiliary
prediction modules to match the primary one across many different views of the input a
once, rather than just one view at a time.

Virtual Adversarial Training (VAT). VAT (Miyato et al., 2016) works like word dropout,
but adds noise to the word embeddings of the student instead of dropping out words. No-
tably, the noise is chosen adversarially so it most changes the model’s prediction. This
method was applied successfully to semi-supervised text classification by Miyato et al.
(2017a). I set the norm of the perturbation to be 1.5 for CCG, 1.0 for Dependency Parsing,
and 0.5 for the other tasks (these values worked best on the dev sets). Otherwise, the imple-
mentation is as described in (Miyato et al., 2017a); I based my implementation off of their
code5. I was unable to successfully apply VAT to machine translation, perhaps because the
student is provided hard targets for that task.

ELMo. ELMo incorporates the representations from a large separately-trained language
model into a task-specific model. My implementation follows Peters et al. (2018). When
combining ELMo with multi-task learning, I allow each task to learn its own weights for
the ELMo embeddings going into each prediction module. I found applying dropout to
the ELMo embeddings was crucial for achieving good performance. I did not directly
compare with later pre-trained models such as BERT because this work pre-dates them.

5
https://github.com/tensorflow/models/tree/master/research/

adversarial_text

https://github.com/tensorflow/models/tree/master/research/adversarial_text
https://github.com/tensorflow/models/tree/master/research/adversarial_text
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Method CCG Chunk NER FGN POS Dep. Parse Translate
Acc. F1 F1 F1 Acc. UAS LAS BLEU

Shortcut LSTM (Wu et al., 2017) 95.1 97.53
ID-CNN-CRF (Strubell et al., 2017) 90.7 86.8
JMT† (Hashimoto et al., 2017) 95.8 97.55 94.7 92.9
TagLM* (Peters et al., 2017) 96.4 91.9
ELMo* (Peters et al., 2018) 92.2

Biaffine (Dozat and Manning, 2017) 95.7 94.1
Stack Pointer (Ma et al., 2018) 95.9 94.2

Stanford (Luong and Manning,
2015)

23.3

Google (Luong et al., 2017) 26.1

Supervised 94.9 95.1 91.2 87.5 97.60 95.1 93.3 28.9
Virtual Adversarial Training* 95.1 95.1 91.8 87.9 97.64 95.4 93.7 –
Word Dropout* 95.2 95.8 92.1 88.1 97.66 95.6 93.8 29.3
ELMo* 95.8 96.5 92.2 88.5 97.72 96.2 94.4 29.3
ELMo + Multi-task*† 95.9 96.8 92.3 88.4 97.79 96.4 94.8 –
CVT* 95.7 96.6 92.3 88.7 97.70 95.9 94.1 29.6
CVT + Multi-task*† 96.0 96.9 92.4 88.4 97.76 96.4 94.8 –
CVT + Multi-task + Large*† 96.1 97.0 92.6 88.8 97.74 96.6 95.0 –

Table 4.2: Comparison of CVT and earlier approaches on the test sets. I report the mean
score over 5 runs. Standard deviations in score are around 0.1 for NER, FGN, and trans-
lation, 0.02 for POS, and 0.05 for the other tasks. See the appendix for results with them
included. The +Large model has four times as many hidden units as the others, making
it similar in size to the models when ELMo is included. * denotes semi-supervised and †

denotes multi-task.

Furthermore, they use Transformer networks instead of LSTMs and larger amounts of un-
labeled data, making the comparison less direct. I applied dropout to the ELMo embed-
dings before they are incorporated into the rest of the model. When training the multi-task
ELMo model, each prediction module has its own set of softmax-normalized weights (staskj

in (Peters et al., 2018)) for the ELMo embeddings going into the task-specific prediction
modules. All tasks share the same sj weights for the ELMo embeddings going into the
shared Bi-LSTM encoder.
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4.3.3 Results

Results are shown in Table 4.2. CVT on its own outperforms or is comparable to the best
previously published results on all tasks. Figure 4.3 shows an example win for CVT over
supervised learning.

Of the prior results listed in Table 4.2, only TagLM and ELMo are semi-supervised.
These methods first train an enormous language model on unlabeled data6 and incorporate
the representations produced by the language model into a supervised classifier. My base
models use 1024 hidden units in their LSTMs (compared to 4096 in ELMo), require fewer
training steps (around one pass over the billion-word benchmark rather than 10 passes),
and do not require a pipelined training procedure. Therefore, although they perform on par
with ELMo, they are faster and simpler to train. Increasing the size of my CVT+Multi-task
model so it has 4096 units in its LSTMs like ELMo improves results further so they are
significantly better than the ELMo+Multi-task ones, with the model still training over 10
times faster than ELMo.

CVT even holds up well when compared with BERT, a subsequent model using a large
Transformer architecture and much more unlabeled data. BERT-Large takes well over 500x
the compute of CVT to train, but only performs slightly better at named entity recognition
(92.8 F1; Devlin et al. (2019)), dependency parsing (95.3 LAS; Zhou and Hai (2019)), part-
of-speech tagging (97.8 accuracy; Jiang et al. (2020a)), and text chunking (97.3 F1; Liu
et al. (2019d)). The fact that an “old fashioned” LSTM can come close to the performance
of BERT on these tasks suggests that performance is quite saturated, but also speaks to the
effectiveness of CVT as a semi-supervised learning method.

CVT + Multi-Task. I train a single shared-encoder CVT model to perform all of the tasks
except machine translation (as it is quite different and requires more training time than the
other ones). Multi-task learning improves results on all of the tasks except fine-grained
NER, sometimes by large margins. Prior work on many-task NLP such as Hashimoto et al.
(2017) uses complicated architectures and training algorithms. My result shows that simple
parameter sharing can be enough for effective many-task learning when the model is big
and trained on a large amount of data.

6In fact, they use the same billion-word benchmark as we do for unlabeled data.
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Figure 4.3: An NER example that CVT classifies correctly but supervised learning does
not. “Warner” only occurs as a last name in the train set, so the supervised model classifies
“Warner Bros” as a person. The CVT model also mistakenly classifies “Warner Bros” as
a person to start with, but as it sees more of the unlabeled data (in which “Warner” occurs
thousands of times) it learns that “Warner Bros” is an organization.

Interestingly, multi-task learning works better in conjunction with CVT than with ELMo.
I hypothesize that the ELMo models quickly fit to the data primarily using the ELMo vec-
tors, which perhaps hinders the model from learning effective representations that transfer
across tasks. I also believe CVT alleviates the danger of the model “forgetting” one task
while training on the other ones, a well-known problem in many-task learning (Kirkpatrick
et al., 2017). During multi-task CVT, the model makes predictions about unlabeled exam-
ples across all tasks, creating (artificial) all-tasks-labeled examples, so the model does not
only see one task at a time. In fact, multi-task learning plus self training is similar to the
Learning without Forgetting algorithm (Li and Hoiem, 2016), which trains the model to
keep its predictions on an old task unchanged when learning a new task. To test the value
of all-tasks-labeled examples, I trained a multi-task CVT model that only computes LCVT

on one task at a time (chosen randomly for each unlabeled minibatch) instead of for all
tasks in parallel. The one-at-a-time model performs substantially worse (see Table 4.3).

Model Generalization. In order to evaluate how my models generalize to the dev set
from the train set, I plot the dev vs. train accuracy for my different methods as they learn
(see Figure 4.4). Both CVT and multi-task learning improve model generalization: for the
same train accuracy, the models get better dev accuracy than purely supervised learning.
Interestingly, CVT continues to improve in dev set accuracy while close to 100% train
accuracy for CCG, Chunking, and NER, perhaps because the model is still learning from
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Model CCG Chnk NER FGN POS Dep.

CVT-MT 95.7 97.4 96.0 86.7 97.74 94.4
w/out all-labeled 95.4 97.1 95.6 86.3 97.71 94.1

Table 4.3: Dev set performance of multi-task CVT with and without producing all-tasks-
labeled examples.

unlabeled data even when it has completely fit to the train set. I also show results for a
smaller multi-task + CVT model. Although it generalizes at least as well as the larger
one, it halts making progress on the train set earlier. This suggests it is important to use
sufficiently large neural networks for multi-task learning: otherwise the model does not
have the capacity to fit to all the training data.

Auxiliary Prediction Module Ablation. I briefly explore which auxiliary prediction mod-
ules are more important for the sequence tagging tasks in Table 4.4. I find that both kinds
of auxiliary prediction modules improve performance, but that the future and past modules
improve results more than the forward and backward ones, perhaps because they see a more
restricted and challenging view of the input.

Model CCG Chnk NER FGN POS

Supervised 94.8 95.5 95.0 86.0 97.59
CVT 95.6 97.0 95.9 87.3 97.66
no fwd/bwd –0.1 –0.2 –0.2 –0.1 –0.01
no future/past –0.3 –0.4 –0.4 –0.3 –0.04

Table 4.4: Ablation study on auxiliary prediction modules for sequence tagging.

Training Models on Small Datasets. I explore how CVT scales with dataset size by vary-
ing the amount of training data the model has access to. Unsurprisingly, the improvement
of CVT over purely supervised learning grows larger as the amount of labeled data de-
creases (see Figure 4.5, left). Using only 25% of the labeled data, my approach already
performs as well or better than a fully supervised model using 100% of the training data,
demonstrating that CVT is particularly useful on small datasets.
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Figure 4.4: Dev set vs. Train set accuracy for various methods. The “small” model has 1/4
the LSTM hidden state size of the other ones (256 instead of 1024).

Training Larger Models. Most sequence taggers and dependency parsers in prior work
use small LSTMs (hidden state sizes of around 300) because larger models yield little
to no gains in performance (Reimers and Gurevych, 2017). I found my own supervised
approaches also do not benefit greatly from increasing the model size. In contrast, when
using CVT accuracy scales better with model size (see Figure 4.5, right). This finding
suggests the appropriate semi-supervised learning methods may enable the development of
larger, more sophisticated models for NLP tasks with limited amounts of labeled data.

Generalizable Representations. Lastly, I explore training the CVT+multi-task model on
five tasks, freezing the encoder, and then only training a prediction module on the sixth
task. This tests whether the encoder’s representations generalize to a new task not seen
during its training. Only training the prediction module is very fast because (1) the encoder
(which is by far the slowest part of the model) has to be run over each example only once
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Figure 4.5: Above: Dev set performance vs. percent of the training set provided to the
model. Below: Dev set performance vs. model size. The x axis shows the number of hidden
units in the LSTM layers; the projection layers and other hidden layers in the network are
half that size. Points correspond to the mean of three runs.
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and (2) I do not backpropagate into the encoder. Results are shown in Table 4.5.

Model CCG Chnk NER FGN POS Dep.

Supervised 94.8 95.6 95.0 86.0 97.59 92.9
CVT-MT frozen 95.1 96.6 94.6 83.2 97.66 92.5
ELMo frozen 94.3 92.2 91.3 80.6 97.50 89.4

Table 4.5: Comparison of single-task models on the dev sets. “CVT-MT frozen” means I
pre-train a CVT + multi-task model on five tasks, and then train only the prediction module
for the sixth. “ELMo frozen” means I train prediction modules (but no LSTMs) on top of
ELMo embeddings.

Training only a prediction module on top of multi-task representations works remark-
ably well, outperforming ELMo embeddings and sometimes even a vanilla supervised
model, showing the multi-task model is building up effective representations for language.
In particular, the representations could be used like skip-thought vectors (Kiros et al., 2015)
to quickly train models on new tasks without slow representation learning.

