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Abstract

LLMs have demonstrated remarkable capabilities, and there is growing interest in using them
as agents—systems that can translate complex human goals, expressed in natural language, into
sequences of actions within digital environments like web browsers. Achieving this requires two
core competencies: first, the ability to understand arbitrary and compositional language inputs; and
second, the capacity to learn about unfamiliar environments so that language goals can be grounded
in effective, multi-step decision-making. This thesis addresses both of these challenges.

In the first part, I introduce Tree Projections, a framework for understanding how transformers
build compositional structure. I then present a series of results based on Tree Projections that
illuminate the mechanisms behind compositional generalization, grokking, and sample-efficient
learning in transformers. While Tree Projections help explain successful generalization, prior work
has shown that standard transformers struggle with deep recursion due to a lack of mechanisms
for unbounded hierarchical depth. To address this, I propose Pushdown Layers, an architectural
augmentation that adds a stack-based memory to transformers. Pushdown Layers improve sample
efficiency and generalization on tasks requiring nested or recursive reasoning.

In the second party, I introduce NNetNav and BAGEL, methods for unsupervised, open-ended
exploration in web environments that enable models to automatically collect training data for new
websites, without human supervision. Our best results come from fine-tuning LLMs with demonstra-
tions collected via NNetNav, which uses the hierarchical structure of language to guide exploration
policies. Using NNetNav, we collect 10,000 demonstrations from 20 real-world websites and fine-
tune an 8B model, setting a new state-of-the-art among unsupervised methods and outperforming
zero-shot GPT-4 on multiple browser benchmarks.

Taken together, these contributions bring us closer to digital language agents that can both
handle the complexity of language instructions and autonomously learn from interacting with their

environments.

v



Acknowledgements

First and foremost, I want to thank Chris Manning for the immense time, care, and mentorship he’s
offered me over the past 5.5 years. Nearly everything I've learned about research and scholarship
has been shaped by his guidance. Chris taught me that great research isn’t about cleverness or
optimization—it’s about asking the right questions. His research taste and approach to NLP are
legendary, and I feel incredibly lucky to have absorbed even a fraction of it. I'm continually amazed
by Chris’s attention to detail, whether it’s correctly post-processing the Penn Treebank or debugging
the quirks of the latest transformer variant. His ability to stay current with the latest papers while
deeply understanding the historical roots of the field is a rare combination—one I aspire to emulate.
He’s shown me that to invent the future, you have to understand the past. Beyond research, Chris
has taught me how to teach, mentor, and communicate effectively—skills that are just as essential
for scholars. I'm grateful that he trusted me to mentor undergraduate and master’s students, explore
unconventional research directions, and take on the responsibility of head TAing CS 224n.

Next, I would like to thank Jacob Andreas. Jacob has been like a second advisor during the early
part of my PhD and has profoundly influenced how I think about compositionality, generalization,
and language understanding more broadly. He also taught me a lot about the craft of writing papers
and designing clear, effective figures—Ilessons I'll carry with me throughout my career. I’'ll always
remember his advice to “build the experiment pipeline first”—a principle that has saved me more
times than I can count. I'm deeply grateful for the time and care he’s invested in mentoring me, the
dense and thoughtful feedback on my writing, and the collaborative spirit he brought to every project.
I’'m incredibly proud of the papers we wrote together.

I would also like to thank Chris Potts, who has influenced my thinking in many important
ways—ifrom his online lectures on semantics, which I watched long before starting my PhD, to our
early conversations on syntax and grounding during my first year. I still remember how Chris was the
only faculty member who signed up for one-on-one random lunch pairings with grad students, back

when the NLP group had only 30 students. That openness and generosity left a lasting impression.



I’m also very grateful to Tatsu, who worked with me during my first year and taught me a great
deal about statistics, especially how to run careful analyses and interpret results rigorously. I've
really appreciated the many thoughtful discussions we’ve had over the years, and your openness to
entertaining (and challenging) my various project ideas. Thank you for your generosity with your
time and feedback.

Next, I would like to thank some of my earliest research mentors, Mausam, Andrew McCallum
and Aaron Courville. A special thanks to Mausam, who first introduced me to Al and NLP as
an undergrad and generously took me on as a researcher in his lab. A huge thank you to Andrew
McCallum, who took a chance on me and welcomed me into the IESL lab as an intern. I owe much of
what I know about graphical models and information extraction to Andrew and to my PhD mentors
at IESL—Luke Vilnis and Pat Verga. Andrew’s kindness, curiosity, and creativity have left a deep
impression on me. I’m also grateful to Aaron for introducing me to the vibrant deep learning research
world of 2018 Montreal, and to my PhD mentor at MILA, Dzmitry Bahdanau for introducing me to
systematic generalization.

I’ve been incredibly fortunate to work with some amazing student mentees over the years: Xinran,
Ananjan, Ananth, Ethan, Hongmeng, and Houjun. It’s been a joy to watch many of you go on to
start your own PhDs, and I’'m genuinely proud to have been part of your journey. Working with you
has taught me that mentorship is never a one-way street: there’s so much I've learned through our
collaborations. Thank you!

Research is hardly a one-person effort, and I have been blessed to work with some of the most
gifted scientists in the field, both in industry and academia. Thanks to Marco and Scott for teaching
me how to debug machine learning models, and to Pete, Mandar, and Kenton for introducing me to the
world of grounded NLP. Thanks also to Dima for the great discussions on web agents, reinforcement
learning, and collecting human preferences.

Thanks to all my friends and colleagues in the Stanford NLP group. This is a special group that
has evolved so much over the years. From my first year to the last, the faces may have rotated, but
the energy never did. I’d like to give a special shoutout to my officemates—Rdbert, Julie, Dilara,
Ashwin, and John—for keeping the NLP lab office culture (and the endless research and non-research
discussions) alive in the post-COVID work-from-home world. Thanks to John for always listening to
random research pitches, and to labmates Toldlopé, Anna, Zen, Eric, Fede, Kaitlyn, and Nelson for
your support and camaraderie throughout the PhD journey.

To Pratyusha—knowing you over the last 10 years has been one of life’s greatest gifts. Thank

you for being by my side throughout the PhD, and for somehow managing to be both my partner in

vi



life and in research as we co-authored four papers together. I couldn’t have done this without you.
And thanks to Pratyusha’s family for all the support and laughs.

And last, but certainly not least, I want to express my deepest gratitude to my family. To Mom
and Dad—thank you for your unwavering love and belief in me. Dad, you’ve been an incredible role
model—I aspire to be like you. Mom, your love (and delicious food!) kept me going, especially on
the hardest days. I'm so grateful for everything you’ve done. My younger brother Supransh has been
my first reader and most loyal supporter, always eager to dive into whatever I’'m working on, even

the dense stuff. Thank you for your constant curiosity and encouragement.

vii



Contents

Abstract
Acknowledgements

1 Introduction
1.1 A Brief History of Language Agentsin Aland NLP . . . . .. ... ... .....
1.1.1  The Early Daysof Aland NLP . . . . ... ... ... ...........
1.1.2 A Return to Grounding in the 2000s . . . . . . . .. ... ... .. ....
1.2 Building Reliable Grounded Agents . . . . . . . .. .. ... ... ... ... ..
1.2.1 Compositional Language Understanding . . . . . . ... ... .......
1.2.2  Grounding Language into the Environment . . . . . . ... .. ... ...
1.3 Using LLMs for Grounded Instruction Following . . . . . .. ... ... .....
1.4 ThisThesis . . . . . . . e e e
1.4.1 Chaptersinthe Thesis . . . . . ... ... ... ... ... . .....

I Compositionality in Transformer-based Sequence Models

2 Characterizing Intrinsic Compositionality in Transformers with Tree Projections
2.1 Introduction . . . . . . ..o e e e e e
2.2 Background . . . . ... e e
2.3 OurApproach . . . . . . . e

2.3.1 Span Contextual Invariance . . . . ... ... .. ... .. ........
2.3.2  Computing Tree Projections by minimizing SCI. . . . . ... ... .. ..
2.3.3 Measuring Intrinsic Compositionality . . . . ... ... ... ... .. ..

24 Experimental Setup . . . . . . ... e e e

iv

O 00 N O W NN =

—_— =
(=R )

14



2.5 Trained Transformers implement a tree-like computation . . . . . ... ... ... 22

2.6 Tree Projections and Model Behavior . . . . .. .. ... .. ..... . ..... 25
2.6.1 Tree Projections vs. Contextual Dependence . . . ... ... ....... 25
2.6.2 Tree-scores predict generalization . . . . . . . ... ... ... ... ... 26

277 Related Work . . . . .. . e 27

2.8 Conclusion . . . . . .. .. 28

Grokking of Hierarchical Structure in Vanilla Transformers 30

3.1 Introduction . . . . . . .. L e e e e e e 30

3.2 Background . . . . .. L 31

3.3 EXperiments . . . . . . o ot e e e e e e e e e e e e e 32
33.1 MainResults . . . . .. L 33

34 Analysis . .. .. e e e e 34
341 Results . . . ... 35

35 Conclusion . . ... ... 36

Pushdown Layers: Encoding Recursive Structure in Transformer Language Models 38

4.1 Introduction . . . . . . . . L e e e 38
4.2 Background . . . . ... e 40
4.3 Pushdown Layers . . . . . . . . . . . e 42
43.1 StackTape . . . . . . . e 42
4.3.2 Computing Attention SCOres . . . . . . . . . v v vt i 43
433 Training and Inference . . . . ... ... .. ... ... ... ... ..., 45
4.3.4 Implementation Details . . . . . . . ... ... ... L. 45
4.4 EXPeriments . . . . . . . v v vttt e e e e e e e e e e e e e 46
4.4.1 Warm-up: Dyck Languages . . .. .. ... .. ... ........... 46
4.4.2 Sentence-Level Language Modeling . . . . . ... ... ... ....... 46
443 Language Modeling with WIKITREES . . . . . . . ... ... ....... 49
4.5 Analysis . . . .. e e e e e e e e e e e 50
4.6 OtherRelated Work . . . . . . . . . . .. 52
47 Conclusion . . . . . . . e e 53

X



II Grounding in Digital Environments through Environment Interaction 55

5 BAGEL: Bootstrapping Agents by Guiding Exploration with Language 56
5.1 Introduction . . . . . . . . oL e e e e e e 56
5.2 Background . . . . .. L e 59
53 BAGEL . . . . . e e 59

5.3.1 Model Components . . . . . . ... ... 59
5.3.2 Generating Demonstrations . . . . . . . ... ... .00 61
5.33 DiSCUSSION . . . vt e e e e e e e e e e e e e e 61
54 Inference . . . . . . . .. 63
5.5 Datasets . . . ... e e e e e e e 63
551 MiniWoB++ . . oL 63
552 ToolQA . . . . . . e e 63
5.6 Experimental Setup . . . . . . . ... e 64
5.6.1 Baselines and Ablations . . . . . .. ... ... oL 64
5.6.2 Implementation Details . . . . . ... ... ... .............. 64
5.7 MainResults . . . .. oL 65
5.8 Analysis . . . .. L e e e 66
5.8.1 In-context Learning with Synthetic Demonstrations . . . . . . . ... ... 66
5.8.2  Synthetic demonstrations reduce execution failures . . . . . . .. ... .. 67
5.8.3  Correctness of Synthetic Demonstrations . . . . . ... ... ....... 68
5.8.4 Diversity of Synthetic Demonstrations . . . . . . .. ... ... ...... 68
5.8.5 Error Analysis . . . . . . . ... e 68
5.9 Related Work . . . . . .. L 70
5.10 Conclusion . . . . . .. L e e 71

6 NNetNav: Unsupervised Learning of Browser Agents Through Environment Interaction

in the Wild 73
6.1 Introduction . . . . . . . . . . L e e e 73
6.2 Background . . . . . . L 75
6.3 OurApproach . . . . . . . . . . e e 77

6.3.1 LM Components . . . . . . .. .o e e e e e 77

6.3.2 Sampling Demonstrations via Interactions . . . . . . . ... .. ... ... 78
6.4 Main Experiments . . . . . . . . ... e e e e 79



6.4.1 Collecting Demonstrationsinthe Wild . . . . . . ... ... ... .....

6.4.2 Finetuning: Detailsand Results . . . . . ... ... ... ... . .....

6.4.3 Cross-Website Transfer . . . . . . .. ... ... ... ... ... .....

6.4.4  Scaling Trends for Multi-domain Training . . . . . . ... ... ... ...

6.4.5 Error Analysis . . . .. ...
6.5 Controlled Experiments . . . . . . . . . . . . . .

6.5.1 Experimental Settings . . . . . . . . ... ... e

6.52 Results . .. ... ...
6.6 Related Work . . . . . . . .
6.7 Conclusion . . . ... .. .. ..
Conclusion

Formal Results on Tree Projections

BAGEL: Prompts used for various LM components

B.1
B.2
B.3

B.4

Details of the Retrieverusedin BAGEL . . . . ... ................
Re-sampling action Strings . . . . . . . . . . . . . e e e
Prompts . . . . . . .
B.3.1 MiniWoB++ . . . . .
B.3.2 ToolQA . . . . . e
Converting LM Action space into APIcalls . ... ... ... ...........

C NNetNav: Prompts used for various LM components

C.0.1 MiniWoB++ . . . . . L
C.0.2 Prompts for WebArena and Live Websites . . . . . ... ... .......

X1

90

116

119
119
119
120
120
123
128



List of Tables

2.1

4.1
4.2
4.3
4.4

5.1
52
53

54

6.1

6.2
6.3
6.4
6.5

C.1

Sequence transduction tasks for evaluating compositionality. . . . . .. ... ...

Evaluating Pushdown LMs on Dyck languages. . . . . . ... ... ... .....
Comparing syntactic generalization of Pushdown LMs with simpler baselines . . .
Results from finetuning Pushdown LMs on GLUE tasks . . . . . . . ... ... ..
Parsing the Penn TreeBank with Pushdown LMs . . . . . .. ... ... ... ...

BAGEL compared to a baseline without multiple round trips . . . . . .. ... ..
In-context adaptation with BAGEL demonstrations and simpler baselines . . . . .
Average execution failures in agents augmented with BAGEL demonstrations com-
pared against baselines . . . . . . ... ... e
Example demonstrations from BAGEL on MiniWoB++ and ToolQA . . . . . . ..

Breakdown of NNetNav demonstrations into hardness categories based on number
of actions in @ trajectory . . . . . . . . . it e e e e e e e e
Comparing NNetNav finetuned LLMs against other agents on web navigation tasks
Per-website success rates across different fine-tuning data subsets of NNetNav . . .
Comparing NNetNav with instruction-first methods on MiniWoB++ and WebArena

Improvements on WebArena from self-training with NNetNav . . . . . ... ...

Example demonstrations from NNetNav-WA . . . . . .. ... ... ... .....

xii

47
48



List of Figures

2.1
22
23

24
2.5
2.8

3.1
3.2

33
34

4.1
4.2

4.3
4.4

4.6

5.1

Overview of Tree Projections applied to a simple sentence . . . . ... ... ... 17
Using T-shaped masks to allow for context-sensitive processing in early layers . . . 18
Evolution of tree scores over the course of training for transformers of various sizes

on COGS, M-PCFGSET and GeoQuery . . . . .. .. ... ... ..., 23
Comparison of probing accuracy and tree score over time for COGS and M-PCFGSET. 24
Tree Projections applied to transformers trained with BERT-style objective . . . . . 24

Tree scores predict compositional generalization better than in-domain accuracy . . 27

Example datasets used for studying hierarchical generalization in transformer LMs 31
Learning curves demonstrating structural grokking in transformer LMs across 3
datasets, for models of varying sizes . . . . . . .. .. ... ... ... 33
structural grokking has an inverted U-shaped scaling with respect to model depth . 34
Regardless of whether a given depth transformer LM exhibits structural grokking, all
of them are able to learn rules of syntax as measured by PARSEVAL scores from

their tree projections . . . . . . . . oL e e 36

Overview of the key mechanisms in PushdownLMs . . . . . ... ... ... ... 39
A working example illustrating how incremental parsing works in a Pushdown LM
forasimple sentence . . . . . . . . .. .o 44
Evaluating syntactic generalization in Pushdown LMs across linguistic phenomena. 47
Pushdown-LM consistently outperforms a GPT-2 small baseline in syntactic general-
ization across token budgets. . . . . .. ... oL oL oL 49
Visualizing attention weights for a baseline vs. Pushdown LM for a subject-verb

agreementtask . . ... L. L 52

System overview of BAGEL . . . . . ... ... ... ... ... ... ..., 57

Xiii



52
53
54

6.1
6.2
6.3
6.4

6.5

A.l

C.1

Example run from BAGEL on a MiniWoB++task . . .. ... ... ....... 60

Improvements from BAGEL demonstrations across MiniWoB++ and ToolQA. . . 65
Diversity of BAGEL demonstrations across domains. . . . . . . . ... ... ... 68
System overview of NNetNav . . . . . . . . . . ... ... .. 74
Detailed overview of various components in NNetNav . . . . ... ... ... ... 75
Scaling trends for Qwen-2.5-Instruct models fine-tuned with NNetNav . . . . . . . 83

Error analysis of LLMs finetuned with NNetNav demonstrations across 5 fine-grained

attributes on WebArena and WebVoyager . . . . . .. ... .00 85
Computational savings from the pruning mechanism of NNetNav exploration on

multiple datasets . . . . . . ... L e e e e e 87
Experimental evidence for the assumptions in Tree Projections . . . . ... .. .. 118
Top intents per website for both Live and WebArena websites . . . . . . . . .. .. 144

X1v



Chapter 1

Introduction

“My fondest dream is to someday build a machine that really
thinks, learns, communicates with humans and manipulates

its environment in a fairly sophisticated way.”

Claude Shannon, 1952

A long-standing goal of artificial intelligence has been to build helpful agents that follow human
instructions by manipulating some shared environment [ , ]. An especially promising
application for such agents lies in digital environments, such as web browsers, computers, and
mobile devices, where they can act as copilots, reducing the human burden of repetitive digital tasks.
Beyond their practical utility, these environments provide a natural testbed for testing language
understanding, multi-step reasoning and grounding abilities. To see why, consider a simple task like
Upload the image to overleaf after resizing it according to stanford thesis requirements. Successfully
completing this task requires the agent to construct a compositional interpretation of the instruction
based on English syntax, ground words like “upload” into sequences of concrete actions (e.g.,
double click upload icon — select file — click upload button), reason
over dynamic and visually complex interfaces, and plan out a coordinated series of steps in order to
satisfy a latent post-condition.

Recent advances in large language models (LLMs) have brought us closer to this goal, enabling
the development of digital agents [ , , , , , ]. Although
these systems have made impressive strides, they remain far from reliable, greatly limiting their
applicability to real-world applications. How can we move towards more reliable digital agents?

At a high level, the task of executing language instructions in digital environments requires
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two fundamental competencies: a robust understanding of language and deep knowledge of the
environment in which the instruction is to be executed. Neither of these competencies comes for
free—LLMs, though powerful, are not naturally equipped to reason structurally about complex
language instructions (especially instructions with deep nested structure [ , 1), and by nature
of being completely ungrounded, generally do not have knowledge about unknown digital interfaces.
This thesis addresses both of these gaps—by developing methods and architectural innovations to
carefully characterize and improve how deep linguistic structure is handled in large language models,
and by proposing new learning methods that enables large language model agents to quickly acquire

knowledge about the digital environments they inhabit.

1.1 A Brief History of Language Agents in AI and NLP

The ambition to build intelligent agents that can understand and act through natural language has
shaped the trajectory of Al since its earliest days. This section traces how that goal has evolved—from
early symbolic systems to modern large language models—and how the field has repeatedly returned
to the challenge of grounding language in perception and action. I begin with two formative systems,
ELIZA and SHRDLU, that represent contrasting early approaches to language understanding. I then
examine how the field shifted away from grounded interaction in favor of syntactic and statistical
modeling through the 1980s and 1990s. Finally, I trace the re-emergence of grounding in the 2000s

via semantic parsing.

1.1.1 The Early Days of AI and NLP

ELIZA, developed in the 1960s, was a rule-based conversational agent that mimicked a psychothera-
pist using pattern matching and templated responses [ , ]. Although it appeared to
engage in meaningful dialogue, ELIZA lacked any representation of context, memory, or environment.
It was an entirely ungrounded system, operating solely on surface-level linguistic patterns without
connecting language to perception or action. In contrast, SHRDLU, created in the early 1970s,
operated in a constrained blocks world [ , ]. SHRDLU could manipulate symbolic
representations of physical objects based on user natural language commands like put the red block
on the green cube. It also maintained a limited dialogue context, enabling referential expressions and
basic clarification. SHRDLU was an early grounded language system, in that it connected words to
entities and actions in a world. However, its capabilities were strictly limited to a narrow domain,

and its rule-based logic made it brittle and inflexible outside its designed environment.
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Following these early systems, research in natural language processing (NLP) pivoted away
from grounded agents toward corpus-based linguistic analysis. This shift was driven by advances in
statistical modeling and the introduction of new datasets supporting tasks such as syntactic parsing,
semantic parsing, part-of-speech tagging, and topic modeling.

In syntax, early developments included work on probabilistic context-free grammars (PCFGs)
[ , ], and the introduction of the Penn Treebank [ , ], which provided
a large-scale hand annotated corpus of syntax trees that enabled data-driven methods [e.g., ,

, , ]. For machine translation, the IBM alignment models were some of the earliest

models for word alignment [ , ], while Brown clustering introduced a distributional
method for inducing word classes [ , ]. n-gram language models, often trained
on newswire, became foundational to language modeling [ , , , ]. More

sophisticated sequence models, such as Hidden Markov Models (HMMs), were widely adopted for
tasks such as tagging, parsing, and speech recognition [ , ]. These probabilistic sequence
models—natural precursors to today’s LLMs—enabled more robust handling of ambiguity and
linguistic variation at scale.

Although this era marked a shift away from language as a medium for action, it laid critical
groundwork for the resurgence of grounding that followed. Formal grammars developed during this
time—such as Combinatory Categorial Grammar (CCG) [ , ]—offered mechanisms
for compositional semantics, pairing syntactic categories with logical forms to enable precise, rule-
based mappings from surface form to meaning. In parallel, advances in statistical learning—from
HMMs and n-gram models to algorithms like Expectation-Maximization for latent-variable mod-
eling—provided a more powerful toolkit for modeling structure in data. Thus, when grounding
re-emerged in the 2000s, it drew on both symbolic and statistical corpus-based techniques to model

how complex meanings arise from linguistic form.

1.1.2 A Return to Grounding in the 2000s

A return to grounding began to take shape in the mid-2000s through the revival of semantic parsing.
In contrast to syntactic parsing, semantic parsing focuses on mapping natural language to executable
meaning representations—Ilogical forms, programs, or action sequences that can be grounded in a
system’s environment. This represented a conceptual shift: rather than analyzing language for its
own sake, semantic parsing treated language as a specification for behavior.

Early work such as [ ] framed this problem as mapping natural language

questions to Prolog-style queries over small databases. This was followed by statistical approaches
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[ , , , ] that used training data to induce mappings

from language to lambda calculus expressions with limited supervision. These models reintroduced

compositional meaning into NLP (e.g. [ ]) in a way that was tightly connected to

actions in a domain. Semantic parsing also enabled more explicitly situated grounding by learning to

map from language to physical actions or spatial commands for robots [ , ,
, ; ; I

To make this concrete, we briefly illustrate how Combinatory Categorial Grammar (CCG),
a formalism used in early semantic parsing work, builds compositional semantics using lambda
calculus and syntactic categories.

CCG assigns each word a syntactic category encoding both its grammatical role and how it
composes with others. These categories also carry lambda-calculus semantics, allowing meaning to
be constructed incrementally bottom-up. For example, the imperative verb “open” is assigned the
category S/NP, indicating it takes a noun phrase (NP) to its right to produce a sentence (S), and is
associated with the function Az. open(x).

Consider the sentence: “Open the folder that contains the latest report.” Each phrase is in-
crementally composed using function application. The determiner “the” has category NP/N and
semantics \f..x.f(x), mapping a noun predicate to a unique entity. The operator ¢ is known as
the iota operator, and denotes definite description—it refers to the unique entity x such that a given
property holds. For instance, the phrase “the folder” corresponds to tz. folder(z), and “the latest
report” corresponds to . latest(report) (z).

The relative clause “that contains the latest report” modifies the noun via a category N\N, and
the verb “contains” has type S/NP\NP, seeking both object and subject. Composing “contains the
latest report” yields:

Az. contains(z, tz. latest(report) (x))

which in turn modifies “folder” to form:
Az. folder(z) A contains(x, tx. latest(report)(z))
Applying the determiner “the” gives:

vz folder(z) A contains(x, cx. latest(report)(x))
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Finally, applying the verb “open” yields the complete semantic interpretation of the command:
open(cx. folder(z) A contains(z, cx. latest(report)(x)))

This lambda calculus expression does more than merely represent the sentence’s meaning—it
directly specifies an executable action: opening a particular folder in the environment. In early
semantic parsing systems, such formal expressions were typically converted into database queries or
robot commands, bridging the gap between natural language and real-world behavior. This execution
step highlighted the power of structured representations: by explicitly modeling how meaning is
constructed, these systems could ground language in tangible actions.

By the late 2010s, semantic parsing had evolved to incorporate neural network architectures
and reinforcement learning, allowing language models to generate programs, navigation plans, or
tool use sequences from free-form inputs and environmental feedback [ , ,

, ]. Neural approaches to semantic parsing generally followed three modeling traditions.
The first retained symbolic grammars and used neural networks to learn probabilistic parsing rules
[ , , , ]. The second organized neural components hierarchically,
as in seq?2tree architectures [ , , , s ,

]. The third dispensed with symbolic structure entirely, training sequence-to-sequence models
that directly mapped utterances to meaning representations using flat LSTM-based encoders and
decoders [ , ], with data augmentation techniques used to inject weak forms of
compositionality.

After the introduction of the transformer architecture, explicit injection of structure was largely
abandoned in favor of training large pre-trained models on trillions of tokens from the internet. These
models are capable of few-shot generalization, multi-turn dialogue, and a wide range of tasks via
prompting. Fundamentally, large language models remain ungrounded: they are trained only on
text, with no direct connection to perception, action, or physical context [ , ]. While
they can simulate grounded reasoning through text alone, they do not experience or interact with an
environment in the way a true agent would.

