
ARC-FACTORED BIAFFINE DEPENDENCY PARSING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF LINGUISTICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Timothy Dozat

May 2019

 http://creativecommons.org/licenses/by-sa/3.0/us/

This dissertation is online at: http://purl.stanford.edu/bm970wf5494

© 2019 by Timothy Allen Dozat. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Share Alike 3.0 United States License.

ii

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://purl.stanford.edu/bm970wf5494

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dan Jurafsky

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Martin Kay

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

This thesis describes a simple approach to neural arc-factored dependency parsing, building on neural

machine learning techniques that have gained considerable popularity in recent years. Dependency

parsing is a way of identifying the latent syntactic and semantic relationships between words in a

sentence, with solid foundations in linguistic theory that I describe in some detail. In this work, I

introduce new classification techniques that extend the affine softmax classifier ubiquitous in ma-

chine learning that would otherwise be inappropriate for parsing. What’s more, I demonstrate that

the new biaffine classification techniques can be derived mathematically from the same principles

that yield the affine softmax classifier. Related works either use an alternative to the proposed

biaffine classifiers—based on feedforward neural attention—or else use an entirely different parsing

algorithm—known as transition-based parsing—based on constituency parsing. In this work, I find

evidence that the biaffine classifiers outperform the traditional attention-based classifiers, and that

the arc-factored system outperforms transition-based parsers more broadly. I also demonstrate that

the hyperparameter choices are optimal or near optimal, with significant deviations either leading

to overfitting or underfitting. Consequently, any modifications to the architecture that yield bet-

ter accuracy are unlikely to be due to simply compensating for poor hyperparameters. The basic

system can be batched to parse large documents very quickly, and achieves accuracy comparable

to state-of-the-art on the most popular English benchmark. However, the original system makes

a few design choices that introduce complications for other languages, namely a reliance on whole

word tokens and part-of-speech tags. To solve the first limitation, I have the system construct word

representations from characters, so that the model can learn how morphology expressed through

orthography reflects syntactic structure. To solve the second, I minimally adapt the architecture of

the parser so it can be trained as a sequence labeler. A tagger that directly uses insights gleaned

from the parser can be trained on any dependency treebank with gold part-of-speech tags. This

approach achieved the highest performance at tagging and parsing on the 2017 CoNLL shared task

on dependency parsing, inspiring most of the top-performing systems of the 2018 shared task. I

also extend the system for multitask tagging, such that morphological features and language-specific

part-of-speech tags are conditioned on the predicted coarse-grained universal tag. Finally, I modify

the edge classifier to condition predictions directly on the relative location of words, so the system

iv

can more effectively leverage linearization and distance. Both of these make statistically significant

improvements to accuracy. In order to accommodate dependency formalisms that don’t adhere to

strict tree structures, I minimally adapt the parser once more to produce arbitrary dependency

graphs instead of dependency trees. I again ablate the system to explore how important the differ-

ent hyperparameters and components of the system are, finding that while most of them do make

a statistically significant difference, in general the differences are very small and the system is very

robust. The work in this thesis not only contributes narrowly to the field of dependency parsing, but

also more broadly provides tools for tasks with more complex dependencies than sequence labeling

or classification.

v

Contents

Abstract iv

1 Introduction 1

2 Syntax: From Theory to Practice 9

2.1 Introduction . 9

2.1.1 Constituency structure . 11

2.1.2 Phrase structure grammars vs dependency grammars 14

2.2 From Transformational Grammar to the Penn Treebank 21

2.3 From Lexical Functional Grammar to Universal Dependencies 25

2.4 From Minimal Recursion Semantics to DELPH-IN MRS 32

2.5 From Head-driven Phrase Structure Grammar to Pre-dicate-Argument Structures . . 39

2.6 From Functional Generative Description to Prague Semantic Dependencies 45

2.7 Conclusion . 52

3 Machine Learning 55

3.1 Affine classification . 55

3.1.1 Näıve Bayes and Maximum Entropy Classifiers 55

3.1.2 Alternative parameterizations . 63

3.2 Biaffine classification . 66

3.2.1 Fixed-class classification . 66

3.2.2 Variable-class classification . 68

3.3 Neural classification . 70

3.3.1 Feedforward networks . 70

3.3.2 Recurrent neural networks . 75

3.3.3 Gated recurrent neural networks . 77

3.4 Conclusion . 80

vi

4 Statistical Parsing 82

4.1 Grammar-based parsing . 82

4.2 Transition-based Parsing . 85

4.2.1 The shift-reduce algorithm . 85

4.2.2 Neural transition-based models . 90

4.3 Arc-factored parsing . 96

4.3.1 The algorithm . 96

4.3.2 Neural arc-factored models . 99

4.4 Conclusion . 101

5 Biaffine Dependency Parsing 103

5.1 Introduction . 103

5.2 Background and Related Work . 104

5.3 Proposed Dependency Parser . 105

5.3.1 Basic architecture . 105

5.3.2 Comparison with traditional attention . 109

5.3.3 Hyperparameter configuration . 112

5.4 Experiments & Results . 113

5.4.1 Datasets . 113

5.4.2 Hyperparameter choices . 113

5.4.3 Results . 117

5.5 Subsequent Work . 118

5.5.1 Language transfer . 118

5.5.2 Transition-based parsing . 118

5.5.3 Constituency parsing . 119

5.5.4 Multitask dependency parsing/semantic role labeling 119

5.5.5 Coreference resolution . 120

5.6 Conclusion . 120

6 Multilingual Augmentations 121

6.1 Introduction . 121

6.2 Architecture . 122

6.2.1 Deep biaffine parser . 122

6.2.2 Character-level model . 124

6.2.3 POS tagger . 126

6.3 Training details . 127

6.4 Results . 128

6.4.1 Nonprojectivity . 129

vii

6.4.2 Data size . 131

6.5 Ablation Studies . 132

6.5.1 POS Tagger . 132

6.5.2 Character model . 134

6.6 2018 Shared Task Extensions . 136

6.6.1 Biaffine tagger . 137

6.6.2 Distance and linearization . 143

6.6.3 Results . 151

6.6.4 Other CoNLL 2018 extensions . 153

6.7 Conclusion . 154

7 Extension to Semantic Dependencies 156

7.1 Introduction . 156

7.2 Background . 158

7.2.1 Semantic dependencies . 158

7.2.2 Related work . 158

7.3 Approach . 159

7.3.1 Basic approach . 159

7.3.2 Comparison with Peng et al . 161

7.3.3 Augmentations . 165

7.4 Results . 165

7.4.1 Hyperparameters . 165

7.4.2 Performance . 166

7.4.3 Variations . 167

7.5 Discussion . 168

8 Conclusion 170

Bibliography 171

viii

List of Tables

2.1 Differences between syntactic representations. 53

5.1 Basic model hyperparameters. 112

5.2 Comparison of classifier architectures. 113

5.3 Comparison of network sizes. 114

5.4 Comparison of recurrent cell types. 115

5.5 Ablation of embedding dropout. 116

5.6 Comparison of optimizer hyperparameters. 116

5.7 Basic system results on the English PTB and Chinese PTB parsing benchmarks. . . 117

5.8 Basic system results on the CoNLL ’09 shared task datasets. 117

6.1 Results on the CoNLL 2017 shared task. 128

7.1 Final hyperparameter configuration of the semantic dependency parser. 165

7.2 Semantic dependency parsing performance. 166

ix

List of Figures

4.1 An arc-standard transition sequence. 87

4.2 An arc-eager transition sequence. 87

4.3 An arc-standard transition sequence with the swap transition. 89

4.4 An arc-swift transition sequence. 90

4.5 Dependency charts using different maximum spanning tree algorithms. 97

4.6 Various higher-order arc-factored models. 98

5.1 A simple dependency tree parse for Sandy hugged Kim. 104

5.2 The basic parser architecture. 109

6.1 Basice parser architecture, repeated from Chapter 5. 123

6.2 The architecture of the character-level embedding model. 124

6.3 Total embedding architecture. 125

6.4 Comparison of parsing paradigm on crossing edges. 130

6.5 Evaluation of treebank size. 132

6.6 Comparison of relative tagger accuracy on parser performance. 133

6.7 Comparison of tagger choice on parser performance. 133

6.8 Character-level model ablation. 136

6.9 Tagger biaffinity ablation, evaluating on accuracy. 140

6.10 Tagger biaffinity ablation, evaluating on consistency. 141

6.11 Distribution of arc distances in the English Web Treebank. 149

6.12 Distance/linearization ablation, evaluated on total accuracy. 152

6.13 Distance/linearization ablation, evaluated by sentence length. 153

7.1 Comparison between syntactic and semantic dependency schemes. 157

7.2 The basic architecture of the factorized system. 160

7.3 Performance of architecture variations for the semantic dependency parser. 168

x

Chapter 1

Introduction

This thesis describes a relatively simple, high-accuracy, and theoretically-motivated neural machine

learning architecture that can be trained to identify the hierarchical linguistic structure of any sen-

tence in a given language. Linguistic structure comes in many forms, some of which are flat—with no

discernable substructures—and others of which are hierarchical—composed of smaller components,

which themselves are composed of smaller components, potentially unboundedly. One familiar kind

of flat structure is word segmentation (or, in the realm of Natural Language Processing, tokeniza-

tion). While sentences are written with spaces, spoken language generally doesn’t contain pauses

between words; a spoken utterance is more or less one continuous stream of sound. On the other

hand, an intuitive kind of latent hierarchical structure comes in the form of affixation; one can add

a prefix or suffix to a word to change that word’s meaning, and then one can add another prefix

or suffix to change it again, and so on. This can be seen in the two opposing meanings of the

word inflammable, which has both a prefix and a suffix. When the prefix is applied lower in the

hierarchical structure (i.e. “first”), as in Ex. (1.1a), one gets the positive meaning; but when the

suffix is applied higher (i.e. “second”), one gets the negative one.

(1.1) a. [in[flam]]mable

‘The object can catch on fire’

inflammable

inflam-

in- -flam

-able

b. in[[flam]mable]

‘The object cannot catch on fire’

inflammable

in- flammable

flame -able

In Ex. (1.1a), the prefix in- (here meaning ‘into’, or ‘on’) combines with the Latinate root flam-,

to create the word inflame, which historically meant ‘to catch on fire’ (cf. inflammation). Then,

the suffix -able combines with the word inflame, creating a new word that means ‘able to catch

1

CHAPTER 1. INTRODUCTION 2

on fire’. However, the word has been reanalyzed since its inception to have a different hierarchical

morphological structure, provided in Ex. (1.1b). The root flam- on its own has taken the meaning of

‘to catch on fire’, combining with -able first, creating a word that means ‘able to catch on fire’. The

new word can then be negated by the homophonous prefix in- (this time meaning ‘not’), creating a

word meaning ‘not able to catch on fire’. This structure is latent because again, there are no explicit

cues to indicate how the roots and affixes are organized.

The kind of latent structure that this thesis aims to model is known as syntax. Syntax can be

more or less described as characterizing the latent hierarchical linguistic structure that organizes

words into valid, meaningful sentences. Of course, it’s impossible to fully separate syntax from

other aspects of language, such as morphology, semantics, and pragmatics. One of the primary

functions of syntactic structure is to organize words into sentences that convey semantic meanings

from one individual to another. In Ex. (1.2a), Sandy is the indvidual experiencing the wanting, and

in Ex. (1.2b)—which exchanges the two individuals—Kim is. Ex. (1.2c) uses the same words but in

a scrambled order, and as such does not convey any information; by hypothesis, this is because it

lacks a syntactic structure that could be generated by Standard American English.

(1.2) a. Sandy wants to hug Kim.

b. Kim wants to hug Sandy.

c. * Kim Sandy wants hug to.

While tokenization is largely recoverable from orthography in many languages, syntactic structure

is not. Moreover, while virtually all linguists agree that syntactic structure exists in some form, it

is difficult even for native speakers or trained linguists to agree upon a language’s exact syntactic

rules and structures. Thus identifying syntactic structures can be very difficult; however, the close

relationship between syntax and semantics makes the syntactic structure of a sentence a valuable

asset to natural language understanding pipelines.

The syntax of a sentence is closely related to its meaning, so having an analysis of the syntactic

structure of a sentence is useful for practical applications that deal with natural language under-

standing in some way. The primary focus of this research is on using neural machine learning to

automatically generate these hierarchical syntactic analyses according to some predefined linguistic

framework. Before the rise of neural machine learning techniques, syntactic structure was assumed

to be necessary for a wide variety of these kinds of tasks. Even in the current age of neural networks,

knowledge base population and relation extraction—both of which involve identifying simple facts

in a text or series of texts—are places where syntactic structure is still being used very successfully

(Chaganty et al., 2017; Zhang et al., 2018b), and neural architectures that take advantage of hierar-

chical structure are gradually being found to outperform those that don’t (He et al., 2017; Strubell

et al., 2018). But as mentioned above, there are multiple competing theories of syntax that all make

incompatible assumptions, each with its own strengths and weaknesses and several of which actu-

ally posit multiple distinct layers of hierarchy. Thus it’s advantageous to develop a general-purpose

CHAPTER 1. INTRODUCTION 3

system that can learn the syntactic structures proposed by any of a variety of different theories.

To this end, this thesis describes a machine learning architecture that can be trained to generate

any linguistic representation that can be reduced to a dependency graph. This is in opposition to a

dependency tree and a constituency tree, which differ in a few critical ways. A constituency tree is

similar to the kind of linguistic structure described in Ex. (1.1): just as how contiguous morphemes

combine together to form logical units, contiguous spans of words combine together to form phrases;

and furthermore, the order in which the main word (the head word) combines with its modifiers is

often meaningful. In a dependency tree, by contrast, the words being grouped into a unit do not

need to be contiguous, and there is no hierarchy among a word’s dependents (the modifiers that are

subordinate to it). A dependency graph is an extension of a dependency tree that allows one word

or phrase to be hierarchically subordinate to multiple (or no) other word or phrases. These three

types of structure are shown in Ex. (1.3).

(1.3) Sandy wanted to hug Kim.

a. S

N

Sandy

VP

V

wanted

VP

TO

to

VP

V

hug

N

Kim

b.

wanted

Sandy hug

to Kim

root

nsubj xcomp

mark dobj

c.

wanted

Sandy hug

to Kim

top

act-arg pat-arg

pat-argact-arg

The exact details of these representations will be described later; the key point is that they all

group the words together in different ways. Working bottom-up, the constituency representation

in Ex. (1.3a) first groups the verb hug and the noun Kim into one unit, which then gets assigned

the label VP, for verb phrase. A larger VP is then created by grouping the smaller VP with the

word to, which then gets grouped into an even larger VP when it combines with wanted. In the

dependency tree in Ex. (1.3b), all of a word’s dependents are identified and grouped with that word

simultaneously, and their relationships to that word are all labeled. So first hug combines with

its auxiliary marker to and its direct object Kim, then wanted combines with its nominal subject

Sandy and its verbal complement hug. In the dependency graph (Ex. 1.3c), Sandy is grouped with

both wanted and hug, while to isn’t grouped with any other words. The dependency representations

don’t (and in fact generally can’t) stipulate hierarchy between the subject and complement verb.

Instead, they use different labels to formally differentiate the relationship between a verb and these

two kinds of modifiers, while maintaining a flat structure. Put succinctly, constituency trees identify

(unlabeled) relationships between adjacent labeled phrases, and dependency trees identify labeled

relationships between (potentially nonadjacent) words. Then, dependency trees require each word

CHAPTER 1. INTRODUCTION 4

to modify exactly one other word (except the one at the top of the hierarchical tree); dependency

graphs relax this restriction, so that a word can be subordinate to no other words or multiple other

words.

While the difference between dependency trees and dependency graphs might seem trivial, it

has substantial implications for parsing. There are two popular parsing paradigms for dependency

representations—transition-based and arc-factored (also known as graph based, but this thesis will

prefer the former term to avoid confusion with graph-structured and tree-structured formalisms).

The transition-based paradigm adapts an efficient constituency tree parsing algorithm, modifying it

to produce dependency trees instead (Nivre, 2003). It implicitly prunes away unlikely subtrees, so

that its simplest incarnation has a very efficient, O(n) time complexity; however, it can only produce

trees that mimic the constraints of constituency trees, with strict adjacency requirements. Relaxing

the adjacency requirements requires foregoing the efficient theoretical complexity bounds, though

empirically the runtime does not suffer drastically (Nivre, 2009). Relaxing the tree requirement,

so that words can depend on more or fewer than one head, requires substantially more complexity

(Wang et al., 2018). The arc-factored paradigm makes no attempt to prune away improbable edges,

examining each pair of words to see if one depends on the other (McDonald et al., 2005). If the

dependency formalism is unconstrained—with no tree or adjacency requirements—then the system’s

predictions can be used without post-processing. Alternatively, if the formalism has tree constraints

or adjacency constraints, a spanning tree algorithm can be used to impose them. Historically, com-

paring two words used to be very computationally expensive, so arc-factored parsers—which need to

make O(n2) feature-based comparisons—have been considerably less popular than transition-based

parsers, which make O(n) comparisons. However, one advantage of neural networks is that there are

many opportunities for parallelization, so that doing n2 operations isn’t actually much slower than

doing n operations. In fact, the pruning strategy of transition-based algorithms inhibits efficient

parallelization, meaning that arc-factored parsers have the potential to be faster than transition-

based ones for large documents of text. Not only does the pruning of transition-based approaches

now inhibit efficiency, but the system runs the risk of pruning away correct subtrees prematurely,

with workarounds to this substantially increasing engineering complexity. This suggests that arc-

factored approaches to dependency parsing have the potential to be both faster and more accurate

than comparable transition-based approaches.

With these considerations in mind, in the work at the crux of this thesis—Dozat and Manning

(2017)—I propose a relatively straightforward neural architecture for producing dependency trees.

Following the conventional neural techniques for natural language processing, the system uses vector-

space embeddings for the words and part-of-speech tags in a sentence as input to a recurrent neural

network. Recurrent neural networks represent a convenient and popular way to contextualize the

representation of each word based on the rest of sentence. Each word’s recurrent vector is then

put through one feedforward layer—the most basic kind of neural network—to generate a “head”

CHAPTER 1. INTRODUCTION 5

vector-space representation for that word, and another feedforward layer to generate a “dependent”

representation. This split-representation approach is motivated by the asymmetric relationship

between head and dependent; that is, the features useful for finding a word’s dependents may not

be the same as the features useful for finding a word’s head.

There are a number of ways that one can define a function to score a pair of words based on their

head and dependent representations. One approach, based off the attention mechanism proposed

by Bahdanau et al. (2014), would involve concatenating the representations and feeding them into a

multi-layer perceptron with a single output. Another approach, which is similar to work by Luong

et al. (2015), would take the dot product of the two representations, and yet another (drawing

inspiration from the same authors) would involve feeding them into a bilinear transformation with

one output. This work proves mathematically that the probability that the system is trying to

model—the probability of an edge between two words, given the two feature representations—can

be rewritten into a variation on the bilinear transformation that includes linear terms as well (making

it biaffine). An analogous approach is optimal for predicting the labels for each edge. Empirical

comparison of the proposed biaffine approach and approach related to Bahdanau et al.’s (2014)

attention (which several other researchers employ; cf. Zhang et al. 2017; Kiperwasser and Goldberg

2016) suggests that the theoretically-motivated approach outperforms the more ad hoc one. This

work also takes the position that thorough ablation studies and hyperparameter tuning are critical

for making any scientific claims, so it additionally compares the base system against even simpler

variants—finding that they underperform to varying degrees—and reports notable hyperparameter

settings. The resulting system is very fast and achieves very good accuracy, outperforming the

other arc-factored systems and approaching the performance of the more complex state-of-the-art

transition-based parser.

The primary benchmark used to evaluate parser performance at the time of the original work was

a treebank of English. While that work did evaluate performance on treebanks of other languages,

the other systems being compared against only reported on a subset of these treebanks. This makes

it difficult to make claims about the efficacy of the different approaches in different situations, such

as when the training dataset is much smaller or the language has more flexible word order. The 2017

and 2018 CoNLL shared tasks (Zeman et al., 2017, 2018) provided a testbed to compare different

approaches to tagging and parsing (as well as other NLP tasks) for a wide variety of languages. The

2017 shared task included test data for 81 treebanks from 49 languages, and the 2018 shared task

included test data for 82 treebanks from 57 languages. This allowed different parsers to be compared

along a wide variety of different dimensions.

In my contribution to Stanford’s submission to the shared tasks (Dozat et al., 2017; Qi et al.,

2018), I extend the basic parser in a number of ways in order to accommodate some of the many

different linguistic properties and data conventions. Part-of-speech tagging is a critical pre-processing

step for many dependency parsers, including the one proposed in here. In order to ensure that

CHAPTER 1. INTRODUCTION 6

every language had access to a high-quality tagger, the first addition in the 2017 submission is a

trainable part-of-speech tagger with similar architecture to the parser. This allows the tagger to

take advantage of the insights into hyperparameters gleaned from the original work. Additionally,

the basic parser treated each word as atomic, making it difficult for the system to learn relationships

between words with similar orthography. For example, the English words want and wants both have

similar meanings and syntactic properties; however, in the original system, for simplicity there was

no mechanism in place to explicitly capture the similarity between them. In English treebanks this

likely doesn’t affect performance too much, but for languages with richer inflectional morphology,

it represents a much bigger cause for concern. To address this limitation, the system constructs

representations for words using their individual character sequences.

Both the part-of-speech tagger and the dependency tree parser achieved the highest performance

of any team at the 2017 competition; ablation studies and per-language comparisons with other

teams’ submissions reveal that the gains come from a number of sources. Paying careful attention

to part-of-speech tagging and character-level orthography made significant improvements to the

parser, validating the extra complexity associated with modeling these features. Additionally, the

arc-factored strategy outperformed the transition-based baseline by a wider margin on languages

with more crossing dependencies, suggesting that the arc-factored approach to parsing may be

more effective at parsing languages where word order is less predictive of grammatical functions.

The system also performed particularly well on languages with more training data, suggesting that

the hyperparameters were well-tuned for high-resource circumstances but may need to be better

optimized for low-resource ones.

Nearly all top-performing submissions to the 2018 competition drew inspiration from Stanford’s

2017 submission: of the top ten systems, only one of them did not use a biaffine arc-factored archi-

tecture for parsing. Instead of making changes to the system architecture, the highest-performing

submission (Che et al., 2018) ensembled multiple copies of Stanford’s 2017 submission and utilized

ELMo embeddings (Peters et al., 2018), which leverage information from large unlabeled corpora

more effectively than the traditional word embeddings used in Stanford’s submissions. I likewise

made a few more augmentations to the version of the system that Stanford submitted to the 2018

competition, though I put more emphasis on neural architecture.

In the shared task, the part-of-speech tagger needs to label each word in the sentence according

to three different labeling schemes. However, some of the labels are highly correlated; for example,

it would generally be unreasonable to classify a word as a verb in one of the labeling schemes and a

noun in the other. Thus the tagger in the 2018 version of the system conditions predictions for the

harder (i.e. higher-entropy) tagging schemes on the easiest (i.e. lowest-entropy) one. That is, first

it labels the words according to the tagset with the fewest options to choose from, then it labels

each word according to the other tagsets, taking into consideration the first tag it predicted for that

word. This approach is shown to both improve performance on the harder tagsets and also slightly

CHAPTER 1. INTRODUCTION 7

improve the consistency of the tags.

Furthermore, the basic version of the parser doesn’t explicitly condition head assignments on

the relative locations of each word. It bilinearly transforms the neural features between each pair of

words into a score. The consequence of this is that any information about the order of or distance

between a word and its head must be extracted from the recurrent neural network alone, and can

only be used in a polynomial function. It’s not clear that this is the most efficient way to take

advantage of these features; one might worry that this hurts performance on longer sentences when

there are multiple words with the right syntactic and semantic properties to be a given word’s

head, but are too far away or on the wrong side. This is especially concerning for languages with

more relaxed word order, where there are no discernable syntactic rules that dictate attachment,

and where one would like to take advantage of a soft “attach to the nearest possible candidate”

heuristic. To address this concern, the system enhances the scorer with a way to explicitly condition

head predictions on word order and distance. This is then shown to make a significant impact on

performance, with the effect being carried by longer sentences.

The parser described so far was designed to produce dependency trees, rather than less re-

stricted dependency graphs, which allow each word to depend on multiple or no other words. While

transition-based approaches struggle to efficiently and accurately generate these representations, I

show that the neural architecture explored in this thesis can be adapted to handle these graphs

very easily (Dozat and Manning, 2018). Instead of optimizing for softmax cross-entropy, to find

the single best head for a given word, the system optimizes for sigmoid cross-entropy, allowing it to

find all the best heads for a given word. Labeling each head-dependent relation can then be done

in the exact same way as in the tree-structure parser. One problem that arises is that the loss for

the unlabeled parser—the part that makes head predictions—is significantly smaller than the loss

from the labeler, so the optimizer focuses too much on getting the correct labels and not enough

on getting the correct heads. This is addressed by upweighting the unlabeled parser loss to balance

it out with the label loss, allowing the system to efficiently optimize both the head-predicting and

edge-labeling subtasks. As is standard in this thesis, particular care is taken to ensure that the ad-

ditional complexity incurred by low-level architecture enhancements is in fact empirically justified.

In doing so, it is demonstrated that unlabeled parsing and labeling can be done simultaneously in

one step without reducing accuracy, suggesting that the system can be simplified even further.

Overall, the main goal of this thesis is to propose a relatively simple neural dependency parser,

along with a few useful extensions to improve accuracy under certain circumstances (such as for

languages other than English or non-tree structured dependency formalisms). It aims to do this

in a way that rigorously tests the individual components of the system to justify any complexity

beyond what is strictly necessary theoretically or empirically. The core architectural innovations—

biaffine attention and biaffine classifiers—are likewise rigorously motivated theoretically, being a

natural extension of the standard affine classifier ubiquitous elsewhere in machine learning. On a

CHAPTER 1. INTRODUCTION 8

lower level, this thesis introduces and motivates new neural components not specific to dependency

parsing, utilizing biaffine transformations in a wide variety of different classifiers that can be used

for making predictions when the information comes from two different sources. The impact of the

parser in this thesis is multi-fold: it is fast and accurate, making it good for use as a black-box

in downstream tasks (Strubell et al., 2018); it provides a highly accurate baseline against which to

test alternative architectures (Ma et al., 2018); similarly, because of the simple and straightforward

architecture of the parser, it represents an easy-to-extend starting point for additional research

on dependency parsing (Wang et al., 2017); finally, because it doesn’t rely on any task-specific

architecture, it can be used as an auxiliary task in multitask systems (Shi and Zhang, 2017; Clark

et al., 2018).

The rest of this thesis is laid out as follows. Chapter 2 describes the theoretical origins of a number

of popular dependency frameworks, illuminating the relationship between academic linguistic theory

and its application in computationally useful representations. Chapter 3 goes over the machine

learning background assumed in the rest of the thesis, and proves that biaffine attention follows

from the same principles that yield affine classifiers. Chapter 4 surveys the parsing literature,

describing in detail the most prominent and relevant approaches to parsing (both transition-based

and arc-factored). Chapter 5 describes the basic architecture of the parser, originally published as

Dozat and Manning (2017). Chapter 6 describes the augmentations made in the 2017 and 2018

CoNLL shared tasks to handle phenomena in non-English languages, originally published as Dozat

et al. (2017); Qi et al. (2018). Chapter 7 describes the extension of the parser to graph-structured

dependency formalisms, originally published as Dozat and Manning (2018). Finally, Chapter 8

concludes the thesis.

Chapter 2

Syntax: From Theory to Practice

2.1 Introduction

The simplest approach to many tasks in the realm of natural language processing (NLP) is the

“bag-of-words” approach, which makes use of the tokens (and perhaps bigrams) in the sentence

while ignoring the order they appeared in. For text classification objectives, this approach can

yield relatively good performance (Wang and Manning, 2012). In modern neural network systems,

this normally translates to a bag-of-embeddings approach, where each word is assigned a learned

vector representation (Jin et al., 2016). However, not only is this approach insufficient for many

more complex tasks (such as those involving natural language generation), but even within text

classification the “bag-of-embeddings” model is normally outclassed by more complex neural models

that retain the original order of words in the sentence (Tang et al., 2015; Lai et al., 2015). Similarly,

some researchers have found that neural systems that only take advantage of word order can be

surpassed by systems that utilize higher-level linguistic information (Tai et al., 2015; Marcheggiani

and Titov, 2017). In addition to preserving the original order of words in the sentence, each word

can be labeled with additional details relating to features such as its part of speech (such as whether

a word is a noun, verb, adjective, etc.) or named entity status (whether a word is part of a name,

organization, location, etc.). These features are limited to describing the sequence of independent

words in a sentence—however, sentences are known to have hierarchical, syntactic structure, which

individual word labels are generally unable to capture.

The goal of this chapter is to describe some of the major theories of syntax as well as the

phenomena that motivated them, but focusing on the ones that have been used as inspiration for

computer-friendly formalisms. This thesis is centered around a computational system for generating

analyzing any arbitrary string of text into these formalisms, so it’s important to have an under-

standing not only of their empirical utility in downstream applications but also of their theoretical

origins and soundness. That is, the syntactic formalisms that this system generates analyses for

9

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 10

are not arbitrary or ad hoc; they derive from decades of (often competing) theoretical research on

language—simplified to be practical to use, read, and annotate—which this chapter aims to outline.