4.4 CVT for Image Recognition

Although the focus of my work is on NLP, I also applied CVT to image recognition and
found it performs competitively with previous methods. Most of the semi-supervised im-
age recognition approaches I compare against rely on the inputs being continuous, so they
would be difficult to apply to text. More specifically, consistency regularization methods
(Sajjadi et al., 2016; Laine and Aila, 2017; Miyato et al., 2017b) rely on adding continuous
noise and applying image-specific transformations like cropping to inputs, GANs (Sali-
mans et al., 2016; Wei et al., 2018) are very difficult to train on text due to its discrete
nature, and mixup (Zhang et al., 2018; Verma et al., 2019) requires a way of smoothly
interpolating between different inputs.

Approach. My image recognition models are based on Convolutional Neural Networks,
which produce a set of features H(xi) 2 Rn⇥n⇥d from an image xi. The first two dimen-
sions of H index into the spatial coordinates of feature vectors and d is the size of the
feature vectors. For shallower CNNs, a particular feature vector corresponds to a region of
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the input image. For example, H0,0 would be a d-dimensional vector of features extracted
from the upper left corner. For deeper CNNs, a particular feature vector would be extracted
from the whole image, but still only use a “region” of the representations from an earlier
layer. The CNNs in my experiments are all in the first category.

The primary prediction layers of my CNNs take as input the mean of H over the first
two dimensions, which results in a d-dimensional vector that is fed into a softmax layer:

p✓(y|xi) = softmax(Wglobal average pool(H) + b)

CVT adds n
2 auxiliary prediction layers to the top of the CNN. The j

th layer takes a
single feature vector as input:

p
j
✓(y|xi) = softmax(W j

Hbj/nc,j mod n + bj)

	
	
	

 
Softmax Layers for Image Classification 

 
Softmax Layers for Sequence Tagging 

17.1, 2.0, 1.0
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Figure 4.6: Auxiliary prediction modules (dashed blue arrows) and primary prediction
module (solid red arrow) for image recognition. Each auxiliary module sees a restricted
patch of the input image.

Data. I evaluated my models on the CIFAR-10 dataset (Krizhnevsky and Hinton, 2009) .
Following previous work, I make the datasets semi-supervised by only using the provided
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labels for a subset of the examples in the training set; the rest are treated as unlabeled
examples.

Model. I use the convolutional neural network from Miyato et al. (2017b), adapting their
TensorFlow implementation7. Their model contains 9 convolutional layers and 2 max pool-
ing layers. See Appendix D of Miyato et al.’s paper for more details.

I add 36 auxiliary softmax layers to the 6⇥ 6 collection of feature vectors produced by
the CNN. Each auxiliary layer sees a patch of the image ranging in size from 21⇥21 pixels
(the corner) to 29⇥29 pixels (the center) of the 32⇥32 pixel images. For some experiments,
I combine CVT with standard consistency regularization by adding a perturbation (e.g., a
small random vector) to the student’s inputs when computing LCVT.

Results. The results are shown in Table 4.6. Unsurprisingly, adding continuous noise to
the inputs works much better with images, where the inputs are naturally continuous, than
with language. Therefore I see much better results from VAT on semi-supervised CIFAR-
10 compared to on my NLP tasks. However, I still find incorporating CVT improves over
models without CVT. My CVT + VAT models are competitive with current start-of-the-art
approaches. I found the gains from CVT are larger when no data augmentation is applied,
perhaps because random translations of the input expose the model to different “views” in
a similar manner as with CVT.

Model Analysis. To understand why CVT produces better results, I compare the behavior
of the VAT and CVT (with adversarial noise) models trained on CIFAR-10. First, I record
the average absolute value of each feature vector produced by the CNNs when they run
over the test set. As shown in the left of Figure 4.7, the CVT model has higher activation
strengths for the feature vectors corresponding to the edges of the image. I hypothesize that
the VAT model fits to the data while primarily using the center of the image, where the most
discriminative information is contained. This results in less effective feature vectors for the
outside regions. In contrast, the model with CVT must learn meaningful representations
for the edge regions in order to train the corresponding auxiliary softmax layers. As these
feature vectors are more useful, their magnitudes become larger so they contribute more to
the final representation produced by the global average pool.

7
https://github.com/takerum/vat_tf

https://github.com/takerum/vat_tf
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Method CIFAR-10 CIFAR-10+
4000 labels

GAN (Salimans et al., 2016) – 18.63 ± 2.32
Stochastic Transformations (Sajjadi et al., 2016) – 11.29 ± 0.24
⇧ model (Laine and Aila, 2017) 16.55 ± 0.29 12.36 ± 0.31
Temporal Ensemble (Laine and Aila, 2017) – 12.16 ± 0.24
Mean Teacher (Tarvainen and Valpola, 2017b) – 12.31 ± 0.28
Complement GAN (Dai et al., 2017) 14.41 ± 0.30 –
VAT (Miyato et al., 2017b) 13.15 10.55
VAdD (Park et al., 2018) – 11.68 ± 0.19
VAdD + VAT (Park et al., 2018) – 10.07 ± 0.11
SNGT + ⇧ model (Luong et al., 2017) 13.62 ± 0.17 11.00 ± 0.36
SNGT + VAT (Luong et al., 2017) 12.49 ± 0.36 9.89 ± 0.34
Consistency + WGAN (Wei et al., 2018) – 9.98 ± 0.21
Manifold Mixup (Verma et al., 2019) – 10.26 ± 0.32
Supervised 23.61 ± 0.60 19.61 ± 0.56
VAT (ours) 13.29 ± 0.33 10.90 ± 0.31
CVT, no input perturbation 14.63 ± 0.20 12.44 ± 0.27
CVT, random input perturbation 13.80 ± 0.30 11.10 ± 0.26
CVT, adversarial input perturbation 12.01 ± 0.11 10.11 ± 0.15

Table 4.6: Error rates on semi-supervised CIFAR-10. I report means and standard devia-
tions from 5 runs. CIFAR-10+ refers to results where data augmentation (random transla-
tions of the input image) was applied. For some of my models I add a random or adversar-
ially chosen perturbation to the student model’s inputs, which is done in most consistency
regularization methods.

To compare the discriminatory power of the feature vectors, I freeze the weights of the
CNNs and add auxiliary softmax layers that are trained from scratch. I then measure the
accuracies of the added layers (see the center and right of Figure 4.7). Unsurprisingly, the
VAT model, which only learns representations that will be useful after the average pool,
has much lower accuracies from individual feature vectors. The difference is particularly
striking in the sides and corners, where CVT accuracies are around 50% higher (they are
about 25% higher in the center). This finding further indicates that CVT is improving the
model’s representations, particularly for the outside parts of images.
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Figure 4.7: Left: Ratio between the average activation of feature vectors from final layer
of the CVT CNNs divided by the average from the VAT CNNs. Each square in a grid
represents a single feature vector. Brighter means the feature vectors from the CVT model
are more activated. Center, Right: Accuracy of prediction layers taking a single feature
vector as input. The CVT model makes more use of the outside of the image and produces
better representations for those regions

4.5 Negative Results

I briefly describe a few ideas I implemented that did not seem to be effective in initial
experiments. Note these findings are from early one-off experiments. I did not pursue them
further after my first attempts did not pan out, so it is possible that some of these approaches
could be effective with the proper adjustments and tuning.

• Hard vs soft targets: Classic self-training algorithms train the student model with
one-hot “hard” targets corresponding to the teacher’s highest probability prediction.
In my experiments, this decreased performance compared to using soft targets. This
finding is consistent with research on knowledge distillation (Hinton et al., 2015;
Furlanello et al., 2018) where soft targets also work notably better than hard targets.

• Confidence thresholding: Classic self-training often only trains the student on a
subset of the unlabeled examples on which the teacher has confident predictions (i.e.,
the output distribution has low entropy). I tried both “hard” (where the student ig-
nores low-confidence examples) and “soft” (where examples are weighted according
to the teacher’s confidence) versions of this for training my models, but they did not
seem to improve performance.

• Mean Teacher: The Mean Teacher method (Tarvainen and Valpola, 2017b) tracks
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an exponential moving average (EMA) of model weights, which are used to produce
targets for the students. The idea is that these targets may be better quality due to a
self-ensembling effect. However, I found this approach to have little to no benefit in
my experiments, although using EMA model weights at test time did improve results
slightly.

• Purely supervised CVT: Lastly, I explored adding cross-view losses to purely su-
pervised classifiers. I hoped that adding auxiliary softmax layers with different views
of the input would act as a regularizer on the model. However, I found little to no
benefit from this approach. This negative result suggests that the gains from CVT are
from the improved semi-supervised learning mechanism, not the additional predic-
tion layers regularizing the model.

4.6 Conclusion

At their core, many semi-supervised learning algorithms rely on some form of self-training
where models learn from their own predictions on unlabeled data. Although providing the
model with new contexts it can learn from, standard self-training is somewhat circular:
the model is being trained on precisely what it already predicts. Many semi-supervised
learning algorithms for computer vision alleviate this issue through noising the input, but
noising discrete data like text is difficult. I instead propose using different views of the
input to help models effectively learn from their own predictions on unlabeled examples.
The use of views makes it reminiscent of co-training, but CVT works particularly well with
neural networks because it uses shared representations to transfer knowledge across views
effectively. CVT pairs well with multi-task learning, where the model can create examples
pseudo-labeled across all tasks, increasing sample efficiency because the model learns all
the tasks simultaneously. Experiments show that CVT is effective at sequence tagging,
dependency parsing, and machine translation, outperforming ELMo while requiring less
than 10% of the compute and even performing competitively with BERT. This considerable
efficiency advantage over pre-training comes from learning representations that are targeted
towards specific tasks of interest as opposed to learning representations that are broadly
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useful through a highly general task such as language modeling. Together, these results
show the value of traditional semi-supervised learning approaches despite the rise of pre-
training in NLP. Indeed, subsequent work has shown that self-training can effectively be
combined with pre-training to improve models (Du et al., 2020).

While CVT achieves great results, it is not always easy to apply. The model only learns
a pre-set collection of tasks; using it for a new task requires the model be re-trained from
scratch. Furthermore, the models require unlabeled examples to self-label. Although this
is fine for the tasks I apply CVT to such as dependency parsing, where any sentence can
be an unlabeled example, this sort of data is not available for other tasks such as question
answering. Therefore in the next chapter, I switch focus to self-supervised pre-training
while still following the goal of improving efficiency over previous methods.



Chapter 5

Efficient Self-Supervised Pre-Training
with ELECTRA

So far, the methods I have presented train the model on a pre-specified set of tasks. An
ideal transfer learning method would be more general, developing representations that can
be transferred to almost any NLP task instead of only a few. Self-supervised representation
learning moves towards this goal. These methods learn about language purely from unla-
beled text and then can be quickly fine-tuned on NLP tasks. Although highly performant on
many tasks, these methods are also computationally expensive to run. This chapter presents
a self-supervised pre-training method that is far more efficient than previous approaches.

As discussed in background section 2.5, most existing pre-training methods rely on
variants of masked language modeling. These can be viewed as learning denoising autoen-
coders (Vincent et al., 2008). They select a small subset of the unlabeled input sequence
(typically 15%), mask the identities of those tokens (e.g., BERT (Devlin et al., 2019) re-
places them with a special [MASK] token) or attention to those tokens (e.g., XLNet (Yang
et al., 2019) uses attention masking to generate a subset of the sequence in a random order),
and then train the network to recover the original input. While more effective than con-
ventional language-model pre-training due to learning bidirectional representations, these
masked language modeling (MLM) approaches incur a substantial compute cost because
the network only learns from 15% of the tokens per example.