Historically, the appeal of structured representations—such as those used in semantic pars-
ing—was their ability to support strong generalization by explicitly modeling how meaning is
composed from parts. In contrast, transformers often succeed at compositional tasks despite lacking
explicit structure, but it remains unclear why this is the case, or when it will fail. Recent work has

shown that self-attention architectures have fundamental limitations in their ability to recognize
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or compute certain types of recursive and hierarchical structure [ , ]. This raises open
questions about whether large language models can reliably handle deeply nested or systematically
compositional inputs—or whether structural biases remain necessary for robust generalization.
Both the ability to ground language in the world and being compositionally robust to linguistic
variations are important for building reliable grounded agents. In the next section, I formally introduce
the grounded instruction-following problem, argue why these two factors are essential, and give a

brief overview of prior work and concerns in these directions.

1.2 Building Reliable Grounded Agents

Given a natural language goal g, an agent issues actions {a1, as,...,ar}, where each action a,
is taken in response to the observation o, at time step ¢. The full episode can be represented as a
trajectory:

T ={o01,a1,09,a2,...,0r,ar,0741}.

We formalize an instruction-following agent as a language-conditioned policy m(as | T<¢,9),
where 7oy = {01,a1,...,0¢} denotes the trajectory observed so far. Executing an action leads to
a new observation via an environment-specific transition function that is typically unknown and
potentially non-deterministic.

At a high level, effective instruction following in diverse, unseen environments requires two key

capabilities:

1. Compositional language understanding: the ability to put together the meaning of some
potentially unseen utterance by combining the meaning of individual words, by using rules
of syntax. This includes understanding how complex commands are built from simpler parts
(open the file and then upload it) and interpreting modifiers and nested structure (rename the
folder inside Projects/2023 that contains the word draft in its name to final). Crucially, agents
must generalize to unseen combinations of known concepts, reflecting the kind of systematicity

that underlies human generalization in language.

2. Grounding language in the environment: the ability to connect linguistic expressions to

concrete concepts in the environment. This includes:

* Referential grounding: resolving phrases like upload button or new document to specific

UI elements based on visual features, DOM labels, or context.
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* Action grounding: determining what sequence of low-level actions (e.g. mouse clicks,
keyboard shortcuts, menu selections) corresponds to high-level verbs such as “copy”,
“upload” or “save as PDF” and composing these action sequences as necessary. For
example, interpreting copy the contents of data.txt and paste it into a new google doc as
a series of steps: opening a file manager, locating data.txt, opening it, selecting the text,

and issuing a copy command to copy to clipboard

State tracking and post-condition reasoning: maintaining an internal model of how
actions change the environment, both to verify progress and to plan ahead. For instance,
after executing Ctr1+C, the agent should infer that the clipboard now contains the
selected text, and that issuing Ctr1+V in a text field will paste it. More broadly,
grounding instructions like paste the contents of data . txt into a Google Doc requires
reasoning about the desired post-condition (the Google Doc contains the file’s contents),
and planning a sequence of actions that reliably brings about that state-even across

different applications.

The rest of this section expands on each of these capabilities, reviewing some important related
work. Section 1.2.1 discusses compositionality in neural language models. Section 1.2.2 explores

approaches to grounding language in environments.

1.2.1 Compositional Language Understanding

Compositionality is a core property of human language that allows us to understand entirely novel
sentences by combining familiar elements in systematic ways. For example, once a person has
learned how to rename a folder, they are able to generalize to more complex instructions such
as rename the second folder inside the Projects directory or rename all folders that contain the
word ‘draft’ to ‘final’, even without having seen these exact commands before, as long as individual
concepts like “second folder” are known. This ability to systematically combine familiar linguistic
components in novel ways is central to human cognition. For Al agents, acquiring such compositional
generalization capabilities is essential: it enables robust out-of-distribution performance and efficient
learning from limited data.

Studying compositional generalization in deep neural networks has become a central thread in
language understanding research. A canonical testbed for this is semantic parsing, where the goal is to
translate natural language instructions into executable logical forms. One of the earliest benchmarks

in this line of work is the SCAN dataset [ , ], which creates compositional



CHAPTER 1. INTRODUCTION 8

test splits and shows that standard sequence-to-sequence models struggle to generalize beyond the
training distribution. This work inspired a flurry of follow-ups, including SQOOP [ ,
], gSCAN [ , ], ReaSCAN [ , ]. In particular gSCAN and ReaSCAN
extend the SCAN dataset to grounded environments. In these settings, the meaning of an utterance
depends not only on syntactic form, but also on context—for example, the phrase big table may refer
to different objects depending on which tables are visible and their relative sizes.
These grounded variants emphasize that language understanding is not merely a matter of
symbolic recombination; it requires contextual interpretation, integrating linguistic structure with

perceptual cues. This perspective is especially important for instruction-following agents.

1.2.2 Grounding Language into the Environment

Referential grounding has often been studied in the context of visual question answering (VQA).

Early VQA datasets employed relatively simple language [ , ], prompting a shift
toward synthetic, compositional language datasets like CLEVR [ , ] and GQA
[ , 1, which pair controlled language with either synthetic or natural images.

These datasets, originally designed for multimodal understanding and compositional reasoning, have
also been repurposed for improving agent grounding [ , ]. However, such datasets
are limited in their applicability to digital agents operating over user interfaces. To address this,
newer datasets such as ScreenSpot [ , ] and ScreenSpot-Pro [ , ] have
been introduced to evaluate and improve referential grounding for screen-based environments.
Beyond resolving referents, instruction following also requires knowledge of how actions affect
the environment. Some works tackle this by explicitly modeling environment dynamics. For instance,
[ ] use past state transitions to train a look-ahead model that predicts the outcome
of possible actions. This model, integrated with a policy learner, helps estimate whether a candidate
action will lead to a high-reward state under a given instruction. A popular approach has been to train
neural-network-based forward models for planning—either in latent space, or using video-based
forward models that predict future frames along with inverse dynamics models to extract actions. In
the context of digital agents, [ ] train large language model-based world models to
simulate future states, using them in conjunction with a value function to choose the most promising
action among candidates.
The most direct learning signal for instruction-following comes from interaction—either via
expert demonstrations or the agent’s own exploration. Historically, one modeling tradition has framed

instruction following as a semantic parsing task: mapping natural language into a structured plan that
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a symbolic executor can execute. These plans could take the form of formal logical specifications
induced from data [ , ], or be derived from compositional models of natural
language meaning [ , , , ]. These methods leverage
the compositional structure of language as a scaffold for generalization and data-efficient learning.
In contrast, a second line of work frames instruction following as a direct sequence-to-sequence
mapping problem, bypassing explicit intermediate representations by directly learning policies that
map instructions to actions. A notable early example is [ ], which maps natural
language troubleshooting instructions to low-level commands in the Windows OS. Their system
learns a log-linear policy over hand-crafted features derived from the UI state and interaction history.
The environment is represented via categorical features (e.g., element labels, positions, parent
windows), and the reward function penalizes mismatches between instructions and Ul descriptions.
More recent work eschews hand-engineered features in favor of end-to-end neural policies that

operate on raw observations [ s , s , inter alia].

1.3 Using LLMs for Grounded Instruction Following

While these end-to-end neural policies achieved impressive results, they typically operated on non
pre-trained representations—Ilearning everything from scratch and requiring substantial data. In the
2020s, large language models (LLMs) such as Gemini and GPT-4 introduced a new paradigm: they
can serve as powerful feature extractors or as starting points for fine-tuning policies, offering a more
data-efficient path to building grounded instruction-following agents. This section reviews some of
these efforts

Early efforts in using LLMs for grounded agents leveraged them in a zero-shot manner. For
instance, [ ] prompt language models to produce mid-level plans that can be
executed in virtual home environments. Similarly, [ ] propose SayCan, where an
LLM scores possible subgoals based on a given instruction, and these scores are combined with a
learned affordance model to identify feasible next actions. In the domain of digital agents,
[ ] introduced ReAct, which combined chain-of-thought reasoning with action execution in a
loop, enabling LLMs to act as shopping agents on the web.

These approaches share a common strategy: they repurpose the ungrounded world knowledge of
LLMs through clever prompting to generate executable plans or action sequences. While promising,
such zero-shot methods suffer from two main limitations. First, they can be unreliable, hallucinating

steps and producing actions misaligned with the current state. Second, they often assume access
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to a predefined library of mid-level skills, which may not be available in more open-ended or
under-instrumented environments.

To address these limitations, recent work has begun to explore fine-tuning LL.Ms using stan-
dard behavioral cloning or reinforcement learning techniques in grounded settings. However, this

introduces a new challenge: the lack of large-scale, high-quality datasets of demonstrations.

1.4 This Thesis

In the previous section, I argue that compositionality and grounding are both essential for building
effective instruction-following agents. Yet, while large language models (LLMs) have become
powerful tools for a broad range of natural language processing tasks, it remains an open question
whether they can reason about complex language structures in the same way as the explicitly
compositional models of the 2000s. Furthermore, these models are primarily trained on web text—
data that contains only a small fraction of explicit grounding, and even then, it’s not tailored to the
kinds of digital environments instruction-following agents must navigate. This raises the critical
question: how can we develop post-training methods that specifically instill environment-relevant
grounding into LLMs?

The challenges of language understanding and environment interaction are not merely technical
hurdles for building intelligent agents. Rather, they reflect deep philosophical questions about
how language users acquire meaning. [ ] argues that understanding language is
inseparable from its use in goal-directed, situated activity. Meaning does not emerge from static
definitions but from use within a shared world—famously encapsulated in the quote in most cases,
meaning is use. According to this view, language is not an abstract symbol system but a tool whose
significance arises through interaction. If we are to build systems that truly understand language, we
must move beyond the passive training paradigm that dominates LLM development today and instead,
immerse them in interactive, feedback-rich environments. This thesis adopts this perspective: it
seeks to bridge the gap between language and use for LLMs by building a learning-from-interaction

pipeline.

1.4.1 Chapters in the Thesis

The first part of this thesis seeks to answer the question: Are LLMs capable of compositional general-
ization?. While many methods have been proposed to uncover syntactic structure in transformers,

they do not directly reveal whether the meaning composition function implemented by a transformer
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resembles these syntax trees. To illustrate, consider the sentence x = Open the folder that contains
the file named report.docx. A constituency parse reveals how nested structures (like the relative
clause “that contains the file named report.docx’) modify the main noun phrase “the folder,” showing

how the meaning of the instruction is systematically built:

/\
A% NP
| T
Open NP SBAR
DT NN WHNP S
] |
the folder  that VP
/\
VBZ NP
| S
contains NP VP
VAN
DT NN VBN NP

the file named NN

report.docx

A transformer encoder operating on this input produces contextual vectors { e, Rfolders - - - 5
Rnamed hreport.docx}. How do we know if the transformer is combining these contextual vectors by
following the rules of syntax? More concretely, does the representation for the constituent phrase
the file named report.docx—built from {he, Pite; Prnamed; Preport.docx }—Teflect the same hierarchical
structure as the corresponding subtree in the syntax parse?

One influential line of work seeks to address this by training linear probes, simple neural networks
that takes hidden states as inputs and output corresponding parses as outputs. These works argue
that if such a probe can be trained to obtain a high-enough accuracy on some test set, it implies the
existence of syntactic meaning composition in transformers. I argue that Probing only reveals that
the final representations contain enough information to reconstruct the syntax, but it does not capture
how the transformer incrementally composes meaning during the forward pass. In other words,
probes can find correlations between representations and tree structures, but they do not show that the
underlying composition function itself has a tree-like structure. I argue that this is a fundamentally
different notion—one that requires new tools.

Chapter 2 introduces Tree Projection, a method to directly fit a tree-structured function to a
transformer’s output on a small corpus. The resulting goodness-of-fit score quantifies how closely

the transformer’s meaning composition resembles a tree structure. We show that this measure
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is a strong predictor of compositional generalization performance across a range of grounded
instruction-following datasets. This work first appeared at ICLR 2023 in Characterizing Intrinsic
Compositionality in Transformers with Tree Projections | , ]

Building on this, Chapter 3 uses Tree Projections to uncover a new grokking [ , ]
phenomenon in transformer models, where out-of-distribution performance continues to improve long
after in-domain accuracies saturate—coinciding with an increase in the tree projection score. This
work was first presented at ACL 2023 in Grokking of Hierarchical Structure in Vanilla Transformers
[ ) I

While results in these chapters results that transformers have a good inductive bias for learning
compositional structure, prior work reveal fundamental limitations: transformers lack the represen-
tational capacity for recursion. To address this limitation, Chapter 4 introduces Pushdown Layers,
a new self-attention mechanism that augments transformers with a stack data structure. Much like
programming languages use stacks to implement recursion, Pushdown Layers use stacks to track
recursive state for linguistic constituents—pushing and popping tokens to form nested structures
as the language model processes text. The stack features themselves softly bias self-attention, en-
abling transformers to more naturally handle recursive phenomena in both formal as well as natural
languages. This work was published at EMNLP 2024 in Pushdown Layers: Encoding Recursive
Structure in Transformer Language Models | , 1.

The second part of this thesis turns to the question of grounding these fundamentally ungrounded
models in digital environments where they must act. We present methods for injecting grounding
through direct environment interaction, using demonstration data obtained via autonomous model
exploration. Chapter 5 introduces BAGEL, a method that converts a seed set of randomly explored
trajectories or synthetic instructions into demonstrations via round-trips between two noisy com-
ponents: a labeler module, which converts a trajectory into a synthetic instruction, and a zero-shot
LLM agent, which maps the synthetic instruction into a refined trajectory. By iteratively performing
these round-trips, BAGEL quickly converts the initial distribution of trajectories toward those that
are well-described by natural language. These demonstrations are then used to adapt a zero-shot
LLM agent at test time via in-context learning over retrieved demonstrations. We find that BAGEL
improves performance by 2—13% absolute on ToolQA and MiniWob++. This work was published in
ICML 2024 as BAGEL: Bootstrapping Agents by Guiding Exploration with Language [ ,

1.
Finally, Chapter 6 presents NNetNav [ , ], a method for unsupervised interaction

with websites that generates synthetic demonstrations for training browser agents. Unlike BAGEL,
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which is applied primarily to simpler web interfaces, NNetNav conducts a much larger-scale data
collection effort, producing over 10,000 demonstrations across 20 real websites. Furthermore, while
BAGEL does not explicitly address the exponential search space of interactions, NNetNav leverages
a hierarchical exploration policy that generates trajectory prefixes aligned with meaningful sub-goals.
This hierarchical structure allows NNetNav to automatically prune infeasible interaction episodes,
making the search tractable in more complex, real-world environments. Another key difference is that
BAGEL grounds pre-trained LLMs through in-context learning at test time, while NNetNav uses its
generated demonstrations for direct fine-tuning of LLMs. We show that LLama-3.1-8b fine-tuned on
10k NNetNav demonstrations achieves a 16% success rate on WebArena and 35% on WebVoyager,
improvements of 15 and 31 percentage points respectively over the zero-shot LLama-3.1-8b baseline,
outperforming zero-shot GPT-4 and achieving state-of-the-art performance among unsupervised

methods on both benchmarks.
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Chapter 2

Characterizing Intrinsic
Compositionality in Transformers with

Tree Projections

2.1 Introduction

Consider the sentence Jack has more apples than Saturn has rings, which you have almost certainly
never encountered before. Such compositionally novel sentences consist of known words in unknown
contexts, and can be reliably interpreted by humans. One leading hypothesis suggests that humans
process language according to hierarchical tree-structured computation and that such a restricted
computation is, in part, responsible for compositional generalization. Meanwhile, popular neural
network models of language processing, such as the transformer, can, in principle, learn an arbitrarily
expressive computation over sentences, with the ability to route information between any two pieces
of the sentence. In practice, when trained on language data, do transformers instead constrain their
computation to look equivalent to a tree-structured bottom-up computation?
While generalization tests on benchmarks [ , , , ,

, , , , among others] assess if a transformer’s behavior is aligned with
tree-like models, they do not measure if the transformer’s computation is tree-structured, largely
because model behavior on benchmarks could entirely be due to orthogonal properties of the dataset
[ , ]. Thus, to understand if transformers implement tree-structured computations,

the approach we take is based on directly approximating them with a separate, tree-structured
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computation. Prior methods based on this approach [ , , , ] require
putatively gold syntax trees, which not only requires committing to a specific theory of syntax,
but crucially, may not exist in some domains due to syntactic indeterminacy. Consequently, these
methods will fail to recognize a model as tree-like if it is tree-structured according to a different
notion of syntax. Moreover, all of these approaches involve an expensive training procedure for
explicitly fitting a tree-structured model [ , , , ] to the neural network.

This Chapter presents a method that is completely unsupervised (no gold syntax needed) and
parameter-free (no neural network fitting needed). At a high level, the proposed method functionally
projects' transformers into the space of all tree-structured models, via an implicit search over the joint
space of tree structures and parameters of corresponding tree-structured models (Figure 2.1). The
main intuition behind our approach is to appeal to the notion of representational invariance: bottom-
up tree-structured computations over sentences build intermediate representations that are invariant
to outside context, and so we can approximate transformers with a tree-structured computation
by searching for a “bracketing” of the sentence where transformer representations of intermediate
brackets are maximally invariant to their context. Concretely, the main workhorse of our approach is
a subroutine that computes distances between contextual and context-free representations of all spans
of a sentence. We use these distances to induce a tree projection of the transformer using classical
chart parsing (Section 2.3), along with a score that estimates tree-structuredness.

First, we prove that our approach can find the best tree-structured account of a transformer’s com-
putation under mild assumptions (Theorem 1). Empirically, we find transformer encoders of varying
depths become more tree-like as they train on three sequence transduction datasets, with correspond-
ing tree projections gradually aligning with gold syntax on two of three datasets (Section 2.5). Then,
we use tree projections as a tool to predict behaviors associated with compositionality: induced trees
reliably reflect contextual dependence structure implemented by encoders (Section 2.6.1) and both
tree scores as well as parsing F1 of tree projections better correlate with compositional generalization

to configurations unseen in training than in-domain accuracy on two of three datasets (Section 2.6.2).

2.2 Background

How can we compute the meaning of red apples are delicious? Substantial evidence [

) ) ) ) ) ] supports the hypothesis that semantic

'We provide a functional account of the transformer’s computation and not a fopological account, i.e., we are agnostic
to whether the attention patterns of the transformer themselves look tree structured—see [ ] for examples.
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Figure 2.1: (a) Given a transformer model f , our method finds the tree projection of f i.e., binary trees
corresponding to the tree-structured neural network gy . (in the space of all tree-structured models)
that best approximates the outputs of f on a given set of strings. (b) (i) Given a string, we compute
context-free representations (v;;) for all spans of the string via attention masking (Section 2.3). (ii)
We use the distance between (average-pooled) context-free and contextual representations (v;;) to
populate a chart data structure. (iii) We decode a tree structure from chart entries.

interpretation of sentences by humans involves a tree-structured, hierarchical computation, where
smaller constituents (red, apples) recursively combine into larger constituents (red apples), until
we reach the full sentence. Concretely, suppose we have a sentence S = {w1,ws, ... , W}
Let T be a function that returns a binary tree for any sentence S, defined recursively as 7'(S) £
(T'(S1,5), T(Sj41,)5))) where T'(S,p) refers to a subtree over the span Sg 2 {Wa, Wail,-- ., Wh}.
We say that a span S, € T'(S) if the node T'(S, ;) exists as a subtree in 7°(S). For notational

convenience, we sometimes use .S; and S, as the left and right subtrees for 7'(S) i.e., T'(S) = (S, Sy).

Compositionality in Meaning Representations. While theories of compositional meaning forma-
tion might differ on specifics of syntax, at a high-level, they propose that computing the meaning of
S must involve a bottom-up procedure along some syntax tree 7'(.S) of the sentence S. Formally,
we say that a meaning representation system m is compositional if the meaning m(s) of some
expression s is a homomorphic image of the syntax of s i.e., m(s) = ¢(m(s;), m(s,)) for some
¢ following [ ]. Crucially, we note that such a ¢ exists only if m(s) can be fully
determined by the contents of s, that is, if m(s) is contextually invariant. While there are several
phenomena that necessarily require a non-compositional context-sensitive interpretation (indexicals,
idioms, pronouns, lexical ambiguity among others), compositional interpretation remains a central

component in explanations of the human ability to systematically interpret novel sentences.
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red apples are delicious

N

Figure 2.2: We use a T-shaped attention mask with a threshold layer to obtain approximate context-
free vectors for transformers.

Compositionality in Neural Models. A class of neural networks that are obviously compositional
are tree-structured models such as [ ], that obtain vector representations of sentences
by performing a bottom-up computation over syntax. Specifically, given S and a corresponding
binary tree 7(.5), the output of the tree-structured network g, is defined recursively—for any span
p € T(S), g5, T(p)) = ho(gs(pi, T(p1)), 96(pr, T(py)) where hg : R* x R? = R? is some
feedforward neural network. For leaf nodes wj, g (w;, T'(w;)) £ N, where 7, € RY represents the

word embedding for w. The parameters of the network are ¢ = {0, 7w , Ty, - - - }-

2.3 Our Approach

While tree-structured networks were built to reflect the compositional structure of natural language,
they have been superseded by relatively unstructured transformers [ , ]. How
can we measure if the computation implemented by a transformer is compositional and tree-like?
We start by noting that in any bottom-up tree computation over a sentence, representation of an
intermediate constituent depends only on the span it corresponds to, while being fully invariant
to outside context. Thus, one way to assess tree-structuredness of a computation over some span
is to measure contextual invariance of the resulting representation. Consequently, we construct a
tree-structured approximation of a transformer’s computation over a sentence by searching for a

bracketing of the sentence where spans have maximal contextual invariance.
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2.3.1 Span Contextual Invariance

Suppose f is a transformer model that produces contextual vectors of words in S as f(S) =
S S S S s : : S
{va, Vs -+ Vs, where vy, is a contextual vector representation of w. Given a span p, let v, be

the span representation of the contextual vectors of words in p, v;f = Zwep - Similarly, let v, be
a context-free representation of the span p. For transformers, we obtain context-free representations
through a simple attention masking scheme. In particular, to obtain v,, we apply a “T-shaped”
attention mask and take the pooled representation of the words in p at the final layer (Figure 2.2).
The mask ensures that attention heads do not attend to tokens outside of p after an optional threshold
layer?

We define span contextual invariance (SCI) of a span p in the sentence S as SCI(S,p) =
d(v;? , Up) for some distance function d. Similarly, we define the cumulative SCI score for a tree 7'
to be:

SCI(S,T) £ " d(vy, Bp). 2.1)
seT

2.3.2 Computing Tree Projections by minimizing SCI

Consider the collection of strings, D = {(.S)}, and some function 7" that produces binary trees for
any S € D. The cumulative error from approximating outputs of the transformer f with outputs of a

tree-structured network g, structured according to 7' can be written as

L(f96:T) 2> D dlge(p, T(p)),v5). 2.2)

SeD peT(S)

Suppose we are interested in finding the best tree-structured approximation to f over all possible
trees i.e. a configuration of tree structures and corresponding model parameters that best approximate

the transformer’s behavior. We define this as the exact tree projection of f,

(z)proj; Tproj S ar% min ,C(f, 95 T)‘ (2.3)
T

Theorem 1. ming 7 L(f,94,T) < > gep ming(s) SCI(S, T(S)). In other words, the best tree

structured approximation to f has an error upper bounded by cumulative SCI scores.

>This procedure outputs vectors that are entirely context-free only if the threshold is exactly 0, but we find that tuning
the threshold layer often leads to significantly better induced parses.
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In general, finding tree projections involves a joint search over all discrete tree structures 7'(S) as
well as over continuous parameters ¢, which is intractable. However, we substantially simplify this
search using Theorem 1, since the upper bound depends only on parses 7'(.S) and properties of the
transformer, and can be exactly minimized for a given f in polynomial time, with efficient parsing
algorithms. We minimize this upper bound itself to approximately recover the best tree-structured
approximation to f, over all choices of trees and parameters. The output of this minimization is an

approximate tree projection,

~

Toroj(S) = arg min SCI(S, T'(5)) (2.4)
7(S)

for every S € D. Under a mild assumption®, SCI minimization leads to tree projections exactly.

Assumption 1. Let S, denote the collection of sentences that contain the span p. Then, for every
span p, we have ming y g, S, d(v}? V) =D g Sy d(vz‘)9 ,Up). That is, context-free vectors minimize

the cumulative distance to their contextual counterparts.

Corollary 1.1. Under Assumption I, ming 1 L(f, gy, T) = Y gcp ming gy SCI(S, T(S)). More-
over, Tyi(S) = arg mingg) SCI(S, T'(S)) for any S € D.
2.3.3 Measuring Intrinsic Compositionality

SCI minimization provides two natural ways to measure intrinsic compositionality of f on D. To

measure tree-structuredness, we use

n D gep ErSCI(S, T) — SCI(S, Tyoi (S))
tscore - ’D’ 5 (25)

which computes the averaged SCI score of induced trees, normalized against the expected SCI score
under a uniform distribution over trees. We find normalization to be necessary to prevent our method
from spuriously assigning high tree-structuredness to entirely context-free encoders (that have high

SCI scores for all trees). When gold syntax T} is available, we use

~

tparseval = PARSEVAL(Tyyo5, Ty, D), (2.6)

to measure bracketing F1 score (PARSEVAL; [ 1) score of fproj against T, on D.

3Figure A.1 shows that this assumption approximately holds in practice.
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2.4 Experimental Setup

Our experiments* are organized as follows. First, we show that on 3 sequence transduction tasks,
transformers of varying depths become more tree-like over the course of training, and sometimes
learn tree projections that progressively evolve towards ground truth syntax. Then, we show how tree

projections can be used to assess various model behaviors related to compositionality.

Datasets. We consider three datasets (Table 2.1) commonly used for benchmarking compositional
generalization: COGS [ s ], M-PCFGSET [ s ] and GeoQuery
[ , ]. COGS consists of automatically generated sentences from a context-free
grammar paired with logical forms, split into in-domain examples (for training) and a compositionally
challenging evaluation set. M-PCFGSET is a slightly modified version > of PCFGSET [ ,

1, where inputs are a nested sequence of expresssions that specify a unary or binary operation
over lists. The objective is to execute the function specified by the input to obtain the final list. We
focus on the “systematicity split” for measuring compositional generalization. Finally, GeoQuery
consists of natural language queries about US geography paired with logical forms. To measure

compositional generalization, we use the “query” split from [ 1.