The main goal of the syntax branch of linguistic theory is to describe cross-linguistically general

mechanisms that can be parameterized for a given language to generate all and only the accept-

able sentences in that language. It sometimes includes the goal of describing how meaning can be

assigned to a parsed sentence in the language. While different theories of syntax make different

assumptions about nature of these mechanisms, essentially all of them acknowledge that words are

recursively grouped into syntactic units, or constituents. For theories with multiple distinct levels

of representation, the level that aims to model this recursive hierarchy is known as the level of con-

stituency structure. Many popular syntactic theories require that these constituents be contiguous

and labeled with abstract syntactic categories; these contiguous labeled groups are known as phrase

structures, and together they form a sentence’s phrase structure tree. For example, in the relatively

theory-neutral phrase structure tree in Ex. (2.1), the verb (labeled V) and its nominal object (N)

are grouped into a verb phrase (VP), which in turn is grouped with the subject into a complete

sentence (S). Phrasal labels such as VP and S are also known as syntactic categories.

(2.1) Sandy hugged Kim.
S

N

Sandy

VP

V

hugged

N

Kim

Other syntactic theories assume that constituents can be discontiguous. Instead of encoding syntactic

hierarchy between words and phrases, they encode the hierarchy between pairs of individual words.

Less prominent words are made to depend on more prominent words, with the most important word

marked as the root of the hierarchy. Each word is labeled with the relationship it has with its head

word, the word it depends on. This kind of hierarchical representation is known as a dependency

tree.

(2.2) Sandy hugged Kim.

Sandy hugged Kim

Root

Subj Obj

The remainder of this section will provide evidence for syntactic structure in language and in-

troduce the reader to a few linguistic phenomena that will help illustrate the mechanisms used by

different syntactic theories. It will also characterize some of the theoretical strengths and weak-

nesses of phrase structure and dependency approaches to modeling surface-level syntax. Subsequent

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 11

sections will describe the linguistic theories that have been used as inspiration for general-purpose

computational representations of sentences, focusing on differences in the underlying syntactic rep-

resentations they posit. The discussion of each new theory will emphasize phenomena that it’s

particularly well-equipped to handle or that motivated key aspects of it. In some cases though,

these phenomena are complex and require laborious effort from experts to annotate accurately. In

these cases, they may not always be represented in formalisms inspired by these theories. Still, an

understanding of the challenges that motivated the theories will illuminate some of the oddities of

the formalisms and make related tools more accessible. It will also show the reader what aspects of

language have yet to be represented in formalisms that have gained widespread popularity.

2.1.1 Constituency structure

There is strong empirical evidence in favor of constituency structure in human language (Pān. ini and

Katre, 1987; Chomsky, 1957), though phrase structure is not universally accepted (Tesnière, 1959).

Some constructions involve dislocating or stranding specific groups of words, suggesting that these

groups form a logical unit. Verb phrase topicalization—shown in Ex. (2.3), with “*” indicating that

a sentence is unacceptable—is one such construction.

(2.3) a. Sandy wanted to hug Kim, and Sandy did hug Kim.

b. Sandy wanted to hug Kim, and hug Kim Sandy did.

c. * Sandy wanted to hug Kim, and hug Sandy did Kim.

d. * Sandy wanted to hug Kim, and Sandy hug Kim did.

e. * Sandy wanted to hug Kim, and Kim hug Sandy did.

S

VP

V

hug

N

Kim

S

N

Sandy

V

did

The only difference between the acceptable sentence (Ex. 2.3b) and the unacceptable sentence (Ex.

2.3c) is whether or not the object is dislocated along with the verb. Furthermore, arbitrary words

from the conjoined clause cannot be topicalized—the subject cannot be topicalized alongside the

verb, shown in Ex. (2.3d). As indicated by the difference between Ex. (2.3b) and Ex. (2.3e), the

rule in English that the object must follow the verb holds in topicalized sentences as well as in non-

topicalized ones. Similarly, a nonfinite verb and its object can be stranded in answer to a question,

but only if they follow the same linear precedence constraint that orders the verb before the object

in basic clauses.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 12

(2.4) What did Sandy want to do?

a. Sandy wanted to hug Kim.

b. Hug Kim.

c. * Sandy hug Kim.

d. * Kim hug.

S

VP

V

Hug

N

Kim

As with verb phrase topicalization, the verb and its object can occur in a stranded answer (Ex.

2.4b), but the subject cannot (Ex. 2.4c) and the verb and its object must occur in the usual order

(Ex. 2.4d). The uniformity between basic sentences, VP-topicalized sentences, and stranded answers

can be generalized by making two assumptions: (a) that a nonfinite verb and its object are grouped

into a single unit that follows certain constraints no matter where it is in the sentence; and (b) that

verb phrase topicalization and stranded answers involve moving or dislocating this unit.

There is normally one word or phrase inside a larger phrase with special status, known as the

head word, which defines how the larger phrase behaves. Often (though not universally), this word

or phrase must be present in order for the larger phrase to exist. For example, in a phrase like hug

Kim, the verb hug is generally assumed to be the head, because the object is optional (cf. Sandy and

Kim hugged), and the phrase can occur in most of the same places that intransitive verbs without

an object can occur.

(2.5) Sandy left.

(2.6) a. Sandy wanted to leave, and leave Sandy did.

b. * Sandy wanted to leave, and Sandy leave did.

(2.7) What did Sandy want to do?

a. Sandy wanted to leave.

b. Leave.

c. * Sandy leave.

Because phrases composed of a transitive verb and its object can appear in the same constructions

as a lone intransitive verb, it can be inferred that the verb is more “important” than its object for

determining where the phrase can appear. Many researchers have observed that function words,

such as prepositions and complementizers like if and that, are normally heads (Jackendoff, 1977;

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 13

Hudson, 1984; Chomsky, 1986). Many (but not all) theories include articles here as well. The head

words and phrases of the sentence Sandy wanted to hug Kim are marked with thick colored edges

in Ex. (2.8).

(2.8) Sandy wanted to hug Kim

S

N

Sandy

VP

V

wanted

VP

TO

to

VP

V

hug

N

Kim

Verbs taking infinitive complements (as in Ex. 2.8) is a linguistic phenomenon known as control ; it’s

fairly common in English but introduces some complexities that need to be accounted for, so this

sentence will serve as an example throughout this chapter.

All syntactic theories assume in one way or another that the hierarchical structure of a sentence is

not arbitrary—rather, it’s related to how the meaning of the sentence is constructed (or divided up).

By hypothesis, the larger phrase unit combines together the individual meanings of its constituents to

create a larger, coherent unit of meaning. This is sometimes referred to as semantic compositionality.

For example, in the sentence in Ex. (2.9), the words saw Alex form a verb phrase, as do hugged Kim.

(2.9) Sandy saw Alex and hugged Kim.
S

N

Sandy

VP

VP

V

saw

N

Alex

Conj

and

VP

V

hugged

N

Kim

Furthermore, these verb phrases provide information about the events being described. Alex is the

person being seen, not the person being hugged, and Kim is described as the person being hugged,

not seen. The conjunction then combines the two verb phrases so that any relationships higher in

the constituency hierarchy apply to both events. This can be seen when the conjoined verb phrase

combines with the noun Sandy, making the person Sandy both the seer and hugger.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 14

2.1.2 Phrase structure grammars vs dependency grammars

Effectively all theories of syntax distinguish between constituency structure—detailed above—and

some kind of abstract structure, althogh in modern Transformational Grammar (known as Minimal-

ism; Chomsky 1994) the line is somewhat blurred. Sections 2.2 through 2.6 will describe differences

between the underlying representations that different theories posit, which are all very different.

This section will discuss the strengths and weaknesses of the two primary approaches to represent-

ing constituency structure: phrase structure and dependency structure.

In theories that assume phrase structure, headedness has to be imposed on the constituency

structures through independent mechanisms. That is, nothing inherently blocks constituency trees

like Ex. (2.10).

(2.10) Sandy Kim

S

N

Sandy

N

Kim

Phrase structure grammarians normally address this by assuming some variant of X-bar theory

(Chomsky, 1970; Jackendoff, 1977), which places restrictions on what phrase structure rules are

allowed in the theory to simulate headedness. Proponents of theories that assume dependency

structure, on the other hand, point out that dependency trees are built on the notion of headedness.

A phrase structure like Ex. (2.10)—where neither word is the head, and the phrase behaves like

a finite clause—has no analog in a dependency framework. Some proponents of phrase structure

would counter that this is actually a desirable characteristic, allowing for constructions where there

truly isn’t evidence for an overt head (Ginzburg and Sag, 2000). A dependency grammar could not

provide a structure for Ex. (2.11) without inserting a silent copy of the main verb in the second

clause. Not only does this introduce parsing complications, but it turns out that empty tokens

in dependency parses are only required for this one specific type of ellipsis, rendering the analysis

somewhat unsatisfying.

(2.11) Alex hugged Sandy, and Sandy, Kim

S

Conj

and

S

N

Sandy

N

Kim

≈

and Sandy [hugged] Kim

Conj

Subj Obj

Phrase structure grammars thus need to stipulate an independent mechanism that explains why most

phrases have heads, whereas dependency grammars need to stipulate an independent mechanism to

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 15

explain why some phrases seem to lack them.

Phrase structure trees are particularly useful for capturing more fine-grained word order gener-

alizations common in languages like English (which was the primary language of study when the

academic popularity of syntax took off). One instance of this relates to modifiers in English (Sadler

and Arnold, 1994). In English, single-word adjectives typically occur to the left of the noun they

modify. However, when an adjective takes an argument or a prepositional phrase modifier, the ad-

jective phrase (AP) normally has to come to the right of the noun. Native speaker intiution dictates

that in order for the adjective phrase to appear before the noun, it has to be “hyphenated”, meaning

that it syntactically and intonationally behaves as a single word.

(2.12) a. A worthy man.

b. * A man worthy.
(2.13) a. A man worthy of praise.

b. * A worthy of praise man.
(2.14) a. A man green with envy.

b. * A green with envy man.
(2.15) a. A worthy-of-praise man.

b. A green-with-envy man.

Peculiarly, adjectives modified with adverbial intensifiers can still occur to the left of the noun, pro-

vided that they have no following prepositional phrase modifiers or arguments. Intensified adjectives

occurring after the noun are generally unacceptable, although they may be used to evoke an archaic

tone.

(2.16) a. A very worthy man.

b. * A man very worthy.
(2.17) a. A man very worthy of praise.

b. * A very worthy of praise man.

c. A very worthy-of-praise man.

Adjectival and adverbial modification in theories that assume context-free phrase structure (for

instance, X-bar theory, assumed in the following trees; Jackendoff 1977) normally involves rules of

the sort in Ex. (2.18), where the head category (here marked with an asterisk) is grouped with the

modifier to create a phrase with the same category as the original head.

(2.18) XP → XP∗ ModP

This is known as an adjunction rule, because the modifying phrase ModP joins with the head phrase

XP but doesn’t fundamentally chage it—the whole unit is still an XP and can appear wherever the

unmodified version can appear. The linearization of adjectives relative to nouns in English can

be explained succinctly in a phrase structure grammar by stipulating that there are two levels of

syntactic category: the “word” level and the “phrase” level. Intensifier adverbs (of category Adv)

adjoin to adjectives leftwards at the word level (A), whereas prepositional phrases (PP) adjoin

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 16

rightwards at the phrase level (AP). Since adjunction is assumed to create the same syntactic

category as the head (Ex. 2.18), an Adv adjoining to an A would create another A. The intensified

adjective would then have the same distribution as a single-word adjective. This means that pattern

of adjectives modifying nouns can be described similarly: a noun N can only be modified by an A

to the left (Ex. 2.19), and a noun phrase NP can only be modified by an AP to the right (Ex. 2.20).

The context-free phrase structure rules in Ex. (2.19–2.20) formalize the pattern just described, with

asterisks indicating the head of the phrase.

(2.19) a. A → Adv A∗

N → A N∗

b. A very worthy man.
DP

D

a

NP

N

A

Adv

very

A

worthy

N

man

(2.20) a. AP → AP∗ PP
NP → NP∗ AP

b. A man worthy of praise.
DP

D

a

NP

NP

N

man

AP

A

worthy

PP

P

of

NP

N

praise

One striking observation is that in both pairs of rules, word-level adjunction happens to the left

and phrase-level adjunction happens to the right. This raises the question: does that observation

hold elsewhere in English? One place where it would seem to is noun compounding. Nouns can be

placed in a single phrase side-by-side, in which case the noun to the left is considered the modifier

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 17

(Ex. 2.21), or one can be embedded in a prepositional phrase, in which case the modifying phrase

goes to the right (Ex. 2.22).

(2.21) a. N → N N∗

b. A tree hugger.
DP

D

a

NP

N

N

tree

N

hugger

(2.22) a. NP → NP∗ PP

b. A hugger of trees.
DP

D

a

NP

NP

N

hugger

PP

P

of

NP

N

trees

Prepositions and adverbs, like adjectives, can be intensified. This is normally done with the intensifier

right, occuring to the left (Ex. 2.23, 2.24). Some adverbs can be modified with prepositional phrases;

in this case, the modifying phrase goes to the right (Ex. 2.25).

(2.23) a. P → Adv P∗

b. Right in the middle.
PP

P

Adv

right

P

in

DP

D

the

NP

N

middle

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 18

(2.24) a. Adv → Adv Adv∗

b. Come right in.
VP

V

come

Adv

Adv

right

Adv

in

(2.25) a. Adv → Adv∗ PP

b. I’ll come right out of my office.
S

N

I

AuxP

Aux

’ll

VP

V

come

AdvP

AdvP

Adv

Adv

right

Adv

out

PP

P

of

DP

D

my

NP

N

office

This generalization can be captured in a phrase structure grammar with only two reasonable stipu-

lations: adjunction at the word level is head-final, but adjunction at the phrase level is head-initial

(Ex. 2.26); and unary branching phrases should be avoided when possible. The second constraint

is needed here for preventing structures as in Ex. (2.27), but also follows from the independently

motivated principle of economy of expression (Bresnan, 1995, 2001), which constrains constituency

trees to have as few non-terminal nodes as the grammar allows.

(2.26) X → Y X∗

XP → XP∗ YP

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 19

(2.27) * A man worthy.

DP

D

a

NP

NP

N

man

AdvP

Adv

worthy

Dependency grammars are unable to distinguish between the word level and phrase level to the

same end as phrase structure grammars. While one might be able to formalize a constraint along

the lines of “modifiers with no dependents go before the word they modify, but modifiers with

dependents go after it”, this fails to capture the observation that intensified adjectives—which do

have a modifier—must still precede their head.

(2.28) A worthy man.

A worthy man

Obj

Mod

(2.29) A very worthy man.

A very worthy man

Obj

ModMod

(2.30) A man worthy of praise.

A man worthy of praise

Obj Mod Prep Obj

It’s not clear what the best way to account for this phenomenon is in a dependency grammar.

Phrase structure grammars allow for an elegant analysis of this class of word order constraints that

dependency grammars struggle to capture.

While phrase structure grammars are good at explaining rigid word order, dependency grammars

are better equipped for explaining relaxed word order. In many languages, word order is so free that

grouping words into contiguous phrases with well-defined behavior is difficult or impossible. Latin is

one well-known example of this (Ex. 2.31). Languages such as Latin are known to base word order

on information structure rather than constituency constraints.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 20

(2.31) Super
on

juvencum
bull.acc

stabat
stood

dejectum
fallen.acc

leo
lion.nom

‘On a fallen bull stood a lion.’

S

PP

P

Super

NP

N

juvencum

VP

V

stabat

A

dejectum

N

leo

Here, the noun phrase juvencum dejectum, “fallen bull” is separated by the verb stabat, “stood”.

However, the main verb of the sentence does not form a logical unit with the object of the prepo-

sition phrase. Therefore, the noun phrase is discontinuous, and cannot be modeled with a context-

free phrase structure tree. Phrase structure grammars will typically either employ movement or

movement-like mechanisms to effectively re-order a more convenient underlying word order into the

observed one, or else abandon phrase structure altogether and posit a constituent without imme-

diate internal hierarchy (Ex. 2.32a). By contrast, dependency grammars don’t generally make the

assumption of surface-level contiguity. This means that in a dependency analysis of Ex. (2.32b),

the offending adjective dejectum can depend directly on the noun it modifies without complication,

which is impossible in a phrase structure tree.

(2.32) Super juvencum stabat dejectum leo.

a. S

PP

P

Super

NP

N

juvencum

V

stabat

A

dejectum

N

leo

b.

Super juvencum stabat dejectum leo

Sent

Prep

Obj

Subj

Mod

While dependency grammars allow crossing branches, it’s fact that most dependencies in most

languages involve non-crossing branches. So just as how phrase structure grammars have to explain

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 21

why most phrases have heads and dependency grammars have to explain why some phrases don’t,

here dependency grammars have to explain why most phrases don’t cross dependencies and phrase

structure grammars have to explain why some phrases do.

One observation that follows from this discussion is that phrase structures are very effective

for describing why certain word orders aren’t allowed, whereas dependency grammars are very

effective for describing why other word orders are. In other words, phrase structure frameworks

tend to be more restrictive, whereas dependency structure frameworks tend to be more permissive.

The difference is consequential when trying to design a general-purpose, computationally practical

syntactic representation. In order to be general-purpose, it would need to have sensible analyses

for the kind of awkward, slightly ungrammatical sentences common in spoken language and web

text. A formalism that emphasizes restrictions on allowable constructions will fail to find reasonable

structures for these sentences more often than one that emphasizes allowances. This suggests that

even if phrase structures are better at characterizing surface-level linguistic structures theoretically,

their exclusivity may hinder their usefulness as a computational tool.

2.2 From Transformational Grammar to the Penn Treebank

The Penn Treebank (Marcus et al., 1993) was designed to provide a large corpus of linguistically

annotated written natural language, and has been the most widely used resource for computational

research on English syntax. The goal of this section is to give the reader an overview of the theory

behind the Penn Treebank constituency structure representation—both the official one and the one

produced by most statistical parsers. Early Transformational Grammar (TG; Chomsky 1965) has

heavily influenced most modern syntactic theories. This framework aims to characterize a set of

rules that generates all and only the acceptable sentences in a language. The generation procedure

begins with a context-free phrase structure grammar that produces the deep structure of a sentence,

which specifies its semantic content, and then uses context-sensitive rewrite rules to convert the deep

structure into the sentence’s surface structure, the string of words that ultimately gets spoken (or

written).

Ideally, all sentences with the same semantic content should share the same deep structure. To

this end, semantic predicates have the structure in Ex. (2.33).

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 22

(2.33) Sandy will hug Kim.
S

N

Sandy

VP

Aux

will

VP

V

hug

N

Kim

The whole predicate is under an S node, with the agent highest, optionally followed hierarchically

by any auxiliaries, then the verb itself at the bottom, leftwards of any non-agent arguments or

optional adjuncts. Sometimes, though, a predicate will be missing an argument. These missing

arguments can be represented with an empty token, notated here ε (Ex. 2.34). If the argument

appears elsewhere in the sentence, as in most control constructions, it can be linked back to the

predicate it’s missing from by indexing ε and the overt appearance (Ex. 2.35).

(2.34) Sandy ate.

S

N

Sandy

VP

V

ate

ε

(2.35) Sandy wanted to hug Kim.

S

N1

Sandy

VP

V

wanted

S

ε1 VP

TO

to

VP

V

hug

N

Kim

Converting from deep structure to surface structure involves context-sensitive rewrite rules. VP

topicalization involves this kind of rewriting. First the un-topicalized sentence is generated, then

the verb phrase is moved to the front of the sentence. It is often convenient to mark where the

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 23

dislocated argument originated from; this is annotated with a silent trace (which is distinct from ε)

co-indexed with the phrase that moved.

(2.36) Hug Kim Sandy did.

S

N

Sandy

VP

Aux

did

VP

V

hug

N

Kim

→

S

VP1

V

Hug

N

Kim

S

N

Sandy

VP

Aux

did

t1

These constituency trees, with traces *t* for moved constituents and empty strings * for missing

ones, are the basis of the representation used by the Penn Treebank (Marcus et al., 1993). Because

the trees include empty tokens and coindexed traces, the deep structure of a sentence is fully re-

coverable. However, phrase structure nodes mark only the syntactic category of the head of the

constituent and whether the constituent is a leaf node. Consequently, the constituency tree can

be difficult to read, and the way that the meaning of a sentence is constructed from the structure

can be opaque. In order to turn the constituency representation into something more interpretable

and useful for downstream applications, subsequent releases of the Penn Treebank also annotate

some categories with the grammatical function that the constituent plays in the sentence. Subjects,

topicalized phrases, locative phrases, temporal phrases, nonverbal predicates, and nominalized verbs

are all annotated in the phrase structure tree. An example is shown in Ex. (2.37).

(2.37) Hug Kim Sandy did.

S

VP1-TPC

V

Hug

N

Kim

S

N-SBJ

Sandy

VP

Aux

did

t1

Here the topicalized verb phrase is explicitly marked as the topic, and the subject of hug is similarly

marked as a subject.

The empty tokens ε and t are important for reconstructing the meaning of a sentence and linking

dislocated arguments to predicates; however, they are unnecessary for statistical parsing, serving

only to complicate the tree. In part because of the difficulty associated with reproducing them, and

in part by historical convention, many parsers remove them at training time and make no attempt

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 24

to generate them. While the resulting trees are easier to create, the relationship between deep

structure and surface structure is somewhat obfuscated. Infinitival constructions are perhaps the

best example of this. When the S category is interpreted as representing a whole semantic predicate

at deep structure, the structure of sentences like Ex. (2.35) is clearly justifiable. However, when the

empty nodes are removed, as in Ex. (2.38), it’s more natural to intrepret the S node as representing

an inflected sentence. Control constructions bear a predicate, meaning they appear under an S

in the tree, but they don’t syntacically behave like inflected clauses. Consequently, the S node in

infinitival constructions is at best redundant and at worst confusing.

(2.38) Sandy wanted to hug Kim.

S

N-SBJ

Sandy

VP

V

wanted

S

VP

TO

to

VP

V

hug

N

Kim

Many parsers likewise omit the functional annotations. The original version of the Penn Tree-

bank had already become the standard when they were added in the second version, so historical

convention and inertia hindered their use. Additionally, including functionally annotated categories

as distinct from their unannotated counterparts sparsifies the training data. The number of possible

syntactic rules increases significantly, and furthermore the number of attested instances of each one

decreases. For early statistical parsers, this caused accuracy to suffer too much for them to be

adopted generally, although some work has found aspects of them to be useful (Klein and Manning,

2003).

The point of this discussion is that the Penn Treebank is a theoretically motivated representation,

deriving from research on English syntax in the early days of Transformational Grammar. While TG

has changed substantially in the decades since the inception of the Penn Treebank, the structures

don’t deviate fundamentally from what the current theory would dictate. However, some aspects

of the Penn Treebank representation have been simplified to make it easier for users to interpret or

because machine learning researchers deemed them unnecessary (e.g. traces), or to make it easier to

train accurate statistical parsers on (e.g. functional tags). This points to the utility of having a simple

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 25

representation that can be easily understood by researchers without a strong linguistic background

and parsed relatively easily. The following sections will consider alternative representations derived

from linguistic theory that have been argued to be simpler to understand, parse, and utilize.

2.3 From Lexical Functional Grammar to Universal Depen-

dencies

This section is intended to provide the reader with a deeper understanding of the theoretical origins

of the Universal Dependencies framework. Lexical Functional Grammar (LFG; Kaplan and Bresnan

1982) developed as a response to some of the assumptions made by Transformational Grammar. TG

can be summarized as representing semantic information with a constituency tree, then using rewrite

rules to convert the deep constituency tree into a surface constituency tree. Lexical Functional

Grammar, on the other hand, finds that constituency trees are an inefficient and unenlightening way

to represent abstract information. The fact that deep structure is ambiguous and can yield many

different surface structures is likewise worrying, since it means that deep structure is insufficient for

representing all the information contained in a sentence (such as topic and focus). Furthermore,

LFG takes issue with the use of rewrite rules on empirical, computational, and psychological bases.

Instead, it uses a separate data structure altogether—an unordered dictionary known as an attribute-

value matrix—to represent the deep structure of a sentence. This object contains functional rather

than semantic information, including primitive attributes such as predicate, subject, object, topic,

and modifiers. Because LFG’s interpretation of the latent structure in a sentence—known in the

theory as functional structure—includes information structure, different sentences will have different

functional representations. However, similar sentences will still have similar functional structures,

even if their constituent structures differ dramatically. The functional structure of a sentence is

constructed directly from the constituency-level context-free grammar, which includes rules dictating

how the constituents of a phrase combine together. Additional rules and constraints can then map

the functional parse to a semantic parse to determine the semantic content of a sentence.

As with Transformational Grammar, LFG aims to characterize the class of sentences that are

and aren’t allowed in a given language. Unlike Transformational Grammar, which uses a CFG to

characterize deep structure and accepts any surface structure that can be transformed from it, LFG

uses a CFG to characterize surface structure and accepts any sentence that can be assigned a valid

functional parse. The nature of the functional representation is normally taken to be the primary

focus of interest. In this section, the consituency trees will more or less follow conventions adopted

in the LFG literature, with the inflection phrase (IP) representing an inflected sentence (S), with

the intermediate “bar” category omitted, and with names being the same category as determiners

(D).

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 26

(2.39) Sandy hugged Kim.

IP

D

Sandy

IP

I VP

V

hugged

D

Kim

→

predicate ‘hug’
tense past
subject ‘Sandy’
object ‘Kim’

In Ex. (2.39), the main verb, subject, object, and tense are all identified in the constituency structure

and extracted into the functional representation. Critically, this functional structure is almost

identical to variants that involve a substantially manipulated constituency structure, as shown in

Ex. (2.40, 2.41).

(2.40) Sandy wanted to hug Kim, and hug Kim Sandy did.

IP

VP

V

hug

D

Kim

IP

D

Sandy

I

did

→

predicate ‘hug’
tense past
subject ‘Sandy’
object ‘Kim’

topic

[
predicate ‘hug’

object ‘Kim’

]

(2.41) Sandy was hugging Kim.

IP

D

Sandy

I

was

VP

V

hugging

D

Kim

→

predicate ‘hug’
tense past
subject ‘Sandy’
object ‘Kim’

aspect progressive

The main predicate, subject, object, and tense of the functional structure is consistent across Exs.

(2.39–2.41), even though the constituency structure is different. This additional transparency makes

the functional structure an appealing alternative to constituency structure as a representation of the

abstract content of a sentence. Note that as with constituency trees, this functional representation

allows for predicates with their modifiers to be nested hierarchically. Nested predicates always have

their own attribute-value matrix that contains the grammatical functions that pertain to them. In

Ex. (2.42), for example, the word hug is a predicate that modifies want, so it gets assigned its own

attribute-value matrix with its own arguments and adjuncts.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 27

(2.42) Sandy wanted to hug Kim.

IP

D

Sandy

I VP

V

wanted

VP

V

to

VP

V

hug

D

Kim

→

predicate ‘want’
tense past
subject ‘Sandy’

xcomp

 predicate ‘hug’

subject ‘Sandy’

object ‘Kim’

One final relevant feature is that not only verbs can introduce predicates. Common nouns, adjectives,

and adverbs are all also normally assumed to have predicates. The common noun dog is shown in

Ex. (2.43) to introduce a new predicate in spite of not being verbal in nature.

(2.43) Sandy hugged the dog.

IP

D

Sandy

I VP

V

hugged

DP

D

the

NP

N

dog

→

predicate ‘hug’
subject ‘Sandy’
tense past

object

[
predicate ‘dog’

definite +

]

While this representation is closer to semantics in a number of ways, it isn’t intended to be a semantic

representation. The subject of an active sentence and the subject of a passive sentence will both

be assigned to the subject function of the predicate, even though they generally have different

semantic roles. This is by design, to avoid removing important non-semantic information from the

representation, such as information structure or social meaning. It also means that the functional

structure doesn’t need to represent non-functional semantic information, such as quantifier scope

(see Section 2.4 for further discussion).

The invariance of LFG’s functional structure to changes in phrase structure that have little im-

pact on meaning makes it appealing as the basis for an alternative to constituency structure in

computational tasks. For this reason, the Stanford Dependencies (SD; De Marneffe et al. 2006)

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 28

syntactic annotation system draws heavily from the ideas of functional structure. In essence, Stan-

ford Dependencies aims to annotate the functional structure of a sentence in a way that’s relatively

easy for people without linguistic training to understand as well as straightforward to parse and use

in NLP systems. In order to do this, it takes two generalizations about functional structure and

enforces them as hard constraints. The first is that each word in the sentence normally modifies

exactly one predicate. The second is that each word in the sentence contributes more or less one

grammatical function to that predicate. Thus SD forces each word to contribute exactly one function

to exactly one other word’s predicate. This allows functional structure to be represented as direct,

bi-lexical relationships between word pairs, with each word implicitly taking the place of the content

it provides to functional structure. Ex. (2.44) provides a concrete example.

(2.44) Sandy wanted to hug Kim.

predicate ‘want’
tense past
subject ‘Sandy’

xcomp

predicate ‘hug’

subject ‘Sandy’

object ‘Kim’

→

nominal subject ‘Sandy’
predicate ‘wanted’

xcomp

auxiliary ‘to’

predicate ‘hug’

direct object ‘Kim’

In Ex. (2.44), the functional representation as formulated by LFG is tweaked and simplified to gener-

ate the Stanford Dependencies version. Information about tense is no longer explicitly represented,

instead being left inferrable from auxiliaries or the morphological form of the predicate. Subjects

are marked for their categorial status, being either nominal (nsubj) or clausal (csubj). Nominal

objects are classified as being either direct (dobj) or indirect (iobj). Some functionally vacuous

words such as the auxiliary to are included only in the SD representation. Sandy is only explicitly

marked as the subject of wanted, not as the subject of hug. On the whole, however, these are very

small differences; the two structures contain most of the same information organized in a similar

manner.