As an alternative, I propose replaced token detection, a pre-training task in which the

88
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model learns to distinguish real input tokens from plausible but synthetically generated re-
placements. Instead of masking, my method corrupts the input by replacing some tokens
with samples from a noise distribution, which is typically the output of a small “generator”
network such as a masked language model. This corruption procedure solves a mismatch
in BERT (although not in XLNet) where the network sees artificial [MASK] tokens dur-
ing pre-training but not when being fine-tuned on downstream tasks. I then pre-train the
network as a discriminator that predicts for every token whether it is an original or a re-
placement. In contrast, MLM trains the network as a generator that predicts the original
identities of the corrupted tokens. A key advantage of my discriminative task is that the
model learns from all input tokens instead of just the small masked-out subset, making
it more computationally efficient. Although this approach is reminiscent of training the
discriminator of a GAN, the method is not adversarial in that the generator producing cor-
rupted tokens is trained independently with maximum likelihood due to the difficulty of
applying GANs to text (Caccia et al., 2020); the main challenge is that it is impossible
to backpropagate through the discrete sampling of fake tokens from the noise distribution,
which means sample-inefficient reinforcement learning methods must be used instead.

On the surface, replaced token detection looks quite different from masked language
modeling, raising the question of whether it will lead to models learning the same rich
representations of syntax and semantics captured by BERT. However, I show that in fact
replaced token detection is essentially learning the same underlying task as BERT: the cloze
task of predicting a token from its surrounding context. BERT implements the cloze task
through masking tokens and then estimating their probabilities with an output softmax.
Replaced token detection instead can be viewed as training an energy-based model (EBM)
to perform the cloze task. EBMs learn an energy function that assigns low energy values
to inputs in the data distribution and high energy values to other inputs. They are flexible
because they do not have to compute normalized probabilities. In particular, the energy-
based cloze model does not use an output softmax to estimate the probability of a token
given its context like BERT. Instead, it produces a scalar energy score for each token where
a low energy indicates the token is likely given its context. Energy based models cannot
be trained with standard maximum-likelihood training because they produce unnormalized
scores rather than probabilities. A popular alternative is noise-contrastive estimation (NCE;
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Gutmann and Hyvärinen (2010)), which trains the EBM as a binary classifier distinguishing
data vs. noise sample. An approximation of NCE training for the energy-based cloze model
yields the replaced token detection task.

As in prior work, I apply replaced token detection to pre-train Transformer text encoders
(Vaswani et al., 2017) that can be fine-tuned on downstream tasks. In particular, I develop
two models using slight variants of replaced token detection. ELECTRA, which stands
for “Efficiently Learning an Encoder that Classifies Token Replacements Accurately,” uses
replaced token detection with a standard binary classifier as the discriminator. Electric uses
a slightly more complicated classifier, which makes it a true energy-based cloze model.
Electric can more easily estimate the cloze probability of a token given its context, but per-
forms slightly worse when fine-tuned on downstream tasks. I propose several extensions
for these models that improve performance, as well as exploring alternative training algo-
rithms. Then through a series of ablations, I show that learning from all input positions
causes ELECTRA and Electric to train much faster than BERT.

Most previous pre-training methods require large amounts of compute to be effective,
raising concerns about their cost, accessibility (most academic research labs and NLP prac-
titioners do not have access to the hardware necessary for training these models), and even
their environmental impact (Strubell et al., 2019). Since pre-training with more compute
almost always results in better downstream accuracies, I argue an important consideration
for pre-training methods should be compute efficiency as well as absolute downstream per-
formance. After all, better downstream results can be achieved through just training bigger
models without any improvements to the underlying method. From this viewpoint, I train
ELECTRA and Electric models of various sizes and evaluate their downstream perfor-
mance vs. their compute requirement. In particular, I run experiments on the GLUE natural
language understanding benchmark (Wang et al., 2019) and SQuAD question answering
benchmark (Rajpurkar et al., 2016). ELECTRA substantially outperforms MLM-based
methods such as BERT and XLNet given the same model size, data, and compute (see
Figure 5.1). It typically trains at least 4x faster than masked language models, meaning
equivalent accuracy can be achieved at 1/4 the cost.

ELECTRA’s efficiency gains hold at both ends of the compute spectrum. At small scale,
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I build an ELECTRA-Small model that can be trained on 1 GPU in 4 days.1 ELECTRA-
Small outperforms a comparably small BERT model by 5 points on GLUE, and even out-
performs the much larger GPT model (Radford et al., 2018). My approach also works
well at large scale, where I train an ELECTRA-Large model that performs comparably to
RoBERTa (Liu et al., 2019e) and XLNet (Yang et al., 2019), despite having fewer param-
eters and using 1/4 of the compute for training. Training ELECTRA-Large further results
in an even stronger model that outperforms ALBERT (Lan et al., 2020) on GLUE and
improves all previous works on SQuAD 2.0. The Electric variant of my method slightly
under-performs ELECTRA on GLUE and SQuAD. However, Electric is particularly useful
in its ability to efficiently produce pseudo-likelihood scores (Salazar et al., 2020) for text:
It is better at re-ranking the outputs of a speech recognition system than GPT-2 (Radford
et al., 2019) because it is bidirectional and is much faster at re-ranking than BERT because
it scores all input tokens simultaneously rather than having to be run multiple times with
different tokens masked out. Taken together, my results indicate that the discriminative task
of distinguishing real data from challenging negative samples is more compute-efficient and
parameter-efficient than existing generative approaches for language representation learn-
ing.2

5.1 Method

This section details the replaced token detection pre-training task. First, I derive replaced
token detection from the cloze task. I call the resulting pre-trained models “Electric” be-
cause of their connection to energy-based models. A few alterations to Electric results
in ELECTRA (“Encoder Learned Efficiently by Classifying Token Replacements Accu-
rately”), a more effective model that is the primary focus of this chapter.

1It has 1/20th the parameters and requires 1/135th the pre-training compute of BERT-Large.
2Code and pre-trained weights for this work are available at https://github.com/

google-research/electra.

https://github.com/google-research/electra
https://github.com/google-research/electra
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Figure 5.1: Replaced token detection pre-training consistently outperforms masked lan-
guage model pre-training given the same compute budget. The left figure is a zoomed-in
view of the dashed box.

5.1.1 Masked Language Models

Cloze models learn the probability pdata(xt|x\t) of a token xt occurring in the surrounding
context x\t = [x1, ..., xt�1, xt+1, ..., xn]. BERT and related pre-training methods (Baevski
et al., 2019; Liu et al., 2019e; Lan et al., 2020) implement this task through masking.
Typically the context is represented as the input sequence with xt replaced by a special
[MASK]placeholder token. This masked sequence is encoded into vector representations
by a Transformer network (Vaswani et al., 2017). Then the representation at position t is
passed into a softmax layer to produce a distribution over tokens p✓(xt|x\t) for the position.
See background section 2.5 for more details on the cloze task.

5.1.2 Electric: An Energy-Based Cloze Model

Electric also models pdata(xt|x\t), but does not use masking or a softmax layer. Electric
first maps the unmasked input x = [x1, ..., xn] into contextualized vector representations
h(x) = [h1, ...,hn] using a Transformer network. The model assigns a given position t an
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Figure 5.2: Comparison of BERT and Electric. Both model the probability of a token
given its surrounding context, but BERT produces a full output distribution over tokens
only for masked positions while Electric produces un-normalized probabilities (but no full
distribution) for all input tokens.

energy score

E(x)t = wTh(x)t

using a learned weight vector w. The energy function defines a distribution over the possi-
ble tokens at position t, which is obtained by exponentiating and normalizing E:

p✓(xt|x\t) = exp (�E(x)t)/Z(x\t) =
exp (�E(x)t)P

x02V exp (�E(REPLACE(x, t, x0))t)

where REPLACE(x, t, x
0) denotes replacing the token at position t with x

0 and V is the vo-
cabulary, in practice usually word pieces (Sennrich et al., 2016b). Unlike with BERT, which
produces the probabilities for all possible tokens x

0 using a softmax layer, a candidate x
0 is

passed in as input to the Transformer. As a result, computing p✓ is prohibitively expensive
because the partition function Z✓(x\t) requires running the Transformer |V| times.

5.1.3 NCE Loss

As computing the exact likelihood is intractable, training energy-based models such as
Electric with standard maximum-likelihood estimation is not possible. Instead, I use (con-
ditional) Noise-Contrastive Estimation (NCE) (Gutmann and Hyvärinen, 2010; Ma and
Collins, 2018), which provides a way of efficiently training an un-normalized model that
does not compute Z✓(x\t). NCE learns the parameters of a model by training it to perform a
binary classification task where samples from the data distribution have to be distinguished
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from samples generated by a noise distribution q(xt|x\t). I discuss the noise distribution in
more detail in Section 5.1.5. First, consider the un-normalized output

p̂✓(xt|x\t) = exp (�E(x)t)

The NCE binary classification task directly trains this un-normalized probability to match
the data distribution, which removes the need to compute Z✓(x\t). Operationally, NCE can
be viewed as follows:

• A positive data point is a text sequence x from the data and position in the sequence
t. In other words, a data token xt in its context.

• A negative data point is the same except xt, the token at position t, is replaced with
a noise token x̂t sampled from q. In other words, a context from the data with a fake
token x̂t replacing xt.

• Define a binary classifier D (the ”discriminator”) that estimates the probability of a
data point being positive as

D(x)t =
n · p̂✓(xt|x\t)

n · p̂✓(xt|x\t) + k · q(xt|x\t)

• The binary classifier is trained to distinguish positive vs negative data points using
standard maximum likelihood estimation, with k negatives sampled for every n pos-
itive data points.

Formally, the NCE loss is

L(✓) =n · E
x,t


� log

n · p̂✓(xt|x\t)

n · p̂✓(xt|x\t) + k · q(xt|x\t)

�
+

k · E
x,t
x̂t⇠q


� log

k · q(x̂t|x\t)

n · p̂✓(x̂t|x\t) + k · q(x̂t|x\t)

�

= � E
x,t
x̂t⇠q

[n logD(x)t + k log(1�D(REPLACE(x, t, x̂t))t)]
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Where x is sampled from the data distribution, t is sampled uniformly at random from
[n] where n is the length of x, and REPLACE(x, t, x̂t) denotes replacing xt, the token at
position t, with x̂t

This loss is minimized when p̂✓ matches the data distribution pdata. To see why this is
true, we can first compute the gradient of the loss with respect to ✓. To be concise, I will
use pdata, p̂✓, and q to denote pdata(·|x\t), p̂✓(·|x\t), and q(·|x\t) where · is either xt or x̂t.
The gradient is

r✓L(✓) = �r✓

✓
n E

x,t


log

np̂✓

np̂✓ + kq

�
+ k E

x,t,x̂


log

kq

np̂✓ + kq

�◆
=

�r✓

X

x2X

|x|X

t=1

pdata(x)

|x|

✓
npdata log

np̂✓

np̂✓ + kq
+ kq log

kq

np̂✓ + kq

◆
=

�
X

x2X

|x|X

t=1

pdata(x)

|x| (r✓p̂✓)

✓
npdata

np̂✓ + kq

np̂✓

np̂✓ + kq � np̂✓

(np̂✓ + kq)2
� kq

np̂✓ + kq

kq

kq

(np̂✓ + kq)2

◆
=

�
X

x2X

|x|X

t=1

pdata(x)

|x| (r✓p̂✓)

✓
npdata

kq

np̂✓(np̂✓ + kq)
� kq

(np̂✓ + kq)

◆

where X consists of all possible input sequences. The second expression comes from ex-
panding the expectation, the third from computing the derivative, and the last from simpli-
fying. We can find when this loss is minimized by evaluating when the gradient is equal to
0.

npdata
kq

np̂✓(np̂✓ + kq)
� kq

(np̂✓ + kq)
= 0

npdata

np̂✓
� 1 = 0

p̂✓ = pdata

Since p̂✓ is learning to match the normalized distribution pdata, the model learns to
be self-normalized such that Z✓(x\t) = 1. If the model is self-normalized, we have
p̂✓(xt|x\t) = p✓(xt|x\t), which means p̂✓ becomes a good estimate of p✓ as the model
learns.
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Algorithm 1 Naive NCE loss estimation
Given: Input sequence x of length n, number of negative samples to take k, noise
distribution q, and model p̂✓.
1. Define the binary classifier D(x)t =

n·p̂✓(xt|x\t)

n·p̂✓(xt|x\t)+k·q(xt|x\t)

2. Initialize the loss as
Pn

t=1� logD(x)t.
3. Create k negative samples. For each one, sample a position in x to replace according
to t ⇠ unif{1, n} and then sample a noise token according to x̂t ⇠ q(xt|x\t).
4. For each negative sample (t, x̂t), add � log (1�D(REPLACE(x, t, x̂t))t) to the loss.
Runtime: k +1 Transformer passes (once for the n positive samples, one each for the k

negative samples).