Implementation Details. We use greedy top down chart parsing to approximately minimize SCI.
In particular, we use SCI scores for all O(|S|?) spans of a string S to populate a chart data structure,
which is used to induce a tree by minimizing SCI via a top down greedy procedure (see

[ ] for more details), similar to [ ]. Our procedure outputs a tree and
simultaneously returns normalized SCI score of the tree, computing a sampling estimate of expected
SCI score (Equation 2.5). We train transformer encoder-decoder models with encoders of depths {2,
4, 6} and a fixed decoder of depth 2. We omit 6-layer transformer results for GeoQuery as this model
rapidly overfit and failed to generalize, perhaps due to the small size of the dataset. We choose a
shallow decoder to ensure that most of the sentence processing is performed on the encoder side. We
train for 100k iterations on COGS, 300k iterations on M-PCFGSET and 50k iterations on GeoQuery.
We collect checkpoints every 1000, 2000 and 500 gradient updates and use the encoder at these
checkpoints to obtain parses as well as tree scores. In all experiments, d is cosine distance i.e.,
dlxz,y)=1- ”:HTﬁ All transformer layers have 8 attention heads and a hidden dimensionality

of 512. We use a learning rate of 1e-4 (linearly warming up from O to le-4 over 5k steps) with the

*Code and data are be available at https://github.com/MurtyShikhar/TreeProjections
Ssee [ ] for details.
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AdamW optimizer. All accuracies refer to exact match accuracy against the gold target sequence.

For all seq2seq transformers, we tune the threshold layer based on Zparseval-

Inputs Outputs
; The ball was found ball (x1) AND find.theme (z3,21)
. A cookie was blessed cookie (x1) AND bless.theme (x3,x1)
qo coy interleave_second reverse shift H13 C19 H9 020 H9 H13 020 C19
" repeat interleave_second interleave_first S1 E3 W3 NI1 H4Y3 18 E1 R13 T12 E1 T12 L8 E1 R13 T12 El T12
i Which state has the lowest population density? (A, _smallest (B, (_state(A), _density (A, B))))
* What is the population density of Wyoming? (A, (_density (B, A), _const (B, _stateid(wyoming))))

Table 2.1: Example (x, y) pairs from COGS (i), M-PCFGSET (ii) and GeoQuery (iii). See
[ ] for more details on pre-processing as well as dataset statistics.

2.5 Trained Transformers implement a tree-like computation

How does intrinsic compositionality of a transformer encoder evolve during the course of training
on sequence transduction tasks? To study this, we plot tscore (how tree-like is a model?) and tparseval
(how accurate is the tree projection of a model?) of encoder checkpoints throughout training. As
a comparison, we track how well a supervised probe recovers syntax from encoders—that is, we
train a 1 layer transformer decoder to autoregressively predict linearized gold parse trees of S from
transformer outputs f(.S) at various points of training, and measure the PARSEVAL score of probe

outputs (Pparseval) ON a test set.

Results. We plot ¢parseval and fgcore OVer the course of training in Figure 2.3. We observe that 7/8
encoders gradually become more tree-like i.e., increase tg.ore OVer the course of training, with the 4
layer transformer on GeoQuery being the exception. Interestingly, we note that #,rseval also increases
over time for all encoders on COGS and M-PCFGSET suggesting that the tree projection of trained
transformers progressively becomes more like ground-truth syntax. In other words, all encoders
trained on COGS and M-PCFGSET learn a computation that is gradually more “syntax aware”. Can
supervised probing also reveal this gradual syntactic enrichment? We plot PARSEVAL score of
parse trees predicted by the probe on held out sentences (Pparseval) in Figure 2.4—while pparseval does
improve over time on both COGS and M-PCFGSET, we observe that all checkpoints after some
threshold have similar probing accuracies. We quantitatively compare gradual syntactic enrichment
by computing the Spearman correlation between fparseval (Pparseval) and training step and find that

Ppparseva 18 Significantly smaller than py for both datasets. Interestingly, we also find that our

parseval

unsupervised procedure is able to produce better trees than the supervised probe on M-PCFGSET as
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Figure 2.3: We plot tscore and tparseval by computing approximate tree projections at various check-
points. 7/8 models become more tree-structured (increased tscore) and all models on COGS and
M-PCFGSET learn tree projections that gradually align with ground truth syntax (increased ?parseval)-

observed by comparing pparseval and tparseval. Overall, we conclude that supervised probing is unable

to discover latent tree structures as effectively as our method.

How does supervisory signal affect compositionality? Could a purely self-supervised objective
(i.e., no output logical form supervision) also lead to similar emergent tree-like behavior? To test this,
we experiment with training the transformer encoder with a masked language modeling objective,
similar to [ ] for COGS and GeoQuery. Concretely, for every .S, we mask out 15%
of input tokens and jointly train a transformer encoder and a 1 layer feedforward network, to produce
contextual embeddings from which the feedforward network can decode word identities for masked
out words. As before, we collect checkpoints during training and plot both ¢parseval and £score OVer time
in Figure 2.5. We find that ¢prseval does not improve over time for any of the models. Additionally,
we find that tore increases for all models on GeoQuery, but only for the 2 layer model on COGS.
Taken together, these results suggest that under the low data regime studied here, transformers trained

with a self-supervised objective do not learn tree-structured computations.
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Figure 2.4: We plot pparseval and £parseval OVer time for the 4 layer transformer encoder on COGS and
M-PCFGSET. We find that ¢parseval improves gradually over time suggesting that the model becomes
more “syntax aware”. Such gradual syntax enrichment is not uncovered well by the probe since all
checkpoints after 4000 (for COGS) and 50000 (for M-PCFGSET) iterations have similar pparseval-
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Figure 2.5: We plot #parseval and fscore at various checkpoints for models trained with a masked
language modeling objective on COGS (first) and GeoQuery (second). Only 2/5 models become tree-
structured and none learn tree projections aligned with gold syntax, suggesting that self-supervision
may fail to produce tree-like computation in a relatively low data regime.
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2.6 Tree Projections and Model Behavior

Given S, and corresponding contextual vectors f(.S), the contextual dependence structure captures
the dependence between contextual vectors and words in .S i.e., how much does 'vgi change when
wj is perturbed to a different word. Contextual dependence structure is important for assessing
compositional behavior. For instance, consider the span p = red apples appearing in some sentences.
If the contextual vectors for p have large dependence on outside context, we expect the model to have
poor generalization to the span appearing in novel contexts i.e., poor compositional generalization.
We first show that tree projections reflect the contextual dependence structure implemented by
a transformer. Next, we show that both fscore and fparseval are better predictors of compositional

generalization than in-domain accuracy.
2.6.1 Induced trees correspond to Contextual dependence structure

Intuitively, greedily decoding with a SCI populated chart
makes split point decisions where resulting spans are max- /{>\

imally invariant with one other. Thus, for a given con- red  apples are  delicious

stituent ¢ and a word w € ¢, we expect v° to depend In-constituent .
p w p perturbation ¢ Wredg * €
more on words within the same constituent than words Out-of-constituent . . . .
. are

. . . perturbation
outside the constituent. Thus, we compare the change in

Figure 2.6: For word w (apples) in con-
) _ _ stituent ¢, an in-constituent perturbation
perturbations) to the change when a word outside ¢ is  44ds noise ¢ ~ N(0,0.01) to another

perturbed (out-of-constituent perturbations), where word word’s vector within ¢ (red) while an out-
of-constituent perturbation adds noise to

a word vector at same relative distance
outside c¢ (are).

v2 when another word inside c is perturbed (in-constituent

perturbations are performed by adding gaussian noise to
corresponding word vectors in layer O (see Figure 2.6).
We ensure that both perturbations are made to words at the
same relative distance from w. As a control, we also compute changes to v: when perturbations are

made with respect to constituents from random trees.

Setup and Results. We sample 500 random inputs from each of COGS, M-PCFGSET and Geo-
Query and consider encoders from all transformer models. We obtain the mean Lo distance between
the contextual vector of w in the original and perturbed sentence for in-constituent perturbations

(A;0) and out-of-constituent perturbations (A,.) and plot the relative difference between the two
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Figure 2.7: We measure the mean Lo distance in the contextual vector of words when in-constituent
and out-of-constituent words are perturbed. We plot the relative difference between A;. and A,
when constituents are obtained from tree projections (in blue). As a control, we also compute A;.
and A,. when constituents are chosen from random trees (in orange). For all models except those
marked with 1, in-constituent perturbations lead to significantly (as measured by a t-test, p < 107°)
larger change to contextual vectors compared to out-of-constituent perturbations.

in Figure 2.7. For 6/8 models, in-constituent perturbations result in larger Lo changes than out-
of-constituent perturbations (statistically significant according to a two-sided t-test, p < 107%).
Meanwhile, when constituents are chosen according to random trees, changes resulting from both
perturbations are similar. Overall, this suggests that induced trees reflect the contextual dependence

structure learnt by a transformer.

2.6.2 Tree-structuredness correlates better with generalization than in-domain accu-

racy

We study the connection between compositionality and generalization for the 4 layer transformer
encoder on COGS and GeoQuery °. On each dataset, we train the model with 5 different random seeds
and collect checkpoints every 1000/500 iterations. For each checkpoint, we measure accuracy on the
in-domain validation set (IID acc) and accuracy on the out-of-domain compositional generalization
set (CG acc). Additionally, we also compute #parseval and tscore for the encoders at each of these
checkpoints. To measure the relationship between compositionality and generalization, we compute
the Spearman correlation between ?parseval (fscore) and CG acc and denote that as pCG (Ptcsgre)~ As a

t parseval

comparison, we also compute the correlation between IID acc and CG acc (pSS).

Results. We plot the relationship between various properties and generalization along with cor-

responding correlations in Figure 2.8. In general, we expect both /ID acc and CG acc to improve

®1ID acc perfectly predicts generalization for M-PCEGSET so we omit it in these experiments.
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Figure 2.8: We plot the Spearman correlation between (a) IID acc and CG acc, (b) tscore and CG acc,
() tparseval and CG acc. We find that both £parseval and tscore correlate better with generalization than
in-domain accuracy. All correlations are statistically significant (p-values < 10~3)

together over time, and so it is unsurprising to see that pIClS > (0. Moreover, for COGS, both Zparseval
CG

tparseval

and tsore increase over time, and so it is expected that both p

CG
tparseval

Thus, tree-like behavior (fscore) as well as the right tree-like behavior (#parseval) are better predictors

and pggre are positive. Crucially,
however, we find that both p and pggm are greater than pﬁg on both COGS and GeoQuery.
of compositional generalization than in-domain accuracy. This result gives simple model selection
criteria to maximize CG accuracy in the absence of a compostional generalization test set (true
for most practical scenarios)—given a collection of checkpoints with similar in-domain accuracies,
choose the checkpoint with highest Zscore OF Zparseval (if syntactic annotations are available) to get the

model with best generalization behavior, in expectation.

2.7 Related Work

Measuring Linguistic Structure. A common analysis tool for assessing a model’s competence in
a specific linguistic phenomenon is behavioral testing [ , , , ,
s ], where the model’s performance on a curated test set is used as the measure

of competence. Widely used in prior work to assess compositionality of neural models [
, , , , s ], behavioral tests are inherently extrinsic,

since they are agnostic to whether the model implements an appropriately constrained, tree-like
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computation. While most prior approaches for assessing intrinsic compositionality [ , ,
, ] require putatively gold syntax trees, our proposed approach does not require any
pre-determined ground truth syntax, since we search over the space of all possible trees to find the

best tree structure that approximates a transformer’s computation.

Tree-structured Neural Networks. Inspired by the widely accepted belief that natural language is

mostly tree-structured [ , ], there have been several attempts to construct tree shaped
neural networks for various NLP tasks, such as Recursive Neural Networks [ , 1,
Tree RNNs [ , ], Recurrent Neural Network Grammars [ , ], Neural
Module Networks [ , ], Ordered Neuron [ , ] among others. These
approaches have largely been superseded by transformers [ , ], often pre-trained
on a large corpus of text ( [ 1, inter alia). We show that transformers, though not

explicitly tree-structured, may still learn to become tree-like when trained on language data.

Invariances and Generalization. The general problem of studying model performance under
domain shifts has been widely studied under domain generalization [ , ]. When
domain shift is a result of changing feature covariates only, an effective strategy for domain general-
ization is to learn domain invariant representations | , , , ]. We
apply the notion of domain invariance in the context of compositional generalization, and posit that
models that produce span representations that are more contextually invariant can generalize better

to inputs where the span appears in a novel context, which is precisely the motivation behind SCI.

2.8 Conclusion

When trained on language data, how can we know whether a transformer learns a compositional, tree
structured computation as is hypothesized to underlie human language processing? While extrinsic
behavioral tests only assess if the model is capable of the same generalization capabilities as those
expected from tree-structured models, this work proposes an intrinsic approach that directly estimates
how well a parametric tree-structured computation approximates the model’s computation. Our
method is unsupervised and parameter-free and provably upper bounds the representation building
process of a transformer with any tree-structured neural network, effectively providing a functional
projection of the transformer into the space of all tree structured models. The central conceptual

notion in this chapter is span contextual invariance (SCI) that measures how much the contextual
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representation of a span depends on the context of the span vs. the content of the span. SCI scores
of all spans are plugged into a standard top-down greedy parsing algorithm to induce a binary tree
along with a corresponding tree score. From experiments, we show that tree projections uncover
interesting training dynamics that a supervised probe is unable to discover—we find that on 3
sequence transduction tasks, transformer encoders tend to become more tree-like over the course
of training, with tree projections that become progressively closer to true syntactic derivations on
2/3 datasets. We also find that tree-structuredness as well as parsing F1 of tree projections is a
better predictor of generalization to a compositionally challenging test set than in-domain accuracy
i.e., given a collection of models with similar in-domain accuracies, select the model that is most
tree-like for best compositional generalization. Overall, our results suggest that making further
progress on human-like compositional generalization might require inductive biases that encourage

the emergence of latent tree-like structure.

Discussion. Tree Projections has since been applied in several follow-up studies to better understand
and improve the compositional structure in transformers. [ ] used it to analyze
compositionality in vision-language models, while in the next chapter, we show how Tree Projections
enabled the discovery of a new grokking phenomenon in transformers. [ ] built on
these ideas to develop a regularizer that directly intervenes in the training of 1B+ parameter language
models, leading to improved out-of-distribution perplexities and better syntactic generalization.
syntactic generalization. This work is particularly relevant given recent questions about the validity
of syntactic probes: while probes can reveal the presence of syntactic structure, this does not
guarantee that the model can actually use it. Consequently, methods that correlate compositional
structure with downstream behavior, like those discussed here, are becoming essential tools for

analyzing LLMs.



Chapter 3

Grokking of Hierarchical Structure in

Vanilla Transformers

3.1 Introduction

Although human language is produced as a linear sequence, it is hierarchically organized. Smaller
units compose to form larger constituents. The ability to infer this hierarchical structure underlies
our ability to produce and understand new sentences [ , , , 1.
In this paper, we investigate whether standard neural transformer models [ ]
can also generalize hierarchically when trained on language processing tasks (Fig 3.1). Our main
finding is that hierarchical generalization in transformers does occur, but very slowly: performance
on structurally novel sentences increases gradually, long after performance on sentences from the
training distribution has plateaued. We term this phenomenon structural grokking, by analogy to
existing findings on simple classification tasks [ , ].
On two datasets, we show that structural grokking exhibits inverted U-shaped scaling behavior as
a function of model depth: hierarchical generalization improves, then declines, as we train deeper
models. Prior work suggests that a number of model-internal properties might track the emergence of
hierarchical structure in transformers, including weight norms [ , , , ,
, ], attention sparsity [ , ], and functional tree-structuredness (from
Chapter 2). We find that functional tree-structuredness is uniquely able to predict structural grokking—
while weight norms and attention sparsity increase monotonically in model depth, tree-structuredness
is highest for models of the optimal depth for structural grokking.

Our results challenge findings from prior work [ , , , ]

30
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(a) Dyck-LM (b) Question-Formation
Training Training
[CCELTTE O] My walrus does move. Does my walrus move?
(IADDLAD Her vultures don't comfort the dogs that do wait.
LD Aan Don’t her vultures comfort the dogs that do wait?
Generalization Generalization
LCOYG{OI01{{33] Your xylophone who doesn't eat does swim. Does
{({3CONI your xylophone who doesn t eat swim?

Example Non-hierarchical Rule (fits train set but does not generalize):

Output the most frequent

.. M he fi ili in th .
bracket at this index. ove the first auxiliary 1n the sentence

Hierarchical Rule (fits train set and also generalizes):

Match the most recent

Move the auxiliary verb for the matrix subject.
unmatched open bracket. Y )

Figure 3.1: Examples from language modeling datasets we use to assess hierarchical generalization
in vanilla transformers. These datasets are constructed so that both a non-hierarchical as well as
a hierarchical rule can perfectly fit the training set, but only the hierarchical rule generalizes to
structurally novel inputs.

claiming that ordinary transformers completely fail on the tests of hierarchical generalization that
we study. We attribute these failures to early stopping based on in-domain validation performance,
which significantly underestimates hierarchical generalization due to structural grokking. On the
datasets where this prior work reports generalization accuracies below 20%, simply by training for
longer, mean accuracy across random seeds reaches 80%, and several seeds achieve near-perfect
generalization performance. Past findings are also partially explained by U-shaped scaling: this work
uses models that are too shallow [ , , , ] or too deep [

, ]. Our results align with past findings on the role of extended training in other language

processing problems [ , , , 1.

3.2 Background

Transformers Given a sequence of tokens w<; = w1, ws,...,w;, where each token is drawn
from a fixed vocabulary V, an L-layer transformer language model (LM) feL outputs a distribution

over the next token w;+1 € V, feL(wSi) e RIVI. A key part of the architecture is a sequence of L
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self-attention layers, where layer p computes contextual vectors of token k as a non-linear parametric
function of a convex combination of contextual vectors of tokens w< from the previous layer,
where coefficients az € R* are known as the attention distribution. The LM weights are learned by

maximizing the log probability of the correct continuation w1, given prefix w<y.

Hierarchical structure in transformers While unsupervised pre-training of transformers has led

to state-of-the-art transfer learning results across NLP, the architecture itself has been claimed to lack
human-like inductive biases toward hierarchical structure [ , , , ,

s , s ]. We revisit these claims in this work.

To understand whether a given model has a bias for acquiring hierarchical structure, we follow

[ ] and evaluate generalization in models trained on ambiguous tasks in which

training data is consistent with both a “hierarchical rule” as well as a “non-hierarchical rule” (Fig 3.1).

To test if the hierarchical rule has been acquired, we test generalization on a separate out-of-

distribution test set, constructed such that only learners that have acquired the hierarchical rule are

successful.

Grokking [ ] identify the phenomenon of grokking on small algorithmic datasets
where they find that test performance improves long after training performance has saturated. We
hypothesize a similar structural grokking, where the model groks hierarchical structure long after
in-domain validation performance has saturated, and consequently, hierarchical generalization can

continue to improve with extended training.

3.3 Experiments

Datasets Since our goal is to understand hierarchical generalization in transformers, we use two
datasets from [ , ] and additionally evaluate on a simple bracket-tracking task. For
Dyck, models are trained to predict next tokens in strings drawn from Dycky ;. the language of
well-nested brackets with 20 types and max nesting depth of 10. We evaluate generalization to
structurally unobserved strings in Dycky 1 (see Fig 3.1 for examples and [ ] for
details). For the [ ] datasets, in Question-Formation, models must convert English
sentences into questions and, in Tense-Inflection, models must map from sentences and tense markers
to appropriately re-inflected sentences. We evaluate generalization on the out-of-distribution test set

from [ ].
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(a) Dyck (6 layers) (b) Question-Formation (6 layers) (c) Tense-Inflection (4 layers)

Figure 3.2: Average accuracy across 10 random seeds on the in-domain val set (solid) and gener-
alization set (dashed) for all datasets. Generalization performance improves even after in-domain
accuracies have saturated, showing structural grokking. We highlight with orange and blue lines the
gap between in-domain and generalization accuracies at the point of early stopping based on the
in-domain val set performance vs. at the end of training, noting that prior work stops training at the
orange line. Stopping training prior to structural grokking can result in a vast underestimation of

generalization performance.

Model We train transformer LMs with {2, 4, 6, 8, 10} layers (see [ ] for more

details). For each depth, we train models with 10 random seeds for 300k (400k for Dyck) steps.
Given the input sentence (or prefix in the case of Dyck) we decode greedily from the model at test
time. For Dyck, we report the accuracy of generating the correct closing bracket type by ranking

among closing brackets, given an input prefix from the language. As done in prior work [
], for Question-Formation, we report first

B s bl B B

word accuracy of the decoded question, and for Tense-Inflection, we report the fraction of test inputs

for which the target verb is correctly inflected.

3.3.1 Main Results

Transformers exhibit structural grokking We first present results obtained with the best model
depth on all datasets in Fig 3.2. We find clear evidence of structural grokking: Across datasets,

generalization improves many training steps after in-distribution accuracy has saturated, sometimes

approaching perfect accuracy.

Early stopping considered harmful Next, we compare generalization accuracy obtained by early

stopping on in-domain validation accuracy (as done in [ 1, [ )]
to longer training runs (Fig 3.2). Early stopping leads to vastly underestimating generalization. For

instance, average generalization goes up from <40%, <50% to <90%, <80% on Question-Formation
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(a) Inverted U-shaped scaling (b) Dynamics of model internal properties

Figure 3.3: (a) Inverted U-shaped laws for grokking: On Question-Formation (top) and Tense-
Inflection (bottom), we find that both very small and very deep models either fail to exhibit structural
grokking or do so infrequently, compared to an in-between optimal model depth. (b) While weight
norms and attention sparsity increase for all models and do not differentiate between different sizes,
tree-structuredness is highest for the optimal model depth.

and Tense-Inflection, respectively.

Inverted U-shaped scaling On Question-Formation and Tense-Inflection, we train models of
increasing depths from 2 to 10 layers. For each depth, we report the fraction of seeds (out of 10)
where generalization accuracy eventually crosses 80%, in Fig 3.3a. We find an inverted U-shaped
scaling behavior—very shallow and very deep models are unsuccessful, while most seeds generalize
in models of intermediate depth. This may also explain why prior work that either used very shallow
models (1-3-layer transformers in [ 1, [ ]) or very deep models

(12-layer transformers in [ ]) failed to generalize well.

3.4 Analysis

Given that structural grokking occurs only in a subset of model architectures, can we identify when it
has happened (or predict when it will occur)? Several model-internal properties have been claimed to

relate to either grokking or emergent hierarchical structure in transformers.

Weight Norms Recent work [ . , . ] identifies the Lo norm of

parameter weights as an important quantity for grokking. For instance, [ ] find
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weight decay to improve grokking speed and [ ] identify a “goldilocks zone” in weight

norm space where grokking occurs. More generally, norm growth over the course of training has

been studied as a key factor in neural network generalization [ s ].
Attention Sparsity [ ] prove that norm growth in transformers leads to attention
saturation, an important property for emergent linguistic structure [ , ]. As a proxy

for attention sparsity of fQL, we compute the negative mean entropy of all distributions {ai}.

Tree-structuredness [ ] show that tree-structured encoders such as

[ ] show near perfect hierarchical generalization. While transformers are relatively uncon-
strained, recent evidence suggests that, when trained on language data, they implictly implement
(approximately) tree-structured computations. In particular, the tree projection method from Chap-
ter 2 precisely characterizes the extent to which a transformer’s internal computation on an input can
be approximated with a tree-structured neural encoding, providing a tree-structuredness score (fscore)
for any transformer, and a binary tree that best approximates its computation on an input string (see
Appendix in [ ] for details). To evaluate whether these trees correspond to human

notions of syntax, we additionally compare recovered trees to gold-standard ones [Zparseval,

; 1.

3.4.1 Results

We characterize the dynamics of weight norms (normalized by number of layers to compare different
model depths), attention sparsity, and tree-structuredness, by computing these quantities every 3k
gradient updates for Question-Formation and Tense-Inflection. For data-dependent properties such as
attention sparsity and tree-structuredness, we sample 10k examples from the training data. We plot
these quantities for the smallest model, the largest model for which at least one run shows successful

grokking, and for the optimal model depth, in Fig 3.3b.

Optimal models are most tree-structured Weight norms and attention sparsity grow for all model
settings in both datasets. However, these properties by themselves are unable to predict that both
shallow and deep models fail—shallow models learn the sparsest solutions as well as solutions
with largest weight norms, but never generalize hierarchically. Similar to the results in Chapter 2,
tscore improves over time for all models, indicating increased tree-structuredness over time. For

both datasets, the “optimal” model learns the most tree-structured solution compared to both deep
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Figure 3.4: While some models fail to generalize hierarchically, all models are effective at learning
computations whose closest tree structures progressively evolve towards ground truth syntax, match-
ing or outperforming a right branching baseline (in dashed red).

and shallow models. [ ] note that, on algorithmic tasks, grokking “coincides with
the emergence of structure in embeddings”. Similarly, for language tasks, we find that structural

grokking coincides with the emergence of tree structured internal computations.

Transformers are surprisingly effective at structure induction From the dynamics of #prseval in
Fig 3.4, we note that all models, regardless of whether they generalize or not, learn structures that
are close to ground truth syntax, sometimes outperforming a right-branching baseline.

[ ] note that tree-structured encoders only generalize when structured according to correct parse
trees. Here, we find that all transformers learn correct tree structures, but only the ones that are the

most tree-structured generalize best.

3.5 Conclusion

This work shows that transformers are capable of exhibiting structure-sensitive “hierarchical gen-
eralization” via a grokking mechanism. Their overall learning behavior gradually shifts from
memorization (high in-domain accuracy, poor out-of-domain accuracy) to generalization (high in-
domain and out-of-domain accuracy). While we show such behavior on relatively small datasets with
small models, we believe these results may have broader implications, as training for longer has been
shown to help even for web-scale language modeling [ , ] and on compositional

generalization tasks [ , ]. Structural grokking happens most often at “medium-sized”
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model depths, and both very shallow and very deep models fail to exhibit it. While properties
previously connected with linguistic generalization in transformers such as weight norms and atten-
tion sparsity do not differentiate good architectures from bad ones, functional tree-structuredness
of the transformer can well predict the optimal model depth. While there are clear limitations to
the transformer architecture (such as the inability to implement unbounded recursion, which we
address in Chapter 4), our results show that it may have stronger inductive biases than previously
believed: With sufficient training, transformers can represent hierarchical sentence structure and use

this structure to generalize correctly.