The attribute-value matrix representation is convenient for linguistic theory but are difficult to

read—especially for long sentences—and impractical for downstream systems. Because each word

explicitly modifies (or depends on) exactly one predicate, and each predicate is introduced by exactly

one word, there is a one-to-one mapping of words in the sentence to grammatical functions in the

structure. This means SD’s functional structure can be visualized with a dependency tree (Ex. 2.45).

(2.45) Sandy wanted to hug Kim.
predicate ‘wanted’
nominal subject ‘Sandy’

xcomp

predicate ‘hug’

auxiliary ‘to’

direct object ‘Kim’

→

Sandy wanted to hug Kim

nsubj

root

aux

xcomp

dobj

The highest-level predicate is labeled as the root of the structure, and all other predicates are labeled

according to the immediately higher grammatical function (e.g. hug is labeled xcomp in Ex. (2.45)),

but otherwise the two visualizations are isomorphic.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 29

The Stanford Dependencies annotation scheme explicitly annotates all grammatical functions,

rather than leaving them inferrable from constituency structure, and removes superfluous hierarchy

relevant only to constituency structure. It should be apparent that this makes it generally more

transparent than the Penn Treebank representation. However, it still has a few drawbacks. One of

the most glaring limitations is that it was designed specifically for English, and some of its analyses

are suboptimal for other languages. The clearest example of this relates to prepositional phrases. In

English, some common predicate-like relationships are marked syntactically using prepositions like

in or of. There is strong evidence that at the level of constituency structure, these words join with

a complete noun phrase to create a prepositional phrase PP—for instance, in English the noun or

noun phrase can be dislocated, leaving the preposition behind.

(2.46) Sandy slept in the bed.
IP

D

Sandy

I VP

V

slept

PP

P

in

DP

D

the

NP

N

bed

(2.47) What did Sandy sleep in?
CP

D

What

C

did

IP

D

Sandy

I VP

V

sleep

PP

P

in

Following the traditional LFG functional representation, SD take the noun to be the dependent of

the preposition.

(2.48) Sandy slept in the bed.

predicate ‘sleep’
tense past
subject ‘Sandy’

preposition

predicate ‘in’

object

[
predicate ‘bed’

definite +

]

→

Sandy slept in the bed

root

nsubj prep

pobj

det

Not all languages mark these relationships syntactically—many instead mark them morphologically,

using case suffixes. Finnish is one language that does so.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 30

(2.49) Sandy
Sandy

nukku-i
sleep-past

sängy-ssä
bed-loc

‘Sandy slept in the bed’

S

N

Sandy

VP

V

nukkui

N

sängyssä

The English SD annotation scheme is unequipped to handle this phenomenon. On the one hand, the

word contains the same functional content as the whole prepositional phrase in English, suggesting

that it should be assigned the prep label. On the other hand, the word is a noun modifying a verb

with no other word to depend on, suggesting that it should be assigned the npadvmod (noun phrase

adverbial modifier) label. The standard LFG analysis is closest to the latter.

(2.50) Sandy nukkui sängyssä.
predicate ‘sleep’
tense past
subject ‘Sandy’

oblique

[
predicate ‘bed’

case inessive

]
→ Sandy nukkui sängyssä

root

nsubj npadvmod

In either case, the oblique modifier depends directly on the verb in Finnish, but is separated by an

intermediate dependent in English. This means that two sentences with nearly identical functional

content would have very different functional representations, counter to the principles of LFG and

SD.

Modifying Finnish SD to make the paths the same as English SD would require inserting an empty

token in the parse whose only purpose is to add an edge to the tree. While this solves the problem

of having different representations for what is essentially the same relationship in two languages,

it violates SD’s goal of having a one-to-one mapping of words to grammatical functions. It is also

unappealing linguistically, since the idea that there are an abundance of unspoken prepositions in the

language would be unnatural to most native Finnish speakers. This would likewise make SD difficult

for statistical parsers to work with, for the same reasons empty tokens are generally abandoned in

parsers trained on the Penn Treebank.

(2.51)

Sandy nukkui sängyssä

root

nsubj prep pobj

The alternative solution is to modify English SD rather than the hypothetical Finnish SD. In this

approach, the noun would be made to depend on the main verb in both languages, and in English

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 31

the preposition would depend on the noun.

(2.52) a.

Sandy slept in the bed

root

nsubj

obl

case

det

b.

Sandy nukkui sängyssä

root

nsubj obl

This solution has the additional advantage of decreasing the path length between content words, so

that verbs and nouns that modify them are no longer separated by an extra dependent. Furthermore,

the LFG functional structure analogous to the English SD representation is perfectly valid and

defensible (albeit somewhat nonstandard), and retains the appealing property of being structurally

similar to the Finnish version.

(2.53) a. Sandy slept in the bed.

predicate ‘sleep’
tense past
subject ‘Sandy’

oblique

predicate ‘bed’

definite +

adposition
[
predicate ‘in’

]

b. Sandy nukkui sängyssä
predicate ‘sleep’
tense past
subject ‘Sandy’

oblique

[
predicate ‘bed’

case inessive

]

The utility of having an annotation scheme that can be sensibly applied to any language is what

motivated the development of Universal Dependencies (UD; Nivre et al. 2016). Universal Depen-

dencies tweaks and extends Stanford Dependencies to be useful for languages with substantially

different properties and orthographic conventions from English. Not only is the goal of having a

cross-linguistic representation desirable from both a researcher and user perspective, but it also

aligns very well with the original goals of LFG, which developed in part as a reaction to the largely

English-centric focus of theoretical syntax at the time of its inception. In addition to changing the

analyses for a few phenomena to make them more cross-linguistically natural, UD tries to provide

other cross-linguistic annotations. Different languages can have radically different part-of-speech tag

conventions, for instance, so a complete UD annotation of a sentence will include both the language-

specific POS tag annotations as well as coarse-grained language-independent POS tags. UD also

annotates inflectional morphological information (such as tense and definiteness) for both theoretical

and practical reasons. In LFG, these morphological features are present in the functional structure,

but for simplicity were removed from the SD representation. By annotating words for morphology,

UD effectively brings these features back into the framework, making the implementation closer to

the original theory. Practically speaking, these morphological features can be useful for downstream

tasks, either as features or embeddings to be weighted in a machine learning system or to help guide

rule-based information extraction. UD does currently lack information structure in its representation

for most languages, largely because of how difficult it is to annotate. As of Universal Dependencies

version 2.2 (Nivre et al., 2018), UD has been applied to 71 different languages.

Another limitation of the version of SD/UD described thus far is that it requires the dependency

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 32

annotation to be a tree, with every word depending on exactly one other word. However, some

syntactic constructions involve one word modifying two predicates. In the control sentence Sandy

wanted to hug Kim, Sandy intuitively depends on two words—wanted and hug—but SD only permits

one of these two relationships to be represented. In order to include both at once, the tree require-

ment needs to be relaxed. SD and UD address this by including an enhanced representation (also

known as the collapsed representation in SD), which includes relationships that can’t be present in

the tree-based basic representation. Historically, this non-strictly-tree-structured formalism was pro-

posed first, and later simplified into the strictly tree-structured version (De Marneffe and Manning,

2008)

(2.54) Sandy wanted to hug Kim.

predicate ‘want’
tense past
subject ‘Sandy’

xcomp

predicate ‘hug’

subject ‘Sandy’

object ‘Kim’

→

Sandy wanted to hug Kim.

root

nsubj

xcomp

mark dobj

nsubj

This allows Universal Dependencies to capture even more information present in an LFG func-

tional structure, even when one word contributes grammatical functions to multiple predicates.

The following sections discuss other dependency formalisms that likewise relax the assumption of

tree structure. While UD only claims to be syntactic in nature, these representations aim to use

dependency structures to annotate the semantic relationships in a sentence.

2.4 From Minimal Recursion Semantics to DELPH-IN MRS

Stanford Dependencies and Universal Dependencies are derived from Lexical Functional Grammar,

but there are other formal theories of linguistics that include representations that can be cast into a

dependency framework. Head-driven Phrase Structure Grammar (HPSG; Pollard and Sag 1994) and

its successor Sign-Based Construction Grammar (SBCG; Sag 2012) are syntactic theories that parse

sentences into a semantic representation that has been used as the basis for its own dependency

formalism. As with TG and LFG, these frameworks are designed to characterize the acceptable

sentences of a language. Their approach is most similar to LFG’s—they accept any sentence that

can be assigned a valid parse, and they include mechanisms for generating a semantic denotation

of a valid sentence. They differ from LFG in that they represent the whole parse, including se-

mantic and constituency information, in a single hierarchical attribute-value matrix. The theory of

semantics that HPSG and SBCG espouse—and which will be detailed here—is known as Minimal

Recursion Semantics. Minimal Recursion Semantics (MRS; Copestake et al. 2005), an extension of

Hole Semantics (Bos, 1996), serves as the inspiration for DELPH-IN Minimal Recursion Semantics,

one of three semantic dependency formalisms introduced in the SemEval shared task on semantic

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 33

dependency parsing (SemEval; Oepen et al. 2014). In this representation of meaning, the content of

a sentence is made up of a set of semantic predicates (or frames) that are linked together by indices.

For example, in the sentence Sandy hugged Kim (Ex. 2.55), two entities named Sandy and Kim

are introduced, and indexed with the variables i and j. The statement also introduces a hugging

situation, indexed with the event variable s, where Kim is the hugger and Sandy is the hugged

person. The morphology of the verb indicates that the event took place in the past, so there is also

a past frame that modifies the hugging event.

(2.55) Sandy hugged Kim.
relation name

entity i

name ‘Sandy’

,
relation name

entity j

name ‘Kim’

,

relation hug

situation s

hugger i

hugged j

,
[
relation past

past s

]
As with LFG’s functional structure, the semantic predicates can be organized into a dependency

structure. The DELPH-IN Minimal Recursion Semantics (DM; Flickinger et al. 2012; Oepen et al.

2014) representation makes this its goal. In Ex. (2.56), each word stands in for the predicate it

introduces, with the past tense morpheme -ed representing the past frame (for now). Every word

that introduces an entity or situation index then depends on every word that references it. Sandy

introduces the entity variable i, and hug references i in its hugging relation, so Sandy is made to

depend on hug and labeled the hugger.

(2.56) Sandy hugged Kim.

Sandy hug -ed Kim

hugger hugged

past

This hierarchical visualization of the semantic structure contains almost all the same information

as the “flat” list approach. Only the relation attribute of each frame is lost, but this is generally

recoverable from the individual lexical items.

Variables can be referenced by multiple frames, so by the above definition, a word can have mul-

tiple head words that it depends on. This is in contrast to the PTB, SD, and basic UD frameworks,

where every word has one and only one head. Ex. (2.57) provides an example.

(2.57) Sandy wanted to hug Kim.
relation name

entity i

name ‘Sandy’

,
relation name

entity j

name ‘Kim’

,

relation hug

situation s1

hugger i

hugged j

,

relation want

situation s2

wanter i

wanted s1

,
[
relation past

past s2

]

Sandy want -ed to hug Kim

wanted

hugger hugged

past

wanter

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 34

Here, Sandy (again indexed by i) is marked as being both the wanter and hugger, and as such

depends on both want and hug.

One problem that arises when developing a framework to formalize the meaning of any given

sentence in a language is that many sentences can have multiple meanings depending on the context.

For example, Ex. (2.58) can have two meanings depending on the clause that follows it.

(2.58) Every student already knows an answer, because . . .

a. each student wrote a question for the quiz.

b. it was accidentally leaked by the TA.

In Ex. (2.58a), each student knows a different answer (the one they wrote), but in Ex. (2.58b), each

student knows the same answer (the one that was leaked). The two readings of Ex. (2.58) arise

from the two ways that the universal quantifier every and the existential quantifier a can interact.

This is known as scopal ambiguity. Scopal ambiguity raises two issues: how should the framework

represent the two fully resolved interpretations, and how should it represent the ambiguity of the

sentence before it gets resolved?

Traditionally, scopal interactions have been modeled by organizing scope-bearing elements (or

operators) hierarchically in a tree structure. Entities or events instantiated by lower scopal operators

are created for each entity or event that was instantiated by a higher one. In Ex. (2.58a)—where the

universal quantifier every has higher scope than the existential a—first n students are instantiated,

then for each student i, exactly one answer that student i knows is instantiated. In Ex. (2.58b)—

where the hierarchy is reversed—first one answer j is instantiated, followed by n students who

know that answer j. In the minimal recursion semantics framework, the two interpretations of the

sentence are represented by labeling each frame and marking which ones a scope-bearing element

immediately outscopes. Note that determiners are not the only scopal operators, as a number of

adverbs—including almost and already—are as well. Quantifiers are generally assumed to scope

over two subtrees: the restriction, which describes the kind of entity being instantiated; and the

body, which explains how the entity or entities relate to the rest of the meaning. They are also

assumed to “bind” to a variable, either an entity or a situation, which connects it to the dependency

graph of entities and situations. Finally, predicates that semantically modify other predicates but

don’t introduce any scope of their own are assigned the same label as the frame they modify. All

this ensures that every frame is part of the scopal structure. For largely practical purposes, it is

useful to mark the frame at the top of the scopal hierarchy. The two readings are shown with a flat,

frame-based representation and a hierarchical tree-based representation in Ex. (2.59, 2.60).

(2.59) Every student already knows an answer (because each student wrote one).

Every student already know -s an answer

knower known

bv bvalready pres

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 35

top l1

frames

relation every

label l1
bv i

restr l2

body l3

,
relation student

label l2
entity i

,

relation a

label l3

bv j

restr l4

body l5

,

relation answer

label l4
entity j

,

relation already

label l5

already s

body l6

,

relation know

label l6
situation s

knower i

known j

,
relation present

label l6
present s

Top

Label

Every

Restr

Label

student

Body

Body

Label

already

Body

Label

know -s

Label

an

Restr

Label

answer

(2.60) Every student already knows an answer (because it was leaked).

top l3

frames

relation every

label l1

bv i

restr l2

body l5

,

relation student

label l2
entity i

,

relation a

label l3
bv j

restr l4

body l1

,
relation answer

label l4
entity j

,

relation already

label l5

already s

body l1

,

relation know

label l6
situation s

knower i

known j

,
relation present

label l6
present s

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 36

Top

Body

Label

Every

Restr

Label

student

Body

Label

already

Body

Label

know -s

Label

an

Restr

Label

answer

The next question is how to represent scopally ambiguous sentences, like Ex. (2.57), without the

subsequent context. MRS’s approach is to introduce what are called holes into the frames. The

holes, often notated with h rather than l, essentially function as dummy indices that don’t actually

refer to specific labels. When sufficient context is present, the holes can be “filled in” or plugged with

the labels of the appropriate frames. This is done by introducing constraints on the denotations

(indicated by the constr attribute) that fix the dummy indices to particular frames. In the case of

scopal ambiguity, the top will be another hole h0 to be filled in in the constraints feature. This

is shown in Ex. (2.61), where the restrictions and bodies of each scopal frame are left underspecified

with an h hole and then constrained to be equal to a particular l label.

(2.61) Every student already knows an answer (because each student wrote one).

top h0

frames

relation every

label l1
bv i

restr h1

body h2

,

relation student

label l2
entity i

,

relation a

label l3
bv j

restr h3

body h4

,

relation answer

label l4
entity j

,

relation already

label l5
already s

body h5

,

relation know

label l6
situation s

knower i

known j

,
relation present

label l6
present s

constr

{
h0 = l1, h1 = l2, h2 = l3, h3 = l4, h4 = l5, h5 = l6

}

In order to leave the structure in Ex. (2.61) ambiguous with respect to the quantifier scope, some

of the holes can be left unresolved, as in Ex. (2.62). In an underspecified tree, the top will be the

highest resolved scopal operator.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 37

(2.62) Every student already knows an answer (ambiguous)

top h0

frames

relation every

label l1
bv i

restr h1
body h2

,
relation student

label l2
entity i

,

relation a

label l3
bv j

restr h3
body h4

,
relation answer

label l4
entity j

,

relation already

label l5
already s

body h5

,

relation know

label l6
situation s

knower i

known j

,
relation present

label l6
present s

constr

{
h0 = l5, h5 = l6

}

Label

Every

Restr

Label

student

Top

Label

already

Body

Label

know -s

Label

an

Restr

Label

answer

Resolving the scope of quantifiers like a and every actually turns out to be a very difficult task

that often requires labor-intensive expert knowledge to annotate and world knowledge to parse.

Because of these difficulties, quantifier scope is often excluded from annotation schemes for semantic

structures. The DELPH-IN MRS (DM) representation inspired by MRS is no different. In it, the

frame at the top of the scopal hierarchy—which may be a predicate or a scopal adverb—is marked

with the top label, but all other information about scope is lost. Thus the representation in Ex.

(2.63) below will be assumed in the following discussion.

(2.63) Every student already knows an answer (ambiguous).

Every student already know -s an answer

top

knower known

bv bvalready pres

The examples discussed so far have an undesirable property, which is that each frame defines

a different set of attributes—wanter, for example, is unique to wanting relations, and hugger

will only be found in hugging ones. There are a few ways to abstract away from these predicate-

specific relations. One way is to mark them for a predefined set of semantic roles. These roles can

include relations like agent and patient—the entities performing and undergoing the action—as well

as stimulus and experiencer—the entities stimulating and experiencing a psychological response—

among a number of others. However, the question of which roles should and shouldn’t be included in

the set is a matter of ongoing debate, so some approaches to frame semantics involve abstracting even

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 38

further to create a more theory-neutral system. In MRS, and DM by extension, semantic arguments

of frames from predicates are labeled according to a hierarchy of proto-roles (cf. propbank labels;

Dowty 1991; Palmer et al. 2005), where arg1 represents agent-like roles, arg2 represents patient-like

roles, and arg3 represents non-core or beneficiary-like roles. The entity and situation features of

the frames—which both effectively serve the same purpose—are replaced with the arg0 attribute.

Arg1 can also be used for adjectival or adverbial frames that modify entities or situations. This

allows the formalism to differentiate predicates’ arguments without committing to a particular set

of semantic roles. The semantic role and proto-role approaches are shown in Ex. (2.64a, 2.64b)

respectively.

(2.64) Sandy wanted to hug Kim.

a.

Sandy want -ed to hug Kim

top

agent patient

experiencer stimulus

theme

b.

Sandy want -ed to hug Kim

top

arg1 arg2

arg1 arg2

arg1

For transparency, the past tense predicate in the list of semantic predicates has also been rep-

resented in the dependency structure as the past-tense morpheme up until now. However, to make

the dependency parser easier to work with computationally, it’s advantageous not to separate roots

from their morphemes. Therefore the DM dependency formalism for Minimal Recursion Semantics

only relates whole tokens to whole tokens, without segmenting words by morphology.

(2.65)

Sandy wanted to hug Kim

top

arg1

arg2

arg1

arg2arg1

This restricts the represenational capacity of the formalism in order to make it more practically

applicable.

The DM formalism, unlike SD and basic UD, doesn’t enforce a tree structure constraint on the

dependency structures. Instead, they must be directed acyclic graphs. While not entirely uncon-

strained, this allows the representation to capture more potentially informative bi-lexical relation-

ships in a sentence. Additionally, the relationship between the DM representation of a sentence and

that sentence’s semantics is arguably more transparently related to semantic theory than in UD.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 39

2.5 From Head-driven Phrase Structure Grammar to Pre-

dicate-Argument Structures

Head-driven Phrase Structure Grammar (HPSG; Pollard and Sag 1994) and Sign-Based Construc-

tion Grammar (SBCG; Sag 2012) are designed with the ability to convert a sentence into a coherent

semantic structure. They do so by manipulating and constraining words and phrases along three di-

mensions: constituent structure, semantic structure, and argument structure. The more surface-level

syntactic representation, constituent structure, contains the phrase structure tree and morphosyn-

tactic features like agreement and morphological form. The semantic structure, as described in the

previous section, contains information about meaning and scope, and is the basis of the DM seman-

tic dependency framework. Argument structure, like LFG’s functional structure, is an intermediate

syntactic representation that imposes constraints on how words and phrases can combine syntac-

tically and facilitates the conversion between constituent syntax and semantics. It is the basis of

another semantic dependency formalism, described in this section.

In HPSG, every lexical item (“word” in an abstract sense) has an argument structure list; phrases,

on the other hand, do not. For example, the lexical item hug has the argument structure in Ex.

(2.66a) and the semantic predicate in Ex. (2.66b).

(2.66) a.
〈
NPi, NPj

〉
b. 〈

arg0 s

arg1 i

arg2 j

〉

This indicates that the word’s first syntactic argument is the agent-like one performing the action,

and the second is the patient-like one receiving the action. It also indicates that both arguments need

to be noun phrases. HPSG, like LFG, includes rules and constraints that dictate the relationship

between constituent structure and the more abstract representation. In particular, it includes rules

that map a verb’s arguments to the constituency tree, such that the first argument is in the high

specifier position to the immediate left of the verb phrase and any following ones are in a flat

complements list, immediately to the right of the verb.

(2.67) Sandy hugged Kim.

S

1 NPi[
arg-st 〈〉

]

Sandy

VP

V[
arg-st

〈
1 , 2

〉]
hugged

2 NPj[
arg-st 〈〉

]
Kim

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 40

The # tags mark all structures that need to be identical (or unifiable in the presence of under-

specificity), which is the primary method HPSG uses to impose constraints on its parses. For

compactness, the arg-st key will be implicit in the annotations of future trees in this section.

The argument structure of a word can be manipulated to change how its arguments are realized.

A transitive verb can be passivized, for instance, by moving the first argument to the end and

changing it into an optional prepositional phrase with by as the head word. The passive auxiliary be

in English is then specified as having the same first argument as its second argument, in addition to

other constraints on morphology and constituency not relevant here. This ensures that lower verb’s

subject gets raised to be the subject of the auxiliary. The argument-marking preposition by has a

single NP on its argument-structure list that goes to the right of it in the complement position.

(2.68) hug → hugged〈
NPi, NPj

〉
→〈

NPj ,
(
PP[by]i

)〉
(2.69) passive be〈

1X,
VP[

arg-st
〈
1

〉
⊕ A

]〉
(2.70) argument-marking by〈

NP
〉

(2.71) S

1 NPj
〈〉

Kim

VP

V〈
1 , 2

〉

was

2 VP

Vs〈
1 , 3

〉

hugged

3 PPi

P〈
4

〉

by

4 NPi
〈〉

Sandy

As mentioned above, argument structures are only defined for lexical items, not for phrases. From

this it should be easy to see how argument structures can be linked together into a dependency

format. Each word depends on all other words that include it (or a phrase that it heads) on

their argument structure list, labeled according to its position on that list. Thus arg1 would go

to the first entry on a word’s argument structure, arg2 to its second, etc. This is the basis for

the Predicate-Argument Structures (PAS; Miyao and Tsujii 2004; Oepen et al. 2014) dependency

formalism.

(2.72)

Sandy hugged Kim

arg1 arg2 (2.73)

Kim was hugged by Sandy

arg1 arg2

arg1 arg2 arg1

Modifiers, such as adjectives, adverbs, predicative prepositions (but not argument-marking ones),

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 41

and determiners, take the word they modify as their first argument at the level of argument structure,

and any additional complements as their second. This is normally how modifiers behave in Minimal

Recursion Semantics as well.

(2.74) Sandy slept in the bed.

S

1 NP
〈〉

Sandy

VP

2 VP

V〈
1
〉

slept

PP

P〈
2 , 3

〉

in

3 NP

Det〈
4
〉

the

4 N
〈〉

bed

→
Sandy slept in the bed

arg1

arg1 arg2

arg1

As a consequence of making adjuncts heads rather than dependents, the formalisms are radically

non-tree-structured. In contrast, enhanced UD is still mostly tree-structured even though it does

allow deviations from strict tree-structure.

One problem that arises with the formulation so far is that the agent in an active and passive con-

struction are marked differently. PAS addresses this by marking the dependency structure according

to words’ original argument structure lists, before any lexical rules have been applied. Making this

change, the passivized version of Ex. (2.72) would have the structure in Ex. (2.75). Note that the

two dependents of hugged are now the same as in the active version, with the same labels.

(2.75)

Kim was hugged by Sandy

arg2 arg1

arg1 arg2 arg1

This has the desirable effect of making the representation more abstract, enriching it with information

that is harder to recover from the simple string of words.

Another problem that arises is that content words often take functional phrases as arguments.

This inflates the lengths of paths between content words, as shown in Ex. (2.76), which computa-

tionally practical dependency schemes try to avoid.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 42

(2.76) Sandy wanted to hug Kim.

S

1 NP
〈〉

Sandy

VP

V〈
1 , 2

〉

wanted

2 CP

C〈
3
〉

to

3 VP

V〈
1 , 4

〉
hug

4 NP
〈〉

Kim

→ Sandy wanted to hug Kim

arg1 arg2

arg1 arg2 arg1

The representation can be brought a little bit closer to semantics and made a little bit more effective

for computational purposes by forcing dependents to be content words rather than function words.

Instead of linking words to their immediate arguments or (if their immediate arguments are phrasal)

the head of their immediate arguments, words will be linked to the content word at the end of the

chain of functional heads. When a function word has multiple arguments, the procedure will search

for a content word in the last one. The new approach is shown in Exs. (2.77, 2.78).

(2.77) Sandy wanted to hug Kim.

S

1 NP
〈〉

Sandy

VP

V〈
1 , 2

〉

wanted

2 CP

C〈
3
〉

to

3 VP

V〈
1 , 4

〉
hug

4 NP
〈〉

Kim

→

Sandy wanted to hug Kim

arg1 arg2

arg1 arg2

arg1

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 43

(2.78) It’s important for Sandy to hug Kim.

AP

A〈
1 , 2

〉

important

2 CP

C〈
3 , 4

〉

for

3 NP
〈〉

Sandy

4 CP

C〈
5
〉

to

5 VP

V

hug

NP

Kim

→

It ’s important for Sandy to hug Kim

arg1 arg2

arg1 arg2

arg2

arg1 arg2 arg1

Head words and phrases are marked with bold edges for clarity. In Ex. (2.77), the word wanted

would take to as dependent because it represents the first element on wanted ’s argument structure

list; however, because to is a function word, it can’t be a dependent. Instead, wanted looks at

the last element of to’s singleton argument structure list, and tries (successfully) to take that as

a dependent. In Ex. (2.78), the adjective important takes a for -CP as argument. There is strong

evidence that for -CPs have flat structure (Emonds, 1976; Sag, 1997), meaning that for has two

elements on its argument structure list. By the heuristic laid out above, since important can’t have

for as a dependent, it looks to the second phrase on for ’s argument structure list. The head of the

second phrase, to, is also a function word, so the process keeps looking until it reaches hug.

The root of the dependency structure can be described similarly. The main verb of the sentence

can be found by starting at the S node at the top of the tree, and following the sequence of syntactic

heads down to a leaf node. If the leaf is a content word, then it gets marked as the top; if the leaf

is a function word, then the first content word on the chain of functional argument structures is the

top.

(2.79) Sandy hugged Kim.

S

NP

Sandy

VP

V

hugged

NP

Kim

→
Sandy hugged Kim

arg1 arg2

top

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 44

(2.80) . . . hug Kim Sandy did.

S

2 VP

V

hug

NP

Kim

S

1 NP

Sandy

VP

V〈
1 , 2

〉
did

→

hug Kim Sandy did

top

arg1

arg2

arg1

arg2

The head word of the sentence in Ex. (2.79) is a content word, so it gets marked as the top of

the sentence. But the head word of Ex. (2.80) is an auxiliary, so the word that heads its second

argument is marked as the top instead. Thus a dependency formalism can be derived from HPSG’s

deeper syntactic structure by making every word the head of all elements on its original argument

structure list, with the constraint that only content words can be dependents.

One limitation of this scheme is that the dependency label set is very restricted, containing only

arg1 through arg4. In order to enrich the labeling scheme, the category of the head word can be

prefixed to the arg. This distinguishes verbal arg1, which dictates a predicate’s most agent-like

argument, from adjectival arg1, which indicates which phrase the predicate is modifying.

(2.81) Sandy wanted to hug Kim.

Sandy wanted to hug Kim

verb arg1 verb arg2

verb arg2verb arg1

comp arg1

In Ex. (2.81), the verbs wanted and hug assign labels prefixed with verb. The variant of HPSG

that PAS originates from makes the non-standard assumption that to is a complementizer rather

than an auxiliary verb. Thus to assigns the verb hug a label prefixed with comp. This is the final

change to the original HPSG representation that PAS makes.

The DM dependency representation is based on a pure semantic formalism, whereas the PAS

representation is more closely related to a notion of argument structure, which contains syntactic

information in addition to semantic. MRS and HPSG were developed side-by-side to complement

each other, so DM and PAS bear many similarities. The main difference between their respective

dependency formalizations is that PAS representation contains more semantically vacuous syntactic

artifacts. In addition to function words like to getting their own dependents, semantically vacuous

expletives are marked in PAS but excluded in DM. This has the minor downside of somewhat

overloading the arg1 label, which in PAS can refer to either a semantic agent or a semantic non-

argument.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 45

(2.82) It seemed like there was a hug. (DM)

It seemed like there was a hug

top
arg1

arg1

bv

(2.83) It seemed like there was a hug. (PAS)

It seemed like there was a hug

top

verb arg1

verb arg2

comp arg1

verb arg1

verb arg2

det arg1

Because PAS includes relationships between content words and semantically vacuous words such as

function words and expletives, every word in the dependency structure has at least one incoming

or outgoing dependency edge. This means every PAS structure will be a weakly connected directed

acyclic graph, in contrast to the tree-structured basic UD or the unconnected DM. It also strikes

more of a balance between syntactic structure and semantic structure by marking the structure of

syntactically necessary function words (at the cost of some semantic transparency in the case of

expletives).