Algorithm 2 Efficient approximate NCE loss estimation (Replaced Token Detection)
Given: Input sequence x of length n, number of negative samples to take k, noise
distribution q, and model p̂✓.
1. Define the binary classifier D(x)t =

(n�k)·p̂✓(xt|x\t)

(n�k)·p̂✓(xt|x\t)+k·q(xt|x\t)

2. Pick k unique random positions in the input sequence R = {r1, ..., rk} where each ri

is 1  ri  n to replace with noise tokens.
3. Simultaneously replace the tokens at all k random positions with negative samples X̂

from q: x̂i ⇠ q(xi|x\i) for i 2 R, xnoised = REPLACE(x, R, X̂).
4. For each position t = 1 to n: add to the loss
� logD(xnoised)t if t 2 R

� log
�
1�D(xnoised)t

�
otherwise

Runtime: One Transformer pass for n� k positive samples and k negative samples.

5.1.4 Training Algorithm

To minimize the loss, the expectations can be approximated by sampling. Algorithm 1
shows how the loss could be computed for a single sequence x. Taking the gradient of this
estimated loss produces an unbiased estimate of r✓L(✓). However, this algorithm is com-
putationally expensive to run, since it requires k+1 forward passes through the Transformer
to compute the p̂✓s (once for the positive samples and once for each negative sample). I
propose a much more efficient approach that replaces k input tokens with noise samples
simultaneously shown in Algorithms 2. This algorithm requires just one pass through the
Transformer for k noise samples and n � k data samples. However, this procedure only
truly minimizes L if (1) D(xnoised)t = D(x)t for positive samples (i.e., replacing some
other tokens with noise tokens does not change the discriminator score for non-replaced
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tokens) and (2) D(xnoised)t = D(REPLACE(x, t, x̂t))t for negative samples (i.e., replacing
some other tokens with noise tokens does not change the discriminator score for a single
noise token). Equivalently, this procedure assumes that p̂✓(xt|x\t) = p̂✓(xt|xnoised

\t ). To ap-
ply this efficiency trick I am making the assumption they are approximately equal, which
I argue is reasonable because (1) I choose a small k of d0.15ne, so there are few negative
samples that may change D and (2) q is trained to be close to the data distribution (see
below) so these negative samples are less likely to dramatically alter x. This efficiency
trick is analogous to BERT masking out multiple tokens per input sequence instead of just
one.

5.1.5 Variants

Algorithm 2 gives rise to the replaced token detection task: k input tokens are replaced
by the noise distribution and the binary classification task is to distinguish the original
data tokens from these fakes. Here I discuss the choice of noise distribution q, as well as
presenting ELECTRA, a version of Electric that performs slightly better in practice.

NCE vs. Negative Sampling. The NCE binary classifier (discriminator) presented above
makes use of the noise distribution q when making predictions. It can be written as

D(x)t =
k · q(x|x\t)

n · exp (�E(x)t) + k · q(x|x\t)
= �

✓
E(x)t + log

✓
k · q(x|x\t)

n

◆◆

where � denotes the sigmoid function. A simpler binary classifier that does not need access
to the noise distribution can be created by instead just adding a sigmoid layer on top of the
Transformer:

D
0(x)t = � (E(x)t)

Not needing access to q is desirable because it allows for more effective choices of q (see be-
low). With D

0, the training method becomes negative sampling instead of noise-contrastive
estimation. Negative sampling has been widely effective in NLP, especially for learning
word embeddings (Mikolov et al., 2013b). Negative sampling trains the model to learn
when a token is more likely to come from the data distribution pdata or noise distribution q,
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Figure 5.3: An overview of replaced token detection. The generator can be any model
that produces an output distribution over tokens, but I usually use a small masked language
model that is trained jointly with the discriminator. Although the models are structured like
in a GAN, I train the generator with maximum likelihood rather than adversarially due to
the difficulty of applying GANs to text. After pre-training, I throw out the generator and
only fine-tune the discriminator (the ELECTRA model) on downstream tasks.

On the other hand, NCE only results in the model learning pdata because q is passed into the
model directly. ELECTRA uses negative sampling while Electric uses NCE.

Choice of Noise Distribution. The noise distribution q can be any function that produces
a distribution over tokens given their context. However, some choices of q can cause the
model to learn much faster than others. Intuitively, a simple noise distribution (e.g., uniform
at random) provides a very easy task for the model where it won’t learn effectively. Most
replaced tokens will be obviously wrong, not requiring a deep understanding of the text to
discern as fake. To create a challenging q, NCE commonly uses the output distribution of
a model trained to match pdata (Gutmann and Hyvärinen, 2010; Wang and Ou, 2018).

I take this approach for most of the replaced token detection models I train: q comes
from a separate “generator” neural network trained to match pdata. However, unlike Electric,
these generators use an output softmax so they can efficiently produce a full distribution
over tokens given the context. One choice of generator is simply a masked language model.
Once a set of random tokens have been chosen to be replaced by noise samples, they are
first replaced with [MASK]. The generator then predicts their original identities with an
output softmax. Lastly, the [MASK] tokens are replaced by samples from the softmax
distribution. ELECTRA uses this choice of generator. See Figure 5.3 for ELECTRA’s
training procedure.
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A masked language model does not work as the generator for Electric because the
NCE binary classifier needs access to q for every input token. However, a MLM only
produces a q distribution for the k tokens that will be replaced. Instead, for Electric I
use a two-tower cloze model as proposed by Baevski et al. (2019). The model runs two
Transformers TLTR and TRTL over the input sequence. These Transformers apply causal
masking so one processes the sequence left-to-right and the other operates right-to-left.
The model’s predictions come from a softmax layer applied to the concatenated states of
the two Transformers:

�!
h = TLTR(x),

 �
h = TRTL(x)

q(xt|x\t) = softmax(W [
�!
h t�1,

 �
h t+1])xt

Note that the previous rather than current states of the Transformers are used to prevent the
model from having direct access to the token it is learning to predict. A two-tower cloze
model is more accurate than a language model because it uses context to both sides of each
token. However, it is less accurate than a masked language model because it is not “deeply
bidirectional”; the left and right contexts of a token only interact when their states are con-
catenated as opposed to being able to attend to each other. The inferior noise distribution
is a disadvantage of using NCE (Electric) instead of negative sampling (ELECTRA). Typ-
ically the generator is much smaller than the main discriminator network performing the
binary classification I further explore using simple generators such as uniformly picking
fake tokens at random from the vocabulary and different sizes for the generator network in
Section 5.3.2.

The generator is trained using standard maximum likelihood estimation over the data.
It is trained simultaneously with the discriminator: after predicting the identities of the
tokens selected to be replaced, its parameters are updated using gradient descent on the
loss from those predictions. Simultaneous training proved to be more effective than a two-
stage training process where first the generator is trained and then the discriminator (see
Sec 5.3). With the discriminator learning to identify fakes produced by a generator network,
the NCE training is reminiscent of a generative adversarial network (GAN; (Goodfellow
et al., 2014)). However, there is a key difference: the generator is trained with maximum
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likelihood rather than being trained adversarially to fool the discriminator. Adversarially
training the generator is challenging because it is impossible to backpropagate through the
discrete operation of sampling replacements from the generator. Although I experimented
with circumventing this issue by using reinforcement learning to train the generator (see
Section 5.3.4), this performed worse than maximum-likelihood training. Furthermore, I
do not supply the generator with a noise vector as input, as is typical with a GAN. After
pre-training, I throw out the generator and fine-tune the discriminator on downstream tasks;
the generator is only there to improve the training of the main model, not to be useful on
its own.

Electric vs. ELECTRA. Electric uses noise-contrastive estimation for training and a two-
tower cloze model as the generator, meaning it is directly training an energy-based model to
perform cloze modeling. ELECTRA on the other hand uses a more straightforward sigmoid
binary classifier, which means it can employ a more powerful masked language model as
the generator network. An advantage of Electric is that it directly provides (un-normalized)
probabilities p̂✓ for tokens, making it useful for applications such as re-ranking the outputs
of text generation systems. A disadvantage of Electric is that it has to use a less effective
noise model. The differences between ELECTRA and Electric are summarized below:

Model Noise Dist. Binary Classifier Training Method

Electric
Two-Tower

Cloze Model
�

⇣
E(x)t + log

⇣
k·q(x|x\t)

n

⌘⌘
NCE

ELECTRA Masked LM �(E(x)t)
Negative
Sampling

5.2 Model Details and Experimental Setup

The next sections cover extensive experiments evaluating and analysing the replaced token
detection task. Most experiments focus on ELECTRA because it generally performs better.
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5.2.1 Data

I evaluate fine-tuning pre-trained models on the General Language Understanding Evalua-
tion (GLUE) benchmark (Wang et al., 2019) and Stanford Question Answering (SQuAD)
dataset (Rajpurkar et al., 2016). GLUE contains a variety of tasks covering textual entail-
ment (RTE and MNLI) question-answer entailment (QNLI), paraphrase (MRPC), question
paraphrase (QQP), textual similarity (STS), sentiment (SST), and linguistic acceptability
(CoLA). The evaluation metrics are Spearman correlation for STS, Matthews correlation
for CoLA, and accuracy for the other GLUE tasks; I generally report the average score over
all tasks. For SQuAD, I evaluate on versions 1.1, in which models select the span of text
answering a question, and 2.0, in which some questions are unanswerable by the passage.
I use the standard evaluation metrics of Exact-Match (EM) and F1 scores. See background
section 2.6 for more details on the tasks. For most experiments, I pre-train on the same
data as BERT, which consists of 3.3 Billion tokens from Wikipedia and BooksCorpus (Zhu
et al., 2015). However, for my ELECTRA-Large model I pre-trained on the data used for
XLNet (Yang et al., 2019), which extends the BERT dataset to 33B tokens by including
data from ClueWeb (Callan et al., 2009), CommonCrawl, and Gigaword (Parker et al.,
2011). All of the pre-training and evaluation is on English data, although I think it would
be interesting to apply my methods to multilingual data in the future.

5.2.2 Counting FLOPs

With the goal of measuring efficiency, many of my results measure the compute used by the
models. I chose to measure compute usage in terms of floating point operations (FLOPs)
because it is a measure agnostic to the particular hardware, low-level optimizations, etc.
However, it is worth noting that in some cases abstracting away hardware details is a draw-
back because hardware-centered optimizations can be key parts of a model’s design, such as
the speedup ALBERT (Lan et al., 2020) gets by tying weights and thus reducing communi-
cation overhead between TPU workers. I used TensorFlow’s FLOP-counting capabilities3

and checked the results with by-hand computation. I made the following assumptions:

• An “operation” is a mathematical operation, not a machine instruction. For example,
3See https://www.tensorflow.org/api_docs/python/tf/profiler

https://www.tensorflow.org/api_docs/python/tf/profiler
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an exp is one op like an add, even though in practice the exp might be slower.
I believe this assumption does not substantially change compute estimates because
matrix-multiplies dominate the compute for most models. Similarly, I count matrix-
vector multiplies (using an m ⇥ n matrix) as 2 ⇤m ⇤ n FLOPs instead of m ⇤ n as
one might if considering fused multiply-add operations.