Later Work. To the best of my knowledge, Structural Grokking was the first work to demonstrate
a grokking mechanism in transformer language models trained on text. Later, [ ]
showed that grokking also emerges in transformers on multi-step reasoning tasks. [ ]
further examined the settings for structural grokking and found that consistent grokking behavior
only appears in language modeling, while masked language modeling, sequence classification, and
sequence-to-sequence tasks do not exhibit the same phenomenon. Interestingly,

[ ] showed that pairing examples with lambda calculus meaning representations leads to faster
and more frequent grokking compared to training on forms alone (as in this chapter), highlighting
the limitations of LLM training, which is mostly (though not always) focused on form rather than
meaning. Although obtaining meaning annotations at scale can be challenging, grounding language
in action sequences offers a concrete and interpretable form of meaning representation. Chapter 6
explores training on such grounded datasets. Finally, [ ] proposed a new regularizer

that can accelerate structural grokking by up to 10x.



Chapter 4

Pushdown Layers: Encoding Recursive

Structure in Transformer Language
Models

4.1 Introduction

An important property of human language and thought is recursion, which allows us to compose and
reason about complex objects in terms of simpler constituents [ , ]. While extensively
studied in natural language syntax and semantics, recursion is also a key component of several other
aspects of intelligent behaviors including mathematical reasoning, programming, and goal-directed
planning. Most recursion-capable systems model recursive processes via a stack memory, which is
updated as new computation is performed. For instance, a programming language may implement
recursion by maintaining a run-time stack of caller-callee frames, storing intermediate outputs in
the stack, and updating the stack as new function calls are made. Similarly, a shift-reduce parser
implements recursion through a stack of intermediate constituents, shifting tokens onto the stack as
they are observed, and occasionally reducing stack elements into constituents as they are completed.

In contrast, the self-attention mechanism underlying modern neural sequence models has no
explicit mechanism to maintain a stack memory as it generates strings, and instead relies on hidden
representations to implicitly but imperfectly encode such information [ , ]. While
this encoding can model bounded recursive structure in formal languages [ , ], itis

unclear if it is sufficient for robust syntactic generalization, especially under data-constrained settings.

38
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Figure 4.1: (a) Pushdown Layers use a stack-tape to featurize contents of an explicit stack, in terms
of estimated token depths, where the stack represents incremental parses. (b) These depths map onto
depth embeddings (in blue) that are added to token keys before computing attention scores, softly
biasing attention towards a recursive syntactic computation. (c) The stack is updated synchronously
with the newly predicted word, via an attachment head that selects a constituent to reduce the newly
predicted word with, via attention.

In this work, we show that an explicit stack memory mechanism can improve syntactic gen-
eralization in Transformer language models (LMs). We introduce Pushdown Layers', a drop-in
replacement for standard self-attention that augments Transformer LMs with stack memory. This
memory is modeled using a stack tape that stores estimated depths of every token in an incremental
parse of the observed prefix. The stack tape is updated autoregressively: as new tokens are predicted,
Transformers with Pushdown Layers (Pushdown Transformers) synchronously make probabilistic
attachment decisions to either “shift”, thus assigning the newly predicted token a depth of 0, or

“reduce” with one of the constituents in the prefix so far, updating token depths accordingly (see

'We borrow this term from pushdown automata, which are finite state machines augmented with stacks.
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Figure 4.1). This stack tape is used to additively and softly modulate the attention of the Transformer
over tokens—for instance, Pushdown Layers may guide the LM to only attend to head words of
constituents, or skip over reduced constituents by decreasing attention.

Pushdown Transformer LMs are syntactic language models that learn joint probabilities of se-
quences and parses in terms of individual word predictions and structure-building operations, and can
be trained on any text corpus annotated with constituency parses. But unlike other syntactic language
models with structural supervision [ , , , , , ,

, ], Pushdown Layers do not change the output space of the underlying sequence
model, and impose no constraints on attention mechanisms—the manner in which Pushdown Layers
use syntactic structure for representation building is learnt purely via gradient descent.

Pushdown Transformers obtain strong generalization improvements over standard Transformer
LMs. When trained on depth-bounded Dyck strings and evaluated on deeper Dyck strings, Pushdown
Transformers improve performance over baseline LMs by over 25% (Section 4.4.1). When trained
on sentence-level language modeling on the BLLIP-LG datasets of [ ], Pushdown
Transformers improve syntactic generalization over standard Transformer LMs by 5-13 points as
well as other joint models of strings and parses such as [ 1, [ ] by
0.3—4 points (Section 4.4.2). When trained on a new, 100-million-token dataset of parsed Wikipedia
articles we call WIKITREES, Pushdown Transformers match the syntactic generalization of ordinary
Transformers with 3-5x less data. Finally, when Pushdown Layers are inserted into a pre-trained
GPT-2 (medium) model and fine-tuned on WIKITREES they yield improvements of 0.3-1 points on

several GLUE text classification tasks.

4.2 Background

Multi-Head Self-Attention. Transformer language models [ , ] are a class of
neural sequence models that use multi-head self-attention to obtain contextualized representations
of tokens in a sequence, which are then used to predict the next token. In particular, let z =
{z1,z9,...,2,} be an input sequence. Let hé € R? be the hidden representation of the 7™ token at

the [ attention block. Then, the hidden representation of the i token is updated as

hITY =FF(O- [A1(hL,), - A (hL))), (4.1)
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where O € R4 s a learnt matrix, FF denotes a feed-forward + residual + layer-norm block, and

A, is the p'" self-attention head. Each attention head performs a weighted average over its inputs,
value”“7?

Ap(hly) =D ai Wk K, (4.2)
j=1

where «;; is the attention weight assigned to the 4™ token by the i™ token. These attention weights

are computed as

Qi = softmax[(Wlf’eyhé)TW(fueryhﬁ]. 4.3)
3 ; ; p p P d/Kxd
Each self-attention head introduces learnt parameters Wy, Wauery, Wy € R .

Limitations of Self-Attention. When trained on text corpora, transformers implicitly encode
several aspects of linguistic structure unsupervisedly (e.g. [ 1,
[ ] and Chapter 2). However, there is mounting evidence that recursion, a key feature of human
language, remains a challenge. [ ] shows theoretically that hard-attention cannot model
simple recursive structures like 2DYCK (see Section 4.6 for an extended discussion). Empirically,
[ ] show that self-attention struggles on center embedding phenomenon, and

[ ] show poor performance on simple recursive tree-traversal problems. We hypothesize
that a key reason for poor modeling of recursive structure in self-attention is a lack of an explicit
structural inductive bias. One common way to add such an inductive bias is via joint modeling of

strings and syntactic structure, which we introduce next.

Syntactic Language Models. Let y be the ground-truth syntactic parse of x. A long line of work
[ b b b b 2 b b b b
] considers learning joint distributions p(x, y) to incorporate explicit syntactic structure into

neural language models, by learning to output a sequence of transition actions,
p(z,y) = plazy) = [ [ plai | a<i) 4.4)
i

where actions a; correspond to both word-level predictions as well as structural actions corresponding
to opening and closing of constituents, building up the parse tree in a top-down, left-to-right manner.
Recent work explores using Transformers to parameterize these joint distributions. For instance,

[ 1, [ ] train Transformer LMs over transition actions (Parsing
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as Language Modeling or PLM), sometimes with constrained attention heads (PLM-mask), and
Transformer Grammars (TG; , ) model transition actions with Transformers, also
with hard constraints on attention to model shift/reduce actions.

These models have several limitations that motivate our proposed approach. First, their outputs are
sequences of transition actions that include both text and tree-building operations; as each constituent
in a parse tree has an opening and closing transition action, and there are ~ n constituents for x, this
increases input length by a factor of 3, leading to significant computation and memory overhead.
Second, inference in neural models operating on transitions require bespoke decoding procedures that

carefully balance tradeoffs between high-entropy word-level predictions and low-entropy structural

predictions [ , ]. Finally, to explicitly bias Transformer computations to mirror the
recursive structure of parse trees, some approaches like PLM-mask [ , ] and TGs
[ , ] impose hard constraints on attention patterns. Pushdown Layers provide a

softer syntactic bias that is amenable to gradient-based learning, while having broader applicability

to phenomena beyond local tree-structuredness, such as topical dependencies, coreference, etc.

4.3 Pushdown Layers

Transformer LMs with Pushdown Layers are syntactic language models that generate strings while
simultaneously building a parse tree over these strings from left to right. This parse tree is built
incrementally by tracking the recursive state of every token, which is synchronously updated along
with word-level predictions. This recursive state is represented via our stack tape as tree-depths of
every prefix token, and updates are realized with a stack. The contents of the stack tape are used to

softly modulate attention over prefix tokens via additive offsets to attention logits (Figure 4.2).

4.3.1 Stack Tape

Like ordinary self-attention, Pushdown Layers take a sequence of hidden states {hﬁe} as input,
and output a sequence {hg’l}. Additionally, Pushdown Layers use a stack tape Wy, € {0, k}*
to simulate a pushdown automaton that performs shift/reduce operations over tokens as they are
predicted (Figure 4.2). The contents of the stack tape encode recursive state by tracking the depth
of each token within reduced constituents in the stack. Concretely, after observing the prefix
z<p = {x1,22,..., 2k}, Wi[j] = 0if token z; has not been reduced with any other token, while
Wi[j] = p means that x; has appeared in p reduce operations such that the resulting constituent has

token x; at depth p—in Figure 4.2, the stack tape encodes [1, 1, 0] for the incremental parse
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[The dog] is.

Updating the Stack Tape. As shown in Figure 4.2, along with predicting the next word happy,
Transformers with Pushdown Layers (Pushdown Transformers) make an attachment decision to
update their stack tape. In our running example, this is done by selecting a constituent from the
incremental parse [The dog] is happy.

Concretely, given prefix x ., Pushdown Transformers predict the next token x as well as an
update to the stack tape YWj,_1. This is done by selecting a token 7, to reduce with, out of candidate
tokens {z1,Za, ..., 7y}, via attention over hidden states {h{, hZ, ... hE | flﬁ}, where L is the
final layer of the Transformer, and ﬁ,% is a vector representation for the newly predicted token
Tk, obtained as il,% = MLP(z, hé_l). This vector attends to all tokens to make a probabilistic

attachment decision,

p(re = J | @<k; Wi—1) x
=L

(h]LTWThk) if j # k, shift + reduce “5)
~ ~T :
(RETW T hy)  shift only
where W € R4 is a learnt parameter matrix. We use these probabilities to select token
rp = argmax p(j | x<x; Wi—_1) to reduce xj, with, and the stack tape is updated accordingly via
Algorithm 1. Note that attachment decisions to constituents are made by computing the attachment
score for the rightmost token in the constituent. In our running example, the model selects the
constituent [The dog] by selecting the word dog, forming the parse [[The dog] [is happy]] and

updating the stack tape from [1, 1, 0] — [2, 2, 2, 2].

4.3.2 Computing Attention Scores

We map contents of W onto a per-layer depth embedding dﬁc y for every token j € {0,1,...,k}.
These depth embeddings are added to attention keys, resulting in a locally additive modulation to

attention scores,

aj,; = softmax([h! + dj.;] T Wiy Wauery k). (4.6)

Of course, since these logits are themselves part of a softmax and non-linearities, the overall effect
can be arbitrarily non-linear. These modified attention weights are used to compute contextualized

vectors using Eq 4.2 and Eq 4.1.
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Figure 4.2: Illustration of how the parse [[The dog [is happy]] is built as a unique sequence of stack-
tape updates in Pushdown LMs. Here, as the word happy is predicted, the attachment head chooses a
constituent (bolded) from the current incremental parse, via attention. Attachment decisions are made
to constituents by attending to their rightmost token, and none of the other tokens of a constituent
can be attended to (shown as dashed lines). These attachment decisions are used to update depth
values in the tape.

Algorithm 1 Stack Tape Update

Require: W;_1, k, i, stack
Ensure: W, stack

1 Wy~ Wi

2: constituent < [k]

3: if rp, = k then

4 stack.push(constituent)
5: return

6: end if

7: while True do

8: top < stack.pop ()

9: > Perform a reduce

10: constituent <-top + constituent
11: > Update depths in stack tape

12: for all d € constituent do
13: We[d] < We[d] + 1

14: end for

15: if top = r; then

16: break

17: end if

18: end while
19: stack.push(constituent)
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4.3.3 Training and Inference

Training. Given a corpus of strings annotated with parses, we first extract ground-truth values of
Wi, for every prefix x<j,. We also extract ground-truth attachment decisions for xy, given prefix x .
With these quantities precomputed, we can train Pushdown Transformers in parallel, like standard
Transformers. Attachment probabilities (Eq 4.5) are supervised with ground-truth attachments, along
with the standard LM objective, all using hidden states that are contextualized using the Pushdown

Layer attention mechanism that uses the precomputed stack tape.

Inference. For any string x and parse y, joint probability p(z, y) factorizes as a product of word-

level and attachment scores as

n

p(xy) =] (p(ﬂfk | & <ps We—1) %
k=1

p(re | 2k Wk,n). 4.7

While computing the full marginal p(z) = >_, p(z,y) is computationally infeasible due to the
large space of possible parses, we approximate this by marginalizing over a smaller subset with
beam search. Crucially, since our model predicts words and structural actions in parallel rather than
sequentially, we do not need to use complex word-synchronous decoding procedures [ ,

] that introduce additional hyperparameters.

4.3.4 Implementation Details

FLOPs and memory overhead. Consider query and key matrices Q € R™*¢ K ¢ R"*9 where
ng and ng refer to destination (hidden states attending) and source (hidden states being attended to).
Let S € R™*"s be the (lower-triangular) matrix denoting pre-computed stack tape values for every
prefix. For each Pushdown Layer, we use S to index into depth embeddings to obtain D € R™a*™s x4,
which is added to K to obtain K € R"*"s*d_ Unlike standard self-attention which multiplies
@ and K directly, Pushdown Layers multiply @) (a 2D tensor) with Kp (a 3D tensor). This is
done by casting @ into a 3D tensor € R™¢*1*4 and performing a batched matrix multiplication
with K p, leading to the same number of operations as standard self-attention . However, since
Pushdown Layers require storing 3D tensors for keys, this increases memory requirements from

O(ng-ns+ns-d+ng-d)toO(ng-ns+ns-ng-d+ng-d).

We note that standard self-attention is faster in practice due to better GPU memory bandwidth management,



CHAPTER 4. PUSHDOWN LANGUAGE MODELS 46

Attending to hidden states with old memory. Pushdown Transformers build parse trees incre-
mentally from left-to-right, and so, depth values of prefix tokens change as new tokens are predicted.
Thus, a token at position ¢ builds its representation based on attending to x<; with a stack tape that
may soon become “stale” due to future transition operations that reduce tokens in x<; with new
tokens. As an example, suppose we have the incremental parse [[The dog] [in [the park]]]. Here, the
representation for in attends to representations of The, dog and in with depths [1, 1, 0] while the

representation for park attends to these representations with updated depths [2, 2, 2].

4.4 Experiments

4.4.1 Warm-up: Dyck Languages

We train 6 layer LMs with Pushdown Layers (Pushdown-LM) as well as standard LMs on 100k
strings sampled from DYCKgg 10, the language of well-nested brackets with 20 bracket types and
max-nesting depth of 10. To ensure that improvements are not merely due to multi-task learning with
an attachment head, base-LM is also trained with an attachment loss in a standard multi-task learning
setup. To test generalization, models are provided an input prefix from a separate DYCK language,
and evaluated on choosing the correct closing bracket. Specifically, we test generalization to DYCK
strings with deeper nesting of 15-50, and DYCK strings with longer-range dependencies than seen
at training time (measured as the distance to the matching bracket that needs to be closed). From
Table 4.1, we find that Pushdown-LM obtains over 25% accuracy point improvement over standard
language models at generalizing to deeper structure, as well as large improvements at generalizing to

longer-range dependencies.

4.4.2 Sentence-Level Language Modeling

Setup. Next, we train 16-layer Pushdown Transformer LMs on the BLLIP-LG dataset of

[ ], with training splits from [ ], and the same pre-processing as
[ ]. We use the same hyperparameters (model size, dropout, learning rate schedulers) as

[ ]. To measure syntactic generalization, we evaluate on BLIMP [ , ]
and the SG test suites [ , ]. In BLIMP, models are provided with a grammatical and

ungrammatical sentence, and evaluated on assigning a higher probability to the grammatical sentence.
SG test suites consist of an extensive set of hand-crafted test cases, covering 6 fine-grained syntactic

phenomena. Each test case involves satisfying a specific inequality constraint among surprisal
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Base-LM Pushdown-LM

Long-Range Dependencies

DyCK (50) 90.0 96.5
Dyck (100) 81.0 88.0
Dyck (200) 40.6 61.2
Dyck (300) 14.1 42.9

Deeper Embedded Structure

Depth Gen.

40.6

68.3

Table 4.1: Evaluating LMs at closing Dyck prefixes with longer dependencies (dep. length in
brackets) and deeper structure. We find significant improvements from using Pushdown Layers over
standard self-attention.
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Figure 4.3: Comparing Pushdown-LMs with baseline Transformer LMs and other syntactic LMs.
While Pushdown-LMs are comparable with Transformer Grammars (TG; s ) across
all examples in SG test suites (Table 4.2), they outperform TGs on 4 out of 6 tests, including the
recursive center embedding tests.
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Model BLIMP 1 SG test suites T PPL |

Models that add structural tokens to inputs

PLM 75.1 80.2 29.8%
PLM-Mask 75.3 78.3 49.1%
TG - 82.5* 30.3¢

Models that do not add extra tokens to inputs

Base-LM 70.1 69.5 20.1
Pushdown-LM (ours) 75.6 82.3* 19.9

Table 4.2: Syntactic Generalization on BLIMP and SG test suites. All results for PLM-Mask are
taken from [ ] and results for PLM and TGs are taken from [ ]. *
denotes differences that are not significant. PPL results marked with I are taken from prior work and
not comparable due to differences in tokenization.

values of various continuations given prefixes, where these inequalities are grounded in theories of
incremental language processing—for instance, assigning a higher surprisal to the last verb in The
painting that the artist deteriorated painted vs. The painting that the artist painted deteriorated. For
BLIMP, we obtain p(x) by approximate marginalization via beam search. Since surprisal values
—log p(z¢ | x<¢) in SG test suites are meant to reflect incremental sentence processing, we perform

marginalization based on the beam state at time step . We fix the beam size at 300.

Results. We present results on SG test suites in Figure 4.3. As baselines, we compare against a
standard 16 layer Transformer LM and prior structured models (TG, PLM) from [ ].
As expected, all models with an explicit notion of structure have much better syntactic generalization
across all test suites. Next, we note that Pushdown-LM, a 16 layer Transformer LM with all self-
attention blocks replaced with Pushdown Layers, outperforms prior approaches—Pushdown-LM
beats TG on 4/6 tests and PLM on 3/6 tests with similar performance on licensing. Next, we present
results (averaged across 3 seeds) on BLIMP as well as aggregate SG test suite results and perplexity
on the BLLIP test set in Table 4.2. Here, we note that Pushdown-LM achieves better syntactic
generalization than prior structured models (including the PLM-mask model from [ , D
on BLIMP. Finally, we find that Pushdown-LM achieves slight gains in perplexity compared to
Base-LM.
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Figure 4.4: Comparing a standard GPT-2 small architecture (Base-LM) with a model where the last 6
self-attention blocks use Pushdown Layers, trained on various amounts of tokens from WIKITREES.
We find that Pushdown Layers greatly improve sample efficiency of syntactic generalization. For
reference, we also include GPT2-small, which is trained on over 9 billion tokens.

4.4.3 Language Modeling with WIKITREES

Can Pushdown Layers continue to offer improvements on larger-scale language modeling? We
construct WIKITREES, a dataset of over 100 million tokens extracted from Wikipedia Articles
(WikiText-103; [ ]), parsed automatically using a state-of-the-art neural constituency
parser [ , ]. Typically, LMs trained on web-scale data are given multi-sentence
contexts with large window sizes as inputs, and to adapt this to Pushdown-LMs we make a small

number of modifications (see [ ] for details).

Sample-Efficient Generalization. To measure sample efficiency in Pushdown Transformers, we
train LMs on [10M, 50M, 100M] tokens from WIKITREES. To ensure stable training under low
data regimes, we train a 12 layer GPT2 using the exact configuration and tokenization scheme as
GPT2-small [ , ], and additionally use dropout to prevent overfitting. For these
experiments, we compare Base-LM with an LM where the final 6 self-attention blocks are Pushdown
Layers (Pushdown-LM). To measure syntactic generalization, we compute aggregate performance on
the SG test suites. From results in Figure 4.4, we find that Pushdown-LMs exhibit drastically more
sample-efficient syntactic generalization—for instance, syntactic generalization of Pushdown-LM

trained on 10M tokens requires over 40M tokens for the Base-LM to surpass.

Finetuning for text classification. Can Pushdown Layers offer improvements on language un-

derstanding tasks, beyond syntactic generalization? To answer this, we perform staged finetuning
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of GPT2-medium with Pushdown Layers. Specifically, we finetune GPT-2 medium with the final
12 self-attention blocks replaced with Pushdown Layers (Pushdown-GPT2), as a language model
on WIKITREES. We use this model to obtain parses on 4 text classification tasks: RTE, SSTS5,
MRPC and STS-B from GLUE [ , ], and use these parses to pre-compute the stack
tape for every token. Then, in a second finetuning step, Pushdown-GPT2 is trained to perform
text classification over these datasets by reducing each task into language modeling via prompting
(See [ ] for prompt details). As a comparison, we also perform the same staged
finetuning for the standard GPT2-medium architecture. We report averaged results across 3 seeds in

Table 4.3. We find that Pushdown Layers offer improvements on 3 out of 4 text classification tasks.

Model RTE SSTS MRPC  STS-B

GPT2 722  54.8 88.4 89.6/89.8
Pushdown-GPT2 72.9 54.5 89.3 89.8/90.1

Table 4.3: Finetuning models on various semantic text classification/regression tasks. We report
accuracy for RTE and SSTS, F1 for MRPC, and Spearman/Pearson Correlation for STS-B.

4.5 Analysis

For all analyses, we use the 16 layer Pushdown-LM trained on BLLIP-LG from Section 4.4.2.

Parsing. Since Pushdown-LM is a syntactic language model, we obtain parses via beam search
(beam size = 300) to approximately recover the most likely parse y* = arg max,, p(x,y) under our
model. However, since this parse is (a) unlabeled and (b) binarized, we perform an unlabeled F1
evaluation (using EVALB; , ) over binarized ground-truth parses from the PTB test set.
We also remove instances consisting of unknown words for our model, since our model is trained
without any UNK tokens, giving us 2335 out of 2416 sentences. We compare our model against

[ ], the parser that was used to annotate training data for Pushdown-LM. We also
present unlabeled F1 on the auto-parsed BLLIP-LG test set. From results in Table 4.4, we note
that our model achieves a very competitive unlabeled F1 score of 95.3, outperforming the official
implementation of [ 1°. We also find that our model obtains a high F1 score of 97.3

on the BLLIP-LG test set.

We use the Dbenepar_en_large model from https://github.com/nikitakit/
self-attentive—-parser which reports a score of 96.29 on the full PTB test set, while we obtain
95.66 (labeled F1, using the standard EVALB script).


https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
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Model PTB BLLIP-LG

Pushdown-LM 95.3 97.3
[Kitaev et al.,, 20191  94.7 -

Table 4.4: Unlabeled F1 scores against binarized ground-truth parses from the PTB and BLLIP test
sets. We filter all examples from the PTB test set with unknown words, giving us 2335 out of 2416
sentences. Annotations on BLLIP-LG are obtained using Kitacv et al. [2019].

L)

0.08+
0.064
0.04+

0.024

Base-LM

mmm Pushdown-LM (ours)
0.00 —

number_orc number_prep number_src

Avg. Attention over distractor token (

Figure 4.5: For the three subject-verb agreement tasks from [Marvin and Linzen, 2018], we compute
average attention over the distractor noun when the verb is being predicted, for both the Base-LM
and Pushdown-LM (ours). Across all variants, we find that our model consistently pulls attention
away from distractor nouns.
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Base-LM Pushdown-LM
[ | [ |
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= . [ ] ]
[SOS] The authors that hurt the senator [SOS] The authors that hurt the senator
(a) Base LM (b) Pushdown LM

Figure 4.6: Given a prefix containing a main noun and a distractor noun, Pushdown-LM pulls
attention away from the distractor (here senator), helping the model predict the verb with the correct
number. These attention maps average across all the instances in the number_src test of SG test
suites, and we show the attention over all prefix tokens when the main verb is predicted.

Case Study: Analyzing attention patterns on subject-verb agreement tasks. We consider the 3
Subject-Verb agreement tasks [ , ] from the SG test suites. On these tasks,
models are presented with a prefix consisting of a main subject and a distractor embedded subject,
where these items conflict in number. The objective is to assign a higher logprob to the verb that
agrees with the main subject rather than the distractor subject. For instance, for prefix The author
that hurt the senators, the model must assign a higher probability to is than are.

From Figure 4.3, we find that Pushdown-LM significantly outperforms other models with close
to 80% accuracy while Base-LM achieves less than 60% accuracy. To understand how Pushdown
Layers modulate attention on these examples, we obtain attention scores over all prefix tokens
(averaged across all layers). We present the average attention assigned to the distractor token for both
Pushdown-LM and Base-LM in Figure 4.5 where we observe that Pushdown-LM pulls attention away
from the distractor noun, allowing it to predict the correct verb. Finally, we plot some (averaged)

attention heatmaps in Figure 4.6.

4.6 Other Related Work

While recursive structure is fundamental to natural language, modeling such structure is difficult for
self-attention. [ ] considers DYCK, the simplest formal language with recursive structure,

proving that hard attention cannot recognize DYCK and soft attention cannot recognize DYCK with
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low cross-entropy. In practice, we find that even simpler languages like PARITY are challenging for
encoder-only Transformers [ , s , ]. On the other hand,
Transformers with decoders have been shown to be Turing-complete [ , ], but these
constructions rely on the impractical assumption of running the decoder for an unbounded number
of steps. In practice, we find that Transformer LMs struggle with generalization beyond regular
languages and tend to learn shortcuts instead [ , , , ].

Given these limitations, there is significant interest in inductive biases that encourage recursive
structure in Transformers. One line of work considers constraining self-attention patterns according
to syntactic parses [ , , ) ) ) )

, , among others]. A second line of work adds structure to language modeling by

learning joint probabilistic modeling of structure and strings [ , , ,
s , , R , among others]. Both of these ideas are combined in
recent work of [ 1, [ ], that proposes joint string, parse Transformer
language models with constrained attention patterns. While Pushdown Layers are also in this
modeling tradition, we do so without operating on long transition actions, and enforce structural

constraints via gradient based learning.