2.6 From Functional Generative Description to Prague Se-

mantic Dependencies

The final dependency system discussed in this chapter is based on a syntactic theory known as

Functional Generative Description (FGD; Sgall et al. 1986), which was developed with focus on

Czech, a language that has far less rectrictive word order than English. If TG uses a constituency tree

for both the surface and abstract syntactic representations, and LFG and HPSG use a constituency

tree for the surface representation but a dependency-like graph for the abstract one, then FGD

uses dependency graphs for both. The surface representation, also known as the analytical layer,

contains mostly constituent-level information, with some simple functional labels like subject and

object. The latent representation, known as the tectogrammatical layer (from Latin tēctum, “roof”),

bears similarities to early Tranformational Grammar’s deep syntactic structure, described in Section

2.2. It aims to represent the semantic structure of a sentence using the same data structure as the

syntactic parse and it includes (coindexed when possible) empty tokens standing in for missing

or disclocated arguments. Because the tectogrammatical representation is a dependency structure

rather than a constituency structure, words can be explicitly labeled with semantic roles such as

actor and patient.

(2.84) Sandy hugged Kim.

Sandy hugged Kim

pred

actor patient

Linearization in the tectogrammatical structure is done according to two principles: a head

and its dependents must be ordered according to their degree of topicality, with more topical words

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 46

occurring before more focal ones; and the result must be a dependency tree with no crossing branches.

Topic and focus can be determined by deciding what question a sentence could be an answer to.

The answer that fills the wh word is the focus, and words repeated from this question form the

topic. In English, topic and focus information is typically indicated by intonation. Some examples

are shown in Ex. (2.85–2.88), with boldface indicating which word has primary stress and with small

caps indicating which one has secondary stress, if any.

(2.85) What happened?

Sandy
foc

hugged
foc

Kim
foc

(2.86) What did Sandy do?

Sandy
top

hugged
foc

Kim
foc

(2.87) Who did Sandy hug?

Sandy
top

hugged
top

Kim
foc

(2.88) What happened to Kim?

Sandy
foc

hugged
foc

Kim
top

In FGD’s tectogrammatical representation, heads are linearized after topical dependents and before

focal ones. This imposes a strict linear order on the tectogrammatical structure. Topic and focus are

sometimes indicated in FGD by the presence or absence of a t (topic) superscript. While topic and

focus in English are normally indicated by intonationally emphasizing the focus in a sentence with

canonical word order, some marked word orders can achieve the same end. These non-canonical

orders can be seen as reflecting the underlying tectogrammatical structure.

(2.89) What did Sandy do? Sandy hugged Kim.

root Sandyt hug.past Kim

pred

actor patient →
Sandy hugged Kim

Pred

Subj Obj

(2.90) What happened to Kim? Kim was hugged by Sandy.

root Kimt hug.past Sandy

pred

patient actor →

Kim was hugged by Sandy

Pred
Subj

AuxV AuxP Obj

(2.91) What did Sandy do Alex and Kim? Alex Sandy waved at, but Kim Sandy hug.

root Kimt Sandyt hug.past

pred

patient

actor →

Kim Sandy hugged

Pred
Obj

Subj

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 47

(2.92) Did Sandy hug Kim? Sandy did hug Kim.

Sandyt Kimt hug.pastt root

predpatient

actor

Sandy did hug Kim

Pred
Subj

AuxV Obj

(2.93) Did Sandy hug Kim? Hug Kim Sandy did.

Kimt Sandyt hug.pastt root

predactor

patient

→

hug Kim Sandy did

Pred

Subj

AuxV

Obj

In Ex. (2.89), the sentence is shown with its canonical word order and an unmarked information

structure. In Ex. (2.90), the patient of the predicate is topicalized, with the agent demoted to

focus; this is expressed syntactically with the passive voice. Ex. (2.91) shows a sentence where both

arguments of the verb are topics. This information structure permits noun phrase topicalization,

where a non-subject argument is fronted to the beginning of the clause. Ex. (2.92, 2.93) show a

sentence where all words are topics. Since the verb has two topical arguments, there are two possible

tectogrammatical orderings—one with the agent first, and one with the patient first. These can be

understood as the underlying representations for two distinct marked word orders: one where an

emphatic auxiliary is added, and one where the verb and its object are additionally fronted. Note

that the order of the subject and object with respect to each other in these examples remains

constant when converting the tectogrammatical representation into the surface one.

Another feature of the tectogrammatical structure that can be seen in Ex. (2.89–2.93) is that

function words are generally not represented in the abstract representation. In Ex. (2.90), the passive

auxiliary and the preposition by were added according to the passivization transformation. Similary,

the emphatic auxiliary do was inserted in Ex. (2.92, 2.93) via transformational rules. The exclusion

of semantically vacuous function words reflects the goal of the tectogrammatical structure being a

more abstract semantic representation of the sentence, like Minimal Recursion Semantics’ semantic

frame representation but unlike LFG’s functional structure or HPSG’s argument structure.

Control structures are handled by inserting a coindexed empty token into the tectogrammatical

structure, much like TG’s deep structure. These empty tokens are guaranteed to lack dependents,

so they can be deleted in the surface structure.

(2.94) Sandy wanted to hug Kim.

Sandy1 want.past ε1 hug Kim

pred

actor effect

actor patient →
Sandy wanted to hug Kim

Pred

AdvSubj AuxP Obj

This analysis ensure a one-to-one mapping of tokens in the sentence to tokens in the dependency

tree.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 48

Coordination always poses a challenge in phrase structure grammars because groups of words

that are generally not assumed to be phrasal constutents—such as Alex saw and Sandy hugged in

Ex. (2.95)—can coordinate.

(2.95) Alex saw and Sandy hugged Kim.

Analyzing this sentence in terms of phrase structure is a daunting task. One option (Ex. 2.96a)

involves stipulating construction-specific rules and categories in order to ensure that the common

element Kim composes with both clausal fragments; this makes the syntax complicated in order

to simplify the rules of semantic compositionality. The other option (Ex. 2.96b) involves explicitly

representing the argument in one clause but not the other; this makes the syntax straightforward,

but resolving the dependency between the first predicate and the second predicate’s object requires

its own construction-specific mechanisms.

(2.96) a. Complex syntax; simple semantics

S

Frag

Frag

N

Alex

VP

V

saw

t1

Conj

and

Frag

N

Sandy

VP

V

hugged

t1

N1

Kim

b. Simple syntax; complex semantics

S

S

N

Alex

VP

V

saw

t1

Conj

and

S

N

Sandy

VP

V

hugged

N1

Kim

In either case, phrase structure grammars are forced to distinguish between coordination that follows

the phrase structure rules in the grammar and coordination that violates them. In the dependency-

based FGD, on the other hand, coordination can be done relatively straightforwardly between phrases

that are typically thought of as constituents as well as those that aren’t. First, the conjunction is

made to be the head, and all conjuncts are dependents of it. Second, any phrases common to all

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 49

conjuncts are likewise made to be dependents of the conjunction. Finally, in order to distinguish

between conjuncts and shared dependents, the actual conjuncts are marked as such. A surface-

structure example is in Ex. (2.97).

(2.97) Sandy saw Alex and hugged Kim.

Alex saw and Sandy hugged Kim

Coord

Pred-Co Pred-Co

Subj Subj

Obj

Because of the absence of additional phrasal structure, this approach can be applied just as easily

to more canonical instances of coordination (Ex. 2.98).

(2.98) Sandy saw Alex and hugged Kim.

Sandy saw Alex and hugged Kim

Coord

Pred-Co Pred-Co

Subj

Obj Obj

This is essentially the same as the “complex syntax, simple semantics” phrase structure approach,

but without being forced to distinguish between two different types of coordination. The analysis

presented in Exs. (2.97, 2.98) is typically applied to both the surface and deep representations in

FGD.

If coordination is one place where dependency representations appear to shine, then the related

ellipsis phenomenon known as gapping is one place where they struggle. This was mentioned briefly

in Section 2.1.2 but will be discussed here in more detail. In gapped constructions, two or more sets

of arguments for a predicate occur in multiple conjoined clauses, but the predicate is only overtly

present in the first one. The phrase structure approach again has options: build the complete phrase

structure and delete the repeated verb as a kind of post-processing (which would be preferred in

TG), allow a verb phrase without an overt head (which would be preferred in LFG), or stipulate

another fragmental phrase structure category (which would be preferred in HPSG).

(2.99) Sandy hugged Kim, and Alex [hugged] Chris.

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 50

a. Empty token
S

S

N

Sandy

VP

V

hugged

N

Kim

Conj

and

S

N

Alex

VP

t N

Chris

b. Headless VP
S

S

N

Sandy

VP

V

hugged

N

Kim

Conj

and

S

N

Alex

VP

N

Chris

c. Fragment
S

S

N

Sandy

VP

V

hugged

N

Kim

Conj

and

S

N

Alex

N

Chris

A dependency approach, on the other hand, is forced into one option. Because arguments depend

on their head, but the head in the second clause is missing, there’s simply nowhere for them to

go. The only way to handle this in FGD is to stipulate a silent node in the second clause at both

tectogrammatical structure and surface structure.

(2.100) Sandy hugged Kim, and Alex [hugged] Chris.

Sandy hugged Kim and Alex [hugged] Chris

Coord

Pred-Co Pred-Co

Subj Obj Subj Obj

This is most analogous to the deletion approach in a phrase structure grammar. While silent nodes

are needed in the tectogrammatical structure for the same reason they’re needed in TG’s deep

structure, until this point they’ve been omissable from the surface structure. Consequently, the

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 51

one-to-one mapping of tokens in the surface tree and tokens in the sentence that can be maintained

for all other phenomena is necessarily violated solely for this one construction.

Since the tectogrammatical representation is meant to be a semantic representation, and is

already dependency-structured, it was converted into a semantic dependency formalism just like MRS

and HPSG. The semantic dependency version of FGD is known as Prague Semantic Dependencies

(PSD; Hajic et al. 2012; Oepen et al. 2014). The tectogrammatical representation is a projective

tree, and as a consequence the Prague Semantic Dependencies scheme is mostly tree-like, with only

a few exceptions to be discussed shortly. In order to have general-purpose utility, any dependency

annotation scheme needs to maintain the linear order of words in the sentence. Consequently, the

topic and focus information cannot be represented in the same way that the original framework

represents it. Additionally, annotating topic and focus in a large corpus is very labor-intensive, and

isn’t currently represented in the Prague Czech-English Dependency Treebank (Hajic et al., 2012),

the largest dependency treebank annotated with the FGD framework. Thus PSD lacks any topic or

focus information, either through word order or other annotations. The PSD dependency labels are

almost identical to the FGD tectogrammatical labels, with the exception that argument labels (act,

pat, eff) are explicitly marked as being arguments. Like UD, but unlike DM or PAS, modifiers are

dependents of the words they modify.

(2.101) Sandy often hugged Kim.

Sandy often hugged Kim

top

act-arg

rstr

pat-arg

In Ex. (2.101), the main predicate is marked as the root of the tree (top), the agent and patient

are labeled as such, and the adverb often is a dependent of the predicate.

As with UD+ and the previously described semantic dependency formalisms, PSD annotates

edges in contrustructions where a predicate’s subject is located elsewhere.

(2.102) Sandy wanted to hug Kim.

Sandy wanted to hug Kim

top

act-arg

act-arg pat-arg

pat-arg

In the original FGD tectogrammatical tree, Sandy would only be coindexed with an empty token

that depends on the lower predicate, similar to TG. In PSD, these coindexical relationships are

explicitly represented as edges.

Coordination constructions likewise introduce extra edges into the dependency graph. The con-

juncts are all made to be dependents on the conjunction, as in the tectogrammatical structure, but

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 52

they also all depend on the word that acted as the head of the conjunction in the original represen-

tation. Similarly, any non-conjunct dependents of the original conjunction are instead attached to

each of the conjuncts.

(2.103) Sandy saw Alex and hugged Kim.

Sandy saw Alex and hugged Kim

top top

act-arg

act-arg

pat-arg

pat-arg

conj.member conj.member

In Ex. (2.103), the two predicates saw and hugged are conjoined by and. In addition to being

explicitly marked as such, they also share the top relation and they share their act-arg dependent.

Gapped constructions, however, are intentionally unrepresented. Sentences with gaps were removed

from all three SemEval datasets—DM, PAS, and PSD—because of how hard it is to analyze them.

Annotating them sensibly in a dependency formalism typically requires re-generating the missing

predicate, which most popular statistical parsing algorithms aren’t designed for. There has been

recent work on finding the “least bad” solution to this (Schuster et al., 2018), but at the moment it

remains an open problem.

2.7 Conclusion

This chapter has discussed the theoretical foundations of the most well-known syntactic representa-

tions. First it showed some evidence for constituency structure in language, introducing the reader

to the kinds of tasks theorists set out to accomplish. Then it described the strengths and weak-

nesses of the two main ways of describing the kind of easily testable surface-level syntactic structure,

pointing out that phrase structure tends to be more restrictive than dependency structure. The rest

of the chapter described five different syntactic representations, each coming from a different theory

of underlying syntax.

Because several of the dependency annotation schemes have lost mechanisms important to the

original theories, they all carry more or less the same information about argument structure, with

only subtle differences between them. These differences are summarized in Table 2.1. Other than

having a different theoretical origin, PTB and UD differ primarily in that UD is a dependency

framework with functional labels and PTB is a traditional phrase structure scheme. PTB mostly

utilizes categorial labels, with limited functional information, and UD utilizes functional labels,

with limited categorial information. UD+ simply extends UD to permit multiple heads with no

restrictions on cyclicity. UD+, DM, PAS, and PSD all allow for multiple heads; however, they can be

uniquely categorized along two dimensions. Firstly, UD+ and PSD both derive as relaxed extensions

of strict tree structures, and remain mostly tree-like; PAS and DM, on the other hand, come from

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 53

Scheme Theory Dep Acyclic >1 parent Conn. Tree-like Labels

PTB TG 7 3 7 3 3
Category/
(Function)

UD LFG 3 3 7 3 3
Function/
(Category)

UD+ LFG 3 7 3 3 3
Function/
(Category)

PAS HPSG 3 3 3 3 7
Category/
Protorole

PSD FGD 3 3 3 7 3 Semantic role
DM MRS 3 3 3 7 7 Protorole

Table 2.1: Differences between syntactic representations.

representations that never enforced tree structure, making them more graph-like. Secondly, UD+

and PAS draw inspiration from theoretical structures that aim to interface between surface syntax

and semantics. In part because of this, even semantically vacuous function words—which are critical

for converting a semantic denotation into a valid sentence—are assigned a role in the dependency

graph, meaning the formalisms are weakly connected graphs. PSD and DM, on the other hand, aim to

be coherent semantic representations. There’s simply no place for function words in these formalisms,

so PSD and DM exclude them from their dependency graphs. Each of these four representations

has its own way of labeling the edges, but they all boil down to marking semantic roles of varying

levels of granularity. While one could argue that UD+ is only committed to providing functional

rather than semantic labels, the only place where the distinction is clearly meaningful in practice

is in passive constructions—but even still, most treebanks adopt an extension that explicitly marks

passive subjects and auxiliaries, meaning that the semantic roles are recoverable from the functional

labels. This means that a system with the capacity to learn one of these formalisms should, in

principle, have the capacity to learn the others.

One takeaway from this discussion is that the distinction between “syntactic” and “semantic”

formalisms is at best fuzzy and perhaps nonexistent. If anything, there’s a syntactico-semantic

continuum, with the different formalisms falling on different points on that spectrum. PTB encodes

primarily surface-level constituency information, making it the most “syntactic” of the formalisms.

UD aims to encode a kind of “deep structure” instead, making it closer to semantics, but it sacrifices

some critical semantic relationships to retain a strict tree structure reminiscent of surface-level phrase

structure trees. UD+ relaxes the strict tree structure in order to bring that missing information

into the formalism, making it more semantic than basic UD. PAS and PSD both have at least

one syntactic feature in common with UD (connectedness and tree-like structure, respectively), but

adopt additional semantic features as well. DM is the most semantic formalism, drawing more

on semantic theory than all other frameworks discussed here. Labeling the formalisms binarily as

either “syntactic” or “semantic” is not clearly useful. UD+ could, for instance, trivially increase

CHAPTER 2. SYNTAX: FROM THEORY TO PRACTICE 54

how “semantic” it is by pruning vacuous function words or reversing the direction of edges between

modifiers and their predicates. It wouldn’t need to actually add any more information, because the

alleged semantic formalisms don’t encode much semantic information beyond the same argument

selection and predicate modification already present in Universal Dependencies.

While it’s good to keep in mind the different theoretical origins of these frameworks and how

they are reflected in the representations, a more illuminating distinction in the present context of

statistical parsing might be between strictly tree-structured and graph-structured formalisms. This

could be useful to keep in mind when choosing which formalisms to use in a downstream applica-

tion. Parsers for and downstream users of strictly tree-structured formalisms can take advantage of

the structural constraints to simplify the parsing algorithm, whereas parsers for graph-structured

formalisms need to use additional tricks to capture all and only correct edges in the relatively sparse

representations. It would be reasonable to train a system that works for the “semantic” dependency

formalisms on the “syntactic” UD+ formalism (provided it can generate cyclical graphs). However,

it wouldn’t be nearly as reasonable to train a system that works for the graph-structured depen-

dency formalisms on the strictly tree-structured dependency formalism basic UD, because it would

fail to take advantage of the relative simplicity the representation. Conveniently, this proposed

distinction partitions the formalisms along the syntactico-semantic continuum; the more syntactic

PTB and UD are both strictly tree-structured (under the assumption that coindexation doesn’t

violate tree structure), whereas the more semantic UD+ and SemEval dependency formalisms are

all graph-structured.

Chapters 5 and 6 will motivate and extend a neural network parser for producing strictly tree-

structured dependency formalisms. Tree-structured dependency formalisms are the most popular,

likely owing to their simplicity and user-friendliness. As such, Chapter 5 establishes a baseline system

for dependency trees, and emphasizes its performance on English Stanford Dependencies (though

it is evaluated on a number of other tree-structured datasets). Chapter 6 extends it to Universal

Dependencies, eventually including techniques to generate the Universal Features that are a critical

part of LFG but were removed during its simplification to Stanford Dependencies. Chapter 7 will

show how this parser can be minimally extended to produce arbitrary graph-structured formalisms.

Specifically, the parser can be tweaked slightly to allow it to generate the more complex graph-

structured dependency formalisms inspired by the other linguistic frameworks.

Chapter 3

Machine Learning

3.1 Affine classification

3.1.1 Näıve Bayes and Maximum Entropy Classifiers

Many high-level machine learning tasks can be construed as involving some sort of classification

objective. This section will derive the affine softmax classifier mathematically from the simple case

of classifying a set of features. Subsequent discussions will build off ideas motivated here to show

that biaffine softmax classifiers can be mathematically derived for some special cases, including

dependency parsing and dependency labeling.

For notational clarity, variables will be indexed by i and t when relevant, where i indicates that it

comes from the i-th example in the treebank and t indicates it is the t-th timestep in that example.

The notation will follow the convention of using lowercase italics for scalar variables, lowercase bold

for vectors, uppercase italics for matrices, and uppercase bold for higher order tensors. This will

be maintained when indexing, so that ai is the ith row of A. When indexing into a function that

returns a non-scalar, the index will come before the function’s arguments.

A = stack(a1, . . . ,an) (3.1)

ai = unstacki(A) (3.2)

The only exception to this will be that capital letters will also occasionally be used for the lengths

of sequences when the , as in (a1, . . . , at, . . . , aT).

Consider a task that involves classifying new emails into one of three classes—spam, not spam,

and urgent—based on a training corpus of eamils whose classes are already known. An engineer

might identify a handful of binary features that could be predictively correlated with the different

classes. These boolean features could be things like words that occur in the bodies of the training

55

CHAPTER 3. MACHINE LEARNING 56

emails (e.g. in body:free), words that occur in the headers of the emails (in header:FW), or the

domains of the sender email addresses (sender domain:@stanford.edu). Let each class be ck ∈
c = (c1, . . . , cm), and let each feature be fj ∈ f = (f1, . . . , fd). c will be categorical, meaning exactly

one ck will take the value 1 for each example i and the rest will be 0, and fj will be binary, taking

values of 0 or 1. Each training example i will have a known class yik that provides a value for

variable ck, and it will also have a known feature set xi that provides the value for variable f . So

if c1 represents spam, and example i is known to be a spam email, then yi = (1, 0, 0); and if f1

represents in body:free, and exmple i contains the word free in its body text, then xij = 1. The

engineer’s goal now is to design an algorithm that will compute the probability P (ck = 1|f = xi) for

each class ck and for each new incoming email i. Observation i is then assumed to be a member of

the class with the highest probability. The engineer needs to find a way to determine how predictive

each feature is of the three classes so that they can compute the probability of a new email with a

new set of features falling into each of the three classes. How should they go about this?

The conditional probability of a class given the features is the ratio between the joint probability

of the observation and the class f = xi, ck = 1 and the marginal probability of just the observation

f = xi (Eq. 3.3). In turn, the probability of an observation—a set of feature-value pairs—is the

joint probability of every feature in the observation (Eq. 3.4). Similarly, the probability of a set of

feature-value pairs and a class ck is the probability of the observation and the class together (Eq.

3.5).

P (ck = 1|f = xi) =
P (f = xi, ck = 1)

P (f = xi)
(3.3)

P (f = xi) = P (f1 = xi1, . . . , fd = xid) (3.4)

P (f = xi, ck = 1) = P (f1 = xi1, . . . , fd = xid, ck = 1) (3.5)

Computing the probability in Eq. (3.3) requires doing two things: first, expressing the probability as

a function of a fixed number of free parameters; and second, optimizing the parameters for a labeled

training set. The expressions above problematically treat feature vectors holistically, with no internal

structure and with no relationship to nearly identical feature sets. Since each individual feature

vector xi will likely be extremely rare in a training corpus, accurately estimating the parameters

for these probabilities with a limited amount of training data will be extremely difficult. That is,

every possible combination of features will need to receive its own free parameter, making it likely

that there will be more parameters than observations. This problem of similar feature sets having

no relationship to each other can be addressed by making some simplifying assumptions about the

distributions of the individual features. First Eq. (3.3) will need to be rewritten using Bayes’ rule.

Eq. (3.6–3.8) show how to derive and apply Bayes’ rule in the probability under consideration. Here,

CHAPTER 3. MACHINE LEARNING 57

the variable ck = 1 will be expressed as ck, and likewise fj = xij will be shortened to simply fj .

P (ck|f) =
P (f1, . . . , fd, ck)

P (f1, . . . , fd)
(3.6)

=
P (f1, . . . , fd, ck) P (ck)

P (ck)

P (f1, . . . , fd)
(3.7)

=
P (f1, . . . , fd|ck)P (ck)

P (f1, . . . , fd)
(3.8)

Eq. (3.6) expands the lefthand side by the definition of conditional probability. Eq. (3.7) multi-

plies the numerator by P (ck)/P (ck). Eq. (3.8) then contracts the numerator by the definition of

conditional probability. In this equation, the conditional probability P (ck|f) is also known as the

posterior ; the marginal probability P (ck) is also known as the prior ; and the conditional probabil-

ity P (f |ck) is also known as the likelihood. In order to make the posterior probability tractable to

estimate from a finite set of training data, the probabilities conditioned on unbounded numbers of

features (e.g. fj , . . . , fd) need to instead be conditioned on a fixed number of features. This can be

done by assuming conditional independence (Eq. 3.9) between the features.

P (x1, x2|x3) = P (x1|x3)P (x2|x3) Conditional Independence (3.9)

P (ck|f) =
P (f1, . . . , fd|ck) P (ck)

P (f1, . . . , fd)
=

d∏
j=1

[P (fj |ck)] P (ck)

P (f1, . . . , fd)
(3.10)

While this solves the problem in the numerator, the denominator of Eq. (3.10) is still the probability

of an unbounded number of variables. There are two ways it can be simplified. The first is to

additionally stipulate mutual independence (Eq. 3.11) between the feature probabilities.

P (z1, z2, z3) = P (z1)P (z2)P (z3) Mutual Independence (3.11)

P (ck|f) =

d∏
j=1

[P (fj |ck)]P (ck)

P (f1, . . . , fd)
=

d∏
j=1

[P (fj |ck)]P (ck)

d∏
j=1

[P (fj)]

(3.12)

=

d∏
j=1

P (fj |ck)

P (fj)

P (ck) (3.13)

The large probability in the denominator is broken up into a product of marginal probabilities (Eq.

3.12), which can then be factored into the likelihood (Eq. 3.13). However, if mutual independence

doesn’t hold exactly, then the posterior won’t be a valid probability distribution that sums to one.

CHAPTER 3. MACHINE LEARNING 58

Instead, it can be easily seen to sum to the ratio P (f1, . . . , fd)/
∏m
j=1 P (fj). This leads to the

second way that Eq. (3.10) can be simplified, which rewrites the denominator without making any

additional assumptions.

P (ck|f) =

d∏
j=1

[P (fj |ck)]P (ck)

P (f1, . . . , fd)
=

d∏
j=1

[P (fj |ck)]P (ck)

m∑
k=1

P (f1, . . . , fd , ck)

(3.14)

=

d∏
j=1

[P (fj |ck)]P (ck)

m∑
k=1

P (f1, . . . , fd, ck) P (ck)
P (ck)

(3.15)

=

d∏
j=1

[P (fj |ck)]P (ck)

m∑
k=1

P (f1, . . . , fd |ck)P (ck)
(3.16)

=

d∏
j=1

[P (fj |ck)]P (ck)

m∑
k=1

m∏
j=1

[P (fj |ck)] P (ck)

(3.17)

=

d∏
j=1

[
P (fj |ck)
P (fj)

]
P (ck)

m∑
k′=1

m∏
j=1

[
P (fj |ck′)

P (fj)

]
P (ck′)

(3.18)

Eq. (3.14) introduces a new variable ck into the probability of the denominator, but then sums over

it, maintaining exact equivalence. Eqs. (3.15, 3.16) then multiply the denominator by P (ck)/P (ck)

and create a conditional probability given ck, just as Bayes’ Rule does (cf. Eqs. 3.7, 3.8). Using

the assumption of conditional independence already assumed in Eq. (3.10), the conditional proba-

bility in the denominator can be split into a product of conditional probabilities (Eq. 3.17). The

numerator and denominator can then both be multiplied by
∏d
j=1 P (fj), making the expression

maximally comparable to Eq. (3.13). In fact, the only difference between the version that assumes

both conditional independence and mutual independence (Eq. 3.19) and the version that only as-

sumes conditional independence (Eq. 3.20) is that the former doesn’t need explicit normalization,

CHAPTER 3. MACHINE LEARNING 59

whereas the latter does.

P (NB)(ck|f) =

d∏
j=1

[
P (fj |ck)

P (fj)

]
P (ck) conditional&mutual ID (3.19)

P (ME)(ck|f) =

d∏
j=1

[
P (fj |ck)
P (fj)

]
P (ck)

m∑
k′=1

d∏
j=1

[
P (fj |ck′)
P (fj)

]
P (ck′)

conditional ID only (3.20)

On the surface, this may seem trivial, since the normalization term scales the whole probability

distribution proportionally, and won’t change which class ck has the highest probability. However,

it will be shown shortly that in fact this difference has critical implications for finding the optimal

parameters for probabilities P (fj |ck), P (fj), P (ck). In particular, Eq. (3.19) is the expression for a

Näıve Bayes (NB) classifier, for which the optimal probabilites can be estimated from a training

corpus by simply counting frequences; Eq. (3.20), on the other hand, is the expression for a maximum

entropy (ME) classifier, which has no analytic optimum.

The expressions for the two classifiers will be easier to work with if they’re represented with

sums of log-probabilities rather than products of raw probabilities. The Näıve Bayes and Maximum

Entropy classifiers can be expressed as different functions of the un-normalized log-probability—or

score—sik of the class ck given the feature set in example i (Eq. 3.23). Specifically, NB applies the

exponential function to the score (Eq. 3.24), whereas ME applies the softmax function (Eqs. 3.21,

3.25).

softmaxk(x) =
exp(xk)

m∑
k′=1

exp(xk′)
(3.21)

sik = ln

 d∏
j=1

[
P (fj |ck)

P (fj)

]
P (ck)

 (3.22)

=

d∑
j=1

[
ln

(
P (fj |ck)

P (fj)

)]
+ ln(P (ck)) (3.23)

P (NB)(ck|f) = expk (si) (3.24)

P (ME)(ck|f) = softmaxk (si) (3.25)

Because the ME classifier involves applying the softmax function to the score, it is also commonly

known as a softmax regression classifier.