• The backwards pass takes the same number of FLOPs as the forward pass. This
assumption is not exactly right (e.g., for softmax cross entropy loss the backward
pass is faster), but importantly, the forward/backward pass FLOPs really are the same
for matrix-multiplies, which is most of the compute anyway.

• I assume “dense” embedding lookups (i.e., multiplication by a one-hot vector). In
practice, sparse embedding lookups are much slower than constant time; on some
hardware accelerators dense operations are actually faster than sparse lookups.

5.2.3 Pre-Training Details

The following details apply to ELECTRA and Electric models as well as BERT baselines.
I mostly use the same hyperparameters as BERT. I use dynamic token masking with the
masked positions decided on-the-fly instead of during preprocessing. Also, I did not use
the next sentence prediction objective proposed in the original BERT paper, as subsequent
work has suggested it does not improve scores (Yang et al., 2019; Liu et al., 2019e). For
my ELECTRA-Large model, I used a higher mask percent (25 instead of 15) because I
noticed the generator was achieving high accuracy with 15% masking, resulting in very
few replaced tokens. I searched for the best learning rate for the Base and Small models
out of [1e-4, 2e-4, 3e-4, 5e-4] in early experiments. Otherwise I did no hyperparameter
tuning beyond the experiments in Section 5.3. The full set of hyperparameters are listed in
Table 5.1.

5.2.4 Fine-Tuning Details

For fine-tuning ELECTRA and Electric on GLUE, I add simple linear classifiers on top
of ELECTRA. For SQuAD, I add the question-answering module from XLNet on top
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Hyperparameter Small Base Large
Number of layers 12 12 24
Hidden Size 256 768 1024
FFN inner hidden size 1024 3072 4096
Attention heads 4 12 16
Attention head size 64 64 64
Embedding Size 128 768 1024
Generator Size (multiplier for hidden-size, 1/4 1/3 1/4FFN-size, and num-attention-heads)
Negative sample percent 15 15 25
Learning Rate Decay Linear Linear Linear
Warmup steps 10000 10000 10000
Learning Rate 5e-4 2e-4 2e-4
Adam ✏ 1e-6 1e-6 1e-6
Adam �1 0.9 0.9 0.9
Adam �2 0.999 0.999 0.999
Attention Dropout 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01
Batch Size 128 256 2048
Train Steps (BERT/ELECTRA) 1.45M/1M 1M/766K 464K/400K

Table 5.1: Pre-train hyperparameters. I also train an ELECTRA-Large model for 1.75M
steps (other hyperparameters are identical).

of ELECTRA/Electric, which is slightly more sophisticated than BERT’s in that it jointly
rather than independently predicts the start and end positions and has an “answerability”
classifier added for SQuAD 2.0. Some of my evaluation datasets are small, which means
accuracies of fine-tuned models can vary substantially depending on the random seed. I
therefore report the median of 10 fine-tuning runs from the same pre-trained checkpoint for
each result. Unless stated otherwise, results are on the dev set.

For Large-sized models, I used the hyperparameters from Clark et al. (2019b) for the
most part. However, after noticing that RoBERTa (Liu et al., 2019e) uses more training
epochs (up to 10 rather than 3) I searched for the best number of train epochs out of [10,
3] for each task. For SQuAD, I decreased the number of train epochs to 2 to be consistent
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Hyperparameter GLUE Value

Learning Rate 3e-4 for Small, 1e-4 for Base, 5e-5 for Large
Adam ✏ 1e-6
Adam �1 0.9
Adam �2 0.999
Layerwise LR decay 0.8 for Base/Small, 0.9 for Large
Learning rate decay Linear
Warmup fraction 0.1
Attention Dropout 0.1
Dropout 0.1
Weight Decay 0
Batch Size 32
Train Epochs 10 for RTE and STS, 2 for SQuAD, 3 for other tasks

Table 5.2: Fine-tune hyperparameters

with BERT and RoBERTa. For Base-sized models I searched for a learning rate out of
[3e-5, 5e-5, 1e-4, 1.5e-4] and the layer-wise learning-rate decay out of [0.9, 0.8, 0.7], but
otherwise used the same hyperparameters as for Large models. I found the small models
benefit from a larger learning rate and searched for the best one out of [1e-4, 2e-4, 3e-4,
5e-3]. With the exception of number of train epochs, I used the same hyperparameters for
all tasks. In contrast, previous research on GLUE such as BERT, XLNet, and RoBERTa
separately searched for the best hyperparameters for each task. I expect my results would
improve slightly if I performed the same sort of additional hyperparameter search. The full
set of hyperparameters is listed in Table 5.2.

Following BERT, I do not show results on the WNLI GLUE task for the dev set results,
as it is difficult to beat even the majority classifier using a standard fine-tuning-as-classifier
approach. For the GLUE test set results, I apply the standard tricks used by many of
the GLUE leaderboard submissions including RoBERTa (Liu et al., 2019e), XLNet (Yang
et al., 2019), and ALBERT (Lan et al., 2020). Specifically:

• For RTE and STS I use intermediate task training (Phang et al., 2018), starting from
an ELECTRA checkpoint that has been fine-tuned on MNLI. For RTE, I found it
helpful to combine this with a lower learning rate of 2e-5.
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• For WNLI, I follow the trick described in Liu et al. (2019e) where I extract candi-
date antecedents for the pronoun using rules and train a model to score the correct
antecedent highly. However, different from Liu et al. (2019e), the scoring function
is not based on MLM probabilities. Instead, I fine-tune ELECTRA’s discriminator
so it assigns high scores to the tokens of the correct antecedent when the correct an-
tecedent replaces the pronoun. For example, if the Winograd schema is “the trophy
could not fit in the suitcase because it was too big,” I train the discriminator so it
gives a high score to “trophy” in “the trophy could not fit in the suitcase because the
trophy was too big” but a low score to “suitcase” in “the trophy could not fit in the
suitcase because the suitcase was too big.”

• For each task I ensemble the best 10 of 30 models fine-tuned with different random
seeds but initialized from the same pre-trained checkpoint.

While these tricks do improve scores, they make having clear scientific comparisons more
difficult because they require extra work to implement, require lots of compute, and make
results less apples-to-apples because different papers implement the tricks differently. For
my SQuAD 2.0 test set submission, I fine-tuned 20 models from the same pre-trained
checkpoint and submitted the one with the best dev set score.

5.3 Model Extensions

I attempt to improve replaced token detection by proposing and evaluating several exten-
sions to the model. Unless stated otherwise, these experiments train an ELECTRA model
with the same network size and training data as BERT-Base.

5.3.1 Weight Sharing

One possibility for improving the efficiency of the pre-training by sharing weights between
the generator and discriminator. If the generator and discriminator are the same size, all
of the Transformer weights can be tied. However, I found it to be more efficient to have a
small generator, in which case I only share the embeddings (both the token and positional
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embeddings) of the generator and discriminator. In this case I use embeddings the size
of the discriminator’s hidden states; I added linear layers to the generator to project the
embeddings into generator-hidden-sized representations. The “input” and “output” token
embeddings of the generator are always tied as in BERT.

To have a direct comparison with all weights being tied, I compared the weight tying
strategies when the generator is the same size as the discriminator. I train these models for
500k steps. GLUE scores are 83.6 for no weight tying, 84.3 for tying token embeddings,
and 84.4 for tying all weights. I hypothesize that ELECTRA benefits from tied token em-
beddings because masked language modeling is particularly effective at learning these rep-
resentations: while the discriminator only updates tokens that are present in the input or are
sampled by the generator, the generator’s softmax over the vocabulary densely updates all
token embeddings. On the other hand, tying all encoder weights caused little improvement
while incurring the significant disadvantage of requiring the generator and discriminator to
be the same size. Based on these findings, I use tied embeddings for further experiments in
this paper.

5.3.2 Smaller Generators

If the generator and discriminator are the same size, training ELECTRA would take around
twice as much compute per step as training a masked language model like BERT. I sug-
gest using a smaller generator to reduce this factor. Specifically, I make models smaller
by decreasing the layer sizes while keeping the other hyperparameters constant. I also ex-
plore using an extremely simple “unigram” generator that samples fake tokens according
their frequency in the train corpus. GLUE scores for differently-sized generators and dis-
criminators are shown in Figure 5.4. All models are trained for 500k steps, which puts the
smaller generators at a disadvantage in terms of compute because they require less com-
pute per training step. Nevertheless, I find that models work best with generators 1/4–1/2
the size of the discriminator. I speculate that having too strong of a generator may pose
a too-challenging task for the discriminator, preventing it from learning as effectively. In
particular, the discriminator may have to use many of its parameters modeling the gener-
ator rather than the actual data distribution. Further experiments in this paper use the best
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Figure 5.4: GLUE scores for different generator/discriminator sizes (number of hidden
units). Interestingly, having a generator smaller than the discriminator improves results.

generator size found for the given discriminator size.

5.3.3 Two-Stage Training Algorithms

Lastly, I explore two other training algorithms for ELECTRA, although these did not end up
improving results. First, I experiment with using the following two-stage training procedure
instead of simultaneously training the generator and discriminator.:

1. Train only the generator for n steps.

2. Initialize the weights of the discriminator with the weights of the generator. Then
train the discriminator for n steps, keeping the generator’s weights frozen.

Note that the weight initialization in this procedure requires having the same size for the
generator and discriminator. I found that without the weight initialization the discriminator
would sometimes fail to learn at all beyond the majority class, perhaps because the gen-
erator started so far ahead of the discriminator. Joint training on the other hand naturally
provides a curriculum for the discriminator where the generator starts off weak but gets
better throughout training.
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5.3.4 Adversarial Training Algorithm

I also explored training the generator adversarially as in a GAN, using reinforcement learn-
ing to accommodate the discrete operations of sampling from the generator. In particular
I train the noise distribution (generator) q to maximize the binary classifier (discriminator)
loss L. As the generator is used just to train the discriminator rather than as a useful gener-
ative model of its own, this idea is really an instance of Adversarial Contrastive Estimation
(Bose et al., 2018) rather than Generative Adversarial Training. It is not possible to adver-
sarially train the generator by backpropagating through the discriminator (e.g., as in a GAN
trained on images) due to the discrete sampling from the generator, so I use reinforcement
learning instead.

The generator is different from most text generation models in that it is non-auto-
regressive: predictions are made independently. In other words, rather than taking a se-
quence of actions where each action generates a token, the generator takes a single giant
action of generating all tokens simultaneously, where the probability for the action factor-
izes as the product of generator probabilities for each token. To deal with this enormous
action space, I make the following simplifying assumption: that the discriminator’s predic-
tion D(xnoised)t depends only on the token xt and the non-replaced tokens {xi : i 62 R},
i.e., it does not depend on other generated tokens {x̂i : i 2 R ^ i 6= t} where R is the set
of indices of tokens that will be replaced. This isn’t too bad of an assumption because a
relatively small number of tokens are replaced, and it greatly simplifies credit assignment
when using reinforcement learning. Notationally, I show this assumption by (in a slight
abuse of notation) by writing D(x̂t|xmasked) for the discriminator predicting whether the
generated token x̂t equals the original token xt given the masked context xmasked (as op-
posed to the whole noised context xnoised). A useful consequence of this assumption is that
the discriminator score for non-replaced tokens (D(xt|xmasked) for t 62 R) is independent
of the generator samples because I am assuming it does not depend on any replaced to-
ken. Therefore these tokens can be ignored when training G to maximize L. Learning the
generator parameters seeks to find
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argmax
q

L = argmax
q

E
x,R,X̂

 
nX

t=1

� (t /2 R) logD(xnoised)t�

(t 2 R) log(1�D(xnoised)t)

!