4.7 Conclusion

We propose Pushdown Layers, a new kind of self-attention that augments Transformer language
models with a stack based memory. Pushdown Layers enable auto-regressive Transformers to softly
bias attention towards a recursive syntactic computation, through an updatable stack-tape that stores
token depths in an incremental parse. When trained on synthetic and natural languages, we find that
Transformer LMs with Pushdown Layers achieve better generalization to deep recursive structure,
as well as better and more sample-efficient syntactic generalization. When pre-trained LMs are

finetuned with Pushdown Layers, we obtain improvements on some GLUE tasks.

Discussion. A long line of work has proposed neural networks augmented with memory, such as
stacks [ , , , ) ) , )
] or random-access memories [ , ]. These augmented architectures significantly
improve algorithmic generalization and the ability to learn recursive structure [ , ,
, ]. Our work is the first to design a structured memory (the stack-tape) for

transformers that mimics shift/reduce updates while remaining parallelizable for efficient training.
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Pushdown LMs softly inject syntactic structure, allowing gradient descent to learn how to
adjust attention patterns based on stack features. While there have been several efforts to incorporate
syntactic inductive biases into sequence models—often RNNs—in an unsupervised manner [

) ) , , , R , , among others], some of these
methods have faced skepticism [ , ]. We leave unsupervised training of Pushdown
Transformers as an open question for future work.

With this chapter, we conclude the first part of the thesis. Intelligent digital agents need not only
a robust compositional understanding of language but also deep knowledge about the environments
in which they are situated. The next chapters present methods for endowing ungrounded LL.Ms with
this essential grounding and environmental knowledge—acquired in a completely unsupervised way

through interaction with their environments.



Part 11

Grounding in Digital Environments

through Environment Interaction
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Chapter 5

BAGEL: Bootstrapping Agents by
Guiding Exploration with Language

5.1 Introduction

In recent years, large language models (LL.Ms) have shown strong performance on a broad range
of language understanding tasks, making them powerful tools for controlling policies in digital
environments such as web browsers [ , , , ]. Such grounded language
understanding tasks are fundamentally challenging for LMs in environments with ambiguous dy-
namics. For instance, even inputting a date into a text box could require either simply typing or
a complex interaction using a drop-down date picker. An LM cannot know this a-priori without
in-depth knowledge about the website.

One common way to provide such knowledge to LM agents is via expert demonstrations that
provide information about mapping instructions to action sequences, recovering from errors, and
reasoning traces [ R s , , , , , ]. Of course,
collecting human demonstrations for every new environment is laborious and requires knowing
possible user instructions a priori. Moreover, as agents scale to complex tasks with hundreds of
actions, human supervision will become increasingly infeasible to obtain. Instead of relying on
human demonstrations for training LM agents, could we instead use exploration and environment
feedback to automatically collect a large number of synthetic demonstrations?

Prior work has shown the effectiveness of collecting synthetic demonstrations by retroactively
labeling trajectories from embodied agents [ , ]. In this scenario, the environments

dynamics are assumed to be well understood by the agent; the synthetic demonstrations only serve

56
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Figure 5.1: (Top) Given a seed set of explored trajectories, BAGEL constructs synthetic demonstra-
tions via an iterative round-trip procedure between two LM components: a zero-shot LM agent that
generates trajectories and an LM labeler that generates instructions for these trajectories. (Bottom)
Given an instruction at test time, we retrieve synthetic demonstrations with similar instructions, to
use as in-context exemplars to adapt the base agent.

to connect agent behavior with human language. However, we observe the opposite challenge with
digital agents in our setting—grounding instructions is relatively easy due to the highly textual
environment, but zero-shot digital agents typically are not exposed to any environment dynamics
before they are directly used to follow instructions.

Our method, termed BAGEL (Bootstrapping Agents by Guiding Exploration with Language),
uses an iterative procedure to relabel a seed set of trajectories obtained from unconditioned exploration
(Figure 5.1). Intuitively, BAGEL operates by progressively shifting the distribution of trajectories
towards those that can be well-described via natural language, using two noisy LM components:
an LM labeler takes a trajectory and relabels it with a synthetic instruction, and a zero-shot LM

policy maps the instruction back into a refined trajectory (Figure 5.2). By performing these round
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trips iteratively, BAGEL converts trajectories from random exploration into meaningful trajectories
that are executable, without requiring a trained base agent or significant information about possible
instructions. While both the re-labeling and instruction-following processes are imperfect, round-trips
between these components work in harmony to reduce any noise. Once an instruction, trajectory
pair reaches a threshold score under a demonstration filter (another prompted LM), the generated
synthetic demonstration is added into a buffer. BAGEL demonstrations can be used for both in-
context learning or finetuning, and serve as a drop-in replacement for expert demonstrations. Here,
we follow the former strategy along with a simple retrieval augmented generation procedure—given
a user instruction at test time, we retrieve the most relevant demonstrations based on instruction
embeddings, and feed that into the agent’s prompt to serve as in-context exemplars.
While BAGEL shares some similarities with Hindsight Experience Replay (HER,

, ), a popular method for retroactive relabeling of unsuccessful trajectories, there are
important technical differences: Instead of relabeling trajectories based on only the final observation,
our relabeling function operates on the entire transition history from the trajectory and uses language
models to iteratively enforce a language prior over the distribution of trajectories ( Section 5.3.3).
Moreover, while HER is used in offline Q-learning settings, we use BAGEL primarily as a data
generation method.

We experiment with BAGEL on two domains, by using a prompted LM (similar to ReAct,

, ) as our base policy and find significant improvements with no human supervision.

In MiniWoB++ [ , R s ], an agent follows instructions on diverse web-
interfaces ranging from booking flights to replying to emails, given an HTML state, by issuing
a sequence of mouse and keyboard operations to interact with DOM objects. Using BAGEL for
test-time adaptation, we find an improvement of over 13% compared to the base LM policy. Next,
we evaluate on ToolQA [ , ], a collection of question answering tasks over 8
domains, where answering each question requires chaining together multiple tools such as SQL, text
retrievers, graph tools, python interpreters and calculators. Here, we find an improvement of 2%
over the base LM policy. Further analysis reveals the various positive effects of conditioning on
our synthetic demonstration beyond improved accuracy, including up to 13 x reduction in execution
failures due to better understanding of environment dynamics. By carefully using LM priors to shape
random exploration, our method serves as a tool for automated discovery of use cases in complex

environments.
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5.2 Background

Given a natural language instruction g, our agent interacts with the environment by taking a sequence

of actions {a1, ag, ..., ar}, where each a is issued in response to an environment observation o;. The
entire interaction with the environment is captured as a trajectory T = {01, a1,02,...,0r, a1, 0741}
We define an agent as a language conditioned policy w(ay | T<¢, g) where 7y = {01, a1,02,...,0¢}

refers to the trajectory until time-step ¢. Such policies are typically trained via imitation learning and
optional RL finetuning, where a large set of expert curated instruction-trajectory pairs are required
for imitation learning, and a suitably shaped reward signal is needed for RL finetuning [

, , , , , ]. For our setup, both observations and actions can
be expressed as natural language strings. The agent policy 7 can then be cast into an autoregressive
LM that assigns probabilities to action strings given string descriptions of the previous actions and
observations. Thus, recent work focuses on directly using LLMs as policies, by using prompts along
with in-context human demonstrations [ s s , , , ,

, , among others].

Executing Action Strings. Similar to prior work that uses LMs to generate action strings [
, R R ], we assume access to an environment-specific low-level
controller that maps action strings to a low-level command (e.g. a web-driver action or an API call),

which can be directly executed to change the environment.

5.3 BAGEL

BAGEL generates synthetic demonstrations via exploration, as illustrated in Figure 5.2. First, we

describe the various model components in §5.3.1, and then describe the overall procedure in §5.3.2.

5.3.1 Model Components

In order to generate synthetic demonstrations, we model different aspects of the joint distribution
over instructions and trajectories. Every component is implemented by the same underlying LM,
but with different prompts. Every component is also implicitly dependent on a given environment,

although this is omitted in the notation for simplicity. All prompts used can be found in Appendix B.
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Explore: 70 ~ Peypiore (-)

Click on datepicker  Clickon Next  Clickon Prev  Clickon Next  Click on Prev  Click on Prev, Finish

Label: g0 ~ Papel(- | 7°) ‘ Change month from December to October Score: s(g%,70) X

Follow: 71 ~ Pagent(- | g*)

Click on datepicker  Clickon Next  Clickon Prev  Clickon Prev  Click on 7th Finish

Label: g* ~ Papel(- | 71) ‘ Change month to October 7th and submit Score: s(gt, 1) X

Follow: 72 ~ Pagent(- | 9%)

Click on datepicker ~ Click on Prev Click on Prev Click on 7th Click Submit

Label: g2 ~ Papel(- | 72) ‘ Change month to October 7th and submit ‘ Score: s(g2, 72) v

Figure 5.2: BAGEL generates synthetic demonstrations by exploring the environment. Shown
here is an example from the MiniWob++ choose-date task. First, we generate an initial trajectory
by sampling actions without conditioning on any natural language instruction. Then, we alternate
between generating an instruction given a trajectory, and generating a trajectory given an instruction.
The process aims to converge towards a trajectory that accurately satisfies a natural language
instruction, and aims to recover from errors in labeling or instruction following from earlier rounds
(see example). Once an instruction and trajectory pair satisfies a filtering criteria, it is added to the
set of synthetic demonstrations. Alternatively, TreeProjections can be initialized by first sampling
an instruction, as described in §5.3.2.

Exploration Policy. The exploration policy, Texplore(at | T<¢), selects an action without condition-
ing on any instruction. The prompt used is similar to that of ReAct [ , ]. We can sample
from the resulting distribution over trajectories, pexplore(T), by sampling actions from Texplore until
the episode completes or a “finish” action is generated. We can increase the entropy of mexplore With a

configurable temperature parameter.

Trajectory Labeler. The trajectory labeler, piapei(g | 7), is prompted to generate an instruction, g,

that corresponds to a given trajectory, 7.

Instruction Following Policy. Unlike the exploration policy, the instruction following policy,
Wagem(at | 7<¢, ), selects actions conditioned on an instruction, g. We sample from the resulting

distribution over trajectories, Pagent(7 | g), by choosing actions according to mgen; until the episode
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completes or a “finish” action is generated. This component is also implemented using a ReAct

based prompt.

Demonstration Filter. Given a synthetic demonstration (g, 7), the demonstration filter makes a

binary judgement s(g,7) € {0, 1}, based on how well 7 corresponds to the instruction g.

Instruction Generator Finally, as an alternative to the exploration policy (see §5.3.2) we can
instead use an instructor generator to initialize exploration. This model defines a distribution over
instructions, pinstruct(g), based on a prompt that elicits plausible instructions based on the initial

observation from the environment, and the action space.

5.3.2 Generating Demonstrations

Initial Exploration We consider and compare two different variations of BAGEL: trajectory-
first and instruction-first exploration. For trajectory-first exploration, we first sample a trajectory
70 ~ pexplore(-) with the exploration policy. For instruction-first exploration, we first sample an

instruction g° ~ Pinsruct (+) With the instruction generator.

Iterative Refinement Trajectories sampled from pexplore may not correspond to any reasonable
instruction, and, similarly, there may be no feasible trajectory that satisfies instructions sampled from
Dinstruct- OUT iterative re-labeling procedure aims to find an instruction and trajectory pair where the
trajectory satisfies the instruction, without sacrificing the diversity of the initial exploration. The

process alternates between sampling instructions and trajectories:

g" ~ praver (- | 7). (5.1)

TtJrl ~ pagent(‘ | gt)- 5.2)

We perform these iterative updates until we find a pair where s(gf, 7¢) = 1 or a maximum
number of steps is reached. If we are successful, the demonstration (g*, 7%) is added to the set of

synthetic demonstrations, M. The overall procedure is repeated to collect multiple demonstrations.

5.3.3 Discussion

Guiding Trajectory Distribution with LM Components. To better understand how the LM

labeler and policy shape the distribution of trajectories, we consider how this distribution evolves
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over the course of multiple iterations. Let py(7) be the distribution over trajectories and py(g) be the

distribution over instructions, after & iterations. For k > 0:

Pr(7) =D Pagent(T | ¢) - Pr-1(g) (5.3)
o
Pre-1(9) = pava(t'lg’) - proa (7). (5.4)
Combining these, we obtain:
pi(T) = Zpk—1(7/) Pravet (9" | 7') * Pagent (T | ¢') - (5.5
T',g/

environment and LM constraints

Thus, we shape the distribution of trajectories from the previous marginal pi_1 based on the criteria
that they can be assigned a concrete string ¢/, and are executable in the environment. These soft
constraints work together to ensure that (1) trajectories can be described in terms of some feasible
instruction in the environment, and (2) the trajectories themselves correspond to valid environment

dynamics.

Connection to Hindsight Experience Replay. Hindsight Experience Replay (HER,

, ) is a popular approach for training language conditioned policies. Given some goal g,
HER converts an unsuccessful trajectory 7 into positive examples by replacing g with some hindsight
goal ¢'. That is, HER uses a relabeling function to map 7 to a new goal ¢’, resulting in a positive
demonstration (¢, 7), that is used to update the policy.

Since the original implementation of HER considers settings where the goal space is the raw
environment observation space, applying HER to natural language instruction-following requires
access to a learnt relabeling function to map observations to language instructions. Such relabeling
functions typically map only the final observation o to the instruction via pre-trained captioning
models [ , , , s , ] that operate on trajectories from
trained agents. In BAGEL, we use the full trajectory for relabeling and use an iterative relabeling

procedure to reduce noise from zero-shot components.
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5.4 Inference

We use synthetic demonstrations from BAGEL to adapt LM agents via retrieval augmented gen-
eration, and leave finetuning for future work. Concretely, given a test instruction g5, We retrieve
top-k most relevant demonstrations in the demonstration set M, pre-pending these to the context
window of our agent as in-context examples. More concretely, we use dual encoder retrieval, similar
to [ ], using a T5-XXL [ , ] embedding model. We first compute a
vector embedding fy(g) for each instruction g € M, and then find the top-k demonstrations based

on scores f5(g) " fo(grest). More details can be found in [ ].

5.5 Datasets

Our experiments are based on two environments, MiniWoB++ [ , , , ] and
ToolQA [ , 1.

5.5.1 MiniWoB++

MiniWoB++ is a collection of tasks consisting of web interfaces with a shared action space of mouse
and keyboard actions. In our setup, actions are specified in natural language (Type Bob in the name
text box, Click on the datepicker, Clear text on Destination). The low-level controller that maps
action strings into a Selenium API call is implemented via a separate zero-shot prompted LM (see
Appendix B.4 for details). Each task consists of a script to generate variations of the task with a

templated instruction, where each variation is controlled via a random seed.

Evaluation. We follow [ ] for evaluating agents on MiniWoB++, by mapping the
raw MiniWoB++ reward from [-1, 1] to [0, 1]. For each web interface, we report the mean score
over 50 random seeds. Starting with the set of 55 MiniWoB++ tasks used in prior work on applying
LM agents to this domain [ R , R , R ], we evaluate on the
hardest 10 tasks where the zero-shot agent has an average reward of less than 0.95, to perform a more

targeted evaluation of BAGEL to domains that are hard for zero-shot agents.

5.5.2 ToolQA

ToolQA is a tool augmented question-answering environment over 8 domains, where questions can

be answered by chaining calls to multiple tools including text retrievers, databases, SQL interpreter,
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calculator etc. Each tool can be called according to a set of pre-defined methods (see Appendix B
for the full action space for the policy and corresponding tool methods). The observation space is
the string output from the most recent tool call (the first observation is hard-coded as a “System
prompt”). Each action corresponds to a specific tool call expressed in language (Load the Airbnb
Database, Calculate 3+7), and the low-level controller is implemented by post-processing strings
into tool methods. The episode terminates when the policy chooses the Finish with Answer action

e.g. Finish with Answer: 300, where 300 is taken as the predicted answer.

Evaluation. Following prior work on question-answering [ , , , ,
1, we compute the F1 score of the final (free-form) model output from the Finish with Answer

tool call against ground-truth answers.

5.6 Experimental Setup

5.6.1 Baselines and Ablations

Zero-shot. As our first baseline, we use the zero-shot policy Ty, directly at test time.

Non-iterative Ablations. Similar in spirit to [ 1, in BAGEL (trajectory-first, no
itrs), explored trajectories 79 are labeled using piaver and resulting demonstrations (g, 79) are included
in M if the score s(g, 7) = 1. Similarly, in BAGEL (instruction first, no itrs), synthetic instructions
sampled from the instruction generator (see §5.3.1) are converted into trajectories using pagent, and
the resulting demonstration (¢°, 7) is added to M, if s(¢g°, 7) = 1. This baseline captures a simple
way to use LMs to construct synthetic demonstrations via a sample-then-filter approach: prompt
an LM to generate possible instructions given the first observation from the environment, create
trajectories based on these, and filter based on another criterion. In general, we expect exploration
using the instruction generator to work poorly in settings where the LM cannot predict potential
instructions from just the first observation (e.g. it might hard to generate candidate instructions solely

from the landing page of the website without further interaction).

5.6.2 Implementation Details

We evaluate all baselines and variants of BAGEL on MiniWoB++ and ToolQA. For MiniWoB++,

we start with sampling 60 trajectories in the exploration phase for trajectory-first variants of BAGEL,
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Figure 5.3: Results across MiniWoB++ and ToolQA, broken down by domain. We compare using
demonstrations obtained via BAGEL (blue) with a zero-shot ReAct baseline ( ) with no
synthetic demonstrations. For MiniWob++, we use the Trajectory-First variant for exploration, and
for ToolQA, we use Instruction-First. We report mean reward for MiniWob++ and F1 score for
ToolQA. Overall, using BAGEL demonstrations leads to improvements on both datasets.

and sample 60 synthetic goals for instruction-first variants. For ToolQA, we sample 200 trajectories
for BAGEL (trajectory-first), and 200 synthetic goals for BAGEL (instruction-first).

We use an instruction tuned PaLM-2 [ s ] as the base LM for all our experiments,
and sample with a fixed temperature of 1.0. We set the max episode length 7" to 15 for all datasets
and models. We also set Tj to 5, when performing multiple iterations in BAGEL I

In addition to using ReAct prompting, we use a simple “re-sampling” procedure to recover from
issuing syntactically incorrect actions—if an action causes the environment to return an Exception
(such as incorrectly invoking a tool, or typing on an element that cannot be typed on), we sample
another action from the agent with the Exception message appended to its context. We keep re-
sampling until it chooses a syntactically correct action, or terminate the episode if the agent is unable

to fix an erroneous action in m = 5 steps.

5.7 Main Results

Figure 5.3 compares the zero-shot baseline with agents augmented with BAGEL demonstrations.
We find that using synthetic demonstrations as in-context exemplars, retrieved based on instruction
relevance, lead to significant boosts in performance compared to the zero-shot agent. For the best
variant of BAGEL, we find improvements of over 13% points on MiniWoB++, and over 2% on
ToolQA. For MiniWoB++, our improvements are particularly strong (20% absolute) on choose-date,
tic-tac-toe, and use-autocomplete. Solving these tasks successfully requires learning environment

dynamics (e.g. Figure 5.1) which is enabled by BAGEL demonstrations. We isolate the source of

"While tuning Tj. on a dev set may lead to better results, we choose use a fixed value to remain truly zero-shot.
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instruction-first  trajectory-first

Dataset Zero-Shot

No-itrs  Full No-itrs  Full
MiniWoB++ 46.8 52.0 56.0 53.0 61.0
ToolQA 40.9 38.8 43.3 40.9 422

Table 5.1: Ablations showing the effect of multiple rounds of re-labeling in BAGEL. Multiple
iterations improve performance for both instruction-first and trajectory-first variants.

these improvements from synthetic in-context exemplars in §5.8.1. Furthermore, trajectory-first
exploration significantly outperforms instruction-first on MiniWoB++, which we hypothesize is due
to the LM prior being misaligned with the distribution over possible instructions on MiniWoB++.

Finally, Table 5.1 shows that iterative re-labeling always improves performance over non-iterative
baselines. Multiple iterations of round trips improves average reward by 4-8% on MiniWoB++ and
1.3-4.5% on ToolQA.

5.8 Analysis

To understand how BAGEL demonstrations improve agent performance, we first look at confounders
from in-context learning (§5.8.1), and then study the impact of synthetic demonstrations on execution
failures (§5.8.2). Next, we analyze the correctness (§5.8.3) and diversity (§5.8.4) of BAGEL’s

demonstrations to identify areas for further improvements.

5.8.1 In-context Learning with Synthetic Demonstrations

In-context exemplars can provide a range of useful learning signal to LM agents, ranging from simply
providing examples of valid action trajectories or relevant natural language instructions in isolation,
to providing rich information about the conditional p(7 | g) (how to map relevant instructions into
action sequences). Indeed, for some text classification tasks, [ ] find that improvements
from in-context learning may be explained in terms of the former i.e. examples of the label space and
input text. To better understand how synthetic demonstrations help in our setting, we report results
from two ablations. First, we provide the model with randomly chosen demonstrations instead of
using the retriever (Random). Next, we shuffle demonstrations so that trajectories are paired with

randomly chosen instruction within the set of retrieved examples (Shuffled).
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Method  Accuracy

Zero-shot 40.9

Random 38.0
Shuffled 414
Ours 42.2

Table 5.2: Ablations showing the effect of various sources of information in synthetic demonstrations
to agent performance.

Task Zero-Shot () +BAGEL (|)
choose-date 1.3 0.1
book-flight 3.0 0.6
ToolQA (average) 3.0 1.9

Table 5.3: Average number of execution failures for tasks in MiniWoB++ and ToolQA. We find that
using synthetic demonstrations reduces execution failures.

Results. Table 5.2 reports results of these ablations. First, Shuffled improves performance over
the zero-shot baseline, suggesting that some of the improvements come from providing examples
of valid action trajectories in the domain in line with findings in [ ]. Ours records a
further improvement of 0.8% over Shuffled, which suggests that the agent is able to use signal about

the conditional to improve decision making.

5.8.2 Synthetic demonstrations reduce execution failures

As mentioned in §5.6.2, in our implementation, LM agents recover from execution failures using a
re-sampling procedure—when the agent generates an invalid action (such as attempting to Type on a
checkbox element or calling a tool with incorrect syntax), we re-prompt it with the error message
produced by the environment, until it produces a valid action. Of course, such re-sampling can be
costly at inference time due to multiple calls to the LM. Table 5.3 reports the average execution
failures for tasks with re-sampling on MiniWoB++ and ToolQA. We note a considerable reduction in
average re-sampling with BAGEL, due to a better understanding of environment dynamics, in turn

leading to faster inference.
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Figure 5.4: Distribution of demonstrations over semantic categories for MiniWob++ environments,
social-media and email-inbox, and ToolQA. While BAGEL prefers certain modes, overall we
find that these demonstrations cover a diverse range of actions.

5.8.3 Correctness of Synthetic Demonstrations

One way to identify the scope for improvements in our method is to manually verify the correctness
of demonstrations. We filter demonstrations which, upon execution, do not achieve the corresponding
instruction. Using these filtered demonstrations improves performance further by 7% absolute on all

10 tasks from MiniWoB++.

5.8.4 Diversity of Synthetic Demonstrations

To better understand the distribution of synthetic demonstrations, we manually bucket demonstrations
for social-media and email-inbox into semantic clusters— for social-media these clusters include
{Retweet, Like, Share, ...} and for email-inbox we have clusters such as { Forward, Delete, Star, Reply,
...}. For ToolQA, we cluster demonstrations based on the set of tools invoked in the demonstration.
We plot the number of demonstrations in each cluster in Figure 5.4. We note that while this
distribution tends to be skewed towards specific modes (e.g. {graph} for ToolQA, {Star} for email-
inbox), there exists a long tail that covers a broad range of possible use cases in the environment.
Nevertheless, improving diversity during exploration remains a failure mode for BAGEL which we
expand on next. Finally, we provide some examples of BAGEL demonstrations in Table 5.4, along

with their corresponding semantic category.

5.8.5 Error Analysis

We conclude with a discussion of failure modes of our aproach using the domains book-flight,

search-engine, and SciRex as case studies.
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Instruction

Trajectory

MiniWoB++

Find the email by Trixi and reply to them with the
text “Maecenas eu massa” {Reply}

Find the email by Darcy and forward it to Dionis
{Forward}

Retweet Gallegos’s post {Retweet}

Like tweet by @leonie and share tweet by @livia
{Like, Share}

Move Mouse to Trixi — Click on an email-thread
— Click on the reply button — Type "Maecenas eu
massa’ on the textarea with id ’reply-text” — Click
on the span with id ’send-reply’

Click on Darcy, the sender of an email thread. —
Click on *forward’ button — Type Dionis on the to
field — Click on the ’send’ button

Move Mouse to Pretium,. Ullamcorper. — Click on
retweet element with id 101

Click on the like element with ID 41. — Click on
share-113

What are David’s plans this weekend? {Retrie-
veAgenda}

Who is affiliated with both nicolas christin and giulia
fanti? {Python, Graph}

What are the top 5 airbnb options with price < 900,
availability > 260 and at least 40 reviews {Database,
SQL}

What are the different approaches for computing
graph similarity? {RetrieveSciRex}

Retrieve passages related to David’s plans this week-
end — Finish with answer: On the evening of
September 16th, 2022, David will be attending a
Blind Date Night event at The Press Lounge.

Load DBLP — Check neighbours of node Giu-
lia Fanti in graph AuthorNet — Check neigh-
bours of node Nicolas Christin in graph Author-
Net — Evaluate python code: listl=['Wanzheng
Zhu’, 'Rohan Bansal’, "Zachary Weinberg’, ’Nico-
las Christin’, ’Suma Bhat’, ’Hongyu Gong’];
list2=["Wanzheng Zhu’, 'Rohan Bansal’, ’Zachary
Weinberg’, ’Suma Bhat’, ’"Hongyu Gong’, ’Giulia
Fanti’]; ans=set(list]) & set(list2) — Finish with an-
swer: {"Hongyu Gong’, ’Rohan Bansal’, "Wanzheng
Zhu’, ’Zachary Weinberg’, ’Suma Bhat’ }

Load database airbnb — Filter database according
to price < 900, availability 365 > 260, number of
reviews > 40 — Interpret SQLite query: SELECT
FROM airbnb_data ORDER BY number_of _reviews
DESC LIMIT 5 — Finish with answer: [’High-end
doorman bldg in the LES’, 'THE BEST DEAL ON
THE HUDSON RIVER!!’, "Heart of Williamsburg,
Brooklyn!’, *Beautiful & Tranquil Oasis in a Great
Location’, ’Sunny/Cozy 1BD’]

Retrieve passages from ML papers related to graph
similarity — Finish with answer: The different ap-
proaches to computing graph similarity are graph
kernels, graph features and graph convolutional neu-
ral networks (CNNs).