The score sik in Eq. (3.23) is expressed in terms of three probabilites P (fj |ck), P (fj), P (ck). In

order to learn a classifier from training data, the score needs to be expressed in terms of parameters

CHAPTER 3. MACHINE LEARNING 60

that can be optimized. The most natural probability distribution for the binary-valued variables in

the likelihood is the Bernoulli distribution, which is characterized by a single parameter p that can

be interpreted as the probability of the variable taking the value 1. The class variable ck is m-ary

rather than binary, meaning the categorical distribution is ideal for modeling the prior.1

Bernoulli(x; p) = px(1− p)1−x (3.26)

Categorical(x; p) =

m∏
k=1

[
p
{x=k}
k

]
= px (3.27)

P
(
fj = xij ; p

(f)
j

)
= Bernoulli

(
xij ; p

(f)
j

)
(3.28)

P
(
fj = xij |ck; p

(fc)
kj

)
= Bernoulli

(
xij ; p

(fc)
kj

)
(3.29)

P
(
ck = 1; p(c)

)
= Categorical

(
k; p

(c)
k

)
(3.30)

Notationally, the parameters for P (fj) are superscripted with (f), the parameters for P (fj |ck) are

superscripted with (fc), and the parameters for P (ck) are superscripted with (c). θ will be used as

shorthand for all of P (fc),p(f),p(c). These probability mass functions can now be substituted for

the probabilities in the score from Eq. (3.23), shown in Eq. (3.33).

sik =

d∑
j=1

[
ln

(
P (fj |ck)

P (fj)

)]
+ ln(P (ck)) (3.31)

=

d∑
j=1

ln

 (
p
(fc)
kj

)xij
(
1− p(fc)kj

)1−xij(
p
(f)
j

)xij
(
1− p(f)j

)1−xij

+ ln
(
p
(c)
k

)
(3.32)

sik =

d∑
j=1

 xij ln

(
p
(fc)
kj

p
(f)
j

)
+ (1− xij) ln

(
1− p(fc)kj

1− p(f)j

) + ln
(
p
(c)
k

)
(3.33)

With the vector of scores si now parameterized, its optimal parameters can be computed from a

labeled training corpus.

The “optimal parameters” can be defined as the ones that maximize the probability of the

data observed in the training corpus X,Y (Eq. 3.35). These are known as the maximum likelihood

estimators. The maximum likelihood estimators also minimize the cross-entropy of the data, which

is the total negative log probability (negative log probability will be notated with L) of all correct

classes given each feature set. Since the variable c has already been assumed to follow a Categorical

distribution, the Categorical distribution probability mass function can be used to represent the

1Let {x = i} be the boolean equality operator, which evaluates to 1 iff x and i are equal and 0 iff they’re different.

CHAPTER 3. MACHINE LEARNING 61

probability of a class given a feature set.

P (Y |X; θ) =

n∏
i=1

m∏
k=1

[P (ck|f)yik] (3.34)

L(Y |X; θ) = −
n∑
i=1

m∑
k=1

[
yik ln

(
P (ck|f)

)]
(3.35)

Summing each example over all possible classes for each example i but multiplying by yik—which

is 0 for incorrect classes but 1 for the correct class—allows only the entropy of the correct class to

aggregated into the sum. Substituting the NB un-normalized conditional probability for P (ck|f)

yields Eq. (3.38).

L(Y |X; θ) = −
n∑
i=1

m∑
k=1

[
yik ln

(
P (NB)(ck|f)

)]
(3.36)

= −
n∑
i=1

m∑
k=1

[yik ln(exp(sik))] (3.37)

= −
n∑
i=1

m∑
k=1

[yiksik] (3.38)

This objective is convex, and can be optimized with respect to p
(fc)
kj and p

(f)
j by setting the gradient

equal to zero. Solving for p
(c)
k can be done by adding a lagrangian constraint λ(

∑m
k=1[p

(c)
k]− 1) = 0

to ensure that the priors are a valid probability distribution. The gradients with respect to each

parameter are provided in Eqs. (3.39–3.42).

0 = ∇
p
(fc)
kj

L(Y |X; θ) = −
n∑
i=1

[
yik

xij − p(fc)kj

p
(fc)
kj (1− p(fc)kj)

]
(3.39)

0 = ∇
p
(f)
j
L(Y |X; θ) = −

n∑
i=1

[
−

xij − p(f)j

p
(f)
j (1− p(f)j)

]
(3.40)

0 = ∇
p
(c)
k

L(Y |X; θ, λ) = −
n∑
i=1

[
yik

p
(c)
k

]
+ λ (3.41)

0 = ∇λL(Y |X; θ, λ) =

m∑
k=1

[
p
(c)
k

]
− 1 (3.42)

CHAPTER 3. MACHINE LEARNING 62

The solutions to Eqs. (3.39–3.41) follow from basic algebra, and are given in Eqs. (3.43–3.45).

p
(fc)
kj = P (fj = 1|ck) =

1
n∑
i=1

[yik]

n∑
i=1

[xijyik] (3.43)

p
(f)
j = P (fj = 1) =

1

n

n∑
i=1

[xij] (3.44)

p
(c)
k = P (ck = 1) =

1

n

n∑
i=1

[yik] (3.45)

These solutions are very simple; they show that the optimal NB classifier can be determined by just

counting the number of times features and classes occur and co-occur. The analytical, frequency-

based solutions here are only possible because of the mutual independence assumptions that allowed

the normalization term to be ignored. However, if the posterior is normalized in a ME classifier to

avoid the stronger independence assumptions, then no analytic solution is possible for p
(c)
k and p

(fc)
kj .

L(Y |X; θ) = −
n∑
i=1

m∑
k=1

[
yik ln

(
P (ME)(ck|f)

)]
(3.46)

= −
n∑
i=1

m∑
k=1

yik ln

 exp(sik)
m∑
k′=1

[exp(sik′)]

 (3.47)

= −
n∑
i=1

m∑
k=1

[
yik

(
ln(exp(sik))− ln

(
m∑
k′=1

[exp(sik′)]

))]
(3.48)

= −
n∑
i=1

m∑
k=1

[
yik

(
sik − ln

(
m∑
k′=1

[exp(sik′)]

))]
(3.49)

The log-normalization term in Eq. (3.49) is complex, resulting in substantially more complex gradi-

ents.

0 = ∇
p
(fc)
kj

L(Y |X; θ) = −
n∑
i=1

[
yik

xij − p(fc)kj

p
(fc)
kj (1− p(fc)kj)

(1− softmaxk(si))

]
(3.50)

0 = ∇
p
(f)
j
L(Y |X; θ) = −

n∑
i=1

[
−

xij − p(f)j

p
(f)
j (1− p(f)j)

(m− 1)

]
(3.51)

0 = ∇
p
(c)
k

L(Y |X; θ) = −
n∑
i=1

[
yik

p
(c)
k

(1− softmaxk(si))

]
(3.52)

The parameters p
(f)
j have the same optimum in the normalized version as the un-normalized version,

but the (1− softmaxk) term in the gradients for the others contains all parameters θ, blocking them

CHAPTER 3. MACHINE LEARNING 63

from being isolated and solved. That is, for these other parameters, the gradient of the objective for

each example i is weighted by how much probability mass the current estimates assign to incorrect

classes. Consequently, these parameters have much more complex interdependence, and the gradients

can’t simply be solved for the parameters. Consequently, they must be estimated through iterative

optimization techniques such as gradient descent. While the optimization is more complex, the

learned parameters tend to be more robust in the presence of mutual dependence. For example, if a

feature fj has a redundant correlate fj′ such that fj ⇔ fj′ , then the estimates of the un-normalized

NB version will overrepresent the impact of fj on the posterior probability. This may reduce the

probability of the observed class in some training examples. By contrast, in a ME model, the gradient

will give more weight to these “more incorrect” training examples during optimization, which will

lower the strength of features fj and fj′ . In the case of mutual dependence, a ME model generally

won’t have a unique solution; however, one can be imposed by including an L2 penalty in the loss

term.

This demonstrates that NB and LR are the optimal solvers for simple classification tasks with

binary features, depending on what independence assumptions one is willing to make. When features

are not binary, the probabilities P (fj |ck) and P (fj) need to be represented with different probability

density functions, yielding different gradients and, when possible, solutions. However, in all cases,

Bayes’ rule must first factorize the posterior into a product of conditionally independent likelihoods

and a prior. The ensuing discussion will examine these classifiers from an information-theoretic

perspective, and then will show how the score term can be simplified further to a form commonplace

in neural machine learning.

3.1.2 Alternative parameterizations

Pointwise Mutual Information

The likelihood and prior terms in Eqs. (3.19, 3.20) both have information-theoretic interpretations.

The likelihood is the exponentiated pointwise mutual information (PMI) between feature fj and class

ck, PMI(ck, fj). Pointwise mutual information is a measure of how much more or less frequently

two variables occur together than would be expected if they’re independent. The prior is the

exponentiated negative self-information (SI), which measures how surprising it is for an event to

occur. The pointwise self-information of a variable x is the same as the PMI of the variable and

CHAPTER 3. MACHINE LEARNING 64

itself PMI(x, x), so the whole score from Eq. (3.23) can be expressed solely in terms of PMI.

PMI(x1, x2) = ln

(
P (x1, x2)

P (x1)P (x2)

)
(3.53)

sik =

d∑
j=1

[
ln

(
P (fj |ck)

P (fj)

)]
+ ln(P (ck)) (3.54)

ln

(
P (fj |ck)

P (fj)

)
= ln

(
P (fj , ck)

P (fj)P (ck)

)
(3.55)

= PMI(fj , ck) (3.56)

ln
(
P (ck)

)
= − ln

(
P (ck, ck)

P (ck)P (ck)

)
(3.57)

= −PMI(ck, ck) (3.58)

sik =

d∑
j=1

[
PMI(fj , ck)

]
− PMI(ck, ck) (3.59)

Eq. (3.53) presents the definition of PMI, and Eq. (3.54) repeats Eq. (3.23). Eqs. (3.55, 3.57) rewrite

the log-likelihood and log-prior in terms of the PMI expression. Eq. (3.59) rewrites the score of class

k in example i as the total PMI of the class and features minus the SI of the class. This shows

that the score of a class reduces to the total PMI of the class and features minus the baseline PMI

of the class. Because the exponential function is monotonically increasing and the normalization

term scales each score proportionally, in both NB and ME classifiers, the most probable class is

the one that has the most mutual information with the observation and the least information itself.

Put another way, both NB and ME models learn a probability for how likely it is to see a class

ck occurring jointly with a feature fj (P (fj , ck)), as well as probabilities for how likely it is to see

class ck and feature fj occurring independently (P (fj), P (ck)). If ck and fj occur together more

(or less) often than would be expected by chance, then they deem feature fj as being predictive (or

anti-predictive) of class ck. In this way, both NB and ME learn simple co-occurrence statistics (in

the case of ME, through complex optimization) that they use to classify new observations.

Affine function

The score term in Eq. (3.23; 3.54) is somewhat complex, raising the question of whether it can be

reparameterized so that no variable or parameter occurs more than once. In fact, it can be simplified

CHAPTER 3. MACHINE LEARNING 65

all the way down to an affine function.

sik =

d∑
j=1

[
xij ln

(
p
(fc)
kj

p
(f)
j

)
+ (1− xij) ln

(
1− p(fc)kj

1− p(f)j

)]
+ ln

(
p
(c)
k

)
(3.60)

=

d∑
j=1

[
xij ln

(
p
(fc)
kj

p
(f)
j

)
−xij ln

(
1− p(fc)kj

1− p(f)j

)
+ ln

(
1− p(fc)kj

1− p(f)j

)]
+ ln

(
p
(c)
k

)
(3.61)

= xij

d∑
j=1

[
ln

(
p
(fc)
kj

p
(f)
j

)
− ln

(
1− p(fc)kj

1− p(f)j

)]
+

d∑
j=1

[
ln

(
1− p(fc)kj

1− p(f)j

)]
+ ln

(
p
(c)
k

)
(3.62)

wkj = ln

(
p
(fc)
kj

p
(f)
j

)
− ln

(
1− p(fc)kj

1− p(f)j

)
(3.63)

bk =

d∑
j=1

[
ln

(
1− p(fc)kj

1− p(f)j

)]
+ ln

(
p
(c)
k

)
(3.64)

sik =

d∑
j=1

[
xij wkj

]
+ bk (3.65)

= w>k xi + bk (3.66)

si = Wxi + b (3.67)

Eq. (3.60) is the score from Eq. (3.23), repeated for reference. Eq. (3.61) distributes the (1 − xij)
term. Eq. (3.62) factors out the xij from the two terms inside the summation that include it, and

separates out the one term in the sum that doesn’t. Eqs. (3.63, 3.64) define new weight and bias

terms using only constants and parameters. The log likelihoods of xij being 0 are grouped with the

log prior in Eq. (3.64) and subtracted from the log likelihoods of xij being 1 in Eq. (3.63). In this

way, when and only when xij is 1, the copy of P (fj = 0|ck) stored in wkj will cancel out with the

copy stored in bk. Eqs. (3.65–3.67) substitute these weights and biases back into the original score,

yielding a simple affine function. The affine score in Eq. (3.67) is exactly equivalent to the original

score in Eq. (3.60), so it can be substituted in the probability expressions for the two classifiers

discussed in the previous section.

P (NB)(ck|f) = expk(Wxi + b) (3.68)

P (ME)(ck|f) = softmaxk(Wxi + b) (3.69)

This shows that both NB and ME reduce to an affine function composed with a nonlinear one. In

the case of NB, the affine function composes with the exponential function, and in ME, it composes

with softmax. Thus NB can be considered an affine exponential classifier, and ME an affine softmax

classifier. Ensuing discussion will focus on the affine softmax classifier, in particular how to extend

CHAPTER 3. MACHINE LEARNING 66

it when the probability being modeled is more complex than what was assumed in this section.

This discussion has shown two things: firstly, that the classifier score is essentially learning co-

occurrence statistics in the form of PMI; and secondly, that the classifier score can be represented as

an affine function. Putting these two together, it can be hypothesized that the affine layers of neural

networks are doing something similar. If the affine function is aggregating PMI from the input, then

a ReLU layer of a neural network is computing positive PMI, and a tanh layer is approximating a

kind of normalized PMI. This admits a new way of conceptualizing exactly what kinds of information

neural networks learn.

3.2 Biaffine classification

3.2.1 Fixed-class classification

Section 3.1 shows how the objective probability—P (ck = 1|f = xi), where ck is a class variable,

f is a vector of feature variables, and xi is a vector of boolean feature values—can be rewritten

into one of two forms. If one assumes that the features are both conditionally independent given ck

and mutually independent—the assumptions at play in a Näıve Bayes classifier—then the posterior

probability can be expressed in terms of an exponentiated affine function. The optimal weights W

and biases b in this affine exponential classifier can be computed analytically.

sik =

d∑
j=1

[
ln

(
P (fj |ck)

P (fj)

)]
+ ln(P (ck)) (3.70)

= w>k xi + bk (3.71)

si = Wxi + b (3.72)

P (NB)(ck|f = xi) = expk(si) (3.73)

Eq. (3.70) repeats the expression for the score in Eq. (3.23), and Eqs. (3.71, 3.72) reparameterize

it into an affine function, the process of which is shown in Eqs. (3.60–3.67). Relaxing the mutual

independence assumption for a more accurate classifier—as in a Maximum Entropy model—requires

explicitly normalizing the probability expression, which can be done with the softmax function. The

result is an affine softmax classifier. The normalized version doesn’t have an analytic optimum, and

must be computed through iterative optimization methods.

P (ME)(ck|f = xi) = softmaxk(si) (3.74)

Both classifiers, of course, assume that all features in xi are conditionally independent. In some

circumstances, this assumption is too strong. In particular, there may be two features fj and fj′

that have one effect on their own but produce a disproportionately stronger or weaker effect when

CHAPTER 3. MACHINE LEARNING 67

both are present. The presence of two features can be explicitly expressed as a feature conjunction or

conjunctive feature. This non-additive effect is also known as an interaction effect. Conjunctive fea-

tures can be precomputed and concatenated to the feature vector xi. Alternatively, the classification

score can be extended in order to capture interaction effects explicitly, as in Eq. (3.75).

sik =

d∑
j=1

 d∑
j′≤j

[
ln

(
P (fj , fj′ |ck)

P (fj , fj′)

)]
+ ln

(
P (fj |ck)

P (fj)

)+ ln(P (ck)) (3.75)

The interactive probabilities P (fj , fj′) and P (fj , fj′ |ck) can be represented with Bernoulli distri-

butions parameterized by p
(ff)
jj′ and p

(ffc)
j′kj , respectively. Then the score can be straightforwardly

reparameterized as a biaffine function (cf. Eqs. 3.60–3.67).

d∑
j=1

d∑
j′≤j

[
ln

(
P (fj , fj′ |ck)

P (fj , fj′)

)]
=

d∑
j=1

d∑
j′≤j

[
xijxij′ ln

(
p
(ffc)
j′kj

p
(ff)
j′j

)
+ (1− xijxij′) ln

(
1− p(ffc)j′kj

1− p(ff)j′j

)]
(3.76)

uj′kj = ln

(
p
(ffc)
j′kj

p
(ff)
j′j

)
− ln

(
1− p(ffc)j′kj

1− p(ff)j′j

)
if j′ ≤ j else 0 (3.77)

bk =

d∑
j=1

 d∑
j′≤j

[
ln

(
1− p(ffc)j′kj

1− p(ff)j′j

)]
+ ln

(
1− p(fc)kj

1− p(f)j

)+ ln
(
p
(c)
k

)
(3.78)

sik =

d∑
j=1

 d∑
j′≤j

[xij′uj′kjxij] + wkjxij

+ bk (3.79)

si = x>i Uxi +Wxi + b (3.80)

Eq. (3.76) replaces the interaction probabilities with Bernoulli functions. Eqs. (3.77, 3.78) define

new parameters in terms of the Bernoulli parameters. Finally, Eqs. (3.79, 3.80) express the score

in terms of the new parameters, revealing a simple biaffine function. This biaffine score can then

of course be used with the exponential or softmax functions to create a biaffine classifier. The

second-order term x>i Uxi is known as a bilinear transformation, but because first-order terms and

constants are added to it, x>i Uxi +Wxi + b is a biaffine transformation.

It may be the case that there are two sets of features f and f̃ that are hypothesized to interact

with each other but that aren’t expected to interact within themselves. The formulation in Eq.

(3.80) can easily be extended to accommodate this two-vector variant.

P (ck|f = xi, f̃ = x̃i) = softmaxk
(
x>i Ux̃i +W (xi ⊕ x̃i) + b

)
(3.81)

Of course, the parameters in Eq. (3.81) are slightly different functions of the Bernoulli parameters

CHAPTER 3. MACHINE LEARNING 68

than the ones in Eq. (3.80); for example, each slice of the tensor U in Eq. (3.80) is triangular,

but in Eq. (3.81) each slice is square. Fortunately, the new mapping from Bernoulli parameters to

biaffine parameters is straightforward to derive. The probability in Eq. (3.81) includes a bilinear

term x>i Ux̃i to capture interactions between the two feature vectors, as Eq. (3.80). But then it also

includes a linear term W (xi ⊕ x̃i) that captures the individual effects of each feature from each set,

plus a bias term b to capture the prior probability and the likelihood of the class given the absence

of each feature or pair of features.

3.2.2 Variable-class classification

The affine and biaffine classifiers so far have all assumed that there is a fixed m number of classes.

However, there are cases when the possible classes change from data point to data point. In the

prototypical case, the classes are the locations of tokens in a sentence. There, the task is, for

a given sentence and input token, to identify the location of exactly one token in the sentence

that bears a specific relationship to the input token. In order to classify an input xi into one

of these location-based classes, each class needs its own feature variables f̃k and input vector x̃ik,

which can be stacked into the matrices F̃ and X̃i. For example, if an input vector xi contains the

identity of a token to classify (among other things), each class vector x̃i would similarly contain the

identity of the token at a unique location in the sentence. Formally, the goal now is to compute

P (ck = 1|f = xi, F̃ = X̃i). Assuming full conditional independence (i.e. no interactions) between f

and the class features F̃ allows the score to be completely factorized (Eq. 3.82). Applying the softmax

function then guarantees a valid probability distribution without relying on mutual independence.

sik =

d∑
j=1

[
ln

(
P (fj |ck)

P (fj)

)]
+

d′∑
j=1

[
ln

(
P (f̃kj |ck)

P (f̃kj)

)]
+ ln(P (ck)) (3.82)

P (ck|f , F̃) = softmaxk(si) (3.83)

However, this approach—with no interactions between f and f̃—is deeply flawed. It’s reasonable

to assume that all classes are equally likely, in order to accommodate classes not seen at training

time (e.g. longer sentences with more positions). With this assumption, it follows that ln(P (ck)) is

CHAPTER 3. MACHINE LEARNING 69

constant for all classes; but constants divide out of the softmax function (as proven below).

softmaxk(z + c) =
exp(zk +c)

m∑
k′=1

[
exp(zk′ +c)

] (3.84)

=
exp(c) exp(zk)

m∑
k′=1

[
exp(c) exp(zk′)

] (3.85)

=
exp(c) exp(zk)

exp(c)
m∑
k′=1

[exp(zk′)]
(3.86)

=
exp(c)

exp(c)

exp(zk)
m∑
k′=1

[exp(zk′)]
(3.87)

=
exp(zk)

m∑
k′=1

[exp(zk′)]
(3.88)

= softmaxk(z) (3.89)

Similarly, it’s often reasonable to assume that ck and fj are mutually independent. In the proto-

typical case, where classes are locations in a sentence associated with the word at that index, this is

akin to saying that an input feature fj is equally likely no matter the absolute location of its class

token; a word related to the token at position 10 is just as likely to have fj = 1 as a word related to

the token at position 20. This again accommodates longer sentences, which may have rare or unseen

positions. However, it completely nullifies the effect of the likelihood of the input.

ln

 P (fj |ck)

P (fj)

 = ln

 P (fj , ck)

P (fj) P (ck)

 (3.90)

= ln

 P (fj)P (ck)

P (fj)P (ck)

 (3.91)

= 0 (3.92)

The end result of this is that the bias P (ck) and input feature likelihood P (fj |ck) disappear from

Eq. (3.82), leaving the score conditioned entirely on the likelihood of the class features P (f̃kj |ck).

sik =

d′∑
j=1

[
ln

(
P (f̃kj |ck)

P (f̃kj)

)]
(3.93)

CHAPTER 3. MACHINE LEARNING 70

This means that by excluding feature interactions, the probability of a class being correct is depen-

dent solely on the features of the class itself, and any features specific to the input are ignored. If

there are multiple inputs with the same set of class features, they are all guaranteed to be assigned

to the same class, which is rarely if ever desirable behavior.

As foreshadowed in previous discussion, the solution to this problem is to add feature interactions

to Eq. (3.82). Any input feature fj will have the opportunity to interact with any class feature f̃k̃.

The class bias and likelihood of the input features are still absent, but the input features now affect

the score by means of their joint likelihood with the class features. This yields the formulation in

Eq. (3.94), which can as usual be rewritten into a biaffine function.

sik =

d̃∑
̃=1

 d∑
j=1

[
ln

(
P (fj , f̃k̃|ck)

P (fj , f̃k̃)

)]
+ ln

(
P (f̃k̃|ck)

P (f̃k̃)

) (3.94)

si = X̃iUxi + X̃iw (3.95)

= (X̃iU)xi + (X̃iw) (3.96)

= X̃i(Uxi + w) (3.97)

P (ck|f , F̃) = softmaxk(si) (3.98)

The variable-class biaffine softmax classifier can be conceptualized in two ways. Firstly, it can be

seen as an affine classifier with mi classes over the input xi, where the weights and biases are

generated on-the-fly for each example (Eq. 3.96). Alternatively, it can be seen as a linear classifier

over the class matrix X̃i, where the vector that weights every x̃i is generated on-the-fly (Eq. 3.97).

That is, the scoring function is equal parts affine transformation of the input features and linear

transformation of the class features.

3.3 Neural classification

3.3.1 Feedforward networks

One nice property of a feature-based approach is that one can use it to make linguistic observations.

If a linguistic feature makes a statistically significant contribution to the classifier, then one can

infer (with some caveats) that the feature is in some sense “real”. Neural classification sacrifices

this transparency for accuracy. Rather than depending on the engineers to come up with useful,

predictive features, a neural system aims to learn predictive features automatically. This is done

by replacing the high-level features with differentiable, parametric functions that take lower-level

information as input. In the domain of natural language, the lower-level information can simply

be the set of all words in a sentence. As in the simple affine classifier motivated in Section 3.1,

the vector of features xi is first put through an affine transformation to rearrange the data without

CHAPTER 3. MACHINE LEARNING 71

heavily distorting it. Then, a nonparametric, nonlinear function f is applied to the resulting vector,

which allows the system to strip away irrelevant noise.

zi = Affine(xi) (3.99)

hi = f(zi) (3.100)

This vector hi is known as the hidden state or hidden layer because it is a latent representation of

the input. It is also sometimes referred to as a fully connected layer or feedforward layer because

every node in the hidden state is a linear combination of every element in the input vector. This

hidden state can be conceptualized as containing the features that the system learned. It then gets

used in the core classifier in the same way that the handcrafted features were used in the preceding

sections, with another affine transformation that assigns a high score to the correct class.

si = Aff(hi) (3.101)

P (ck|f = hi) = softmaxk(si) (3.102)

This composite affine/nonlinearity/affine function is known as a multilayer perceptron model, or

MLP. It is also sometimes referred to as a feedforward neural network, or FFNN. An FFNN model

can have multiple hidden layers “stacked” on top of each other, as in Eqs. (3.103–3.105).

h
(1)
i = f(Aff(xi)) (3.103)

h
(2)
i = f(Aff(h

(1)
i)) (3.104)

h
(`)
i = f(Aff(h

(l−1)
i)) (3.105)

To simplify notation, this thesis will use the FFNN function (for feedforward neural network) defined

in Eq. (3.106) to abstract away from the exact number of hidden layers in a neural transformation.

FFNN(x) = h(L) (3.106)

This FFNN function can then be used to express the score in a neural classifier.

si = WFFNN(xi) + b (3.107)

The nonlinearity is necessary for ensuring that the system is more powerful than the simple affine

CHAPTER 3. MACHINE LEARNING 72

classifier over handcrafted features. This can be shown in Eqns. (3.108–3.112).

si = W (2)(W (1)xi + b(1)) + b(2) (3.108)

si = W (2)W (1)xi +W (2)b(1) + b(2) (3.109)

W ′ = W (2)W (1) (3.110)

b′ = W (2)b(1) + b(2) (3.111)

si = W ′xi + b′ (3.112)

Eq. (3.108) expands the score vector assigned by an MLP with no nonlinearity, representing it as a

function of the input vector xi and the weight and bias parameters. Eq. (3.109) uses the property

of distributivity to distribute the outermost weight matrix W (2) to the two inner terms. Eqns.

(3.110, 3.111) substitute the parameter expressions in (3.109) with new single-term parameters. Eq.

(3.112) inserts the substitutions back into Eq. (3.109), revealing that the original composite function

can be expressed as a single affine transformation. The insertion of a nonlinearity in between the

two affine transformations prevents the distribution of the outermost weight matrix in Eq. (3.109),

so that a FFNN cannot be reduced to a single affine function. Having motivated the need for a

nonlinearity, what should that nonlinarity be? One option is the sigmoid function, which bounds

the values of hi to be between 0 and 1. Another option, which tends to produce better results, is

the hyperbolic tangent function tanh, which bounds hi to be between −1 and 1. The most effective

popular nonlinear function is known as ReLU (rectified linear unit), which keeps all positive values

and sets every value less than zero to zero.

Neural classifiers tend to outperform feature-based classifiers empirically, but they wind up being

very difficult to interpret. This happens for a number of reasons. Firstly, because the original

input is very low-level, figuring out what each latent feature in hi represents normally requires

examining what parts of each input activate it by looking at the weights and gradients. Secondly,

the hidden vectors are continuous, and tend to take advantage of this fact; a single hidden unit

will take on a wide range of values across all inputs. Thirdly, the hidden nodes will often represent

unintuitive combinations of the input. To illustrate these facts, consider a the matrix X of all

CHAPTER 3. MACHINE LEARNING 73

possible combinations of three binary features in Eq. 3.113.

X =

0 0 0

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1

(3.113)

An autoencoder is a neural regression system that aims to convert its input to a hidden state and

then reconstruct it. Ignoring bias terms, this would look like Eq. (3.114, 3.115), with the loss defined

in Eq. (3.116) (the L2 loss).

H = tanh(XW (1)) (3.114)

X̂ = HW (2) (3.115)

ε =
∑ 1

2
(X̂ −X)2 (3.116)

An intuitive solution to Eq. 3.114 would involve letting W (1) be the identity matrix I and setting

W (2) to a scalar multiple of the identity matrix αI, which simplifies to Eqs. (3.117–3.119).

H = tanh(X) (3.117)

X ′ = αH (3.118)

α =
1

tanh(1)
(3.119)

This amounts to purturbing X negligibly when generating the hidden representation, so that H

looks almost identical to it and can be easily recovered through simple rescaling. However, the

features learned by a neural network can be considerably more complex. In one generated solution,

CHAPTER 3. MACHINE LEARNING 74

the hidden representation of each row H has the following form:

H =

0 0 0

.76 0 .4

0 −.42 0

0 .42 −.4
.76 −.42 .4

.76 .42 0

0 0 −.4
.76 0 0

(3.120)

In the neural solution, the hidden feature in the first colum f̂1 is positive whenever the input feature

f1 is 1. However, f̂2 is zero when f3 and f2 are the same, otherwise negative when f2 is 1 and positive

when f3 is 1. Similarly, f̂3 is zero when f3 and f1 are the same, otherwise negative when f3 is 1

and positive when f1 is 1. This is counterintuitive because f1 is sometimes redundantly represented

in the hidden vector, being inferrable when either f̂1 or f̂3 is positive. Additionally, determining

whether f2 is present sometimes requires looking at the whole hidden state: f̂2 is only zero when f2

and f3 have the same value, and f̂3 is only zero when f3 and f1 have the same value; so when f̂2 and

f̂3 are both zero, the underlying f2 and f3 can only be determined from f̂1, which direcly reflects the

value of f1. Finally, in the intuitive human solution, each node in the hidden state would only ever

take on one of two values (including 0); here, nodes f̂2 and f̂3 each take on three. This is hardly

the simplest way of solving the autoencoder problem, but without imposing any further constraints,

there is no reason for the network to prefer the more human-intuitive solution.