Using the simplifying assumption, I approximate the above by finding the argmax of

E
x,R,X̂

 
X

t2R

� (t /2 R) logD(x̂t|xmasked)� (t 2 R) log(1�D(x̂t|xmasked))

!

= E
x,R

X

t2R
E

x̂t⇠q
R(x̂t,x)

where R(x̂t,x) =

8
<

:
� logD(x̂t|xmasked) if t /2 R

� log(1�D(x̂t|xmasked)) if t 2 R

In short, the simplifying assumption allows us to decompose the loss over the individual
generated fake tokens, changing the expectation over all replacements X̂ to an expecta-
tion over individual replacements x̂t. I cannot directly find argmaxq using gradient ascent
because it is impossible to backpropagate through discrete sampling of x̂. Instead, I use pol-
icy gradient reinforcement learning (Williams, 1992). In particular, I use the REINFORCE
gradient

r✓qL ⇡ E
x,R

X

t2R
E

x̂t⇠q
r✓q log q(x̂t|xmasked)[R(x̂t,x)� b(xmasked

, t)]

where b is a learned baseline implemented as b(xmasked
, t) = � log sigmoid(wT

hq(xmasked)t)

and hq(xmasked) are the outputs of the generator’s Transformer encoder. The baseline is
trained with cross-entropy loss to match the reward for the corresponding position. I ap-
proximate the expectations with a single sample and learn ✓q with gradient ascent. Despite
receiving no explicit feedback about which generated tokens are correct, I found the adver-
sarial training resulted in a fairly accurate generator (for a 256-hidden-size generator, the
adversarially trained one achieves 58% accuracy at masked language modeling while the
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Figure 5.5: Comparison of different training algorithms. As my focus is on efficiency, the
x-axis shows FLOPs rather than train steps (e.g., ELECTRA is trained for fewer steps than
BERT because it includes the generator).

same sized MLE generator gets 65%).

5.3.5 Comparison of Training Algorithms

Results for the two alternative training algorithms are shown in Figure 5.5. During two-
stage training, downstream task performance notably improves after the switch from the
generative to the discriminative objective, but does not end up outscoring joint training. Al-
though still outperforming BERT, I found adversarial training to underperform maximum-
likelihood training. Further analysis suggests the gap is caused by two problems with
adversarial training. First, the adversarial generator is simply worse at masked language
modeling; it achieves 58% accuracy at masked language modeling compared to 65% ac-
curacy for an MLE-trained one. I believe the worse accuracy is mainly due to the poor
sample efficiency of reinforcement learning when working in the large action space of gen-
erating text. Secondly, the adversarially trained generator produces a low-entropy output
distribution where most of the probability mass is on a single token, which means there is
not much diversity in the generator samples. Both of these problems have been observed
in GANs for text in prior work (Caccia et al., 2020).
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5.4 Main Experiments

Having improved the model with empirically-validated extensions, I now turn to the main
experiments evaluating the performance of ELECTRA and Electric. These cover their
performance when fine-tuned on downstream tasks, as well as some analysis investigating
why the approach is effective.

5.4.1 Fine-tuning Small ELECTRA Models

As a goal of this work is to improve the efficiency of pre-training, I develop a small ELEC-
TRA model that can be quickly trained on a single GPU. Starting with the BERT-Base
hyperparameters, I shortened the sequence length (from 512 to 128), reduced the batch size
(from 256 to 128), reduced the model’s hidden dimension size (from 768 to 256), and used
smaller token embeddings (from 768 to 128). To provide a fair comparison, I also train a
BERT-Small model using the same hyperparameters. I train BERT-Small for 1.5M steps,
so it uses the same training FLOPs as ELECTRA-Small, which was trained for 1M steps.4

In addition to BERT, I compare against two less resource-intensive pre-training methods
based on language modeling: ELMo (Peters et al., 2018) and GPT (Radford et al., 2018).5

I also show results for a base-sized ELECTRA model comparable to BERT-Base.
ELECTRA-Small performs remarkably well given its size, achieving a higher GLUE

score than other methods using substantially more compute and parameters. For example,
it scores 5 points higher than a comparable BERT-Small model and even outperforms the
much larger GPT model. ELECTRA-Small is trained mostly to convergence, with models
trained for even less time (as little as 6 hours) still achieving reasonable performance. While
small models distilled from larger pre-trained Transformers can also achieve good GLUE
scores (Sun et al., 2020; Jiao et al., 2020), these models require first expending substantial
compute to pre-train the larger teacher model. The results also demonstrate the strength of
ELECTRA at a moderate size; my base-sized ELECTRA model substantially outperforms
BERT-Base and even outperforms BERT-Large (which gets 84.0 GLUE score). I hope
ELECTRA’s ability to achieve strong results with relatively little compute will broaden the

4ELECTRA requires more FLOPs per step because it consists of the generator as well as the discriminator.
5GPT is similar in size to BERT-Base, but is trained for fewer steps.
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Model Train / Infer Speedup Params Train Time GLUE
FLOPs Score

ELMo 3.3e18 / 2.6e10 19x / 1.2x 96M 14d on 3 GTX 1080 71.2
GPT 4.0e19 / 3.0e10 1.6x / 0.97x 117M 25d on 8 P6000 78.8
BERT-Small 1.4e18 / 3.7e9 45x / 8x 14M 4d on 1 V100 75.1
BERT-Base 6.4e19 / 2.9e10 1x / 1x 110M 4d on 16 TPUv3s 82.2

ELECTRA-Small 1.4e18 / 3.7e9 45x / 8x 14M 4d on 1 V100 79.9
50% trained 7.1e17 / 3.7e9 90x / 8x 14M 2d on 1 V100 79.0
25% trained 3.6e17 / 3.7e9 181x / 8x 14M 1d on 1 V100 77.7
12.5% trained 1.8e17 / 3.7e9 361x / 8x 14M 12h on 1 V100 76.0
6.25% trained 8.9e16 / 3.7e9 722x / 8x 14M 6h on 1 V100 74.1

ELECTRA-Base 6.4e19 / 2.9e10 1x / 1x 110M 4d on 16 TPUv3s 85.1

Table 5.3: Comparison of small models on the GLUE dev set. BERT-Small/Base are my
implementation and use the same hyperparameters as ELECTRA-Small/Base. Infer FLOPs
assumes single length-128 input. Training times should be taken with a grain of salt as they
are for different hardware and with sometimes un-optimized code. ELECTRA performs
well even when trained on a single GPU, scoring 5 GLUE points higher than a comparable
BERT model and even outscoring the much larger GPT model.

accessibility of developing and applying pre-trained models in NLP.

5.4.2 Fine-Tuning Large ELECTRA Models

I train big ELECTRA models to measure the effectiveness of the replaced token detection
pre-training task at the large scale of existing state-of-the-art pre-trained Transformers. My
ELECTRA-Large models are the same size as BERT-Large but are trained for much longer.
In particular, I train a model for 400k steps (ELECTRA-400K; roughly 1/4 the pre-training
compute of RoBERTa) and one for 1.75M steps (ELECTRA-1.75M; similar compute to
RoBERTa). I use a batch size 2048 and the XLNet pre-training data. I note that although
the XLNet data is similar to the data used to train RoBERTa, the comparison is not entirely
direct. As a baseline, I trained my own BERT-Large model using the same hyperparameters
and training time as ELECTRA-400K.

Results on the GLUE dev set are shown in Table 5.4. ELECTRA-400K performs com-
parably to RoBERTa and XLNet. However, it took less than 1/4 of the compute to train
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Model Train FLOPs CoLA SST MRPC STS QQP MNLI QNLI RTE Avg.
BERT 1.9e20 (0.27x) 60.6 93.2 88.0 90.0 91.3 86.6 92.3 70.4 84.0
RoBERTa-100K 6.4e20 (0.90x) 66.1 95.6 91.4 92.2 92.0 89.3 94.0 82.7 87.9
RoBERTa-500K 3.2e21 (4.5x) 68.0 96.4 90.9 92.1 92.2 90.2 94.7 86.6 88.9
XLNet 3.9e21 (5.4x) 69.0 97.0 90.8 92.2 92.3 90.8 94.9 85.9 89.1

BERT (ours) 7.1e20 (1x) 67.0 95.9 89.1 91.2 91.5 89.6 93.5 79.5 87.2
ELECTRA-400K 7.1e20 (1x) 69.3 96.0 90.6 92.1 92.4 90.5 94.5 86.8 89.0
ELECTRA-1.75M 3.1e21 (4.4x) 69.1 96.9 90.8 92.6 92.4 90.9 95.0 88.0 89.5

Table 5.4: Comparison of large models on the GLUE dev set. ELECTRA and RoBERTa
are shown for different numbers of pre-training steps, indicated by the numbers after the
dashes. ELECTRA performs comparably to XLNet and RoBERTa when using less than
1/4 of their pre-training compute and outperforms them when given a similar amount of
pre-training compute. BERT dev results are from Clark et al. (2019b). All models are
comparable in terms of number of parameters.

ELECTRA-400K as it did to train RoBERTa and XLNet, demonstrating that ELECTRA’s
sample-efficiency gains hold at large scale. Training ELECTRA for longer (ELECTRA-
1.75M) results in a model that outscores them on most GLUE tasks while still requiring
less pre-training compute. Surprisingly, my baseline BERT model scores notably worse
than RoBERTa-100K, suggesting my models may benefit from more hyperparameter tun-
ing or using the RoBERTa training data. ELECTRA’s gains hold on the GLUE test set (see
Table 5.5), although these comparisons are less apples-to-apples due to the additional tricks
employed by the models.

Results on SQuAD are shown in Table 5.6. Consistent, with the GLUE results, ELEC-
TRA scores better than masked-language-modeling-based methods given the same com-
pute resources. For example, ELECTRA-400K outperforms RoBERTa-100k and my BERT
baseline, which use similar amounts of pre-training compute. ELECTRA-400K also per-
forms comparably to RoBERTa-500K despite using less than 1/4th of the compute. Unsur-
prisingly, training ELECTRA longer improves results further: ELECTRA-1.75M scores
higher than previous models on the SQuAD 2.0 benchmark. ELECTRA-Base also yields
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Model Train FLOPs CoLA SST MRPC STS QQP MNLI QNLI RTE WNLI Avg.*
BERT 1.9e20 (0.06x) 60.5 94.9 85.4 86.5 89.3 86.7 92.7 70.1 65.1 79.8
RoBERTa 3.2e21 (1.02x) 67.8 96.7 89.8 91.9 90.2 90.8 95.4 88.2 89.0 88.1
ALBERT 3.1e22 (10x) 69.1 97.1 91.2 92.0 90.5 91.3 – 89.2 91.8 89.0
XLNet 3.9e21 (1.26x) 70.2 97.1 90.5 92.6 90.4 90.9 – 88.5 92.5 89.1

ELECTRA 3.1e21 (1x) 71.7 97.1 90.7 92.5 90.8 91.3 95.8 89.8 92.5 89.5

Table 5.5: GLUE test-set results for large models. Models in this table incorporate ad-
ditional tricks such as ensembling to improve scores. Some models do not have QNLI
scores because they treat QNLI as a ranking task, which has been disallowed by the GLUE
benchmark. To compare against these models, I report the average score excluding QNLI
(Avg.*). “ELECTRA” and “RoBERTa” refer to the fully-trained ELECTRA-1.75M and
RoBERTa-500K models.