Table 5.4: Example demonstrations obtained via BAGEL for MiniWoB++ (top) and ToolQA
(bottom). We also provide the semantic category for these demonstrations, and report the distribution

of these categories in Figure 5.4.
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Handling Long-Horizon Planning. We note that book-flight is the most complex environment
in MiniWoB++, with longer trajectories of lengths 8-20, and the zero-shot policy performs poorly
on this environment (average reward of 5%). While using BAGEL demonstrations improves this to
15%, we hypothesize that further improvements would require better handling of long range plans,

such as with hierarchical planning [ , s , 1.

Improving Diversity. We hypothesize that improving diversity among seed trajectories would lead
to further improvements across the board. For instance, for book-flight, all BAGEL demonstrations

correspond to booking flights in December, while the test distribution is more uniform.

Reducing Mismatch with Test Instructions. On SciRex, all models fail to produce even a single
correct answer. Here, we find that in the absence of any knowledge about user instructions at test-time,
BAGEL demonstrations tend to create questions with more descriptive answers and trajectories with
generic queries (See Table 5.4 for an example) while test instructions requires retrieving specific
numbers from scientific documents by querying for specific topics. Similarly, on search-engine, we
note a modest improvement of only 5%. Here, we find that while BAGEL demonstrations cover a
variety of instructions like Search for cat and navigate to the third page of search results, Search for
cars, then visit the second search result, the model fails on test instructions like Enter [term] then find
and click the 9th search result that requires keeping track of the number of search results per page,
and navigating to the correct page. While our goal is to build fully unsupervised agents, methods that

use sparse information about test-time instructions could help drive performance further.

5.9 Related Work

Instruction-Following Digital Agents. Building agents that navigate the digital world is a long
standing goal of Al and language understanding [ , , , ]. However,
most prior work relies on expert demonstrations [ , , , ,

, ] with an appropriately shaped reward [ , , , ]. Here,
we assume no access to demonstrations or a reward function, and use pre-trained components to

bootstrap synthetic demonstrations.

LMs for Decision Making. Pre-trained LMs are increasingly being used for sequential tasks such

as robotic manipulation [ , , , ], instruction-following [ , ,
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, , , s s ], and tool-use [ s ]. While some of
these approaches finetune LMs based on human demonstrations [ , ], others use
human demonstrations in their prompt for in-context learning and adaptation [ , ,

, , , ]. We use no human supervision or reward and adapt LM agents purely
using synthetic demonstrations. Another line of work uses LM priors in reinforcement learning to
improve exploration [ , , , ], deal with large action spaces [ ,

], or as proxy reward functions [ , ]. In the same tradition, BAGEL bootstraps
a learning signal in the form of synthetic demonstrations by combining several LM components but

without using RL.

Self-training for Language Models. A recent line of work uses LM-generated data for finetuning
the same LM, in settings where external verifiers may be used to filter generated data [ ,

, , ]. While we also use data generated from an LM for adaptation, unlike
these approaches, environment interactions form a critical part of the learning signal and we also do

not use external verifiers for filtering data.

5.10 Conclusion

There is a growing interesting in grounding LMs to the real world, by building helpful assistants
that execute open-ended instructions in digital environments. The complexity of such sequential
tasks makes collecting expert demonstrations tedious, and so, further progress towards building such
agents requires new methods for bootstrapping a learning signal with minimal human supervision. To
this end, we introduce BAGEL, a method for constructing synthetic demonstrations for instruction
following agents. These demonstrations are constructed by iteratively relabeling an initial seed
set of trajectories or instructions, where both relabeling and exploration is driven by a language
model. Experiments on two different domains show that using BAGEL demonstrations as in-context
exemplars leads to considerable improvements ranging from 2-13%, as well as significant reductions

in execution failures.

Discussion. BAGEL was an early attempt by us to automatically mine demonstrations for ground-
ing a zero-shot LLM agent in an environment. One of its key ideas was to use an exploration
policy to collect trajectories and then map them into instructions—an approach largely inspired by

Hindsight Experience Replay [ , ]. These demonstrations were used to adapt
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the LLM via in-context learning, leading to significant improvements in agent performance. While
BAGEL achieved substantial gains, it was primarily applied to simple web interfaces in MiniWoB++.
Applying such an interaction-based method to real websites poses a significant challenge: the
exploration space can grow exponentially due to the vast number of active elements. What is needed,
then, is a robust mechanism to guide this exploration. In the next chapter, I introduce NNetNav, our
latest method for collecting demonstrations through environment interaction. The key innovation in
NNetNav is a pruning heuristic directly inspired by the hierarchical structure of language instructions.
Notably, NNetNav enables us to train high-performing web agents out of relatively small (sub-10B

parameter) LMs that can operate effectively on real websites.



Chapter 6

NNetNav: Unsupervised Learning of
Browser Agents Through Environment
Interaction in the Wild

6.1 Introduction

Building grounded agents that map human language instructions to a sequence of executable actions
is a long-standing goal of artificial intelligence [ , ]. A promising new approach
for building such agents is to use large language models to control policies in environments like
web-browsers and computers (e.g. Chapter 5).

Unfortunately, language models struggle with such grounded instruction following out-of-the-box
because LMs do not know about the myriad and ever changing interaction possibilities of different
websites. For instance, on a new e-commerce website, a zero-shot LM browser agent may struggle to
make a return or change order details, without expensive test-time exploration. Even simple tasks like
choosing a flight can involve different Ul element such as directly entering airport codes or interacting
with drop-down menus, and a zero-shot agent cannot know a priori the correct thing to do. The most

common solution is to provide LM browser agents with knowledge about new web interfaces via

expert demonstrations, that can either be used for in-context learning [ , ] or supervised
fine-tuning [ , , , ]. These demonstrations are either fully provided by
human experts [ , , , ] or consist of human-generated trajectories paired
with model-generated instructions [ , ]. However, collecting human demonstrations that

73
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Figure 6.1: Given web URLs (1), NNetNav (2) uses a structured exploration strategy to interact
with websites (3) and autonomously discover diverse (instruction, trajectory) demonstrations, as
summarized in (4). To effectively prune exploration, the trajectory-so-far is periodically evaluated
by a relabeling module and further exploration continues only if it can be assigned a meaningful
language instruction. All components in NNetNav are implemented with the same zero-shot base
LLM.

cover each possible use case for every website is an unattractively large, never-ending task. Thus, in
this work, we propose a method for training LM browser agents in a completely unsupervised way,
via synthetic demonstrations derived from interaction.

At a high level, our approach, NNetNav (Fig 6.2), uses a language model exploration policy
to perform extended interactions with a website, and another language model trajectory labeler to
annotate trajectories with instructions.! To effectively control the exponential space of meaningful
interactions, NNetNav uses the hierarchical structure of language instructions as a pruning heuristic:
for exploration to discover a meaningfully complex task, trajectory prefixes must correspond to
meaningful sub-tasks. Thus, during an exploration episode, if a language model cannot label
trajectory prefixes (at set time-steps) with a sub-task, further exploration is automatically pruned.
Imposing such a structure over search not only enhances efficiency, but also results in complex and
hierarchical instructions (See Table 5.4 for examples). NNetNav prompts the same base language
model for exploration, relabeling and inferring sub-tasks.

We use Llama—-3.1-70B [ , ] to collect a large scale dataset of over 10k
demonstrations (around 100k state, action transitions) from 20 websites, including 15 live, in-the-
wild websites, and 5 self-hosted websites from WebArena [ s ]. We classify these
instructions into various intents and find a highly diverse range of internet use cases, including flight

booking, finding recipes, buying iPhones, searching for trails, commenting on github issues, and

'0ur code, data and trained models are available at https://nnetnav.dev/.
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Figure 6.2: Left: NNetNav uses four components to interact with websites to create training examples,
built out of zero-shot language models. Right (Top): An exploration episode on a website begins
with sampling a persona, followed by generating persona-conditioned action sequences from the
exploration policy. At fixed intervals, the trajectory labeler infers an instruction to describe the
trajectory so far. If the resulting (instruction, trajectory) pair receives a low score from the ORM, the
episode is pruned (indicated by a red cross). Right (Bottom): For each instruction, we retroactively
generate a new action, given the (instruction, observation, previous actions) tuple to ensure that
actions at each time-step correspond directly to the inferred instruction.

posting on Reddit. We use these demonstrations for supervised fine-tuning of L1ama—-3.1-8B.
On WebArena, our model achieves a success rate of 16.3%, outperforming zero-shot GPT—4 by 2
points and reaching state-of-the-art performance among unsupervised methods. On WebVoyager
[ , ], our best model reaches a success rate of 35.2%, outperforming zero-shot GPT—4
by 1.7 points and all known open methods on this task to the best of our knowledge. Interestingly,
we find that NNetNav enables effective self-training—fine-tuning a smaller LM using NNetNav
demonstrations generated by the same model yields a 4 point absolute improvement (from 1% to
5%) on WebArena. NNetNav opens up interesting avenues for open-ended discovery of workflows

on unknown web-interfaces, without human supervision.

6.2 Background

Following instructions on a web-browser is a multi-turn sequential decision making problem. Given
an instruction g, a browser agent interacts with the browser by issuing a sequence of computer
control actions (aj,as,...,ar) where each a; € A is drawn in response to an observation o;.
Executing an action causes a state transition based on some unknown environment dynamics,

leading to a new observation o;41. The entire episode can be summarized as a trajectory T =
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(01,a1,09,as,...07_1,ar,or). We formalize the instruction following agent as a mapping 7(a; |
01, T<t;g) Where 7o = (01,a1,...a4—1) is the trajectory so far. In our case, observations are
represented as either flattened DOM trees or website accessibility trees, and A consists of keyboard /

mouse commands that operate on elements of these trees (see Appendix C for the full action space).

LLMs for Browser Control. Recent work explores using instruction-tuned large language models
(LLMs) to directly parameterize the agent. These methods typically work in settings with textual
observations and action spaces. At time-step ¢, the agent 7y is provided with the following context:
the instruction g, the full action space described as a string, the current observation oy, and some
representation of the trajectory-so-far 7, typically the action history. Given this information, the
LLM generates an output that is parsed into an action. Typically, the LLM output contains both a
reasoning step r; (e.g. Since my task is to buy a mug, given the current state, I should click on the
buy now button), and the chosen action command a; (e.g. click [1234]).
Given expert demonstrations {g°, 7'} where 7 := (0}, 7%,a}, 0%, 1%, a} . .. 0%), previous work
adapts LM agents using demonstrations as in-context examples [ , , , ,
, , , , among others] or as training data for supervised fine-tuning [
, ) ) , , , , ]. For supervised fine-tuning of 7y
on a dataset of demonstrations, we construct training instances {(g%, 7,, ol), (1, a})} where 7%, a}

serves as the target reasoning step and action for an intermediate context (g%, 7%,).

Prior Methods for Synthetic Demonstrations. Since collecting human demonstrations for browser
agents is time consuming and costly, recent work uses synthetic demonstrations as training data
[ , , , , , ]. These methods start by sampling synthetic
instructions from an instruction generator (a prompted LM that takes the website landing page and
an optional user persona), and then use a zero-shot browser agent to convert these instructions into
trajectories. Resulting demonstrations are filtered using either the ground truth reward function
[ R ], or using another LM outcome reward function [ , , ,
]. Most of these methods fine-tune smaller LMs using synthetic demonstrations from larger
LMs.
Such instruction-first methods for data collection face several challenges. First, synthetic
instructions in these demonstrations are sampled from an ungrounded LM prior that generates only

plausible” instructions without ensuring feasibility; e.g., an instruction such as Delete the first post

*We use the term plausible for instructions that match a website’s genre or intended use. For example, searching for
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on r/callofdutyfans for reddit is plausible, but not always feasible. Second, generated instructions
are limited to those that reference visible features of the website; e.g., given the landing page of a
github-like platform, no LM prior can generate instructions like Find information about Eric Bailey’s
contributions to the byteblaze project, which require knowing about deeply embedded website-
specific entities like Eric Bailey. Finally, these methods provide no control over the complexity of

instructions, and rely entirely on the LM or bespoke prompts to generate complex instructions.

6.3 Our Approach

Instead of starting with a sampled instruction, we start by sampling an interaction first, and then
retroactively labeling it into an instruction that is feasible by definition. NNetNav (Fig 6.2) is an
interaction-first method for constructing demonstrations: An exploration policy interacts with a
browser in a structured manner to sample long trajectories which are retroactively labeled into
instructions (§6.3.2). We then post-process each trajectory to add post-hoc actions corresponding to

the generated instructions.

6.3.1 LM Components

All components in NNetNav are implemented with a zero-shot instruction-tuned LLM, with different

prompts (see Appendix C for prompts).

Exploration Policy. To interact with the environment, we use an exploration policy Texplore.
implemented as -a prompted language model, similar to 7. Additionally, to simulate a diverse set
of behaviors from users and improve the diversity of resulting trajectories, we seed each episode with
a string description of a plausible user persona for the given website [ , ,

, ]. At each time-step, Texplore 18 provided with the following context: a user persona, the
list of available actions, the current observation o;, and the action history. The output of Texpiore 18

then parsed into an action.

Summarizing Trajectory changes. Actions issued by Texplore result in a new observation in the
environment. We summarize this change as a short string description via another module Ay,
implemented using a language model. In particular, for any state o;, action a; and the resulting

next state o;y1, 0 = Arm(oy, ar, 0441) produces a string-valued description of the changes in the

clothes on a retail site or checking notifications on a social media platform. Not all plausible instructions are feasible.
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observation as a result of the action. For a trajectory 7, we denote the sequence of state changes as
Or.

Trajectory Labeler. Given ¢, the trajectory labeler Lfy y produces a plausible instruction § =

Lfrm(07) that the agent could have followed to produce the given interaction.

Outcome Reward Model. Given § and 4, the outcome reward model (ORM) assigns a reward

stm(g,0-) € {0,1}, based on the degree to which state changes correspond to the given instruction

g.

6.3.2 Sampling Demonstrations via Interactions

At specific time steps t € {t1,t2,...,tmax}, We apply a pruning heuristic to retroactively label
the current trajectory. Given a partial trajectory 7, after interacting with the environment for ¢
steps, we compute a sub-task annotation § = Lfym(0,_, ). If this sub-task receives no reward, i.e.,
stm(g, 0r.,) = 0, we prune the episode and sample a new rollout. Otherwise, we store (g, 7<¢) as a
synthetic demonstration and continue exploration. Each episode typically generates multiple such

demonstrations.

Post-processing with an Agent Policy. Actions at each time-step in our our demonstration set are
a result of un-directed exploration, and therefore might not be optimal for the retroactively generated
instruction. Thus, we post-hoc annotate each state with a new action that directly corresponds to the
generated instruction. Concretely, given every (g, 0;, T<;) tuple in our synthetic demonstration set,

we use 7y to output a suitable action @, given the instruction g and current observation o;.

BofK sampling (Optional). To further boost the quality of trajectories, we optionally use best-of-K
(BofK) sampling. In particular, given NNetNav generated instructions, we sample K -1 additional
trajectories, with 7y using the same base LLM. Then, for each instruction, we use our ORM to
score each of the K-1 trajectories and the original trajectory, and pair the best trajectory with the

given instruction, breaking ties arbitrarily.
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6.4 Main Experiments

6.4.1 Collecting Demonstrations in the Wild

We apply NNetNav on 20 websites to collect a dataset of over 10,000 demonstrations. We consider 15

live websites (same set as ): Allrecipes, Amazon, Apple, ArXiv, BBC News, Booking,

Cambridge Dictionary, Coursera, ESPN, GitHub, Google Flights, Google Map, Google Search,

Huggingface, and Wolfram Alpha, and 5 self-hosted websites from WebArena (WA; ,
).

We use instruct-tuned L1lama—-3.1~-70b as the base LLM for all components in NNetNav, with
tmax set to 40, running NNetNav pruning every 4 time-steps at {4, 8, 12, 16, ..., 40}. Additionally,
we perform BofK sampling with K = 3, using v (with the same L1ama-3.1-70b base model).
While we only consider text based browser agents in this work, we release both accessibility tree
strings as well as browser screenshots at each time step, to support future work on multi-modal

browser agents.

Difficulty NNetNav (WA) NNetNav (Live)

Easy 498 1448
Medium 2532 2369
Hard 1164 1204
Very-Hard 501 556
Total 4695 5577

Table 6.1: We report the breakdown of NNetNav demonstrations into categories defined based on the
number of actions in the trajectory.

Diversity and Complexity. To evaluate diversity in resulting instructions, we cluster them by
intent for each website. We obtain these intents through a two-step procedure—we input instructions
for each website into GPT-40, prompting it to identify common intents, and then classify each
instruction into one of these intents in a second forward pass. On average, we identify 21 intents per
website for self-hosted websites and 25 for live websites. Analyzing the distribution of these intents,
we observe an average perplexity (PPL) of 13.5 for self-hosted sites and 16.2 for live websites.
Higher perplexity suggests a more evenly distributed set of intents, indicating substantial diversity in
the collected demonstrations. We provide a visual representation of this distribution as a sunburst

plot in Appendix C.
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Agent #Params WebArena SR WebVoyager SR Human Supervision Used?

Using Closed Models

GPT4 [ R s R ] Unknown 14.1 33.5 X

GPT-4-AWM [ R 1 Unknown 35.5 - X

GPT-4 + LLama-70b [ s ] Unknown 50.0 - v
Using Open Models

Llama-3.1-8b 8B 1.0 44 X

[ ] 7B 2.5 - X

[ ] 7B 6.3 - X

[ ] 72B 9.4 - X

LLaVa-7B PAE + Claude [ R ] 7B - 22.3 X

LLaVa-34B PAE + Claude [ R ] 34B - 33.0 X

Qwen2.5-7B-AgentTrek [ R ] 7B 10.5 - X

Qwen2.5-32B-AgentTrek [ , 1 32B 16.3 - X

Llama8B-NNetNav-WA (Ours) 8B 16.3 28.1 X

Llama8B-NNetNav-Live (Ours) 8B 9.5 35.2 X

Llama8B-NNetNav-All (Ours) 8B 14.9 34.1 X

Table 6.2: We present average success rate (SR) on browser tasks from WebArena and WebVoyager
for various approaches, along with key details such as model size, the use of open LLMs and
human supervision. For [ ], we report results from the setting that does not use human
supervision. Zero-shot GPT—4 results are sourced from [ ] and [ ]. The
last three rows report the performance of our fine-tuned L1ama-3.1-8b agents, which achieve
state-of-the-art results, outperforming zero-shot GPT—4 and outperforming or matching prior open-
model approaches with significantly fewer parameters, across both benchmarks.

To analyze the complexity of demonstrations, we categorize each demonstration into one of
four levels based on the number of action sequences: easy (fewer than 5 actions), medium (5 to 10
actions), hard (10 to 20 actions), and very hard (over 20 actions). Table 6.1 presents the distribution

of demonstrations across these categories, showing a substantial number of complex demonstrations.

6.4.2 Finetuning: Details and Results

We perform supervised fine-tuning of the smaller instruct-tuned L1ama-3.1-8B with NNetNav
demonstrations. To measure transfer between knowledge learned from live websites and self-hosted
WebArena websites, we fine-tune on: only WebArena websites (L1ama8B-NNetNav-WA), only live
websites (Llama8B-NNetNav-Live), and all websites together (Llama8B-NNetNav-A11l).

As described in Section 2, each demonstration expands into multiple training instances, resulting
in a total of 100k training examples for the full dataset. We fine-tune for 2 epochs with a batch size
of 128, truncating the max sequence length to 20000, with a learning rate of 2e-5, that is warmed

with a linear scheduler over 500 gradient updates (more details can be found in [ D.
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We use open-instruct [ , ] for fine-tuning, and set up local inference servers using
VLLM [ , ]. During inference, we sample with a temperature of 0.01 and perform
nucleus sampling [ , ] with top-p set to 0.9.

Benchmarks. We evaluate models on 812 tasks from WebArena [ , ] and 557
tasks from WebVoyager [ , ], omitting tasks in Google Flights and Booking, as they
are no longer feasible (following , ). For WebArena, we report averaged success

rate (SR) across all tasks based on the provided evaluator that measures functional correctness.
For WebVoyager, we use the author-provided script that uses GPT-4V to judge success based on

instructions and browser screenshots at each time step. We report the average across all websites.

Results. We report our results in Table 6.2, where we present prior results from using closed models
(typically GPT-40) as well as with open models. On WebArena, both L1ama8B-NNetNav-WA and
Llama8B-NNetNav-All outperform zero-shot GPT-40, with our best model achieving state-of-
the-art performance among unsupervised methods. On WebVoyager, L1ama8B-NNetNav-Live
and L1ama8B-NNetNav-All surpass zero-shot GPT—-4o0, establishing a new state-of-the-art among
open-source methods. Notably, they outperform the previous best OSS result from [ 1,
which relied on a significantly larger 34B-parameter vision-language model (VLM) and a closed-
model verifier. Interestingly, we find that L1ama8B-NNetNav-WA, which is trained exclusively on

WebArena websites, exhibits poor transfer to live websites. We analyze cross-website transfer next.

6.4.3 Cross-Website Transfer

We present per-website success rates of our fine-tuned models across all 18 websites in Table 6.3.
For WebArena websites, by comparing columns 2 and 3, we find that 3 out of 5 websites benefit from
incorporating in-domain data. By comparing columns 1 and 3, we observe an average performance
drop of 1.8 points, with the most significant decrease on the Maps domain. This decline is likely
due to the semantic search capabilities in Google Maps, which are absent in WebArena Maps,
necessitating more complex query formulation. For live websites, fine-tuning on in-domain live
website data improves performance on 10 out of 13 domains, as indicated by comparing columns
1 and 3. The effect of incorporating out-of-domain WebArena data, however, is mixed. While it
results in negative transfer for 7 websites and positive transfer for 6, the overall average performance
decreases by 1.3 points. Notable gains are observed in ESPN, Apple, and GitHub, suggesting potential

synergies when fine-tuning on closely related domains.
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Website NNetNav (WA) NNetNav (Live) NNetNav (Live+WA)

Self-hosted Websites (WebArena)

Reddit 26.3 9.6 25.4
Gitlab 18.4 5.6 16.8
Maps 15.6 14.8 10.9
CMS 11.5 5.5 9.9
Shopping 13.0 9.9 13.0
Live Websites (WebVoyager)
Allrecipes 26.7 37.8 29.5
Amazon 24.4 43.9 34.1
Apple 32.6 27.9 34.9
ArXiVv 279 46.5 442
BBC News 333 429 28.6
Cambridge Dictionary 46.5 58.1 48.8
Coursera 47.6 452 429
ESPN 20.5 227 27.3
GitHub 12.2 17.1 19.5
Google Maps 34.1 46.3 439
Google Search 0.0 2.7 6.2
Huggingface 30.2 18.6 30.2
Wolfram Alpha 26.1 435 45.7

Table 6.3: Per-website success rates on all websites, using a L1ama—-3 . 1-8b agent fine-tuned on (1)
the WebArena subset of NNetNav, (2) the live website subset of NNetNav, and (3) all demonstrations.
On WebArena, incorporating in-domain data improves performance on 3 out of 5 websites (comparing
columns 2 and 3). For live websites, incorporating in-domain data improves performance for 10 out
of 13 websites (comparing columns 1 and 3). These results highlight the importance of scalable
methods to enable training on diverse websites.

Overall, fine-tuning with in-domain website data improves performance on 13 out of 18 websites.
These findings underscore the importance of learning from unsupervised interaction on real websites,
as relying solely on human-labeled trajectories from a limited set of simulated websites may be

insufficient for developing generalist web agents.

6.4.4 Scaling Trends for Multi-domain Training

Table 6.2 suggests that incorporating data from live websites can hurt performance on WebArena. Is
this a fundamental consequence of conflicting task information in multi-task learning—an issue that
is well documented (e.g., see [])—or is it simply due to the model sizes used? To investigate this, we
fine-tune a series of Qwen-2.5-Instruct [ s ] models with sizes {0.5B, 1.5B, 3B, 7B,
14B, 32B}. These models are trained under two settings: (1) WebArena-only, where the model is
fine-tuned solely on the WebArena subset of the NNetNav data, and (2) WebArena+OpenWeb, where
the model is fine-tuned on the full NNetNav dataset, including both WebArena and live website data.
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Figure 6.3: Scaling trends for Qwen-2.5-Instruct models fine-tuned on WebArena and We-
bArena+OpenWeb data. We plot the average WebArena success rate (SR) against model size
(log scale). As model size increases, both settings show improved performance, with the gap between
them narrowing. The slope for the full dataset (WebArena+OpenWeb) is steeper, suggesting faster
improvement with scale.

We use a validation set for early stopping and train for a maximum of 3 epochs. Further

hyperparameter details are provided in [ ].

Results. Figure 6.3 shows the results, with the x-axis on a log scale representing model size
and the y-axis showing the average WebArena success rate (SR). We also include linear regres-
sions to highlight the trend lines. As expected, performance improves consistently with model
size—WebArena SRs rise from around 13.5% for the smallest model to over 20% for the largest.
Notably, the performance gap between the WebArena-only and full-dataset settings narrows as
model size increases. Moreover, the slope for the full-dataset models is steeper, indicating faster
performance gains with scale. These results suggest that (a) the impact of conflicting gradients from
live website data diminishes with scale, and (b) incorporating live data leads to faster improvements

in WebArena performance as model size grows, although this is not definitive.
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6.4.5 Error Analysis

We analyze failure modes of our best models by manually annotating failed trajectories and catego-
rizing them into fine-grained failure types. Specifically, we select 4 to 6 failure cases per website,
prioritizing trajectories that exhibit distinct error patterns. Each failed trajectory is manually anno-
tated with free-form natural language comments describing the nature of the failure e.g. correctly
navigates to cornell (maintainer of arxiv), but couldn’t navigate to the section where there is info
about undergraduate enrollment. To categorize these failure cases, we use GPT—4 to cluster similar
annotations into distinct failure attributes. We then manually refine these attributes by merging
redundant categories. Next, we prompt GPT—4 to assign a score of {-1, 0, 1} to each trajectory based
on these fine-grained attributes, where a score of 0 indicates not applicable, 1 indicates positive
reward and -1 indicates negative reward.