It is worth noting that while the system sometimes learns bizarre features, the solution to this

particular toy task always seems to learn concatenative, real-valued features, rather than additive,

vector-valued ones. That is, each column inH has some “meaning” independent of the other columns;

hi,2 being zero means that two particular features in xi have the same value. Without the tanh

nonlinearity—which is what makes this approach truly “neural”, as explained in Eqs. (3.108–3.112),

by actively blocking additive representations—a learned solution would only require that W (1) and

W (2) be inverses of each other. This means the binary features in F would be represented as whole

vectors, and when two features are present, their vector representations would be added together,

CHAPTER 3. MACHINE LEARNING 75

as in the solution learned below.

H ′ =

0 0 0

−.92 −.39 .01

.3 −.69 .65

−.25 .6 .76

−.62 −1.08 .66

−1.17 .22 .76

.05 −.09 1.41

−.87 −.48 1.42

(3.121)

Here the individual columns of H ′ do not have meanings that can be clearly related to the original

features in X. Instead, each feature gets a vector representation (rows 2–4), and to express in the

hidden representation that multiple features are occurring together, the vectors get summed. The

non-neural, purely linear approach learns only how to rotate an arbitrary input vector in vector space

and then rotate it back. By contrast, even though the neural hidden representation might learn some

unusual and unintuitive representation of the data, it can learn not only discrete propositions, but

also how to reason about them. This ability to learn abstract propositions about the data is one of

the characteristics of the neural approach that makes it particularly powerful and promising as a

parametric machine learning paradigm.

The point of this discussion is to demonstrate both the strengths and weaknesses of using a

neural approach to solve computational tasks. While it is very difficult to figure out what aspects of

the input the network is using to make its decision, the network is able to find predictive patterns

and details that humans wouldn’t think to look for and that can’t be efficiently expressed with

binary values. This generally results in making them more accurate than feature-based models.

Consequently, the position of this thesis is that neural methods should be used as the backbone

for any system that aims to achieve peak accuracy. It will be shown, however, that a system that

neglects linguistic information will sometimes flounder in the face of one that embraces it.

3.3.2 Recurrent neural networks

One way of representing a sentence or document is as a “bag of words”, with binary input features f

representing each word that occurs in a sentence, like in Section 3.1.1. This approach can be improved

by using the average of pretrained word embeddings rather than a multi-hot input vector. The bag

of embeddings model is still inadequate for many tasks, especially those that require classifying

each token in a sentence. The most popular way to incorporate temporal information into a neural

network system is to represent each sentence as a sequence of word embeddings that update the

hidden state one-at-a-time. This is known as a recurrent neural network. The recurrent hidden

state hit is then made to depend on the input xit (which will normally be a word embedding) as

CHAPTER 3. MACHINE LEARNING 76

well as the hidden state of the previous word hi,t−1. h0—the base case of the recurrence or initial

state—can either be fixed at 0 or left as trainable parameters (the models reported in the following

chapters do the latter). For notational simplicity, the sentence index i will be left out of the equations

for the rest of the section.

ht = f(Wxt +Rht−1 + b) (3.122)

= f(Affine(xt ⊕ ht−1)) (3.123)

Recurrent layers can be used as input to higher recurrent layers, just as how fully connected layers

can be used as input to higher fully connected layers. The `th layer of an L-layer network will have

the definition in Eq. (3.126).

h
(1)
t = f(Affine(xt ⊕ h

(1)
t−1)) (3.124)

h
(2)
t = f(Affine(h

(1)
t ⊕ h

(2)
t−1)) (3.125)

h
(`)
t = f(Affine(h

(`−1)
t ⊕ h

(`)
t−1)) (3.126)

Again, this notation will be simplified by defining a function RNN that takes a sentence as input and

returns the topmost recurrent states as output. Permitting sequences of vectors to be equivalently

expressed as being “stacked” into matrices admits the notation in Eq. (3.128). Functions that return

matrices will be indexed as in Eq. (3.129), with the index before the arguments to the function.

X = (x1,x2, . . . ,xT) (3.127)

RNN(X) = H(L) (3.128)

RNNt(X) = h
(L)
t (3.129)

This recurrent state can then either be used as-is in an affine classifier Eq. (3.130) or it can be

first put through a feedforward neural transformation Eq. (3.131).

st = Affine(RNNt(X))) (3.130)

st = Affine(FNN(RNNt(X))) (3.131)

Each recurrent state ht will be conditioned on the entire ordered preceding context, allowing it to

make predictions based on word order and locality. Of course, this only allows the model to make

predictions based on the preceding context, when following words might be just as predictive. The

standard way to address this is to concatenate the output of one RNN layer with the output of

another RNN layer that saw the sequence of tokens in reverse. This is known as a bidirectional RNN

CHAPTER 3. MACHINE LEARNING 77

layer, or BiRNN.

−→
h t = f(Aff(xt ⊕

−→
h t−1)) (3.132)

←−
h t = f(Aff(xT+1−t) ⊕

←−
h t−1)) (3.133)

←→
h t =

−→
h t ⊕

←−
h t (3.134)

At each timestep t, the BiRNN has seen the entire preceding context and the entire following context.

This generally makes it more effective than its forward-only counterpart. As before, BiRNN layers

can be stacked on top of each other, with the output of a lower BiRNN layer being used as input

to the two unidirectional RNNs the higher level. An L-layer deep BiRNN will be represented with

the BiRNN function for notational simplicity. BiRNNs can be used in exactly the same way as

unidirectional RNNs—as features in a classifier or as input to a FFNN.

3.3.3 Gated recurrent neural networks

Recurrent Neural Networks can, in principle, remember information for an unbounded number of

timesteps. In practice, however, they are notoriously unstable. When tanh is used as the nonlinearity,

they often run into the vanishing gradient problem, whereby the signal coming from inputs far in

the past (or future) has been “squashed” by the nonlinearity so many times that it is too weak for

the optimizer to pick up on and amplify. With ReLU, the vanishing gradient problem turns into an

exploding gradient problem, where the recurrent hidden vectors ht of very long sequences accumulate

extremely large values, causing the optimizer to try to offset them with extremely large weight

matrices, which creates even larger values in the recurrent vectors, until they can’t be represented

with 32-bit floating point numbers. Different initialization schemes have been purported to help on

toy problems (Le et al., 2015; Talathi and Vartak, 2015), but currently the most popular approach is

to use a more complex, gated architecture. There are currently two such widely-used architectures:

Long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) and gated recurrent

unit (GRU) networks (Cho et al., 2014). Long short-term memory networks avoid the vanishing

gradient problem by maintaining a separate cell state ct that accumulates throughput additively,

allowing the state to grow unboundedly large. It avoides the exploding gradient problem, however,

because the output hidden state ht is distinct from this throughput hidden state ct. The output

hidden state, which is what other modules of the network will typically use as input, is bounded

to have a stable magnitude with the tanh function. The LSTM has been tweaked and modified in

many ways since its original conception; Eqs. (3.135–3.141) show the variant assumed in the rest of

CHAPTER 3. MACHINE LEARNING 78

this thesis.

Zt = Affine(xt ⊕ ht−1) (3.135)

c̃t = tanh(z1,t) (3.136)

it = sigmoid(2 · z2,t) (3.137)

ft = sigmoid(2 · z3,t) (3.138)

ot = sigmoid(2 · z4,t) (3.139)

ct = it � c̃t + (1− ft)� ct−1 (3.140)

rt = ot � tanh(ct) (3.141)

Eq. (3.135) computes the activations used elsewhere in the definition of an LSTM as an affine

function of the lower input and the output of the LSTM at the previous timestep. Here, Zt is a

(4×d) matrix, because the LSTM requires 4 intermediate vectors to compute the (d×1)-dimensional

output vector. The first one Eq. (3.136), z1,t, is bounded with tanh to be between −1 and 1, to

avoid saturating the cell state too much. The other three intermediate vectors Eqs. (3.136–3.139) are

bounded to be between 0 and 1 with a sigmoid function. The factor of 2 is included here solely for

uniformity, to make the sigmoid equivalent to a scaled and shifted tanh: sigmoid(2x) = tanh(x)+1
2 . If

excluded, it would simply be absorbed into the learned weight and bias terms. In Eq. (3.140), each

element of the cell state at time t is then computed as a linear combination of the corresponding

element in the previous cell state ct−1 and the current candidate cell state c̃t. The input gate it

controls which (if any) elements from the candidate cell state get incorporated into the new cell

sate, and the forget gate (1− ft) determines which (if any) elements from the previous cell state are

forgotten. The recurrent output vector is then computed as the bounded value of the cell state ct,

gated again by the output gate (Eq. 3.141). The output gate “hides” information in the cell that

may be needed later but isn’t relevant at the current timestep. LSTM layers can be used exactly

like RNN layers, being stacked on top of each other and/or bidirectional. Consequently the LSTM

and BiLSTM functions, like the RNN function, can be defined as taking in a sequence of vectors and

producing a sequence of vectors as output, while remaining agnostic to the depth of the network.

LSTM(X) =
−→
H (L) (3.142)

BiLSTM(X) =
←→
H (L) (3.143)

One drawback of the LSTM is that it requires four times as many weights as its “vanilla” RNN

counterpart. One way to address this is by coupling the input and forget gate; that is, replace it in

Eq. (3.140) with ft. Because ftj and (1− ftj) are guaranteed to sum to 1, the tanh function in Eq.

(3.136) is no longer necessary. Following (Greff et al., 2016), the resulting LSTM architecture will be

referred to as a Coupled input-forget long short-term memory network (CifLSTM). This approach is

CHAPTER 3. MACHINE LEARNING 79

conceptually appealing, because it means the cell state and the recurrent state can each be expressed

as an interpolation conditioned on exactly one vector.

Zi,t = W(input)xi,t + W(recur)ri,t−1 +B (3.144)

c̃i,t = z1,i,t (3.145)

fi,t = sigmoid(2 · z2,i,t) (3.146)

oi,t = sigmoid(2 · z3,i,t) (3.147)

ci,t = fi,t � c̃i,t + (1− fi,t)� ci,t−1 (3.148)

ri,t = oi,t � tanh(ci,t) + (1− oi,t)� 0 (3.149)

(3.150)

CifLSTM(X) =
−→
R (L) (3.151)

BiCifLSTM(X) =
←→
R (L) (3.152)

Other tweaks have been recently introduced, such as “highway connections” (Zhang et al., 2016)

similar to the simple but effective “residual connections” (He et al., 2016) used in many vision

systems, but the work in this thesis only explores the basic LSTM and CifLSTM variants as described

above.

One criticism of the LSTM is that it requires computing both a cell state and a recurrent state,

which must both be maintained in memory. An alternative recurrent architecture known as a gated

recurrent unit network (GRU; Cho et al. 2014) aims to avoid this concern by shifting where some

of the operations in a CifLSTM occur.

z̃t = Aff(xt ⊕ ht−1) (3.153)

ot = sigmoid(2 · z̃t) (3.154)

h̃t = ot � ht−1 (3.155)

Zt = Aff(xt ⊕ h̃t−1) (3.156)

c̃t = tanh(z1,t) (3.157)

ft = sigmoid(2 · z2,t) (3.158)

ct = ft � c̃t + (1− ft)� ct−1 (3.159)

ht = ct (3.160)

The output gate is computed and applied to the previous state at the beginning of the current update

(Eq. 3.155), rather than at the end of the previous one (Eq. 3.149). Because the use of a coupled

input-forget gate requires only one application of tanh, a GRU network applies it to the candidate

CHAPTER 3. MACHINE LEARNING 80

cell (Eq. 3.157) rather than the updated cell (Eq. 3.149). By moving these two components from Eq.

(3.149) to a different part of the update, the recurrent state and cell state become equivalent, as in

Eq. (3.160). This way, the hidden cell state does not need to be kept independent of the recurrent

state. However, some sacrifices are made to achieve this. One is that it requires twice as many

matrix multiplications, which hurts most linear algebra libraries’ abilities to optimize runtime (on

a CPU or GPU). Another is that the network is unable to “hide” nodes that contain information

being saved for later. The ramifications of being forced to reveal the entire hidden state will be

further examined in Chapter 5.

3.4 Conclusion

This section has derived two different kinds of classifiers based on the standard affine softmax clas-

sifier in Eq. (3.161) used for logistic regression and neural classification. The original affine classifier

in Eq. (3.161) assumes that the posterior is conditioned on one set of conditionally independent

features. The fixed-class biaffine classifier in Eq. (3.162) assumes that the probability of each class

is a function of two internally conditionally independent sets of features that are (pairwise) condi-

tionally dependent with each other. The variable-class biaffine classifier in Eq. (3.163) is a sort of

combination of the two; in a variable-class scenario, any strictly affine classifier will be insufficient

because the input features f are completely disconnected from the available classes.

P (ck|f = xi) = softmaxk(Wxi + b) (3.161)

P (ck|f = xi, f̃ = x̃i) = softmaxk(x̃>i Uxi +W (x̃i ⊕ xi) + b) (3.162)

P (ck|f = xi, F̃ = X̃i) = softmaxk(X̃iUxi + X̃iw) (3.163)

Utilizing feature interactions reconnects the input features to the class features, allowing for the

probability of each class to be conditioned on features of the class as well as features of the input.

Additionally, all three classifiers in Eqs. (3.161–3.163) maintain information-theoretic interpreta-

tions; the biaffine classifiers differ only in that they include the PMI of the fj , f̃k̃ and ck. These

theoretically-motivated biaffine classifiers will prove to be ubiquitous in the upcoming chapters.

Chapter 5 will use a variable-class biaffine classifier and a fixed-class biaffine classifier in tandem to

make labeled dependency parsing decisions. It will compare the biaffine approach for classification

to the more common feedforward approach, arguing that the biaffine approach is better motivated

theoretically and empirically. Chapter 6 will use both affine and biaffine classification in a part-of-

speech tagger to condition successively harder tagging decisions on easier ones. It will also use a

single-class biaffine classifier and a biaffine regressor to condition parsing decisions on the relative

locations of the dependent and the possible head word. Chapter 7 will extend the biaffine parser to a

CHAPTER 3. MACHINE LEARNING 81

less common and less restrictive class of dependency formalisms (described at some length in Chap-

ter 2), arguing that the biaffine parser is more principled than a much more complex alternative.

Ultimately, much of the remainder of this thesis will demonstrate the utility of biaffine interactions

in parsers specifically and neural machine learning more broadly.

Chapter 4

Statistical Parsing

The linguistic theories described in Chapter 2 are only useful for practical applications if their

representations can be automatically generated for arbitrary sentences. The goal of this thesis is to

build a system that can parse sentences with high accuracy, so this chapter will describe previous

and alternative approaches to producing parse trees and lay the foundation for the ensuing system.

4.1 Grammar-based parsing

Syntactic frameworks all assume that at some level, a context-free grammar (CFG) is involved in

generating sentences, whether the CFG creates phrase structures or dependency structures. There

are efficient (O(n3)) algorithms for taking a manually generated context-free grammar and using it

to parse a sentence, such as the CYK algorithm (Cocke and Schwarts, 1970; Younger, 1967; Kasami,

1966) and the Earley algorithm (Earley, 1970). However, two problems arise with using handcrafted

grammars to parse. The first issue is that there are many edge cases that handcrafted grammars

are likely to miss. If a sentence with a rare construction occurs during inference and no rule exists

in the grammar to parse it, then the system is unable to provide even a reasonable guess as to its

structure. For example, constructing the parse tree for the sentence in Ex. (4.1) requires unusual

rules, like those in Ex. (4.2).

(4.1) The more, the merrier

(4.2) a. S → NP NP

b. NP → DT JJR

A grammar engineer is unlikely to include the rules in Ex. (4.2) unless they consider this particular

construction, meaning the parser is likely to fail on this kind of sentence. If a large annotated

treebank is available, then a handcrafted grammar can be augmented with rules inferred from the

trees in the treebank, which may include examples of Ex. (4.1). However, expanding the size of

82

CHAPTER 4. STATISTICAL PARSING 83

the grammar often introduces spurious ambiguity. For example, adding the rules above creates two

possible trees for the simple sentence “this idea works”: the correct tree in Ex. (4.3) and the spurious

tree that is now possible in Ex. (4.4).

(4.3) This idea works
S

NP

DT

this

NN

idea

VP

VBZ

works

(4.4) This idea works
S

NP

DT

this

NN

idea

*NP

NNS

works

Ambiguity arises naturally in spoken language, but is exacerbated when building context-free gram-

mars using a very small set of syntactic categories. A parser that uses context-free rules will need to

either enumerate all possible parses for a given string—which increases more or less exponentially

with the number of choice points—or pick one deterministically according to some heuristic. This

problem can be alleviated with probabilistic context-free grammar rules in a probabilistic context-

free grammar (PCFG; Booth and Thompson 1973; Baker 1979). Rule probabilities can be com-

puted empirically from the corpus, so that linguistic rules of the form “Y → X1 . . . Xn” will have

P (y|x1, . . . xn). This conditional probability can be expanded to P (x1,...,xn,y)
P (x1,...,xn)

, and then the proba-

bilities in the numerator and denominator can be approximated by simply counting occurrences in

a treebank. A parser can then explore all possible parses and return only the one with the highest

probability according to the corpus statistics. This comes with its own limitations, however; some

expansions observed during training time will never be produced during inference. For example,

consider the prepositional attachment ambiguity in Ex. (4.5a, 4.5b).

(4.5) I ate the sushi with. . .

a. chopsticks.
VP → VP PP

S

NP

PRP

I

VP

VP

VBD

ate

NP

DT

the

NN

sushi

PP

P

with

NP

NNS

chopsticks

b. avocado.
NP → NP PP

S

NP

PRP

I

VP

VBD

ate

NP

NP

DT

the

NN

sush

PP

P

with

NP

NNS

avocado

CHAPTER 4. STATISTICAL PARSING 84

Given the sequence VBD NP PP, there are two possible trees that can be constructed: one where

the PP modifies the verb Ex. (4.5a), and another where it modifies the noun Ex. (4.5b). The actual

lexical items are what determine which structure is correct—it would be extremely surprising to

discover that someone used avocado as a utensil, or to hear about sushi adorned with chopsticks.

However, the probabilities assigned to the rules that dictate the sentences’ structures are not con-

ditioned on the lexical items; the words themselves play no part in the decision to use one rule over

the other. Consequently, one of the two structures is guaranteed to maximize the probability of both

sentences, so that one sentence is guaranteed to be wrong at inference time.

The problem of overly coarse syntactic categories can be helped by annotating categories based

on features of the surrounding environment (Collins, 2003; Klein and Manning, 2003). For example,

they can include the category immediately higher in the tree, to distinguish between subjects (NPˆS)

and objects (NPˆVP). This is also known as vertical markovization.

(4.6) SˆTOP → NPˆS VPˆS

(4.7) VPˆS → VBDˆVP NPˆVP

This is equivalent to predicting the grandparent node given a sequence of categories and their parent.

Categories can also be annotated for morphological features, such as singular and plural. This will

help prevent the system from predicting trees that violate subject-verb agreement rules.

(4.8) S-SG → NP-SG VP-SG

(4.9) S-PL → NP-PL VP-PL

The problem raised in Ex. (4.5) can be solved by annotating each phrase with the lexical item of its

functional head. This gives the parser access to the lexical information needed to disambiguate the

two possible structures for a VBD NP PP sequence.

(4.10) VP(eats) → NP(sushi) PP(chopsticks)

(4.11) NP(sushi) → NP(sushi) PP(avocado)

When some combination of annotations are insufficient, all possible parses for a sentence can be

enumerated and re-ranked by an additional machine learning classifier that uses a different (poten-

tially richer) set of features. Of course, these annotation approaches solve the problem of ambiguity

by introducing the problem of sparsity. These three annotations expand the number of syntactic

categories by a factor of 2 × m × |V |, and the number of possible rules by b2m|V |, where b is the

average branching factor. The canonical PCFG model doesn’t make any independence assumptions

among the annotated features, meaning that it can’t produce a category it hasn’t seen before or take

advantage of the effects of each annotated feature independently. That is, the model doesn’t learn

any kind of relationship between the sequence “VBZˆVP-SG NPˆVP-SG”—a singular verb and a

singular object—and the sequence “VBZˆVP-SG NPˆVP-PL”—a singular verb and a plural object.

CHAPTER 4. STATISTICAL PARSING 85

As far as the model’s concerned, the righthand side of the rule is one large feature conjunction

(where the categories also count as features) with no inherent internal structure and no assumption

of conditional independence. One might observe that these features have complex interactions that

the PCFG approach is poorly equipped to handle. For example, some verbs require direct objects

(at least in unmarked constructions), whereas others permit them optionally and still others disallow

them entirely; a noun following an intransitive verb cannot be its direct object, and must be some-

thing else (like a temporal modifier, which would attach higher). Moreover, agreement in various

forms is common across languages, and is most sensibly handled with some sort of unification prin-

ciples that can correctly handle underspecificity. Finally, lexical dependencies such as in Ex. (4.5)

arise from semantic and pragmatic attributes of words. One alternative to PCFGs is to use a more

structured syntactic representation than trees of discrete symbols, such as HPSG-style attribute-

value matrices (Pollard and Sag, 1994), that emphasizes unification constraints rather than rules.

However, the increased complexity of the richer representation comes with its own costs—producing

a single disamibiguated HPSG parse for a sentence is significantly more involved than producing a

simple PCFG parse (Toutanova and Manning, 2002).

While the unification-based approach underspecifies the syntactic categories and requires fully-

specified syntactic rules, the solution that has gained the most traction recently can be thought of

as learning underspecified or partial rules of fully-specified categories. That is, rather than learning

the kind of fully-specified rule in Ex. (4.12), these systems learn the underspecified one in Ex. (4.13).

(4.12) VP → VBZ NP

(4.13) VP → . . . NP . . .

While the first rule is complete and details the entire expansion of the category VP, the second

rule only describes one word or phrase in the expansion. The systems aim to return the tree that

maximizes the joint probability of all its partial subtrees. These learned underspecified rules can

still for the most part take advantage of the features annotated in the conventional PCFG. Unlike

the PCFG though, the systems consider the effect of each feature on the probability of the rule

independently, rather than (or in addition to) only looking at the effect of multiple features jointly.

4.2 Transition-based Parsing

4.2.1 The shift-reduce algorithm

Transition-based dependency parsing algorithms adapt a traditional constituency parser known as

a shift-reduce parser (Aho and Ullman, 1972), and can be used to parse with handcrafted rules or

statistical machine learning techniques (Nivre et al., 2006, 2007). The most well-known variants

of the transition-based algorithm are those of Nivre (2004), and are known as arc-standard and

arc-eager. In both variants, a queue called the input buffer and a stack (simply called the stack)

CHAPTER 4. STATISTICAL PARSING 86

are initialized. First, every word in the sentence is added to the queue in order. The algorithm

then iteratively chooses from a small set of actions to manipulate the state of the queue and buffer,

depending on the handcrafted grammar or features of the surrounding context. Arc-standard (which

is similar to the algorithm of Yamada and Matsumoto (2003)) is the simpler of the two algorithms

and contains only three possible actions: move a word from the buffer to the stack (shift); pop the

two words from the top of the stack, assign an arc from the first to the second, and push the first

back onto the stack (left-reduce); pop the two words from the top of the stack, assign an arc from

the second to the first, and push the second back onto the stack (right-reduce). The arc-standard

algorithm has an upper runtime bound of 2n operations—where n is the length of the sentence—and

is guaranteed to produce a tree that is acyclic and projective (i.e. there are no crossing dependency

edges), though potentially unconnected (i.e. there may be words that haven’t been assigned a head).

This very efficient bound requires that the parser only produce a single tree, rather than enumerating

all possible trees that can be generated by the grammar. In a machine-learning-based parser, the

single best transition is chosen at each iteration, and in a rule-based parser, the transitions are

assigned different priorities and the highest-priority transition possible for each iteration is chosen

(Nivre 2003; so for example, the system can be made to left-reducing whenever possible, otherwise to

right-reduce if possible, and to only shift as a last resort). Note that assigning an arc from one word

to another is equivalent to predicting part of a context-free syntax rule, which allows the system

to predict syntactic rules it has never seen before. What’s more, the features usable in statistical

systems overlap with the annotations used in a PCFG—siblings, grandparents, or grandchildren of

partially constructed parse trees, extracted morphological features, lexical items, nearby neighbors,

part-of-speech tags, etc, but can also easily extend to real-valued neural features. Additionally, these

can be conjoined into conjunctive features (cf. Chapter 3.2.1), but do not have to be.

Nivre (2004) notes that the arc-standard algorithm parses bottom-up, such that once a dependent

has been attached to a head, it cannot receive any more dependents. The consequence of this is that

parsing is not done incrementally, where words attach to their heads as soon as both the word and the

head are salient on the stack and buffer. To illustrate, in a phrase where every word depends on the

word immediately to its right (Figure 4.1a, with arrows pointing from heads and to dependents), the

bottom-up strategy would create each arc as soon as possible. However, in the reverse case (Figure

4.1b), it would have to keep postponing assigning edges until all inputs have been pushed onto the

stack. This means that the arc-standard algorithm is implausible as a psychological parsing model

(Marslen-Wilson, 1973; Frazier, 1987).

Nivre (2003, 2004) addresses this by adapting the arc-eager algorithm originally developed by

Abney and Johnson (1991) for constituency parsing to dependency parsing. This algorithm makes

leftward attachment decisions bottom-up and rightward attachment decisions top-down. Building

this into a dependency parser involves simply redefining the set of actions available: pop the first

word from the stack and assign an edge to it from the first word on the buffer (left-arc); assign an

CHAPTER 4. STATISTICAL PARSING 87

a b c

action stack buffer edges
[] [a, b, c] {}

shift [a] [b, c] {}
shift [a, b] [c] {}
L-reduce [b] [c] {a← b}
shift [b, c] [] {a← b}

L-reduce [c] []

{
a← b
b← c

}
(a) Parse of a left-branching tree.

a b c

action stack buffer edges
[] [a, b, c] {}

shift [a] [b, c] {}
shift [a, b] [c] {}
shift [a, b, c] [] {}
R-reduce [a, b] [] {b→ c}

R-reduce [a] []

{
a→ b
b→ c

}
(b) Parse of a right-branching tree.

Figure 4.1: An arc-standard transition sequence.

edge to the first word on the buffer from the first word on the stack, and shift it onto the stack (left-

arc); pop the stack (reduce); shift the first word from the buffer to the stack (shift). The arc-eager

transition system assigns leftward edges to words that have already found all their dependents, but

assigns rightward edges to words without blocking them from taking on their own dependents. This

is shown in Figure 4.2.

a b c

action stack buffer edges
[] [a, b, c] {}

shift [a] [b, c] {}
left-arc [b] [c] {a← b}

left-arc [c] []

{
a← b
b← c

}
(a) A parse of a left-branching tree

a b c

action stack buffer edges
[] [a, b, c] {}

shift [a] [b, c] {}
right-arc [a, b] [c] {a→ b}

right-arc [a, b, c] []

{
a→ b
b→ c

}
reduce [a, b] []

{
a→ b
b→ c

}
reduce [a] []

{
a→ b
b→ c

}
(b) A parse of a right-branching tree

Figure 4.2: An arc-eager transition sequence.

Both the arc-standard and arc-eager shift-reduce parsers guarantee an extremely efficient worst-

case runtime of 2n transitions. However, because they are adapted from the constituency parsing

literature, they also require that the dependency trees behave in certain critical ways like con-

stituency trees. Constituency trees guarantee that each word has at most one head, and as a result

these shift-reduce parsers cannot produce multi-headed dependents. The most popular dependency

formalism variants (e.g. uncollapsed SD and basic UD) have historically disallowed multi-headed

dependents, so the latter has not been a problem that needed to be addressed until recently (cf. the

CHAPTER 4. STATISTICAL PARSING 88

SemEval 2014 shared task; Oepen et al. 2014). Constituency trees are also by definition projective,

with no crossing edges, and as a result these systems are likewise limited to producing projective

trees. One of the principal advantages of dependency representations over constituency representa-

tions is their ability to permit crossing dependencies, so the fact that the transition-based parsers

described above are unable to construct non-projective trees is actually a severe drawback.