Model Train FLOPs Params
SQuAD 1.1 SQuAD 2.0 SQuAD 2.0

dev dev test
EM F1 EM F1 EM F1

BERT-Base 6.4e19 (0.09x) 110M 80.8 88.5 – – – –
BERT 1.9e20 (0.27x) 335M 84.1 90.9 79.0 81.8 80.0 83.0
SpanBERT 7.1e20 (1x) 335M 88.8 94.6 85.7 88.7 85.7 88.7
XLNet-Base 6.6e19 (0.09x) 117M 81.3 – 78.5 – – –
XLNet 3.9e21 (5.4x) 360M 89.7 95.1 87.9 90.6 87.9 90.7
RoBERTa-100K 6.4e20 (0.90x) 356M – 94.0 – 87.7 – –
RoBERTa-500K 3.2e21 (4.5x) 356M 88.9 94.6 86.5 89.4 86.8 89.8
ALBERT 3.1e22 (44x) 235M 89.3 94.8 87.4 90.2 88.1 90.9

BERT (ours) 7.1e20 (1x) 335M 88.0 93.7 84.7 87.5 – –
ELECTRA-Base 6.4e19 (0.09x) 110M 84.5 90.8 80.5 83.3 – –
ELECTRA-400K 7.1e20 (1x) 335M 88.7 94.2 86.9 89.6 – –
ELECTRA-1.75M 3.1e21 (4.4x) 335M 89.7 94.9 88.0 90.6 88.7 91.4

Table 5.6: Results on SQuAD for non-ensemble models.

strong results, scoring substantially better than BERT-Base and XLNet-Base, and even sur-
passing BERT-Large according to most metrics. ELECTRA generally performs better at
SQuAD 2.0 than 1.1. Perhaps replaced token detection, in which the model distinguishes
real tokens from plausible fakes, is particularly transferable to the answerability classifica-
tion of SQuAD 2.0, in which the model must distinguish answerable questions from fake
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unanswerable questions.

5.4.3 Efficiency Analysis

I have suggested that posing the training objective over a small subset of tokens makes
masked language modeling inefficient. However, it isn’t entirely obvious that this is the
case. After all, the model still receives a large number of input tokens even though it
predicts only a small number of masked tokens. To better understand where the gains from
ELECTRA are coming from, I compare a series of other pre-training objectives that are
designed to be a set of “stepping stones” between BERT and ELECTRA.

• ELECTRA 15%: This model is identical to ELECTRA except the discriminator
loss only comes from a random 15% of the tokens in the input sequence.

• Replace MLM: This objective is the same as masked language modeling except
instead of replacing masked-out tokens with [MASK], they are replaced with tokens
from a generator model. This objective tests to what extent ELECTRA’s gains come
from solving the discrepancy of exposing the model to [MASK] tokens during pre-
training but not fine-tuning.

• All-Tokens MLM: Like in Replace MLM, masked tokens are replaced with genera-
tor samples. Furthermore, the model predicts the identity of all tokens in the input,
not just ones that were masked out. I found it improved results to train this model
with an explicit copy mechanism that outputs a copy probability D for each token
using a sigmoid layer. The model’s output distribution puts D weight on the input
token plus 1 � D times the output of the MLM softmax. This model is essentially
a combination of BERT and ELECTRA. Note that without generator replacements,
the model would trivially learn to make predictions from the vocabulary for [MASK]
tokens and copy the input for other ones.

Results are shown in Table 5.7. First, I find that ELECTRA is greatly benefiting from hav-
ing a loss defined over all input tokens rather than just a subset: ELECTRA 15% performs
much worse than ELECTRA. Secondly, I find that BERT performance is being slightly
harmed from the pre-train fine-tune mismatch from [MASK] tokens, as Replace MLM
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Model ELECTRA All-Tokens MLM Replace MLM ELECTRA 15% BERT

GLUE score 85.0 84.3 82.4 82.4 82.2

Table 5.7: Compute-efficiency experiments (see text for details).

Figure 5.6: Left and Center: Comparison of BERT and ELECTRA performance for dif-
ferent model sizes. Right: A small ELECTRA model converges to higher downstream
accuracy than BERT, showing the improvement comes from more than just faster training.

slightly outperforms BERT. BERT (including my implementation) already includes a trick
to help with the pre-train/fine-tune discrepancy: masked tokens are replaced with a ran-
dom token 10% of the time and are kept the same 10% of the time. However, my results
suggest these simple heuristics are insufficient to fully solve the issue. Lastly, I find that
All-Tokens MLM, the generative model that makes predictions over all tokens instead of a
subset, closes most of the gap between BERT and ELECTRA. In total, these results suggest
a large amount of ELECTRA’s improvement can be attributed to learning from all tokens
and a smaller amount can be attributed to alleviating the pre-train fine-tune mismatch.

The improvement of ELECTRA over All-Tokens MLM suggests that the ELECTRA’s
gains come from more than just faster training. I study this further by comparing BERT
to ELECTRA for various model sizes (see Figure 5.6, left). I find that the gains from
ELECTRA grow larger as the models get smaller. The small models are trained fully to
convergence (see Figure 5.6, right), showing that ELECTRA achieves higher downstream
accuracy than BERT when fully trained. I speculate that ELECTRA is more parameter-
efficient than BERT because it does not have to model the full distribution of possible
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Model CoLA SST MRPC STS QQP MNLI QNLI RTE SQuAD SQuAD
1.0 2.0

MCC Acc Acc Spear Acc Acc Acc Acc EM EM

Dev set results
BERT 58.4 92.8 86.0 87.8 90.8 84.5 88.6 68.5 80.8 73.7
XLNet – 93.4 – – – 85.8 – – – 78.5
ELECTRA 65.8 92.4 87.9 89.1 90.9 86.2 92.4 76.3 84.5 80.5

Electric 61.8 91.9 88.0 89.4 90.6 85.7 92.1 73.4 84.5 80.1

Test set results
BERT 52.1 93.5 84.8 85.8 89.2 84.6 90.5 66.4 – –
ELECTRA 59.7 93.4 86.7 87.7 89.1 85.8 92.7 73.1 – –

Electric 61.5 93.2 85.4 86.9 89.2 85.2 91.8 67.3 – –

Table 5.8: GLUE scores of Electric on downstream tasks. To provide direct comparisons,
I only show base-sized models pre-trained on WikiBooks and fine-tuned with standard
single-task training.

tokens at each position, but I believe more analysis is needed to completely explain ELEC-
TRA’s parameter efficiency.

5.4.4 Fine-Tuning Electric

In Table 5.8 I show results for fine-tuning Electric rather than ELECTRA on downstream
tasks (both SQuAD and GLUE). Electric scores better than BERT, showing the energy-
based formulation improves cloze model pre-training. However, Electric scores slightly
lower than ELECTRA. One possible explanation is that Electric’s noise distribution is
worse because a two-tower cloze model is less expressive than a masked LM. I tested this
hypothesis by training ELECTRA with the same two-tower noise model as Electric. Perfor-
mance did indeed go down, but it only explained about half the gap. The surprising drop in
performance suggests that learning the difference between the data and generations from a
low-capacity model leads to better representations than only learning the data distribution,
but I believe further research is needed to fully understand the discrepancy.
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5.4.5 Pseudo-Log-Likelihood Scoring

An advantage of Electric over BERT is that it can efficiently produce pseudo-log-likelihood
(PLL) scores for text (Wang and Cho, 2019). PLLs for Electric are

PLL(x) =
nX

t=1

log(p✓(xt|x\t)) ⇡
nX

t=1

log(p̂✓(xt|x\t)) =
nX

t=1

�E(x)t

PLLs can be used to re-rank the outputs of an machine translation or speech recognition
system. While historically log-likelihoods from language models have been used for such
re-ranking, Shin et al. (2019) demonstrate that PLLs from masked language models per-
form better. However, computing PLLs from a masked language model requires n passes
of the Transformer: once with each token masked out. Salazar et al. (2020) suggest distill-
ing BERT into a model that uses no masking to avoid this cost, but this model considerably
under-performed regular LMs in their experiments. Electric can produce PLLs for all input
tokens in a single pass like a LM while being bidirectional like a masked LM.

It is also possible, although more cumbersome, to get pseudo-log-likelihood scores
from ELECTRA by combining the discriminator and generator probabilities. Recall that
Electric’s loss is minimized when p̂✓ = pdata so for an optimal discriminator

D(x)t =
n · pdata(xt|x\t)

n · pdata(xt|x\t) + k · q(xt|x\t)
=)

pdata(xt|x\t) =
k · q(xt|x\t)D(x)t
n · (1�D(x)t)

Although ELECTRA’s discriminator has a different form than Electric’s, it is learning pre-
cisely the same task, so this expression will hold for it as well. Consequently, an estimate
for ELECTRA modeling p(xt|x\t) is k·q(xt|x\t)D(x)t

n·(1�D(x)t)
; as the discriminator gets better this

expression will get closer to pdata. However, ELECTRA cannot produce these scores effi-
ciently because the generator producing q is a masked language model, which cannot score
all tokens in parallel. As an alternative, I train ELECTRA-TT, a version of ELECTRA with
the same two-tower generator as Electric and use it to produce PLLs.

I use the PLLs from Electric and ELECTRA-TT for re-ranking the 100-best hypothe-
ses of a 5-layer BLSTMP model from ESPnet (Watanabe et al., 2018) on the 960-hour
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LibriSpeech corpus (Panayotov et al., 2015) following the same experimental setup and
using the same n-best lists as Salazar et al. (2020). Given speech features s and speech
recognition model f the re-ranked output is

argmax
x2n-best(f,s)

f(x|s) + �PLL(x)

where n-best(f, s) consists of the top n (we use n = 100) predictions from the speech
recognition model found with beam search, f(x|s) is the score the speech model assigns
the candidate output sequence x. I select the best � on the dev set out of [0.05, 0.1, ..., 0.95,
1.0], with different �s selected for the “clean” and “other” portions of the data.

I compare Electric and ELECTRA-TT against GPT-2 (Radford et al., 2019), and BERT
(Devlin et al., 2019). I also compare against TwoTower, a two-tower cloze model similar
to Electric’s noise distribution, but of the same size as Electric. This systems is also bidi-
rectional while only requiring a single Transformer pass like Electric, but only “shallowly”
bidirectional, as it just concatenates forward and backward hidden states.

Results are shown in Table 5.9. Electric scores better than GPT-2 when trained on
comparable data. While scoring worse than BERT, Electric is much faster to run. It also
slightly outperforms ELECTRA-TT, which is consistent with the finding from Labeau and
Allauzen (2018) that NCE outperforms negative sampling for training language models.
Furthermore, Electric is simpler and faster than ELETRA-TT in that it does not require
running the generator to produce PLL scores. TwoTower scores lower than Electric, pre-
sumably because it is not a “deeply” bidirectional model and instead just concatenates
forward and backward hidden states.

5.5 Negative Results

I briefly describe a few ideas that did not look promising in my initial experiments:

• I initially attempted to make BERT more efficient by strategically masking out tokens
(e.g., masking my rarer tokens more frequently, or training a model to guess which
tokens BERT would struggle to predict if they were masked out). This resulted in
fairly minor speedups over regular BERT.
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Rescoring Model Pre-Training Dev Test Transformer
Data clean other clean other Passes

None – 7.17 19.79 7.26 20.37 0

BERT WikiBooks 5.17 16.44 5.41 17.41 n
Electric Wikibooks 5.47 16.56 5.65 17.42 1

GPT-2 OpenWebText 5.39 16.81 5.64 17.61 1
TwoTower OpenWebText 5.12 16.37 5.32 17.25 1
ELECTRA-TT OpenWebText 5.05 16.27 5.22 17.01 1
Electric OpenWebText 4.97 16.23 5.18 16.93 1

Table 5.9: Word error rates on LibriSpeech after rescoring with base-sized models. None,
GPT-2, and BERT results are from Salazar et al. (2020). Runtime is measured in passes
through the Transformer and data indicates the pre-training dataset. “Clean” and “other”
are easier and harder splits of the data. *I use a public re-implementation of OpenWebText.