Figure 6.4 presents the average reward per attribute for WebArena and WebVoyager. We observe
that while our agents exhibit strong performance in element interaction and search functionality,
they struggle with navigation efficiency, and sometimes execute redundant steps before reaching the
target. Additionally, extracting information from structured data (e.g., tables on ESPN.com) remains
a significant challenge. These findings suggest that future improvements should focus on heuristics
to minimize unnecessary actions and enhancing the model’s ability to parse and retrieve structured

web content.

6.5 Controlled Experiments

We conduct controlled experiments on a smaller scale to compare NNetNav with baselines. In
addition to evaluating on WebArena, we also consider MiniWoB++ [ , , , ].
MiniWoB++ is a dataset of synthetic web-interfaces with a shared action space. Tasks on MiniWoB++
range from clicking on buttons to complex tasks like making a booking on a website. We use a
subset of 8 complex tasks from MiniWoB++ as a toy benchmark to evaluate our method. We use
the bid-based action space from BrowserGym [ , ], consisting of 12 actions, and a
DOM based observation space. Due to its synthetic nature, MiniWoB++ comes with an automatic

reward function. We report the mean reward over 20 random seeds for each task, similar to

[2024].
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Figure 6.4: We score trajectories produced by our best models along 5 fine-grained attributes that
were obtained by categorizing manually writing comments on model failures, for both WebArena and
WebVoyager. We find that models can accurately interact with web-elements and conduct accurate
searching and querying, however avoiding loops and redundant steps remains a challenge, as well as
discovering information on web-sites by issuing multiple queries and piecing together information.

6.5.1 Experimental Settings

As before, we evaluate a L1ama—-3 . 1-8b based browser agent under the following settings:

1. Zero-Shot: A baseline zero-shot agent, prompted using chain-of-thought prompting [

R ]. Next, we consider various fine-tuned models.

2. SFT (Instruction-First): Supervised fine-tuning of the I.1ama—-3.1-8b agent using data
collected via instruction-first sampling. Here, we use the same reward model for filtering
demonstrations as NNetNav, and also sample the same number of demonstrations for fair

comparison.

3. SFT (NNetNav): Supervised fine-tuning of the I.1ama—-3.1-8b agent with demonstrations

collected via NNetNav.

4. SFT (NNetNav + Distil.): Ablation, where we only retain instructions found via NNetNav and
re-generate trajectories by prompting the same large LM as an agent. We use this setting to

isolate performance improvements attributable to NNetNav trajectories.



CHAPTER 6. UNSUPERVISED DIGITAL AGENTS WITH NNETNAV 86

For these small scale experiments, we use gpt—4o0-mini-2024-07-18 as the base LLM
for both NNetNav and instruction-first methods. For Instruction-first data collection, we sample
50 instructions per website for WebArena, and 80 instructions per interface in MiniWoB++, and
prompt the instruction generator with the landing page as well as a persona (to improve diversity).
For NNetNav, we use our exploration policy to generate 50 episodes per website for WebArena, and
80 episodes per interface for MiniWoB++. We set Ti,,x to 40 for WebArena, and 20 for MiniWoB++.
For both MiniWoB++ and WebArena, we apply the pruning function every 4 time-steps. We use 16

persona types per website for WebArena, and 10 persona types per web-interface for MiniWoB++.

Model Setting MiniWoB++ WebArena
Zero-Shot 0.28 1.0
SFT (Instruction-First) 0.28 4.2
SFT (NNetNav) 0.48 7.2
SFT (NNetNav + Distil.) 0.36 6.0

Table 6.4: Controlled evaluation of NNetNav with instruction-first methods. We present results for
MiniWoB++ and WebArena, averaged across domain, reporting mean reward for MiniWoB++ and
task success rate (SR) for WebArena. Fine-tuning with NNetNav leads to the largest improvements:
from 28% to 48% on MiniWoB++; from 1% to 7.2% on WebArena.

6.5.2 Results

NNetNav outperforms instruction-first methods. We report results from all settings in Table 6.4.
Fine-tuning L1ama-3.1-8b using synthetic demonstrations generated by NNetNav yields sig-
nificant improvements: an increase of 20 points on MiniWoB++ and over 6 points on WebArena.
Notably, NNetNav outperforms instruction-first methods by a substantial margin, with gains of 12
points on MiniWoB++ and 1.2 points on WebArena. Interestingly, SFT (NNetNav) outperforms
SFT (NNetNav + Distil.) on both MiniWoB++ and WebArena. This difference likely stems from
the distinct procedures used to generate trajectories. In NNetNav, the model first acts, and the
corresponding instruction is inferred afterward through a hindsight procedure. In contrast, NNetNav

+ Distil. provides the instruction upfront, sampling the trajectory later.

Computational savings from NNetNav pruning. We visualize overall improvements in explo-

ration efficiency in Fig 6.5. Each horizontal line depicts the fraction of interaction episodes that
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Domain  Zero-Shot Self-Train (NNetNav)
Shopping 3.8 154

CMS 0.0 0.0

Reddit 0.0 0.0

Gitlab 0.0 0.0

Maps 0.0 7.1

Avg. 1.0 53

Table 6.5: We generate NNetNav demonstrations using L1ama-3.1-8b, which we use for super-
vised fine-tuning of an agent based on the same LM, and find significant improvements on WebArena

from 1% to 5.3%.
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Figure 6.5: Horizontal lines indicate fraction of episodes terminating at corresponding y-axis
exploration step. The red shaded area represents prevented actions, showing significant savings on

both datasets.

terminate at a specific time-step (indicated by the y-axis), with the red shaded area depicting ad-

ditional actions that were prevented from early pruning. We find clear evidence of computational
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savings. In particular, over 60% of all exploration episodes were pruned after 16 actions for We-
bArena. For MiniWoB++, 65% of episodes were pruned after just 4 actions in MiniWoB++, which
we identify as interactions where these first actions resulted in execution failures that our pruning

heuristic successfully identified.

Self-training with NNetNav. Can NNetNav demonstrations from an LM be used for improving the
same LM agent? To answer this, we collect another set of NNetNav demonstrations on WebArena,
using L1ama—-3.1-8b as the base LM for data collection. Given the limitations of this smaller
model, we anticipate fewer meaningful interactions. To compensate, we increase the number of
episodes to 200 episodes per website, resulting in 302 demonstrations which we use for fine-tuning
the same L.1ama—3.1-8b agent. From results in Table 6.5, we find improvements of 4.3 points on
WebArena.

6.6 Related Work

Language Conditioned Digital Assistants. Mapping instructions to actions in digital environments
has been a long-standing goal in natural language understanding [ , , ,

]. Most pre-LLM approaches for this rely on expert demonstrations for behavioral cloning
[ , , , 1, along with appropriately shaped reward functions
[ , , , , , , among others]. Here, learning is driven

purely by synthetic demonstrations derived via (language model) exploration of websites.

Linguistic Priors for Exploration. Several prior works have used natural language priors to
inform exploration for sequential decision making. [ ] use a trained model of
associations between language and state/action pairs to guide exploration during policy learning.

[ ] use language annotations of states to train a goal generator module that provides intrinsic
rewards for achieving generated goals. Similarly, [ ] constrain exploration towards
goals generated by a pre-trained LLM at each intermediate state of an agent. In constrast, NNetNav
biases exploration through two news ways of using language priors. First, we use natural language
as a way to filter meaningful interactions. Second, we use it as a pruning heuristic to navigate the

potentially exponential search space of these interactions.

Training Data for LLM browser agents. LLMs have shown strong performance over a wide

range of language understanding tasks, and are increasingly being used to interpret language in
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grounded contexts such as browsers [ , s s , , ,

, , , , among others]. Many of these approaches rely on human demonstrations,
either for in-context learning [ , , , , , ] or for finetuning
[ , s , ]. Since human demonstrations are costly, recent work trains LLM
agents through synthetic demonstrations generated using instruction-first methods [ , ,

, ]. One exception is [ ], which introduces an interaction-first method
for generating synthetic demonstrations for in-context learning. Despite its novelty, their approach
does not scale well to real websites due to the lack of a mechanism for effective exploration in
environments with many possible interactions. In contrast, NNetNav also follows an interaction-first
approach but improves efficiency by leveraging linguistically motivated pruning to navigate the space

of meaningful interactions.

6.7 Conclusion

We propose NNetNav, a method for unsupervised interaction with websites “in-the-wild” that enables
training browser agents with synthetic demonstrations. NNetNav flips the standard paradigm of
synthetic data generation by first interacting with a website to generate trajectories and then hindsight
relabeling trajectories into instructions. Real websites have a prohibitively large set of possible
interactions; NNetNav searches over this space efficiently using a pruning function inspired by
the hierarchical structure of language instructions: any complex instruction consists of language
describable sub-tasks and so, if during an interaction a relabeling module cannot infer a meaningful
sub-task for the trajectory-so-far, further exploration is pruned. We apply NNetNav to collect a
diverse and complex set of 10k demonstrations from 15 live-websites and 5 self-hosted websites. We
use these demonstrations for supervised finetuning of a small, L1ama-3.1-8b model, achieving
state-of-the-art results for unsupervised methods on both the WebArena and WebVoyager, surpassing
zero-shot GPT—4 by 1.7 to 2.2 points. NNetNav opens up the possibility of scaling up training data

for generalist web agents across a broad range of web interfaces without any human intervention.



Chapter 7

Conclusion

The incredible advances in language understanding over the past six years, driven largely by the
unsupervised learning revolution, have fueled widespread optimism about general-purpose agents.
However, as this thesis argues, important technical challenges must be addressed to fully realize this
vision. In particular, to build reliable agents, we need robust linguistic priors as well as methods for
learning from environment interaction.

The first part of this thesis focuses on one crucial form of these linguistic priors: the ability
to build meaning in a bottom-up, compositional manner, which is essential for systematic and
reliable generalization. Chapter 2 demonstrates that despite having no explicit inductive bias for
compositionality, transformers trained on natural language with stochastic gradient descent gradually
become more tree-like. This has important implications for their behavior, as explored in this
chapter and in Chapter 3. In Chapter 4, we go a step further by introducing stack-based memory
to transformers. Pushdown Layers are designed to expand the range of functions transformers can
express. Motivated by formal results showing that transformers cannot robustly handle arbitrarily
deep recursive structures, Pushdown Layers augment the model with a stack that can “push” and
“pop” memories, much like a programming language, enabling it to better handle deeply nested or
recursive patterns.

The second part of this thesis turns to the challenge of autonomously learning about new environ-
ments. Learning here corresponds to gradient descent on automatically discovered demonstrations.
The methods I present, BAGEL and NNetNav, propose schemes for generating these demonstrations
through exploration. BAGEL (presented in Chapter 5) leverages a pre-trained LLM exploration policy
to sample trajectories and a labeler component to assign language goals, iteratively refining them until

an equilibrium is reached. These demonstrations are then added to a large vector database, indexed
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by the vector representations of goals. At test time, an LLM agent is “grounded” in the environment
via in-context learning: given a new goal, the top-k nearest demonstrations are retrieved and used as
examples for the agent. Chapter 6 extends this idea further by proposing a new pruning heuristic
to structure exploration in rich, complex environments like real-world websites. This approach
enables us to collect over 10,000 demonstrations, which are then used to fine-tune LLM agents,
achieving state-of-the-art performance on multiple browser-based instruction-following benchmarks.
Together, these chapters offer a way forward in addressing the ongoing debate about language models
being trained purely on form [ , ]. Demonstrations provide a clear mapping
from form (language goals) to meaning (the sequence of actions that accomplishes those goals). I
believe that large-scale training on interaction data could move us closer to the grounded language
understanding systems we ultimately aim to build.

Despite the significant disruptions that digital agents are poised to bring—displacing traditional
knowledge work, automating office tasks, and driving profound shifts in the labor market—the
long-term outlook for these technologies offers a more hopeful and transformative vision. Over time,
these agents have the potential to move beyond merely replacing jobs, to becoming sophisticated
co-pilots that augment human capability. By acting as collaborators, rather than simple replacements,
digital agents could help workers focus on the creative and strategic aspects of their roles while
taking over repetitive tasks. I believe this evolution is akin to shifts in computing history. Just as the
move from terminals to graphical user interfaces unlocked new ways of interacting with machines,
the emergence of digital agents may fundamentally change how we engage with computing. In the
future, tasks like tax filing, travel planning, software troubleshooting, HR payroll could be seamlessly
handled by these agents, freeing up time and energy for more meaningful work. More ambitiously,
digital agents could become true computer co-pilots for scientific exploration, offering automated
support to researchers in fields as diverse as biology, computer science, and mechanical engineering.
These developments promise not just to streamline routine work but to unlock entirely new forms
of creativity, helping us dream bigger and build more sophisticated solutions in a rapidly evolving

digital world.
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Appendix A
Formal Results on Tree Projections

Lemma 1. L(f, gy, T) < > gep SCI(S, T(S5))

Proof. Letl(f,g4,5,T) = > sers) Ags(s, T(s)), v?) for any S € D, where ¢ is a tree-structured
network indexed by ¢ € RP. The overall error of g4 on D is

L(f,96:T) =Y Uf g6, S, T). (A.1)
SeD
Let ¢* £ argming £(f, gy, T). Next, consider ¢ € R such that gd;(s, T(s)) = vsforall s € D.
Such a qg always exists for large enough p, since there exists a unique v for any p given D and f.
Clearly, I(f, 9,5, T) = ¥ ser(s) d(v5, 0s). By definition, we have

= > dws, 8 =) SCI(S,T(S)). (A3)
SeD seT(S) SeD
O

Theorem 1. ming 7 L(f, g4, T) < Y gep ming(s) SCI(S, T(S)). In other words, the best tree

structured approximation to f has an error upper bounded by cumulative SCI scores.

Proof. We have

Igi;lﬁ(f, 96, T) = mTinm(;nE(f, 96, T) (A4)
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For any given 7', we have ming L(f, g4, T) < > gep SCI(S,T'(S)). Thus minimizing both

sides with respect to 7', we have

min m(gnﬁ( f.94,T) < min Sza:) SCI(S,T(S)) (A.5)
= min SCI(S, T(S)) (A.6)

SeD T(s)
O

Under Assumption 1 and Theorem 1, we have the proof for Corollary 1.1 which we present next.

Corollary 1.1. Under Assumption I, ming 1 L(f, gg,T) = > gcp ming(g) SCI(S, T'(S)). More-
over, Tyi(S) = arg mingg) SCI(S, T'(5)) for any S € D.

Proof. Let st be the collection of all spans that occur as a constituent for some 7°(S) where S € D.
We have

L(fr90:T) =D Y dlgg(s,T(5)),5) (A7)
SeD seT(S)
=Y > dgs(s,T(s)),v7). (A.8)
sesT SESs

Now, using Assumption 1, we note that

> dlgs(s. T(s)),v7) = min Y d(v,v]) = D d(Bs,7). (A.9)

SeSs SeSs SeSs

Combining Equation A.9 and Lemma 1, we have

min £(f, gy, T) = »_ SCI(S,T(S)) (A.10)
¢ SeD
Now, we have
Throj = arg min [minﬁ(f, 9é> T)] = arg min Z SCI(S,T(9)) (A.11)
T ¢ SeD
Thus, Tro(S) = arg mingp(g) SCI(S, T'(S)) O

Next, we consider specific examples of distance metric d, and what Assumption 1 implies for

context-free vectors vs.
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Example A.0.1. Suppose d is the euclidean Lo distance i.e., d(x,y) = ||@ —y||. Then, Assumption I

. N |
requires that Vs = 5 > 5es, v

Proof Sketch. We have v = argmin, ) gcq. d(vs,v) = argmin, > ses, v — v?Y||. Setting
derivatives with respect to v to 0, we have v; = ﬁ > ses, vy ]
Example A.0.2. Ler d be the cosine distance of x and y i.e., d(xz,y) = 1 — m Then,
. . - vs
Assumption [ requires that Vs = EA] ZSESS 5]
Proof Sketch. We have
v’ v?
v: = argmin Z d(v?,v) = = arg max Z o HH S” = arg max o H( Z H gH) (A.12)
v
Y sess SESs SeSs
S
* __ Vg
Thus, v} —kZSESSmforanyk>0 O
COGS PCFGSET GeoQuery
1.0 1.0 1.0 =
. d(V;\;s) % ° d(VS, \75)
0.8] %, d(vs, Vi) 0.8 0.8 o d(v, V)
"J‘) )Q.:f."o..’\‘of e 2 =
5 0.6 5 0.6 5 0.6
() ° () ]
£ £ £
604 204 0.4
S Sy, 87 o,
0.2|" [ I T — 0.2 : SRS eSSy gy,
0.0 0 25 50 75 100 0.0 0 100 200 300 0.0 0 20 40
thousand steps thousand steps thousand steps

Figure A.1: We plot d ('v* ¥5) for randomly sampled spans at various points during training. As a
control, we also plot d ( ', Vs) for a random span s.. We observe that for COGS and GeoQuery, the
distance between the optlmal v} and v, eventually becomes less than 0.05. We conclude that the
conditions of Assumption 1 approximately hold true for 2/3 datasets.



Appendix B

BAGEL: Prompts used for various LM

components

B.1 Details of the Retriever used in BAGEL

We use a T5-XXL model to embed each word in the instruction, and mean pool across word embed-
dings to obtain an instruction vector. Given a test-time instruction, to retrieve relevant demonstrations,
we compute cosine similarities between the test instruction embedding and instruction embeddings
for each demonstration in our buffer, and return the top 3 demonstrations with the highest cosine

similarities.

B.2 Re-sampling action strings

When executing an action string in the environment results in an exception from the low-level
controller, we pass the exception message to the LM policy, and re-sample till the model outputs a
valid action, or the LM exceeds the max number of tries m = 5. Here is an example prompt we use

for this re-sampling procedure (the prompt is appended to the LM policy).

Listing B.1: Re-sampling during Execution Failure

Executing Action: {error_action}...
resulted in error: {error_message}. Think about what could have caused the error, and

then choose a new action.

Thought: [[thought_pred]]

119
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Now, output a different action based on your thought. End your output with a newline.

Action: [[action]]

B.3 Prompts

B.3.1 MiniWoB++

We start by presenting all prompts for MiniWoB++. The action space for MiniWob++ is:

Listing B.2: Action Space

— Click on xdescriptionx: This action will click on element that matches *description=

e.g. Click on the red button, Click on the first result in the autocomplete

- Move Mouse to xdescriptionx: This action will hover mouse over web element that

matches xdescriptionx* e.g. Move mouse to the menu bar.

- Type char xcharx on xdescriptionx: This action will type a single character xcharx

into the web element matching *description* e.g. Type char B on the first name field.

Use this if you want to type in a word character by character, to view or narrow search
results.

- Type *textx on xdescriptionx: This action will type *textx into the web element

matching xdescriptionx. Use this to type in all the words in *textx’ all at once.

— Clear text on xdescription*: This action will clear all previously typed text in web

element matching xdescriptionx

This is then directly used for various prompts as { inventory_str}.

Listing B.3: Exploration Policy

You are a web-agent that can interact with the given webpage by taking actions. You can
take the following kinds of actions:

{inventory_str}

Your objective is to discover diverse and interesting tasks (that a human might give to
an agent) by interacting with the webpage through these actions. You’ve executed the
following actions, and observed the following webpage states (described briefly in

language) .

+*+*Previous observations and actionsx*x*
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{prev_observations_and_actions}

After taking these actions, you observe the current web-page HTML:

{webpage_html}

Start by thinking about what action you should take next.
Thought: [[pred]]

Now, act by taking an action based in the inventory (or output Finish if you are done).

Action: [[pred]]

Listing B.4: Instruction Generator

*xObJjectivexx

You are a web-agent that can accomplish useful tasks on a website. You are given the
landing page of the website as follows:

{init_html}

To accomplish tasks, you can break it down into a sequence of sub-tasks from a task
inventory:

{inventory_str}

Propose a new task that can be performed on this website. Ensure that your tasks are

concrete and use features / contents of the given website.

Start by thinking about what new task you will generate.
Thought: [[pred]]

Answer: [[pred]]

Listing B.5: Trajectory Relabeler

A web-agent is given a precise instruction from a human, which it carries out through a
sequence of sub-tasks, where each sub-task (such as clicking on elements / typing on

elements / scrolling etc.) changes the HTML state of the webpage.

You are given the initial webpage (as HTML), the final webpage after all sub-tasks are

carried out, as well as a summary of changes that each sub-task made to the starting

HTML state.

Initial Webpage:
{init_webpage}

Final Webpage:

{final_webpage}
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Sub-tasks attempted by the web agent:
{subgoal_str}

Summary of changes made to HTML:

{observation_changes}

Your objective to guess the instruction that was given to the agent. Ensure that your
instructions are concrete and such that every sub-task meaningfully contributes to
fulfiling the instruction. Start by providing your reasoning. Use the following format
for your answer:

Reasoning: your reasoning

Answer: your answer

*xOutput
Reasoning: [[pred]]
Answer: [[pred]]

Listing B.6: Instruction Following Policy

You are a web-agent on an HTML page capable of executing the following kinds of sub-
tasks:

{inventory_str}

You are also given some examples of how to perform instructions on the website by
converting them into sub-tasks (along with the change each sub-task caused on the
website) .

{exemplars}
You are given the following instruction: {instruction}.
To perform this instruction, you’ve executed the following sub-tasks, and observed the

following webpage states (described briefly in language) .

**Previous observations and actionsx*x*

{prev_observations_and_actions}

After taking these actions, you observe the current web-page HTML:

{webpage_html}

Webpage Description: [[pred]]

First, think about which inventory item you should pick as your next action.
Thought: [[pred]]




APPENDIX B. BAGEL: PROMPTS USED FOR VARIOUS LM COMPONENTS 123

Now, output next action (output xfinishedx if the instruction has been accomplished) by
choosing an item from your inventory

Action: [[pred]]

Listing B.7: Demonstration Filter

You are given an initial web-page from a website (as HTIML). To accomplish some task, a
web-agent then interacts with the website, leading to a final webpage.

Given the task, the initial webpage and the final webpage, your objective is to judge
how well the web-agent carried out this task by giving it a score from 1 to 5.

Only give a score of 5 if the task is perfectly accomplished and the final webpage has

no errors.

Task:
{goal_str}

Initial Webpage:
{init_webpage}

Final Webpage:
{final_webpage}

Start by thinking about what the web-agent was trying to accomplish, and describe how
well it was done.

Thought: [[pred]]

Answer: [[pred]]

B.3.2 ToolQA

Next, we present all prompts for ToolQA below. The list of methods for various tools in ToolQA is:

Listing B.8: ToolQA methods

(1) Calculate[formula], which calculates the formula and returns the result.

(2) RetrieveAgenda[keyword], which retrieves the agenda related to keyword.

(3) RetrieveScirex|[keyword], which retrieves machine learning papers’ paragraphs
related to keyword.

(4) LoadDB[DBName], which loads the database DBName and returns the database. The
DBName can be one of the following: flights/coffee/airbnb/yelp.

(5) FilterDB[condition], which filters the database DBName by the column column_name

the relation (e.g., =, >, etc.) and the value value, and returns the filtered database.
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(6) GetValue[column_name], which returns the value of the column column_name in the
database DBName.

(7) LoadGraph|[GraphName], which loads the graph GraphName and returns the graph. The
GraphName can be one of the following: PaperNet/AuthorNet.

(8) NeighbourCheck [GraphName, Node], which lists the neighbours of the node Node in the
graph GraphName and returns the neighbours.

(9) NodeCheck [GraphName, Node], which returns the detailed attribute information of
Node.

(10) EdgeCheck [GraphName, Nodel, Node2], which returns the detailed attribute
information of the edge between Nodel and Node2.

(11) SQLInterpreter[SQL], which interprets the SQL query SQL and returns the result.
(12) PythonInterpreter[Python], which interprets the Python code Python.

and the action space for the LM policy is:

Listing B.9: Action Space

(1) Calculate xformulax, which calculates an arithmetic formula (such as 2+3, 2 % 4 etc
) and returns the result.

(2) Retrieve passages related to *phrasex, which retrieves information relevant to the
supplied phrase. This retriever operates on documents containing information about

people’s schedules.

(3) Retrieve passages from ML papers related to xkeywordx, which retrieves machine
learning papers’ paragraphs related to keyword.

(4) Load database *DBName=*, which loads the database DBName and returns the database.
The DBName can be one of the following: flights/coffee/airbnb/yelp.

(5) Filter database according to xconditionx. which filters the loaded database (
flights/coffee/airbnb/yelp) by a condition and returns the filtered database. A
condition is specified as *column_name relation valuex where relation can be (=, <, >,
<=, >=), and column_name is a column from the loaded DB. To filter according to

multiple conditions, the format requires comma separated conditions e.g. "Filter
database according to column_name_l=value_1, column_name_2>=value_2, column_name_3<

value_3".

(6) Get database value for *column_name*, which returns the value of the column
column_name in the database DBName.

(7) Load DBLP, which loads the graphs in dblp. Inside DBLP, there are two graphs:
PaperNet /AuthorNet.

(8) List nodes in graph *GraphNamex, which lists 10 randomly chosen nodes to help
explore the graph.

(9) Check neighbours of node *Nodex in graph xGraphNamex, which lists the neighbours of
the node Node in the graph GraphName and returns the neighbours. GraphName can be
PaperNet or AuthorNet.

(10) Get information for node *Nodex in graph *GraphNamex, which returns the detailed

attribute information of Node.
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(11) Check edge information between nodes *Nodelx and *Node2x in graph *GraphNamex,
which returns the detailed attribute information of the edge between Nodel and Node2.
(12) Interpret SQLite query: *Query=*, which interprets the SQLite query Query and
returns the result. There are 4 tables for querying: flights_data/coffee_data/
airbnb_data/yelp_data corresponding to the DBs flights/coffee/airbnb/yelp.

(13) Evaluate python code: xcodex, which uses the python exec function to execute the
python codeblock *xcodex as is. The result of the code must be stored in a variable
called ans, and the code cannot reference any variables not defined inside the
codeblock.

(14) Finish with answer: *answer*, which returns the answer and finishes the task.

This is then directly used for various prompts as {inventory_str}. Note that the action

strings (from this inventory) are converted into actual methods via string post-processing.