Covington (2001) proposes a non-projective transtion-based algorithm that uses two stacks rather

than just one: one word stack keeps track of all words that have been processed so far, and one

head stack keeps track of all words that haven’t been assigned heads. When a word is popped

from the buffer, the algorithm first scans through all words in the head stack—which currently lack

dependents—and attaches any that the grammar or statistical classifier permits. Then it scans

through the words on the word stack—everything popped from the buffer—and tries to assign the

current word as one of their dependents. If it fails this last step, then it adds it to the dependents

stack. The ability to predict non-projective dependencies comes at a cost though, as the O(n) bound

that the projective algorithms guarantee is lost and replaced with a O(n2) bound. Attardi (2006)

extends Yamada and Matsumoto’s (2003) variation of arc-standard by adding more possible parser

actions. Firstly, he allows the parser to “skip over” up to a fixed number of words on the stack and

buffer when assigning arcs. For instance, an edge can be assigned between the first word on the

buffer and any of the first, second, or third word on the stack, not just the first one. Adding these

transitions maintains the linear complexity, but is insufficient to generate arbitrary non-projective

trees. In another version, he employs a second, “temporary” stack, where words can be moved to and

from (by extract and insert transitions). This effectively “rearranges” the words in the sentence into

an order that can be parsed projectively. The temporary stack allows arbitrary non-projective trees,

but results in quadratic worst-case complexity, and requires an additional data structure absent from

the basic shift-reduce algorithm. Nivre (2009) instead adds the swap transition to the arc-standard

algorithm, which turns out to be sufficient for producing arbitrary non-projective trees without

adding any more data structures. The swap transition is similar to the insert/extract transitions

of Attardi (2006), but without the use of an additional data structure. It simply moves the second

word immediately under the topmost word of the stack back onto the buffer, demonstrated with the

arc-standard system in Figure 4.3. This elegant solution requires no additional data structures and

maintains the O(n) best-case runtime, but again at the cost of a O(n2) worst-case runtime. Since

human language tends to be most naturally organized into mostly projective trees, with crossing

arcs being fairly uncommon for most languages, the swap transition is empirically rarely utilized to

its full n2 potential.

In these transition systems, transition sequences are very fragile and susceptible to error prop-

agation, with one wrong transition early on potentially derailing the entire parse and producing a

tree riddled with seemingly senseless mistakes. This problem is exacerbated by the fact that tran-

sition systems can only manipulate one of two tokens at a time. Long sentences can have very long

CHAPTER 4. STATISTICAL PARSING 89

root a b c

action stack buffer edges
[] [root, a, b, c] {}

shift [root] [a, b, c] {}
shift [root, a] [b, c] {}
shift [root, a, b] [c] {}
swap [root, b] [a, c] {}
shift [root, b, a] [c] {}
shift [root, b, a, c] [] {}
R-reduce [root, b, a] [] {a→ c}

L-reduce [root, b] []

{
a→ c,
a← b

}
R-reduce [root] []

a→ c,
a← b,
root→ b

Figure 4.3: An arc-standard transition sequence with the swap transition.

transition sequences, where any decision could depend on information that can only be ascertained

from looking very far forward into the buffer or backwards on the stack, increasing the probability of

making an error that gets propagated. In both arc-standard and arc-eager, it’s easy for the system

to remove words from the stack too soon because the system doesn’t have access to later tokens

that relate to them. Ideally, in a projective dependency formalism, the system should only prevent

a word from taking any more dependents when it assigns an edge between two words on either side

of it, blocking the word from taking any more dependents that don’t involve crossing branches. Qi

and Manning (2017) modify the arc-eager transition system to successfully accomplish this. In their

transition system, which they dub arc-swift, the system can assign an edge between any word on the

stack and the word at the front of the buffer. All words in between can be safely reduced because

they can’t take any more dependents from the buffer without crossing the newly-created edge. This

both decreases the degree of long-term planning that needs to be made in order to parse a sentence

and decreases the length of transition sequences, at the cost of increasing the number of actions

possible on each step. The theoretical runtime now increases to O(n2) as well because the word

on the buffer needs to examine all words on the stack when deciding on an action, though as with

swapping transition systems this upper bound is rarely reached in practice. This gives it the best

of both worlds, and then some—like arc-eager, it parses left-to-right rather than bottom-up, and

like arc-standard, it doesn’t require a separate reduce transition to close off words. The arc-swift

system is shown in Figure 4.4. Note that at any point, all words on the stack stack are capable

of taking dependents that won’t cross any edges already assigned. The authors find that parsers

trained using the arc-swift transition system significantly outperform identical systems with different

CHAPTER 4. STATISTICAL PARSING 90

transition systems. They find that this improvement is driven by longer dependency edges, presum-

ably because the alternatives run the risk of prematurely reducing the head from the stack, rather

than leaving it available to accept dependents for as long as possible. The authors also find that

the average transition sequence length under an arc-swift transition system is about three-quarters

as long as of arc-eager, meaning that there are fewer decision points where the system could make

errors, although it should be noted that each decision point will likely have more actions to choose

from.

a b c

action stack buffer edges
[] [a, b, c] {}

shift [a] [b, c] {}
R-arc[1] [a, b] [c] {a→ b}

L-arc[2] [] [c]

{
a→ b
a← c

}
shift [c] []

{
a→ b
a← c

}
(a) A transition sequence using L-arc[2].

a b c

action stack buffer edges
[] [a, b, c] {}

shift [a] [b, c] {}
R-arc[1] [a, b] [c] {a→ b}

R-arc[2] [a, c] []

{
a→ b
a→ c

}
(b) A transition sequence using R-arc[2].

Figure 4.4: An arc-swift transition sequence.

4.2.2 Neural transition-based models

Chen & Manning 2014

Chen and Manning (2014) built the first dependency parser using neural machine learning techniques

that achieved strong performance. They point out that feature-based approaches’ reliance on huge

feature sets creates a huge tension between speed and accuracy. They further demonstrate that

multiplicative interactions between pairs of features—which expands the feature space even further—

is necessary for achieving high performance. These are effectively conjunctive features, making the

approach with multiplicative interactions equivalent to a biaffine classifier, discussed in Chapter

3.2. However, these complex features require time to generate and look up when parsing, and

each new feature added to the feature space increases memory and runtime overhead. Rather than

using handcrafted features to identify relevant information about the stack and buffer to a classifier,

they instead use vector-valued word, part-of-speech, and label embeddings. In their system, these

embeddings come from the following sources:

• First three words at the top of the buffer

• First three words at the top of the stack

CHAPTER 4. STATISTICAL PARSING 91

• For the two words at the top of the stack, their leftmost children

• For each of them, their two leftmost children

• For the two words at the top of the stack, their two rightmost children

• For each of them, their two rightmost child

• For each word, its corresponding POS tag

• For each word already assigned a head, its corresponding label

This amounts to 18 word embeddings, 18 tag embeddings, and 12 label embeddings, for 48 feature

embeddings in total. Each embedding is a 50-dimensional vector, yielding an input representation

of 48× 50 = 2, 400 real values. They report that in their experiments, the feature-based approaches

generate around 1, 000 times more features than the neural network. By using vector space em-

beddings rather than feature templates, they vastly reduce the number of features that must be

extracted and weighted in order to parse a sentence. The concatenated embeddings are then used in

a feedforward neural network (FFNN) with one hidden layer. The output is the vector of transition

scores, with the highest scoring transition being the one chosen. Letting x
(word)
t be the concatenated

relevant word embeddings for a sentence at transition t, and similar for x
(tag)
t and x

(label)
t :

xt = x
(word)
t ⊕ x

(tag)
t ⊕ x

(label)
t (4.1)

ht = FFNN(xt; f = λx : x3) (4.2)

st = Affine(ht) (4.3)

Normally it’s very rare for feedforward networks to use a nonlinearity other than tanh or ReLU;

however, Chen and Manning (2014) want to build into their model the ability to capture the kind

of multiplicative interactions that they found to be useful in feature-based models. One way to

do this for feature triplets would have been to use a triaffine layer, with a fourth-order tensor
4U ∈ R(d′×d×d×d) (where d′ is the size of the hidden layer and d is the size of the input layer):

zt = (((4Uxt)
>(4,3)xt)

>(4,2)xt + . . . (4.4)

ztk =

m∑
j=1

m∑
j′=1

m∑
j′′=1

[wkjj′j′′(xtjxtj′xtj′′) + . . .] (4.5)

Of course, such a system would have 2, 4003 = 13.8B parameters for each hidden unit. With 200

hidden units, that amounts to nearly 2.76T parameters, which needless to say would work counter to

their goal of improving speed by trimming parameters. In order to include multiplicative interactions

without exploding the parameter space (a goal that the work of this thesis shares), they use the

CHAPTER 4. STATISTICAL PARSING 92

cube function to implicitly implement a decomposed triaffine transformation.

zt = Wxt (4.6)

ztk =

m∑
j=1

[wkjxtj] (4.7)

htk =

 m∑
j=1

[wkjxtj]

3

(4.8)

=

m∑
k=1

m∑
k′=1

m∑
k′′=1

(wjkwjk′wjk′′)(xtkxtk′xtk′′) + . . . (4.9)

Rather than represent each weight wjkk′k′′ individually—which could cost trillions of parameters—

they represent it as being multiplicatively composed of three other weights wjkwjk′wjk′′ , reducing

the number of parameters by more than six and a half orders of magnitude. This is similar to the

work of Lei et al. (2014), who explicitly implement a decomposed triaffine transformation in a non-

neural system to reduce the parameter space while maintaining complex feature interactions. Chen

and Manning (2014) find fairly strong evidence that this approach works better than tanh, but did

not compare it to ReLU, which has superseded tanh as the nonlinearity of choice for feedforward

networks. However, it might be noted that the cube nonlinearity is being used to convert an affine

transformation into a decomposed triaffine one, not to strip away superficial information in the data

like tanh or ReLU do. Because the cube function and ReLU are designed for different purposes,

there’s no reason they shouldn’t be combined in feedforward networks where features are expected

to have complex interactions. Chen and Manning (2014) found that indeed their parser was not

only faster than the feature-based alternatives, but more accurate as well.

Feedforward models

The main contribution of Chen and Manning (2014) was to produce a simple neural dependency

parser that achieved very good performance for its time while simultaneously speeding up inference.

The speed, accuracy, and simplicity of Chen and Manning’s (2014) transition-based parser has led

to quite a few extensions of it. Weiss et al. (2015), for instance, use it as a starting point for

their work. They start by tuning the hyperparameters more carefully: they use a deeper (two-

layer) network, substitute the cubic nonlinearity with ReLU, use smaller label/POS vectors, and

use a more involved optimization scheme (SGD with momentum (Hinton, 2012), L2 regularization,

and temporal averaging (Moulines and Bach, 2011)) compared to AdaGrad (Duchi et al., 2011).

Additionally, they augment the original parser with beam search to allow it to make globally optimal

but locally suboptimal transitions. After (pre-)training the parser without beam search, they freeze

the weights for its hidden representations and retrain the linear classifier that makes predictions,

this time with beam search. The authors find that keeping these pre-training and beam-training

CHAPTER 4. STATISTICAL PARSING 93

phases distinct improved performance. Neural networks are well-known to flourish in an abundance

of data, but dependency treebanks are expensive to annotate, so they additionally utilize tri-training.

Tri-training is an unsupervised method where two different fully-trained parsers parse an unlabeled

corpus, and sentences for which they produce the same parse are added to the training set (Li et al.,

2014). This likewise gives Weiss et al. (2015) substantial gains in accuracy.

Alberti et al. (2015) extend Weiss et al.’s (2015) work further. They add a few new innovations.

Firstly, they provide the system with morphological features. The morphological features for token

t are assigned trainable embeddings and averaged together before being concatenated to the other

embeddings used as input to the FFNN. Secondly, rather than only using the most probable tag

for token t as input to the system, they weight the top k tags (where k is a tunable parameter)

by how much probability the tagger assigned to each of them. These are then looked up in an

embedding matrix and summed together. Finally, they use a technique known as integrated tagging

and parsing to simplify the pipeline. In an integrated system, the transition system is given the

ability to classify each token’s part-of-speech tag when shifting it onto the stack and before making

any edge assignments with it. They find that each of these additions improves performance over

Weiss et al.’s (2015) baseline on the CoNLL 09 shared task dataset (Hajič et al., 2009), with the

conjunction of all of them generally achieveing the highest performance.

Andor et al. (2016) note that Chen and Manning (2014), Weiss et al. (2015), and Alberti et al.

(2015) all use models trained with local objectives. That is, at timestep t, the system is trained

to maximize the probability of the correct transition with respect to the input xt alone. The

probability of a whole transition sequence is simply the product of the probabilities of each transition

independently. This inhibits the system’s ability to learn features that put it in a good position

to make more accurate predictions at later timesteps. Thus they extend the system further by

training it with a global objective, known as a conditional random field (CRF). In their system,

they optimize not individual decisions, but whole chains of decisions. This way, mistakes that

completely derail the parse are penalized much more harshly than one-off mistakes that only affect

leaf nodes. Unfortunately, optimizing a CRF objective exactly in this context is intractible because

it involves summing over all possible transition sequences, of which there are mT . Andor et al. take

advantage of beam search to sample the most probable wrong transition sequences, and update the

model parameters when the correct sequence falls off the beam (and/or at the end of the transition

sequence). They apply this strategy to both tagging and parsing as a faster alternative to recurrent

networks, finding that using this CRF objective improves the performance of Alberti et al.’s (2015)

parser.

LSTM models

Chen and Manning (2014) et seq. committed to using feedforward networks instead of recurrent

neural networks because of their relative speed and simplicity. However, they’re limited in the

CHAPTER 4. STATISTICAL PARSING 94

amount of context they can take advantage of when making a decision, even when using a CRF

objective. Kiperwasser and Goldberg (2016) construct a transition-based model similar to Chen and

Manning’s, with a feedforward layer that takes as input embeddings of words in key locations on the

stack and buffer. However, rather than using embeddings looked up from a dictionary directly, they

run a kind of recurrent neural network known as a bidirectional long short-term memory network

(BiLSTM; (Graves and Schmidhuber, 2005)) over the sequence of token embeddings first. This

gives each token a new, contextualized BiLSTM representation, which is given to the feedforward

transition classifier instead of the simple word vector. As a result, the system always has access

to the entire sequence when making transition decisions, which mitigates the problems that arise

from making local decisions without sufficient lookahead. However, transition decisions are still

conditioned on the representations of words at manually-specified locations on the stack and buffer;

determining which locations are optimal is thus a matter of trial and error.

Dyer et al. (2015) take a different approach, using unidirectional LSTMs to alleviate this lim-

itation. While Chen and Manning (2014) represent the stack, buffer, and transition sequence as

simple word/tag/label embeddings, Dyer et al. (2015) represent them with LSTMs over word and

tag embeddings. This means that each word in the buffer (where the sentence is reversed before

being fed into the LSTM) has access to information about what words are coming up later, allowing

the system to learn how to avoid reducing words too soon. Like with Kiperwasser and Goldberg, the

t-th LSTM state of the stack will have information about all candidate head words up to that point,

making it easier for the system to tell whether the current word’s head is somewhere on the stack

even if its head is very far back. Dyer et al.’s system—which they call the stack-LSTM —includes

a recursive feedforward composition function as well, incorporating information from dependents

into the head’s stack representation, allowing the system to avoid some incoherent parses (such as

assigning two subjects to one verb). Similarly, the whole transition sequence (including labels) is

provided via LSTM, so the system can learn which transition sequences or subsequences are likely to

come next. They report substantial improvements with this setup over Chen and Manning’s system,

especially on the non-western benchmark (Chinese).

Ballesteros et al. (2015) aim to improve the robustness of the stack-LSTM system to different lan-

guages. They add the swap transition to allow for non-projective trees—necessary for languages with

more free word order—and they build in a character-level word embedding. Their character-level

word embedding is composed using a bidirectional LSTM that takes as input character embeddings.

The last output vectors of the forward and backward states are then concatenated and used in place

of the token embedding. They find that using the character-level embedding consistently allows the

system to compensate when the part-of-speech tag is absent; however, when the part-of-speech tag

is included, whole-token and character-level systems perform about on par with each other. They

do not compare against systems with all three representations (whole-token, character-level, and

part-of-speech).

CHAPTER 4. STATISTICAL PARSING 95

Ballesteros et al. (2016) add to the system a dynamic oracle (Goldberg and Nivre, 2012, 2013).

The systems described in the previous discussion were all trained with static oracles, which define

one correct sequence of transitions. That is, static oracles don’t distinguish between transition

sequences that produce trees with only one mistake and sequences that produce nonsense parses.

This means it’s impossible to train a system to learn how to recover from mistakes using a static

oracle. Dynamic oracles, by contrast, define the best transition sequence from each possible transition

state. If a parser is allowed to make a mistake during training that takes it to a state from which

the gold parse tree is impossible to construct, a dynamic oracle can still guide it to the sequence

that creates the tree with the fewest errors. Ballesteros et al. (2016) take advantage of dynamic

oracles by testing two possible ways they can be used. Firstly, they consider sampling randomly

from the distribution of actions predicted by the parser. If the parser assigns a 25% probability to

action a and a 75% probability to action b, then there will be a 25% probability that the parser

takes action a and a 75% chance it takes action b. They also consider an approach that smoothes

the probability distribution with a tunable hyperparameter, so that the system is more likely to

take an action other than the one it identifies as most probable. This latter strategy encourages

exploration beyond what the model would naturally do, which is ideal because it will likely start

to fit the training set as training proceeds. That is, the parser is expected to make more mistakes

during inference than during the end stages of training when it has learned the ins and outs of

the training set, and reweighting the probability distribution helps to offset this. The authors find

that while switching from the arc-standard transition system to the arc-hybrid transition system

(which has a more convenient dynamic oracle) hurts performance when using a static oracle, using a

dynamic oracle more than makes up for this loss in accuracy. Smoothing the probability distribution

to encourage more exploration pushes the accuracy up even more substantially.

Dyer et al. (2016) modify the system from Dyer et al. (2015) in several key ways, calling the

new system the recurrent neural network grammar (RNNG). Firstly, they change the composition

function to use a BiLSTM instead of a recursive FFNN (but use the system as a constituency

parser and a language model rather than as a dependency parser). More critically, they adapt

the system so that it can maximize either the conditional probability of the tree given sentence

(P (C = Y |F = X), their discriminative RNNG model), or the joint probability of the tree and

the sentence, (P (C = Y, F = X), their generative RNNG model). To do this, they replace the

shift transition—which moves a token from the buffer to the stack—with a generate action—which

creates a new token and puts it on the stack. Then, to find the tree Y that maximizes the joint

probability for a sentence X, they take a trained discriminative model, sample trees for X according

to the distribution it generates, and evaluate them according to the generative model. Kuncoro

et al. (2016) use the generative RNNG for dependency parsing, as well as ablated variants of it

that operate without one of the three LSTMs (stack, buffer, actions) and one that only uses the the

stack. The baseline RNNG and the stack-only RNNG both currently hold state-of-the performance

CHAPTER 4. STATISTICAL PARSING 96

on the popular Stanford Dependencies Penn Treebank benchmark among systems without outside

unsupervised data.

4.3 Arc-factored parsing

4.3.1 The algorithm

In a transition-based system, the swap action allows for arbitrary non-projective trees, and the arc-

swift system brings both the number of transitions needed per sentence and the number of actions

available per transition closer to the length of the sentence. An alternative parsing paradigm to

transition-based parsing takes these properties to their logical conclusion, allowing for fully non-

projective trees where each word considers all other words when making edge decisions. The core

of this thesis will utilize this alternative paradigm, known as graph-based or arc-factored parsing

(McDonald et al., 2005). Transition-based systems attain high efficiency by exploiting the similarity

between most dependency formalisms and standard constituency formalisms; arc-factored systems

attain high accuracy by exploiting the similarity between most dependency formalisms and graphs.

The arc-factored approach scores every possible edge in the dependency tree, and then constrains

the resulting weighted graph to have a specific structure. This kind of parsing algorithm is sometimes

called graph-based because it treats dependency representations as graphs, and sometimes called

arc-factored because the probability of a dependency tree is represented as the probability of its

individual arcs (this thesis prefers the latter terminology). Here, if a dependency tree is represented

with two matrices—an adjacency matrix A where token t’s head word t̃ is indicated with a 1 at att̃,

and a class matrix C with one column for each label such that word t’s label k is indicated with a

1 at ctk—and if a sentence is represented with a feature vector f , then the probability of the whole

tree decomposes into the probability of each labeled edge in the tree, shown in Eq. (4.10). This

amounts to assuming conditional independence between each labeled edge probability.

P (C,A|f) =

T∏
t=1

[P (ct,at|f)] (4.10)

The arc-factored approach—like the transition-based approach—constructs trees using partial rules,

but does so more explicitly. Each possible rule “wt → wt̃ 6=t” is assigned a probability, and a maximum

spanning tree algorithm selects the rules that result in the most probable valid tree. Generally, the

whole tree is generated simultaneously. This means features based on partially-built parses are

impossible, but otherwise the approach can use the same information available to transition-based

algorithms.

While transtion-based parsers were originally used alongside handcrafted grammars and then

adapted to take advantage of feature-based machine learning, graph-based parsers have used machine

CHAPTER 4. STATISTICAL PARSING 97

learning since their conception. In McDonald et al.’s (2005) parser, first a linear feature-based

scorer assigns a score to each edge in the graph, and then one of two maximum spanning tree

(MST) algorithms is applied to find the connected tree structure with the highest weight. The Chu-

Liu/Edmonds (Chu and Liu, 1965; Edmonds, 1967) algorithm can be used to find the highest-scoring

non-projective tree, or—if the dependency formalism is known to prohibit crossing dependencies—

Eisner’s algorithm (Eisner, 1996) can be employed to find the highest-scoring projective tree. Figure

4.5 shows the matrix S of edge scores for a hypothetical string, where each entry stt̃ represents the

score of token t depending on token t̃.

root a b c

root a b c

a .1 0 .5 1

b 1 .1 0 .1

c .2 .1 1 0

(a) Chu-Liu/Edmonds.

root a b c

root a b c

a .1 0 .5 1

b 1 .1 0 .1

c .2 .1 1 0

(b) Eisner’s.

Figure 4.5: Dependency charts using different maximum spanning tree algorithms.

In Figure 4.5a, the graph scores are parsed into the highest-scoring tree. In Figure 4.5b, the

graph scores are parsed into the highest-scoring non-projective tree, which may not be the globally

maximal one. Both algorithms have a O(n3) worst case bound, although O(n2) modifications to the

Chu-Liu/Edmonds algorithm exist (Tarjan, 1977; Gabow et al., 1986). As McDonald et al. (2005)

point out, ensuring projectivity in a graph-based parser introduces more overhead than permitting

nonprojectivity; this is in contrast to transition-based parsers, for which projectivity is easy to ensure

and hard to relax. However, the most highly optimized graph-based parsers will clearly never have

a time complexity below O(n2), because each entry in S must be examined at least once. Since

transition-based parsers can guarantee a runtime linear in the length of the sentence for projective

trees (which are by far more common in natural language (Nivre, 2009)), and rarely approach the

quadratic upper bound for non-projective ones, they have historically been more popular than graph-

based parsers. This has begun to change for large-scale text parsing in recent years with the rise

of neural machine learning algorithms, because neural arc-factored systems—unlike transition-based

systems—can easily parse large numbers of sentences in parallel on machines with GPU acceleration

or efficient linear algebra subprogram libraries.

The transition-based approach makes weaker independence assumptions than the arc-factored

model, allowing it to prune away parses that can’t be maximal for a more efficient runtime. While

arc-factored parsers, on the other hand, don’t run the risk of pruning a correct parse prematurely,

the conditional independence assumptions it makes are too strong, because edge probabilities are

CHAPTER 4. STATISTICAL PARSING 98

a b

(a) A first-order model.

a b c

(b) A sibling model.

a b c d

(c) A tri-sibling model.

a b c

(d) A grandparent model.

a b c d

(e) A grand-sibling model.

a b c d e

(f) A grand-tri-sibling model.

Figure 4.6: Various higher-order arc-factored models.

not guaranteed to be independent. For example, there may be two likely candidates wi, wj for the

root of the sentence (the single word depending on the special root token, w0) given the features

of the sentence f—P (w0 → wi|f) and P (w0 → wj |f)—are both relatively high; however, the joint

probability P ((w0 → wi), (w0 → wj)|F) will be zero for most dependency schemes because every

sentence must have a unique root. To address this, some work has aimed to construct higher-order

arc-factored parsers (McDonald and Pereira, 2006). Rather than predicting a single edge, these

systems aim to predict multiple related edges simultaneously. In a sibling model, the system will

aim to predict pairs of edges with a shared parent, and in a grandparent model (Carreras, 2007), the

system aims to predict a word’s parent and its grandparent. These can be combined and extended,

as shown in Figure 4.6. These make it easier to incorporate more context into arc decisions, and

it helps to avoid bizarre parses that the first-order maximum spanning tree algorithm isn’t able to

clean up during postprocessing. However, rather than generating a well-behaved, two-dimensional

score matrix, this approach generates a higher-order tensor of partial scores that must be searched

through exhaustively to find the highest-scoring tree. That is, in a third-order model, there will

be n3 scores that must all be examined at least once in order to guarantee that the resulting tree

is maximal (Koo and Collins, 2010). What’s more, exact algorithms that achieve this bound only

exist for projective parses. While it is possible to decode a second-order score tensor into a graph in

cubic time, finding the maximum spanning non-projective tree from a higher-order score tensor is

NP-hard (McDonald and Pereira, 2006). One of the biggest advantages of arc-factored parsers over

transition-based ones is that non-projective trees are easy to predict, so any extension that cripples

an arc-factored system’s ability to generate nonprojectivity is arguably self-defeating. Fortunately,

this intractability can be alleviated by approximate decoding algorithms. McDonald and Pereira

(2006) propose an approximate non-projective algorithm that starts with a tree generated using

a second-order projective decoder and searches through the second-order scores for non-projective

changes that result in a higher-scoring tree; this can be done without increasing the O(n3) runtime.

CHAPTER 4. STATISTICAL PARSING 99

Koo et al. (2010) use dual decomposition to combine predictions from a first-order tree decoder and a

higher-order graph decoder, adjusting the underlying scores of each until they agree (or mostly agree)

on a spanning tree. With a second-order scorer, this algorithm takes a manageable O(Kn3) time,

where K is the maximum number of adjustments. To conclude, higher-order scorers allow the system

to compensate somewhat for the faulty independence assumptions in the basic first-order model, at

the cost of additional postprocessing overhead. Recent work on arc-factored dependency parsing has

focused on exploring what performance can be achieved with a neural architecture coupled with a

simple, first-order decoder, leaving higher-order neural approaches waiting to be rediscovered.

4.3.2 Neural arc-factored models

A fairly sizeable number of neural arc-factored models were proposed at roughly the same time, with

varying degrees of knowledge about each other. The work at the core of this thesis is among them,

so this final section aims to characterize their differences.

Kiperwasser and Goldberg (2016) and Zhang et al. (2017) build the first neural arc-factored

parsers with little substantial difference between them. First they feed word and part-of-speech

embeddings into a bidirectional LSTM, and then they use traditional feedforward attention over

the recurrent states to generate a score for each (ordered) pair of words. They train the attention

mechanism to maximize the score between a word and its head and minimize the score between

that word and all other words. The resulting matrix of scores can be decoded in a first-order

maximum spanning tree parser to produce an unlabeled parse. The labeler works analogously; the

recurrent states for a word and its gold (at training time) or predicted (at inference time) head are

concatenated and used in a feedforward classifier to predict the label for the edge from the head

to the dependent. Conditioning on the head word allows the system to ensure consistency between

edges and labels. Zhang et al. (2017) achieve slightly higher performance, likely owing to having a

better hyperparameter configuration.

Hashimoto et al. (2017) build a multitask BiLSTM system that includes dependency parsing as

one of the tasks. They use the lower layers of their system to do lower-level tasks such as part-of-

speech tagging and noun phrase chunking, and then use the higher layers for higher-level tasks, such

as parsing and semantic relatedness. Instead of using part-of-speech tag embeddings directly, they

use the weighted average of all tags where the weights are the probability the system assigns each

tag (similar to (Alberti et al., 2015)). They feed the weighted average tag embedding (as well as

a weighted average phrase chunk embedding) into the BiLSTM layer that predicts the dependency

parse. Their dependency parsing model is similar to Kiperwasser and Goldberg’s, except they use a

(shallow) bilinear attention classifier instead of a feedforward one to make edge predictions (otherwise

their label classifier is identical). They find that their multitask approach does much better than

their single-task approach, beating Andor et al. (2016), who claimed the highest-performing system

at the time of publication. However, because of the multitask setup, their system has access to more

CHAPTER 4. STATISTICAL PARSING 100

data than the competing systems (though not annotated with dependency parses), which mildly

confounds their results.

Of the contemporaneous dependency parsing algorithms described in this chapter, Cheng et al.

(2016) stands out as being the most innovative. As mentioned previously in this section, the sim-

plest arc-factored parsers—first-order ones—incorrectly assume conditional independence between

all arcs. Instead of introducing higher-order scoring with all the additional overhead it comes with,

Cheng et al. work around this by keeping track of previous predictions. In their system, each word

is assigned a “head” representation with a straightforward BiGRU over part-of-speech and token

embeddings. “Dependent” representations are generated twice—once with a unidirectional GRU

over the original sequence, and once with a GRU over the reversed sequence. In each direction, the

dependent representation assigns every possible head a score using directly-optimized feedforward

attention. The scores for each token in each direction are turned into a probability distribution,

which is used to compute the weighted average of the head representations. This weighted average

is then concatenated with the next input token at the following step of the GRU; thus the depen-

dent representations at each step are fed the sequence of tokens and the sequence of previous soft

predictions.

h̃t̃ = BiGRUt̃(X) (4.11)

ht = GRUt(X1:t ⊕ H̄0:t−1) (4.12)

stt̃ = FFNN(ht, h̃t̃) (4.13)

at = softmax(st) (4.14)

h̄t = H̃>1:t−1ãt (4.15)

During inference, the forward and backward scores are added together before being used in a greedy

argmax decoder (which doesn’t guarantee a well-formed tree) or in Eisner’s projective MST decoder.