• Given that ELECTRA seemed to benefit (up to a certain point) from having a weaker
generator (see Section 5.3), I explored raising the temperature of the generator’s
output softmax or disallowing the generator from sampling the correct token. Neither
of these improved results.

• I tried adding a sentence-level contrastive objective. For this task, I kept 20% of
input sentences unchanged rather than noising them with the generator. I then added
a prediction head to the model that predicted if the entire input was corrupted or not.
Surprisingly, this slightly decreased scores on downstream tasks.

5.6 Previous Work

Previous work on self-supervised pre-training is detailed thoroughly in background sec-
tion 2.5. Here I describe previous work in a few other areas relevant to ELECTRA.

Generative Adversarial Networks. GANs (Goodfellow et al., 2014) are effective at gen-
erating high-quality synthetic data. Radford et al. (2016) propose using the discriminator
of a GAN in downstream tasks, which is similar to my method. GANs have been applied
to text data (Yu et al., 2017; Zhang et al., 2017), although state-of-the-art approaches still
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lag behind standard maximum-likelihood training (Caccia et al., 2020; Tevet et al., 2018).
Although it does not use adversarial learning, the generator is particularly reminiscent of
MaskGAN (Fedus et al., 2018), which trains the generator to fill in tokens deleted from the
input.

Contrastive Learning. Broadly, contrastive learning methods distinguish observed data
points from fictitious negative samples. They have been applied to many modalities in-
cluding text (Smith and Eisner, 2005), images (Chopra et al., 2005), and video (Wang and
Gupta, 2015; Sermanet et al., 2017) data. Common approaches learn embedding spaces
where related data points are similar (Saunshi et al., 2019) or models that rank real data
points over negative samples (Collobert et al., 2011; Bordes et al., 2013). ELECTRA
is particularly related to Noise-Contrastive Estimation (NCE) (Gutmann and Hyvärinen,
2010), which also trains a binary classifier to distinguish real and fake data points.

Word2Vec (Mikolov et al., 2013a), one of the earliest pre-training methods for NLP,
uses contrastive learning. In fact, ELECTRA can be viewed as a massively scaled-up ver-
sion of Continuous Bag-of-Words (CBOW) with Negative Sampling. CBOW also predicts
an input token given surrounding context and negative sampling rephrases the learning task
as a binary classification task on whether the input token comes from the data or proposal
distribution. However, CBOW uses a bag-of-vectors encoder rather than a Transformer and
a simple proposal distribution derived from unigram token frequencies instead of a learned
generator.

Energy-Based Models. Energy-based models have been widely explored in machine
learning (Dayan et al., 1995; LeCun et al., 2007). While many training methods involve
sampling from the EBM using gradient-based MCMC (Du and Mordatch, 2019) or Gibbs
sampling (Hinton, 2002), I considered these approaches too slow for pre-training because
they require multiple passes through the model per sample. I instead use noise-contrastive
estimation (Gutmann and Hyvärinen, 2010), which has widely been used in NLP for learn-
ing word vectors (Mnih and Kavukcuoglu, 2013) and text generation models (Jean et al.,
2014; Józefowicz et al., 2016). While EBMs have previously been applied to left-to-right
(Wang et al., 2015) or globally normalized (Rosenfeld et al., 2001; Deng et al., 2020) text
generation, they have not previously been applied to cloze models or for pre-training NLP
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models. Several papers have pointed out the connection between EBMs and GANs (Zhao
et al., 2017; Finn et al., 2016), which is similar to the Electric/ELECTRA connection.

Efficient Pre-Training. Models such as DistilBERT (Sanh et al., 2019), TinyBERT (Jiao
et al., 2020), and MobileBERT (Sun et al., 2020) show that BERT can effectively be
distilled down into a smaller model. Another way of improving inference efficiency is
through quantization, such as in Q8-BERT (Zafrir et al., 2019) or Q-BERT (Shen et al.,
2020). In contrast, I focus more on pre-training speed rather than inference speed, so I train
ELECTRA-Small from scratch. Several models have already been built on top of ELEC-
TRA to further improve efficiency such as ConvBERT (Jiang et al., 2020b) and Funnel
Transformer (Dai et al., 2020), which aim to use more efficient neural architectures than
vanilla Transformers. MC-BERT (Xu et al., 2020), CodeBERT (Feng et al., 2020b), and
KgPLM (He et al., 2020) explore extending ELECTRA’s training algorithm or apply it to
other domains. Many ELECTRA models have been trained in other languages as well,
with over 250 models in Hugging Face’s collection of pre-trained transformers6 containing
“ELECTRA” in their name.

5.7 Conclusion

I have proposed replaced token detection, a powerful self-supervised task for language
representation learning. The key idea is training a text encoder to distinguish input tokens
from high-quality negative samples produced by a small generator network. Compared to
masked language modeling, my pre-training objective is more compute-efficient and results
in better performance on downstream tasks. It works well even when using relatively small
amounts of compute, which I hope will make developing and applying pre-trained text
encoders more accessible to researchers and practitioners with less access to computing
resources. Nevertheless, it also keeps the same excellent scalability that makes masked
language models so successful. Overall, I believe ELECTRA is the closest I have come to
realising the goals set out by this dissertation: it can be transferred to many tasks, scales
well to large amounts of data, and learns efficiently.

6
https://huggingface.co/models?search=electra

https://huggingface.co/models?search=electra


Chapter 6

Conclusion

The field of natural language processing has changed dramatically over the past few years,
and transfer learning has been central to this change. Historically, much of NLP research
has operated by developing a system that learns a specific task from human-labeled data.
In contrast, it is now possible to download pre-trained models that can be fine-tuned to
excellent performance at many tasks with minimal task-specific engineering. However,
this rapid progress from transfer learning did not come for free: underlying this success
is the use of large models requiring extensive compute resources to train. To alleviate
these costs, this dissertation’s goal has been to develop transfer learning methods that are
efficient (making effective use of compute resources) while remaining scalable (yielding
improvements as data and model sizes grow). I have realized this goal across three core
areas of transfer learning: multi-task, semi-supervised, and self-supervised learning.

In Chapter 3, I develop a general NLP system with many capabilities through multi-task
learning. Specifically, I present born-again multi-tasking (BAM), which uses knowledge
distillation to achieve effective multi-task learning with consistent gains over single-task
systems, even when training on many diverse tasks. BAM lets multi-task models scale to
many tasks with less risk of task interference degrading results. In Chapter 4, I develop
Cross-View Training (CVT), a variant of self-training particularly suited to text data. Sim-
ilar to co-training, CVT enforces consistent predictions across different views of the input.
However, it takes advantage of neural networks by using shared representation to transfer
knowledge across input views. In contrast to the many recent pre-training methods in NLP,
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CVT learns representations targeted towards particular tasks: rather than learning broadly
about language in general, the model more narrowly focuses on task-relevant information.
This property makes CVT highly efficient, where it outperforms a comparably-sized ELMo
model while training 10x faster.

In Chapter 5, I present ELECTRA, a highly efficient method for self-supervised pre-
training of Transformer networks. Motivated from an energy-based model view of the cloze
pre-training task, I develop a new pre-training task called replaced token detection. This
task trains a transformer network to distinguish data tokens from fakes sampled from a gen-
erator network. Replaced token detection enables a bidirectional model like BERT to learn
from all input tokens like a language model, getting the best of both worlds. ELECTRA
works well at both ends of the compute spectrum, yielding strong results when the model
is trained on a single GPU and learning around 4x faster than existing approaches when
trained at large scale. BAM, CVT, and ELECTRA are effective at a diverse range of NLP
tasks, ranging from syntactic ones such as dependency parsing to challenging natural lan-
guage understanding tasks such as natural language inference and reading comprehension,
demonstrating the generality of the methods.

I believe many of the trends exhibited in my dissertation closely mirror emerging trends
in the whole field. One trend is a progression away from large labeled datasets. In this the-
sis, I present first a system learning only from labeled datasets (BAM), then one learning
on a mix of labeled and unlabeled data (CVT), and lastly, one that learns purely from un-
labeled text (ELECTRA). While models like BERT and ELECTRA are still fine-tuned on
large labeled corpora, the field is moving away from even this, with recent work demon-
strating the remarkable few-shot performance of language models (Brown et al., 2020).
There is growing evidence that models learning purely from self-supervised tasks can pick
up linguistic features previously added to models through learning from human annotations
(Linzen et al., 2016; Hewitt and Manning, 2019). Ultimately, self-supervised methods like
ELECTRA are surpassing the other transfer learning approaches because they scale the
best and result in a more general model. That being said, other kinds of transfer learning
still can have added value, with recent work shows that multi-task learning (Aghajanyan
et al., 2021) and semi-supervised learning (Du et al., 2020) improve pre-trained models
when applied at a large enough scale.
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Another trend is the progression away from specific NLP tasks and towards more gen-
eral NLP systems. While designing task-specific architectures and training methods was
previously the primary way of improving NLP performance, highly general architectures
(e.g., the Transformer) combined with large-scale self-supervised learning have enabled
a single model to do many tasks. In this thesis, I have avoided focusing on task-specific
enhancements because they ultimately stop being worth the effort when simply training a
bit longer can produce larger gains. This trend of generality in NLP systems is continuing,
with large language models displaying a remarkable ability to perform many different NLP
tasks zero-shot (Radford et al., 2019).

Lastly, there is a trend towards ever-larger machine learning models. This trend will
certainly continue, especially because it is generally more compute-efficient to train large
models for few steps than it is to train smaller models for many steps (Kaplan et al., 2020).
The great scaling properties of transfer learning make the future of NLP exciting because
we will continue to see improved results as hardware advances allow for the training of
bigger models. However, there are many open questions on how models should get bigger,
which I think is an impactful area for future work. The most straightforward and widely
used approach is to simply make the networks wider and deeper. However, with the impor-
tance of efficiency in mind, I believe it is essential to develop ways of scaling up models
in more sophisticated, less compute-intensive ways. One area already seeing widespread
research is improving model efficiency on long sequences through mechanisms like sparse
attention (Dai et al., 2019; Child et al., 2019; Kitaev et al., 2020; Beltagy et al., 2020). An-
other direction is investigating how to increase parameters but not compute through sparse
activation of weights. For example, sparsely gated mixture of experts (Shazeer et al., 2017;
Fedus et al., 2021) dynamically routes examples to specialized parts of the network. An-
other research area with great potential is memory augmented neural networks (Khandelwal
et al., 2020). These techniques add an external memory that the network can quickly access
through a mechanism like maximum inner product search, allowing models to scale more
efficiently by increasing the memory size. I find these directions particularly intriguing
because they narrow a large discrepancy between neural networks and the brain: the brain
is sparsely activated while most neural networks are not.
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I also think there is interesting follow-up work for ELECTRA in particular. One di-
rection is trying to bring the same efficiency gains to sequence-to-sequence pre-training
methods such as BART (Lewis et al., 2020) and T5 (Raffel et al., 2020), which have the
advantages of being usable for generation tasks and more naturally applied to few-shot
learning. Another interesting topic is multilingual learning. Unlike generation-based pre-
training, a multilingual ELECTRA model would not need to maintain information about
the language of the text it sees because it does not have to generate tokens in that language,
perhaps leading to more cross-lingual representations.

Looking towards a future filled with even larger transfer learning models, I hope my
dissertation will inspire more research focusing on computationally efficient transfer learn-
ing. Efficient training will not only make models better, but also expand the number of
researchers able to work in this area, leading to faster progress and broader research goals.
Ultimately, I believe the future of NLP is bright because efficient and scalable transfer
learning will continue to produce systems with remarkable and useful capabilities.
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