Listing B.10: Exploration Policy

You have the following tools:

{inventory_str}

Your objective is to discover diverse and interesting questions (that a human might
give to an agent with these tools) by chaining together calls to different tools. You’
ve executed the following tool calls, and observed the following outputs from these

tools (described briefly in language) .

*+Previous observations and actionsx*x

{prev_observations_and_actions}

**Current Observationxx

{curr_observation}

Start by thinking about what action you should take next.
Thought: [[pred]]

Action: [[pred]]

You are an agent with access to tools, that you may use to respond to various questions

Now, act by taking an action based in the inventory (or output Finish if you are done).

Listing B.11: Instruction Generator

**Objectivex*x
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You are an agent with access to tools, that you may use to respond to various queries.
You have the following tools:

{inventory_str}

To respond to queries, you need to call tools in a specific sequence to obtain the

answer.

Your objective is to propose a query that can be performed by chaining together these

tools. Ensure that your queries are concrete.

Start by thinking about what new query you will generate.
Thought: [[pred]]

Answer: [[pred]]

Listing B.12: Trajectory Relabeler

A user asks an AI agent a question, which it answers by accessing tools like databases,
calculators, retrievers and python interpreters. The AI agent answers this question by
carrying out a sequence of sub-tasks, where each sub-task (such as loading or querying

a dblp graph / calling a python interpreter etc.) leads to an output from the tool.

You are given the entire sequence of tool outputs, where the final tool output is the
answer that the agent gives. You are also given the sequence of sub-tasks attempted by

the agent.

Sub-tasks attempted by the agent:
{subgoal_str}

Sequence of tool outputs:

{observation_changes}

Your objective to guess the query that was given to the agent. Ensure that your answer
is concrete and such that every sub-task meaningfully contributes to answering the
query. Start by providing your reasoning. Use the following format for your answer:
Reasoning: your reasoning

Answer: your answer

*xOutput
Reasoning: [[pred]]
Answer: [[pred]]

Listing B.13: Instruction Following Policy
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You are an agent with access to tools, that you may use to respond to various queries.
You have the following tools:

{inventory_str}

To respond to queries, you need to call tools in a specific sequence to obtain the
answer. Here are some demonstrations of how to respond to queries by invoking tools:

{exemplars}

You are given the following query: {super_goal}

To perform this instruction, you’ve executed the following actions, and observed the

following outputs from your tools:

*+Previous observations and actionsx*x

{prev_observations_and_actions}

**Current Observationxx

{curr_observation}

First, think about which tool you should pick as your next action
Thought: [[pred]]

Now, output next action (output xfinishedx if the instruction has been accomplished) by
calling the chosen tool with appropriate arguments. End your output with a newline

Action: [[pred]]

Listing B.14: Demonstration Filter

A user asks an AI agent a question, which it answers by accessing tools like databases,
calculators, retrievers and python interpreters. The AI agent answers this question by
carrying out through a sequence of sub-tasks, where each sub-task (such as loading or

querying a dblp graph / calling a python interpreter etc.) leads to an output from the

tool. You are given the entire sequence of tool outputs, where the final tool output is
the answer that the agent gives. You are also given the sequence of sub-tasks

attempted by the agent.

Your objective is to judge how well the AI agent carried out this task by giving it a
score from 1 to 5.
Only give a score of 5 if the task is perfectly accomplished and the final answer has

no errors.

User question:

{goal_str}

Sequence of Tool outputs:
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{state_changelog}

Start by thinking about what the AI agent was trying to accomplish, and describe how
well it was done.
Thought: [[pred]]

Answer: [[pred]]

B.4 Converting LM Action space into API calls

MiniWoB++. We use the following prompt to convert the action string into an API call:

Listing B.15: LM to convert action strings into an API call

Webpage HTML: {html}

Use references into the webpage to specify actions to perform a given task.

You can take 4 kinds of actions on a chosen element specified via its ref id.

Action: type(text) types ’text’ into chosen ref, useful for typing into various
textboxes.

Action: click() clicks on chosen element, useful when clicking buttons, checkboxes or
textboxes. Sections can be clicked for expansion.

Action: move-mouse () moves mouse to a chosen element, useful when the element text has
'>" symbol for expansion.

Action: clear () clears all text on chosen ref-id, useful when you want to delete text

on textboxes.

To choose actions, strictly use the format below:
Chosen action: chosen from click/move-mouse/type/clear
Chosen element: Specify chosen ref id as an integer

Chosen text: text to type (n/a if chosen action is not type)

Task: {action_string}

Chosen action: [[pred]]
Chosen element: [[pred]]
Chosen text: [[pred]]

The LM predictions are combined into an APIcalle.g. ref[[element]].type ([ [text]]1]).

We use a simple python function to convert the API call into a Selenium web-driver method (type_text,
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clear and move_mouse are Selenium web-driver methods):



Appendix C

NNetNav: Prompts used for various LM

components

C.0.1 MiniWoB++

We start by presenting all prompts for MiniWoB++. The action space for MiniWob++ is:

Listing C.1: Action Space

noop (wait_ms: float = 1000)
Examples:
noop ()
noop (500)
scroll (delta_x: float, delta_y: float)
Examples:
scroll (0, 200)
scroll (-50.2, -100.5)
fill (bid: str, value: str)
Examples:
£i11 (' 237', ’"example value’)
£i11('45’, ’'multi-line\nexample’)
fill(’al2’, ’"example with "quotes"’)
select_option(bid: str, options: str | list[str])
Examples:
select_option(’ad48’, ’"blue’)
select_option(’c48’, [’'red’, ’'green’, ’'blue’])
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click(bid: str, button: Literal[’left’, 'middle’, ’"right’] = ’left’, modifiers: list]
typing.Literal[’Alt’, ’Control’, ’'Meta’, ’'Shift’]] = [])
Examples:
click(’a51’

click ('b22’, button=’right’)
click("48’, button='middle’, modifiers=[’Shift’])

dblclick (bid: str, button: Literal[’left’, ’'middle’, ’'right’] = ’'left’, modifiers: list
[typing.Literal[’Alt’, ’Control’, ’'Meta’, ’Shift’]] = [1])
Examples:

dblclick (’12")
dblclick (’cad42’, button='right’)
dblclick (’178’, button='middle’, modifiers=[’Shift’])

hover (bid: str)
Examples:

hover ('b8")

press (bid: str, key_comb: str)

Examples:
press (’88’, ’Backspace’)
press (’a26’, ’Control+a’)

press(’a6l’, ’"Meta+Shift+t’)

focus (bid: str)
Examples:
focus (' b455")

clear (bid: str)
Examples:
clear (' 996’

drag_and_drop (from_bid: str, to_bid: str)
Examples:
drag_and_drop ('’ 56’ , 498’

upload_file (bid: str, file: str | list([str])
Examples:
upload_file(’572’, 'my_receipt.pdf’)
upload_file (' 63’, [’/home/bob/Documents/image. jpg’, ’/home/bob/Documents/file.
zip’])

Only a single action can be provided at once. Example:

fill("al2’, ’'example with "quotes"’)

If you are done exploring, you can issue the stop action: ‘‘‘stop'''
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Here is an example with chain of thought of a valid action when clicking on a button: "
In order to accomplish my goal I need to click on the button with bid 12. In summary,

the next action I will perform is ‘‘‘click("12") *“?

This is then directly used for various prompts as {action_str}.

Listing C.2: Prompt for the Exploration Policy expiore

You are an autonomous intelligent agent tasked with performing tasks on a web interface
Your objective is to simulate a task that a person might request, by interacting with

the interface through the use of specific actions.

Here’s the information you’ll have:

DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.

The previous action: This is the action you just performed. It may be helpful to track
your progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s
interaction with the web-browser.

Person Description: The description of a specific kind of person whose task you are

supposed to simulate.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation.
You should only issue one action at a time.

You should reason step by step and then issue the next action.

Make sure to wrap your action in a code block using triple backticks.

g w N

The DOM / Accessibility Tree only shows the visible part of the webpage. If you need
to interact with elements that are not visible, you can scroll to them using the
scroll action. Often submit buttons are not visible and are at the bottom of the page.
To scroll to the bottom of the page, use the scroll action with a large value for the y
coordinate.

6. To generate an interesting task, make sure you issue atleast 4 actions before
stopping. More interesting tasks typically involve more interactions with the browser.
7. You can issue atmost 20 actions before stopping, but feel free to output the stop

action early if you want to stop exploring. Don’t generate anything after stop.

Listing C.3: Prompt for Ay
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You are given the output of an action taken by an autonomous intelligent agent
navigating a web-interface to fulfill a task given by a user. Your objective is to

produce a description of the changes made to the state of the browser.

Here’s the information you’ll have:

Initial state of the browser as a DOM representation: This is the webpage’s Document
Object Model (DOM) representation as a string.

Final state of the browser as a DOM representation: This is the DOM representation

after the agent took the action.

The action taken by the agent: This is the action taken by the agent to change the

state of the browser.
The actions the agent can take come from the following categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction
with the website changed these features

2. Provide the description of changes in one or two sentences.

3. Strictly follow the format "State change: <your-—-answer>" for your output

Listing C.4: Prompt for the Trajectory Labeling function Lf} u

Given a task from a user, an autonomous intelligent agent carries out a sequence of

actions on a web-interface.

The actions the agent can take fall under the following categories: {action_str}

Your objective is to guess the instruction the user gave, given the following
information:
Trajectory: This is a sequence of natural language descriptions of the agent’s

interaction with the web-browser.

To be successful, it is very important to follow the following rules:

1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.

2. Start by thinking by outputing Thought: <your-reasoning>.

3. End your answer by strictly following the format "Instruction: <your-answer>" for

your output.

Listing C.5: Prompt for the reward function sy
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An autonomous intelligent agent navigating a web browser is given an instruction by a
user. Your objective is to give a score to the agent based on how well it completed its
task. Your score must be on the scale of 1 to 5. Give a score of 5 only when there are

no errors. To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s

interaction with the web-browser.

To be successful, it is very important to follow the following rules:

1. Explictly think about what is needed to follow the instruction correctly on the
website and if the trajectory reflects these steps.

2 Give a score of 4 if there are very minor errors, or if the task was more than 70%
completed. Give a score of 3 (or below) if the model made very little progress towards
the given instruction or if there are major errors.

3. Start by thinking by outputing Thought: <your-reasoning>.

4. End your answer by strictly following the format "Reward: <your-answer>" for your

output

Listing C.6: Prompt for the base LLM agent 7 m

You are an autonomous intelligent agent tasked with performing tasks on a web interface

These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:

DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.

The user’s objective: This is the task you’re trying to complete.

The previous action: This is the action you just performed. It may be helpful to track

your progress.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is wvalid given the current observation
2. You should only issue one action at a time.

3. You should follow the examples to reason step by step and then issue the next action

4. Make sure to wrap your action in a code block using triple backticks.

5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need
to interact with elements that are not visible, you can scroll to them using the
scroll action. Often submit buttons are not visible and are at the bottom of the page.

To scroll to the bottom of the page, use the scroll action with a large value for the y

coordinate.
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6. Issue stop action when you think you have achieved the objective. Don’t generate

anything after stop.

C.0.2 Prompts for WebArena and Live Websites

Next, we present all prompts for running policies on self-hosted WebArena websites and live websites.

The action space is:

Listing C.7: Action Space

Page Operation Actions:

‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0[|1]"‘: Use this to type the content into the
field with id. By default, the "Enter" key is pressed after typing unless

press_enter_after is set to O.

‘hover [id]‘: Hover over an element with id.
‘press [key_comb] ‘: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).

‘scroll [direction=down|up]‘: Scroll the page up or down.

Tab Management Actions:
‘new_tab': Open a new, empty browser tab.
‘tab_focus [tab_index]‘: Switch the browser’s focus to a specific tab using its index.

‘close_tab': Close the currently active tab.

URL Navigation Actions:
‘goto [url]‘: Navigate to a specific URL.
‘go_back': Navigate to the previously viewed page.

‘go_forward': Navigate to the next page (if a previous ’'go_back’ action was performed) .

Completion Action:

‘stop ["done"]‘: Issue this action when you are done.

Additionally, for WebArena, models can visit the homepage at http: //homepage . com, which

lists all the websites on WebArena. This is then directly used for various prompts as {action_str}.

Listing C.8: Prompt for the Exploration Policy expiore in WebArena
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You are an autonomous intelligent agent tasked with navigating a web browser. Your
objective is to simulate a task that a person might perform, by interacting with the

browser through the use of specific actions.

Here’s the information you’ll have:

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.

The current web page’s URL: This is the page you’re currently navigating.

The open tabs: These are the tabs you have open.

The previous action: This is the action you just performed. It may be helpful to track
your progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s
interaction with the web-browser.

Person Description: The description of a specific kind of person whose task you are

supposed to simulate.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.

3. You should follow the examples to reason step by step and then issue the next action

4. Generate the action in the correct format. Start by reasoning out the current
situation. End with "In summary, the next action I will perform is" phrase, followed by

action inside ‘‘''‘'.

For example, "Let’s think step-by-step. Given the current state,
I need to click on the like button which has id 1234. In summary, the next action I

click [1234] ",

will perform is ‘'

5. To generate an interesting task, make sure you issue atleast 4 actions before
stopping. More interesting tasks typically involve more interactions with the browser.
6. You can issue atmost 40 actions before stopping, but feel free to output the stop

action early if you want to stop exploring. Don’t generate anything after stop.

Here are some example outputs for some random tasks:

1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine,
which is the product identified in the objective. Its price is $279.49. I think I have
achieved the objective. I will issue the stop action with the answer. In summary, the
next action I will perform is ‘‘‘stop [$279.49] "

2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to
the nominatim rule of openstreetmap, I can search for the restaurants near a location

by "restaurants near". I can submit my typing by pressing the Enter afterwards. In

summary, the next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]'

For Exploration on live websites, we add a few extra rules for our model to ensure safety and



APPENDIX C. NNETNAV: PROMPTS USED FOR VARIOUS LM COMPONENTS

terminate exploration when CAPTCHAs or logins are triggered.

Listing C.9: Prompt for the Exploration Policy Texpiore in WebArena
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You are an autonomous intelligent agent tasked with navigating a web browser. Your
objective is to simulate a task that a person might perform, by interacting with the

browser through the use of specific actions.

Here’s the information you’ll have:

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.

The current web page’s URL: This is the page you’re currently navigating.

The open tabs: These are the tabs you have open.

The previous action: This is the action you Jjust performed. It may be helpful to track
your progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s
interaction with the web-browser.

Person Description: The description of a specific kind of person whose task you are

supposed to simulate.

The actions you can perform fall into several categories:

Page Operation Actions:

‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0[|1]"‘: Use this to type the content into the
field with id. By default, the "Enter" key is pressed after typing unless

press_enter_after is set to O.

‘hover [id]‘: Hover over an element with id.
‘press [key_comb] ‘: Simulates the pressing of a key combination on the keyboard (e.g.
Ctrl+v).

‘scroll [direction=down]|up]‘: Scroll the page up or down.

Tab Management Actions:
‘new_tab': Open a new, empty browser tab.
‘tab_focus [tab_index] ‘: Switch the browser’s focus to a specific tab using its index.

‘close_tab': Close the currently active tab.

URL Navigation Actions:
‘goto [url]‘: Navigate to a specific URL.
‘go_back‘: Navigate to the previously viewed page.

‘go_forward': Navigate to the next page (if a previous ’'go_back’ action was performed)

Completion Action:
‘stop ["done"]‘': Issue this action when you are done. You can use the stop action to

convey a message to the user, but know that your interaction will terminate after this

’
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Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It

has a list of websites you can visit.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.

3. You should follow the examples to reason step by step and then issue the next action

4. Generate the action in the correct format. Start with a "In summary, the next action

AVATR VAR IR

I will perform is" phrase, followed by action inside For example, "In summary,

click [1234] ' ",

AURTRY

the next action I will perform is
5. To generate an interesting task, make sure you issue atleast 4 actions before
stopping. More interesting tasks typically involve more interactions with the browser.
6. You can issue atmost 40 actions before stopping, but feel free to output the stop

action early if you want to stop exploring. Don’t generate anything after stop.

Finally, here are some more rules that you should follow for specific websites:

1. On bookings and google flight, please use the date picker to choose start date
(2025-01-01) and end date (2025-01-03). Make sure you click search after you input the
dates.

2. Don’t click disabled or invisible links on any website.

3. On google map, try to search for some locations around the world.

4. On all websites, don’t click "Enroll", "Sign up", or other buttons indicating

AURTRY AURYRY

creating new accounts. Instead, just stop by issuing stop[’exit’] if you want to
pass control to a user to sign-up.
5. On all websites, don’t click "Sign in", "Log in through Google", or other buttons

indicating logging into existing accounts. Instead, just stop if you want to pass

AURYRY AURYRY

control to a user to sign-in by issuing stop[’exit’] action.
6. On arxiv.org, please always check html version of the papers. Don’t click view PDF.
7. When dealing pop ups, click "Maybe later" or other links that can turn off the pop

up temporarily.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine,
which is the product identified in the objective. Its price is $279.49. I think I have
achieved the objective. I will issue the stop action with the answer. In summary, the
next action I will perform is ‘‘‘stop [$279.49] "
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to
the nominatim rule of openstreetmap, I can search for the restaurants near a location
by "restaurants near". I can submit my typing by pressing the Enter afterwards. In
summary, the next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1] ‘'
3. Let’s think step-by-step. I want to see more of the page since the submit button is
not visible. I will scroll down to see the submit button. In summary, the next action I

will perform is ‘‘‘scroll [down] ‘‘‘.
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Listing C.10: Prompt for Ay

139

1.

2o
S

You are given the output of an action taken by an autonomous intelligent agent
navigating a web browser. Your objective is to produce a description of the changes

made to the state of the browser.

Here’s the information you’ll have:

Initial state of the browser as an accessibility tree: This is a simplified
representation of the webpage, providing key information.

Final state of the browser: This is the accessibility tree representation after the

agent took the action

The action taken by the web agent: The agent can take actions that fall under the

following categories: {action_str}

To be successful, it is very important to follow the following rules:

Explictly think about the various features on the website and how the interaction

with the website changed these features

Provide the description of changes in one or two sentences.

Strictly follow the format "State change: <your-answer>" for your output

Listing C.11: Prompt for the Trajectory Labeling function Lfy y

1.
2
3o
4
To
L o

2o
3o

Given an instruction from a user, an autonomous intelligent agent carries out a
sequence of actions on a web-browser. The actions the agent can take fall under the

following categories: {action_str}

Your objective is to guess the instruction the user gave, given the following
information:
Trajectory: This is a sequence of natural language descriptions of the agent’s

interaction with the web-browser.

Here are some examples of user instructions:

Get the distance from SF airport to Palo Alto.
Find out the price of Apple airpods
Add 5 items to cart

Make a comment on the first post in the r/gaming subreddit.

be successful, it is very important to follow the following rules:

Explictly think about how the trajectory is a valid way to achieve the instruction,

before outputing the instruction.

Start by thinking by outputing Thought: <your-reasoning>.

End your answer by strictly following the format "Instruction: <your-answer>" for

your output.
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Listing C.12: Prompt for the reward function sy m

An autonomous intelligent agent navigating a web browser is given an instruction by a
user. Your objective is to give a score to the agent based on how well it completed its
task. Your score must be on the scale of 1 to 5. Give a score of 5 only when there are

no errors. To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s

interaction with the web-browser.

To be successful, it is very important to follow the following rules:

1. Explictly think about what is needed to follow the instruction correctly on the
website and if the trajectory reflects these steps.

2 Give a score of 4 if there are minor errors, or if the task was more than 70%
completed. Give a score of 3 (or below) if the model made very little progress towards
the given instruction.

3. Start by thinking by outputing Thought: <your-reasoning>.

4. End your answer by strictly following the format "Reward: <your-answer>" for your

output

Listing C.13: Prompt for the base LLM agent 7y

You are an autonomous intelligent agent tasked with navigating a web browser. You will
be given web-based tasks. These tasks will be accomplished through the use of specific

actions you can issue.

Here’s the information you’ll have:

The user’s objective: This is the task you’re trying to complete.

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.

The current web page’s URL: This is the page you’re currently navigating.

The open tabs: These are the tabs you have open.

The previous actions: These are all the action you have performed. It may be helpful to

track your progress.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.

3. You should follow the examples to reason step by step and then issue the next action

4. You are strictly forbidden from issuing a goto action to a URL that is not on the

homepage.
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S

situation. End with "In summary, the next action I will perform is" phrase, followed by

will perform is ‘‘‘click [1234] ‘'".
6.
anything after stop.

Here are some example outputs for some random tasks:
1.
which is the product identified in the objective. Its price is $279.49. I think I have
achieved the objective. I will issue the stop action with the answer. In summary, the
next action I will perform is ‘‘‘stop [$279.49] '

2.

by "restaurants near". I can submit my typing by pressing the Enter afterwards. In

summary, the next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1] ‘'

Generate the action in the correct format. Start by reasoning about the current

AUAYRVRRRTRY

action inside For example, "Let’s think step-by-step. Given the current state,

I need to click on the like button which has id 1234. In summary, the next action I

Issue stop action when you think you have achieved the objective. Don’t generate

Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine,

Let’s think step-by-step. This page has a search box whose ID is [164]. According to

the nominatim rule of openstreetmap, I can search for the restaurants near a location

Both WebArena and WebVoyager require web-agents to output a special [stop] action at the

end of the episode. We append this stop token to TreeProjectionsdemonatrations via the following

prompt to the base LLM.

Listing C.14: Prompt for appending the special [stop] action

s

t

I

a

Given an instruction from a user, an autonomous intelligent agent carries out a

following categories (we also provide the descriptions of each action): {action_str}

You are given the user instruction, and the final webpage after the agent finished its

objective is to guess the agent’s stop action. To do this, you are given the following

Final State: This is the final state of the web-page after the agent executed its

actions on the browser.

Here are some examples of valid outputs:
1o
number of upvotes. I see the answer to that is Alice Oh. Therefore I will stop now. In
summary, my next action will be ‘‘‘stop [Alice Oh] ‘*‘‘.

2o

[N/A] M.
3.

the coffee shop. I see this info on the map as 0.3 miles. Thus I will issue the stop

equence of actions on a web-browser. The actions the agent can take fall under the

ask. Unfortunately, we forgot to collect the final stop action from the agent. Your

nstruction: This is the instruction given by the user.

Let’s think step-by-step. The task requires me to find the person with the most

Let’s think step-by-step. The task required setting the price of Sprite to 25$ which

I have already done. Thus I will stop now. In summary, my next action will be “‘‘stop

Let’s think step-by-step. I was supposed to find the distance from Brad’s house to

RURTRY

ction. In summary, my next action will be stop [0.3 miles] *'?
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To be successful, it is very important to follow the following rules:
1. Explictly think about what kind of a stop action was needed. For instance, if the

user requests information (e.g. Search for airports near CMU or Find developers with

more than 5 merge requests), then the stop action should have the answer based on the
final web-page (e.g. ‘‘‘stop [Pittsburgh Airport] ‘' or ‘‘‘stop [Don Knuth, Alan Turing
]Y'Y). Otherwise, the stop action should be without any arguments (e.g. ‘‘‘stop'‘'').

2. Your output should include reasoning steps. Also make sure to wrap the stop action
in triple backticks for e.g. ‘‘‘stop [<your answer>]‘'‘'‘'. Overall, follow the following
format for your output: "Let’s think step by step. <your reasoning>. In summary, mny

ANRTRY

next action should be stop [<your answer>] ‘‘‘.
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Shopping

Find a kitchen utensil organizer.
Find a kitchen utensil organizer within a certain budget.
Write a review for the product “Citric Acid 2 Pounds 100% Pure Organic Food Grade”.
Find the price of kitchen gadgets that can be used for dining and entertaining, and add them to the cart.
Browse for women’s clothing items, specifically jumpsuits, and add some to cart.
CMS

Change the stock status of the Sprite Stasis Ball 65 cm to In Stock.

Create a new product in the Magento Admin panel with the name *New Fashionable Watch’, SKU "New
Fashionable WatchFW101°, price $100.00, and set as new from 2024-01-01.

Update the price of Sprite Stasis Ball 55 cm to $24.50 and set its quantity to 50.

Add two products, “Abominable Hoodie” and “Samsung Smart TV”, with respective prices $99.99 and
$50.00, and then start the process of adding a new customer.

Reddit

Create a new forum called “Funny Stuff” with the title “Memes and LOLs”, description “A place for sharing
and discussing funny memes and LOLs”, and sidebar “Memes of the day”.

Find a webpage related to intraday trading strategies on the wallstreetbets forum.

Find and participate in a discussion on the wallstreetbets forum about intraday trading strategy, specifically
on a post titled “Swings and roundabouts”.

Change my profile settings to use Deutsch as the language and Africa/Accra as the time zone, and then
view the search results for “r/art”.

Maps

Get walking directions from Logan Street, Pittsburgh, PA to Carnegie Mellon University on OpenStreetMap.
Get the cycling directions from Brooklyn to Manhattan.

Find the driving directions from TLC Medical Transportation Services in Syracuse to Times Square in
Manhattan.

Gitlab

Create a new project named "My Blog Post Project’ and add an Apache License 2.0 file.

Create a new project, add a LICENSE file with Apache License 2.0, and approve the “Add verification
functions” merge request.

Search for a README.md file within the “My New Project” project and verify its contents.

Edit the issue “Link to WCAG 2.1 instead of 2.0?” in the First Contributions project on GitLab by updating
its title and description to point to WCAG 2.1 guidelines instead of 2.0 guidelines.

Investigate the node-http-proxy project’s issue #992 regarding connection headers and determine its
relevance to the Byte Blaze project.

Investigate and comment on the “Outdated dependencies” issue in the “Byte BlazeByte BlazeByte Blaze /
accessible-html-content-patterns” project.

Table C.1: Some Example demonstrations obtained from NNetNav-WA. We note that these instruc-
tions are hierarchical, refer to concrete features and entities and plausible by design.
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Figure C.1: Top-10 intents per website for Live websites (left) and WebArena websites (right). We
find a highly diverse range of intents ranging from finding holiday and festive recipes, kid-friendly
cooking, finding restaurant and dining reviews, finding apple product pricing etc. Note that on
live-websites, we explicitly prevent models from logging in, and this inherently limits the kinds of
tasks it can do. No such limitations are placed on WebArena, leading to tasks that require logging
in such as itextitposting on forums, creating projects, managing order details etc. We report the
perplexity of intent distribution per website in Section 6.4.1
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