This allows the system to condition predictions on previous predictions, although the authors must

sacrifice the representational capacity of the dependent representation, which cannot generate rep-

resentations that take advantage of bidirectional information. These representations are re-used in

a feedforward classifier to compute the labels; however, whereas other approaches use the gold or

predicted head’s recurrent vector, this one uses the weighted average head vectors. Unfortunately,

this introduces the possibility of generating labels that are inconsistent with the selected head, which

the authors don’t address. This approach achieves the highest performance of the arc-factored sys-

tems they compare against, although it is still beaten by the transition-based system of Andor et al.

(2016).

CHAPTER 4. STATISTICAL PARSING 101

4.4 Conclusion

Both transition-based and arc-factored parsers have in common that they don’t rely on strict con-

junctions of features or complex underspecified categories to generate parse trees. This allows them

to guarantee at least one valid parse, because they don’t have to worry about lacking a necessary rule.

Because they use learned classifiers, they produce a probability distribution over all possible trees,

allowing them to thrive in the face of spurious ambiguity and return only the parse they’re most

confident in. This makes them accurate, practical, and reasonably efficient. Furthermore, they make

only minimal sacrifices to linguistic theory. These parsing approaches still learn the tree structure

rules ubiquitous in syntactic theory—they just break the rules down into smaller and more manage-

able pieces, which helps to find and take advantage of patterns among similar but non-indentical

syntactic structures (which linguistic theories arguably struggle to do elegantly). Additionally, while

explicit unification is unrealistic in these systems, features indicating that relevant words or phrases

have incompatible values can be used to achieve similar effects. These features can be explicitly

hand-engineered (e.g. person-disagr), or (less efficiently) generated through conjunctions of sim-

plex features (e.g. N-sg&V-pl). Finally, the strategy of entertaining all possible tree structures and

selecting the one with the least entropy bears a clear relationship to Harmonic Grammar (Legendre

et al., 1990), which is compatible with constraint-based approaches to syntax (such as HPSG and

LFG; see Chapter 2) and which developed out of connectionism and artificial neural networks. In

a Harmonic Grammar, all output candidates for some input are considered and assigned weighted

penalties based on which linguistic constraints (such as “must have a subject”) they violate, and

how badly they violate them. The output candidate with the smallest accumulated penalty weight

is selected.

The work in this thesis adds to the literature on arc-factored dependency parsing. Neural

transition-based systems have a number of advantages that stem from their close relationship to

constituency tree parsers, such as an efficient O(n) runtime for projective trees and the ability to

take advantage of partially-built structures. However, they have some notable drawbacks: they re-

quire extra complexity to avoid propagating errors through the transition sequence (through dynamic

oracles or the arc-swift transition system); they require extra complexity to capture non-projective

dependencies (through additional data structures or transition actions); as will be seen in Section

7, they require even more complexity to generate arbitrary, non-tree graphs; and they cannot be

batched efficiently in neural systems. By contrast, while arc-factored parsers cannot currently take

advantage of partially-built trees without complex higher-order structures (or at least, not without

other sacrifices in the case of Cheng et al. 2016) and have slightly worse theoretical runtime complex-

ity, they can be used to parse a sentence in a projective tree, a non-projective tree, or an arbitrary

graph with relative ease.

The arc-factored systems described in this chapter almost exclusively make use of feedforward

classifiers instead of the biaffine classifiers motivated theoretically in Chapter 3. Additionally, they

CHAPTER 4. STATISTICAL PARSING 102

lag behind the state-of-the-art transition-based system by a very wide margin. Thus Chapter 5 will

compare the feedforward classifier to a comparable biaffine one both theoretically and empirically,

finding that the biaffine approach is more mathematically sensible and outperforms the traditional

feedforward one. Additionally, the system hyperparameters will be explored extensively, in order

to bring performance closer to what has been reported for transition-based parsers. Chapter 6 will

then propose a number of extensions to the baseline system and compare the ability of the arc-

factored model against a transition-based baseline. Finally, Chapter 7 will show how the system

can be straightforwardly tweaked to produce arbitrary directed labeled graphs instead of trees,

demonstrating the power and flexibility of the arc-factored approach.

Chapter 5

Biaffine Dependency Parsing

5.1 Introduction

This chapter describes the crux of this thesis, namely the neural approach to dependency parsing

laid out by Dozat and Manning (2017). It was developed concurrently with several other, related

approaches, which will be first described in Section 5.2. The architecture of the proposed model

will be motivated theoretically in Section 5.3 and empirically in Section 5.4. Some extensions by

other researchers are laid out in Section 5.5; extensions by this researcher are detailed in subsequent

chapters of this thesis.

The current state-of-the-art transition-based neural dependency parser (Kuncoro et al., 2016)

substantially outperforms many much simpler neural arc-factored (i.e. graph-based) parsers. Dozat

and Manning (2017) use a variant of the neural arc-factored approach first proposed by Zhang et al.

(2017) and Kiperwasser and Goldberg (2016) but achieves competitive performance to the transition-

based state-of-the-art: the network is larger but uses more regularization; it replace the traditional

attention mechanism and feedforward network (FFNN) label classifier with biaffine ones; and rather

than using the top recurrent states of the LSTM in the biaffine transformations, it first puts them

through FFNN operations that reduce their dimensionality. This has a number of advantages over

previous approaches: it’s very simple, consisting of only linear algebraic operations and standard

neural nonlinearities; multiple sentences can be batched efficiently; and in spite of this simplicity,

it achieves state-of-the-art or near state-of-the-art accuracy on all standard benchmarks. Because

of its relative simplicity, it can be fairly easily extended with additional complexity. Furthermore,

because of its high performance that resulted from careful tuning, any extentions that yield higher

performance are likely to represent real architectural or algorithmic improvements, and are probably

not simply compensating for suboptimal hyperparameter choices. Dozat and Manning (2017) moti-

vate two new kinds of classifiers: one for when the number of classes isn’t fixed, and one for when

the prediction depends on two interacting input sources. These new simple and straightforward

103

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 104

root/ROOT Sandy/NNP hugged/VBD Kim/NNP

root

nsubj dobj

Figure 5.1: A simple dependency tree parse for Sandy hugged Kim. Includes part-of-speech tags and
a special root token. Directed edges (or arcs) with labels (or relations) connect the verb to the root
and the arguments to the verb head.

classifier types can be used in networks designed for other tasks beside dependency parsing.

5.2 Background and Related Work

Arc-factored parsers use machine learning to assign a weight or probability to each possible edge and

then construct a maximum spaning tree (MST) from these weighted edges. Zhang et al. (2017) and

Kiperwasser and Goldberg (2016) concurrently present a neural arc-factored parser (in addition to

a transition-based one) that uses the same kind of attention mechanism as Bahdanau et al. (2014)

for machine translation. In their models, the (bidirectional) LSTM’s output state for each word is

concatenated with each possible head’s output state, and the result is used as input to an MLP

that scores each resulting arc. The predicted tree structure at training time is the one where each

word depends on its highest-scoring head. Labels are generated analogously, with each word’s LSTM

output vector and its gold or predicted head word’s output vector being used in a multi-class FFNN.

Similarly, Hashimoto et al. (2017) include a graph-based dependency parser in their multitask

neural model. In addition to training the model with multiple distinct objectives, they replace the

traditional FFNN-based attention mechanism that Kiperwasser and Goldberg (2016) use with a

bilinear one (but still using an FFNN label classifier). This makes it analogous to Luong et al.’s

2015 proposed attention mechanism for neural machine translation. Cheng et al. (2016) likewise

propose a graph-based neural dependency parser, but in a way that attempts to circumvent the

limitation of other neural graph-based parsers being unable to condition the scores of each possible

arc on previous parsing decisions. In addition to having one bidirectional recurrent network that

computes a recurrent hidden vector for each word, they have additional, unidirectional recurrent

networks (left-to-right and right-to-left) that keep track of the probabilities of each previous arc,

and use these together to predict the scores for the next arc.

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 105

5.3 Proposed Dependency Parser

5.3.1 Basic architecture

This work is very similar to the arc-factored architectures of Kiperwasser and Goldberg (2016),

Hashimoto et al. (2017), and Cheng et al. (2016), shown in Figure 5.2. Like their systems, the

proposed one uses BiLSTMs over concatenated word and POS tag embeddings. The first difference

involves using biaffine attention to predict the dependency edges instead of bilinear or traditional

FFNN-based attention. The second difference involves using biaffine classifiers to predict the depen-

dency labels instead of the usual neural classifer. Additionally, both modules are made faster and

less prone to overfitting by reducing the size of the recurrent states with smaller feedforward layers

before using them in the classifiers. Finally, the system uses a more carefully trained hyperparameter

configuration, with larger hidden states but more regularization.

The notation in this section will follow the same convention described at the beginning of Chapter

3. Here, the tokens in sentence i will be represented as a sequence of Ti vector-space embeddings

(xi,1, . . . ,xi,T), stacked into a matrix Xi. For notational compactness, the i subscript will be left off.

These embeddings can be simple word embeddings in a lookup table, or they can be contextualized

with more complex neural systems. A parse tree will be a pair of matrices, Y and Ỹ : each row t

of Y is a one-hot vector encoding the dependency label of word t, and each row t of Ỹ is a one-hot

vector encoding the position of the head for word t. In general, variables with tildes will relate to

heads (or potential heads), and unannotated variables will relate to dependents.

In an arc-factored dependency parser, the objective is to estimate the probability of all possible

labeled parses for a given sentence X, and select the most likely parse subject to any well-formedness

constraints (which may block cycles or multiple roots). Formally, the goal is to compute Eq. (5.1):

arg max
Y,Ỹ

[
P (C = Y,A = Ỹ |F = X)

]
(5.1)

That is, to compute the most probable dependency relations (or Classes, hence the C variable) and

the most probable dependency heads (or Arcs, hence the A variable; A can also be thought of as an

Attention or directed Adjacency matrix) given the token features F . Arc-factored parsers, as the

name suggests, simplify this objective by assuming conditional independence between arcs in order

to factorize the problem (much like Näıve Bayes or Maximum Entropy classifiers). The features for

the token seeking its head will be represented with the f variable, and the features for the other

tokens in the sentence that it can attend to will be in F̃ .

P (C = Y,A = Ỹ |F = X) =

T∏
t=1

T∏
t̃=1

m∏
k=1

[
P (ctk = 1, att̃ = 1|f = xt, F̃ = X)ytkỹtt̃

]
(5.2)

Exponentiating by ytk and ỹtt̃ ensures that only the probabilities of the labeled edges that the tree

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 106

actually assumes are accumulated into the product. This is sensible because each row of Y and Ỹ is

categorically distributed. Thus in Eq. (5.2), the probability of the whole tree (Y, Ỹ) is represented

as a product of the conditional probabilities of all labeled edges in the tree. The assumption of

conditional independence is obviously incorrect, since a head with a nominal dependency label

is particularly unlikely to assign labeled edges that only verbs can assign, like subjct or object.

Furthermore, cycles are normally prohibited, such that the joint probability of token i depending

on token j and token j depending on token i is zero, even when the marginal probabilities of the

two dependencies are nonzero. However, it’s normally “good enough” to achieve high performance.

ctk = 1 and att̃ = 1 will be shortened to ctk and att̃ henceforth, and similarly for f and F̃ .

The joint conditional probabilities in Eq. (5.2) will be easier to work with if they’re factorized

into two parts, each being the conditional probability of a single variable. For further notational

simplicity, the t index of the C and A variables will be dropped.

P (ck, at̃|f , F̃) =
P (ck, at̃, f , F̃)

P (f , F̃)
(5.3)

=
P (ck, at̃, f , F̃)

P (f , F̃)

P (at̃, f , F̃)

P (at̃, f , F̃)
(5.4)

=
P (ck, at̃, f , F̃)

P (at̃, f , F̃)

P (at̃, f , F̃)

P (f , F̃)
(5.5)

= P (ck|f , F̃ , at̃)P (at̃|f , F̃) (5.6)

= P (ck|f , f̃t̃ , at̃)P (at̃|f , F̃) (5.7)

Eq. (5.3) expresses the conditional probability as a ratio of joint probabilities. Eq. (5.4) multiplies

by z
z , and Eq. (5.5) switches the denominators. Eq. (5.6) converts the ratios back to conditional

probabilities. This process maintains exact equivalence without assuming conditional independence

between the probability of word t’s arc and the probability of its label. Eq. (5.7) then simplifies

the conditional probability of the label by assuming conditional independence between the label and

the features of tokens other than f̃t̃, given that at̃ = 1. This two-module setup allows for simpler

decoding; if the most probable parse according to the model is an invalid tree, the edges can be

rearranged independent of the labels. Then, after a valid parse has been settled on, labels can be

assigned greedily without changing the optimality of the structure.

The next step is to decide on classifiers for each of these probabilities. To briefly recapitulate,

Chapter 3.1 proves that the probability of a class given a set of binary-valued features P (ck = 1|f =

x; θ) is exactly equivalent to a Maximum Entropy, or affine softmax classifier, assuming all features

are conditionally independent given ck = 1. That is, the lefthand side of Eq. (5.9) can be simply

rewritten into the righthand side, maintaining exact equivalence, for some assignment of parameters

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 107

W and b.

Aff(x) = Wx + b (5.8)

P (ck|f = x; θ) = softmaxk(Aff(x)) (5.9)

The weights and biases in θ must still be optimized in order to minimize the cross-entropy of a given

training corpus, but the expression in Eq. (5.9) is provably correct under conditional independence.

Chapter 3.2 then goes on to show that the assumption of conditional independence can be relaxed

at the cost of increasing the parameters in the classifier. Using a biaffine softmax classifier instead of

an affine one adds interaction terms, which is appropriate if the features are pairwise conditionally

dependent (Eq. 5.11). It can also be used when there are two sets of features, f and f̃ , that are

internally conditionally independent but pairwise conditionally dependent with each other (Eq. 5.12).

Biaff(x, x̃) = x>Ux̃ +W (x⊕ x̃) + b (5.10)

P (ck|f = x; θ) = softmaxk(Biaff(x,x)) (5.11)

P (ck|f = x, f̃ = x̃; θ) = softmaxk(Biaff(x, x̃)) (5.12)

When the classes vary from example to example—such as when the available classes are positions

in a sentence—the input variables must interact with features F̃ of the class (Eq. 5.14). Eq. (5.14)

is then a variable-class biaffine softmax classifier, as opposed to the fixed-class biaffine softmax

classifiers in Eqs. (5.11, 5.12).

VCBiaff(x, X̃) = X̃Ux + X̃w (5.13)

P (ck|f = x, F̃ = X̃; θ) = softmaxk(VCBiaff(x, X̃)) (5.14)

Returning now to dependency parsing, the first goal is to identify the location of word t’s head in

sentence i; since the number of positions varies from sentence to sentence, a variable-class classifier

like the one in Eq. (5.14) is a logical starting point. The second goal is to identify the label that

the head assigns the dependent; however, this label may depend on both features of the dependent

and features of its head. It’s reasonable to hypothesize that the two sets of features may interact,

such that P (ck|f , f̃) 6= P (ck|f)P (ck |̃f). This suggests that a fixed-class biaffine classifier as in Eq.

(5.12) is appropriate, with one source of features coming from the dependent and another from

the head. The a priori decision to use biaffine classifiers is also emprically motivated, as Chen

and Manning (2014) found that feature conjunctions were critical for achieving high performance

in feature-based transition parsers. Observing this, they attempted to implicitly build three-way

feature conjunctions into their system with what amounts to a decomposed triaffine transformation

of the input embeddings. Biaffine transformations explicitly include two-way feature conjunctions,

lending further credence to the decision to use them as the basis for the dependency classifiers.

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 108

Given that the parser will be using these biaffine classifiers, how should the input features be

derived? The current neural architecture of choice for dealing with sequences—especially sentences—

is the bidirectional long short-term memory network (BiLSTM). The input to the BiLSTM will be

concatenated word and POS tag embeddings, following other work on dependency parsing.

et = e
(word)
t ⊕ e

(pos)
t (5.15)

ht = BiLSTMt(E) (5.16)

The simplest approach would be to use the LSTM vector ht as the input feature vector and the

LSTM states of the whole sentence as the context vectors into Eqs. (5.12, 5.14).

P (at̃|f = ht, F̃ = H) = softmaxt̃(VCBiaff(ht, H)) (5.17)

ˆ̃tt = arg max
t̃

[
P (at̃|f , F̃)

]
(5.18)

P (ck|f = ht, f̃ = hˆ̃tt
) = softmaxt̃(Biaff(ht,hˆ̃tt

)) (5.19)

This approach can be tweaked slightly in order to make the system both faster and more accurate.

It can be intuited that the recurrent vectors H must contain a lot of information: they need to

contain features used for identifying word t’s head, all and only t’s dependents, the best label for t

given any of the likely head words, the best label of all of t’s possible dependents, and any recurrent

features that may be needed in other parts of the sentence. This is clearly more information than is

needed for any individual classification objective. Ideally, the recurrent vectors H should be large

enough to contain the necessary information, but the information flow into the classifiers should be

restricted in order to reduce overfitting. This can be done by applying separate FFNNs (each with

distinct parameters) to the recurrent vectors before using them in the classifiers. If the FFNNs have

smaller hidden states than the RNN, then the network will be forced to strip away information not

necessary for the current classification task. This will also likely increase the system’s speed, since

the time complexity of the classifiers is quadratic in the size of the hidden state. Interestingly, other

researchers have found that using FFNNs to split the LSTM state into specialized representations

can be beneficial for other tasks, such as Reed and de Freitas (2016); Miller et al. (2016); Daniluk

et al. (2017). Inserting the FFNNs adds depth to the classifiers, so these new functions will be

referred to as deep biaffine softmax classifiers.

DeepVCBiaff(x, X) = VCBiaff
(
FFNN(x),FFNN(X)

)
(5.20)

DeepBiaff(x, x̃) = Biaff
(
FFNN(x),FFNN(x̃)

)
(5.21)

The whole algorithm for the proposed dependency parser, including the summed cross-entropy loss

objective for a single example, is summarized below. Figure 5.2 provides a visual representation of

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 109

. . .

. . .
BiLSTM: ht

w
(word)
0 w

(pos)
0 w

(word)
T w

(pos)
T

Embed: xt

Input: wt

FNN: vt

Heads Labels | HeadBiaff: S

Figure 5.2: The basic parser architecture.
BiLSTM with deep biaffine attention to first score each possible head for each dependent, and then
to score each possible label for each possible head.

the system.

et = e
(word)
t ⊕ e

(pos)
t (5.22)

ht = BiLSTMt(E) (5.23)

ˆ̃yt = softmax(DeepVCBiaff(ht, H)) (5.24)

ˆ̃tt = arg max
[
ˆ̃yt

]
(5.25)

ŷt = softmax(DeepBiaff(ht,ht̃t)) (5.26)

ε = −
T∑
t=1

[
yt ln(ŷt) + ỹt ln(ˆ̃yt)

]
(5.27)

5.3.2 Comparison with traditional attention

One of the key insights in this work is the biaffine approach to classification, in particular variable-

class classification. Countless systems already utilize variable-class classifiers as latent variables in

neural networks, though generally not with the architecture laid out above. In such cases, they are

known as attention or attention mechanisms. Normally a weighted sum of the word representationsH

is used, where each weight is a probability produced by some attention function, which is functionally

a variable-class classifier.

at = Attn(ht, H̃) (5.28)

¯̃ht = H̃>at (5.29)

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 110

This is known to improve sequence generation tasks such as Neural Machine Translation (Bahdanau

et al., 2014). Most often, the Attn function is a feedforward network that takes as input a hidden

“attender” vector ht and a hidden “attendee” vector h̃t̃, and produces a score stt̃ for the pair.

The score vector st is then normalized with softmax and used as the weights for the weighted

average. The position of this thesis is that the variable-class biaffine classifier or attention is more

principled and intuitive than the variable-class feedforward one. The previous chapter demonstrated

the relationship between affine and biaffine classifiers, as well as their joint relationship to information

theory. Here it will be shown that the variable-class feedforward classifier lacks these appealing

properties. The variable-class feedforward scorer and analogous biaffine scorer are shown in Eqs.

(5.30, 5.31).

stt̃ = u>f(Wht + W̃ h̃t̃ + b) (5.30)

stt̃ = h̃>t̃ Uht + h̃>t̃ w (5.31)

at = softmax(st) (5.32)

The feedforward approach is used to solve the problem raised in Chapter 3.2.2, that some form

of nonlinear interaction between the attender features f and the attendee features F̃ is needed for

the classifier to produce meaningful predictions. Instead of using multiplicative interactions, it uses

pseudo-additive interactions; the features are weighted separately, added, and then “squashed” with

tanh or ReLU. These can be thought of as “pair” features, representing the pair of words together.

The pair features are then used in a linear discriminator, which weights each pair (using the same

weight vector) to decide on the best one.

If, hypothetically, the attendee feature vectors H̃ were to be the same over all examples, then

the biaffine scorer in Eq. (5.31) would reduce to an affine function with W = H̃U and b = H̃w.

w′>k = h̃>k U (5.33)

b′k = h̃>k w (5.34)

stk = h̃>k U ht + h̃>k w (5.35)

= w′>k ht + b′k (5.36)

This is ideal; simplifying the task leads to a simpler but still principled model. The feedforward

scorer in Eq. (5.30), however, remains a feedforward network, but uses a different bias vector for

each class. This is because the class vectors no longer depend on the input, so H̃, their weights W̃ ,

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 111

and the bias term b can be collapsed into a single variable.

b′k = W̃ h̃k + b (5.37)

stk = u>f(Wht + W̃ h̃k + b) (5.38)

= u>f(Wht + b′k) (5.39)

This model, like the variable-class feedforward classifier, uses pseudo-additive interactions between

the input and the class to generate pair features that it then weights. However, the structure of the

pair features is hardly principled. One could just as well propose a fixed-class feedforward classifier

that uses a different weight matrix Wk for each class as well as, or instead of, a different bias vector

bk (Eq. 5.40), which would have the variable-class analog in Eq. (5.41).

stk = u>f(Wk ht + bk) Fixed-class (5.40)

stt̃ = u>f(h̃>t̃ U ht +W h̃t̃) Variable-class (5.41)

Alternatively, one could propose conditioning u, not the FFNN, on the class (Eq. 5.43), which would

have the variable-class analog in Eq. (5.44).

vt = FFNN(ht) (5.42)

stk = u>k vt Fixed-class (5.43)

stt̃ = h̃>t̃ U vt Variable-class (5.44)

Interestingly, both alternative variable-class classifier use bilinear terms, making them effectively

deeper and more complex variants of fixed- and variable-class biaffine classifiers. Additionally, all

feedforward approaches in Eqs. (5.30, 5.41, 5.44) model only the joint likelihood of the input and

class features given at̃ = 1, under the usual conditional independence assumptions. However, they

leave out terms relating to the likelihood of the class features given at̃ = 1 independent of the input

features. That is, some classes may be more likely than others; in many dependency schemes, for

instance, at̃ = 1 is more likely if token t̃ is a content word than if it’s a function word. The FFNN-

based approaches are missing a term for this. It could be added in to Eqs. (5.30, 5.41) by including

a second FFNN conditioned only on the class vectors.

stt̃ = u(1)>f(Wht + W̃ (1)h̃t̃ + b(1)) + u(2)>f(W̃ (2)h̃t̃ + b(2)) (5.45)

Because of the nonlinearity f , this expression cannot be simplified to use only one FFNN. Fortu-

nately, a bias term can be brought back into Eq. (5.44) without adding another FFNN; however,

the end result turns out to be no different from a variable-class biaffine classifier with awkwardly

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 112

asymmetrical depth.

vt = FFNN(ht) (5.46)

stt̃ = h̃>t̃ Uvt + h̃>t̃ w (5.47)

Thus the traditional feedforward approach to attention and variable-class classification lacks the

clearly principled fixed-class analog that the biaffine approach has. Furthermore, attempts to make

the fixed-class feedforward classifier more principled in turn change the variable-class feedforward

classifier into something that looks disturbingly similar to a biaffine system.

This comparison shows that there are actually a large number of different architectures that can

be used to create a fixed- or variable-class classifier. Of these, it was argued that the affine and

biaffine softmax classifiers are the simplest and most principled way to build a classifier for one and

two sets of features, respectively.

5.3.3 Hyperparameter configuration

Param Value Param Value
Embedding size 100 Embedding dropout 33%
LSTM size 400 LSTM dropout 33%
Arc MLP size 500 Arc MLP dropout 33%
Label MLP size 100 Label MLP dropout 33%
LSTM layers 3 # FFNN layers 1
α 2e−3 β1,β2 .9

Annealing .75
t

5000 tmax 50,000

Table 5.1: Basic model hyperparameters.

Aside from architectural differences between Dozat and Manning (2017) and the other arc-

factored parsers, this work makes a number of hyperparameter choices that allow the system to

outperform theirs, laid out in Table 5.1. The system uses 100-dimensional uncased trainable word

vectors, added to 100-dimensional GloVe embeddings (Pennington et al., 2014), concatenated with

POS tag vectors; three BiLSTM layers (400 dimensions in each direction); and 500- and 100-

dimensional ReLU MLP layers. It also applies dropout at every stage of the model: words and

tags are dropped independently; nodes in the LSTM layers (input and recurrent connections) are

dropped as well, with the same dropout mask applied at every recurrent timestep (cf. the Bayesian

dropout of Gal and Ghahramani (2016)); and nodes in the MLP layers and classifiers are dropped as

well, again with the same dropout mask applied at every timestep. The network is optimized with

annealed Adam (Kingma and Ba, 2015) for about 50,000 steps, rounded up to the nearest epoch.

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 113

Model UAS LAS Sents/sec
Deep 95.75 94.22 410.91
Shallow 95.74 94.00* 298.99
Shallow, 50% drop 95.73 94.05* 300.04
Shallow, 300d 95.63* 93.86* 373.24
MLP 95.53* 93.91* 367.44

Table 5.2: Comparison of classifier architectures. Shows accuracy and speed on PTB-SD 3.5.0.
Statistically significant differences are marked with an asterisk.

5.4 Experiments & Results

5.4.1 Datasets

This section shows test results for the proposed model on the English Penn Treebank, converted

into Stanford Dependencies using both version 3.3.0 and version 3.5.0 of the Stanford Dependency

converter (PTB-SD 3.3.0 and PTB-SD 3.5.0); the Chinese Penn Treebank; and the CoNLL 09 shared

task dataset, following standard practices for each dataset. Punctuation was omitted from evaluation

only for the PTB-SD and CTB. For the English PTB-SD datasets, the system use POS tags generated

from the Stanford POS tagger (Toutanova et al., 2003); for the Chinese PTB dataset it uses gold

tags; and for the CoNLL 09 dataset it uses the provided predicted tags. The hyperparameter search

was done with the PTB-SD 3.5.0 validation dataset in order to minimize overfitting to the more

popular PTB-SD 3.3.0 benchmark, and in the hyperparameter analysis in the following section the

reported performance is on the PTB-SD 3.5.0 test set.

5.4.2 Hyperparameter choices

Attention mechanism

Section 5.3 proposes an alternative approach to variable-class classification, dubbed deep biaffine

attention. This discussion aims to empirically motivate both the added depth of the classifier as

well as the biaffine architecture. The FFNN layers allow for large LSTM states while still conserv-

ing parameters, which by hypothesis should reduce overfitting and increase inference speed. The

variable-class biaffine architecture is arguably more natural than the variable-class FFNN alterna-

tive, raising the question of whether it results in observably higher accuracy. Table 5.2 provides

evidence supporting these hypotheses. The model with shallow bilinear arc and label classifiers gets

the same unlabeled performance as the deep model with the same settings, but presumably because

the label classifier is much larger ((801 ×m × 801) as opposed to (101 ×m × 101), where m is the

number of classes), it runs much slower and overfits. One way to mitigate this overfitting is by

increasing the FFNN dropout, but that of course won’t influence parsing speed; another way is to

decrease the recurrent size to 300, but this only serves to hinder unlabeled accuracy without even

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 114

Model UAS LAS Sents/sec
3 layers, 400d 95.75 94.22 410.91
3 layers, 300d 95.82 94.24 460.01
3 layers, 200d 95.55* 93.89* 469.45
2 layers, 400d 95.62* 93.98* 497.99
4 layers, 400d 95.83 94.22 362.09

Table 5.3: Comparison of network sizes.
Test accuracy and speed on PTB-SD 3.5.0. Statistically significant differences are marked with an
asterisk.

increasing parsing speed up to the same levels as the deeper model. The traditional FFNN-based

approach to attention and classification used in Kiperwasser and Goldberg (2016)1 was likewise

somewhat slower and significantly underperformed the deep biaffine approach in both labeled and

unlabeled accuracy. This supports the hypothesis that the deep bilinear architecture is the ideal

approach to variable-class classification in terms of both speed and accuracy.

Network size

This discussion examines more closely how network size influences speed and accuracy. Kiperwasser

and Goldberg’s 2016 model uses 2 layers of 125-dimensional bidirectional LSTMs; Zhang et al.’s

2017 model, uses 2 layers of 300-dimensional BiLSTMs; Hashimoto et al.’s 2017 model uses one

layer of 100-dimensional bidirectional LSTMs dedicated to parsing (two lower layers are also trained

on other objectives); and Cheng et al.’s 2016 model uses one layer of 368-dimensional GRU cells.

This raises the question of how important larger LSTMs are to parsing accuracy. Table 5.3 shows

that using three or four layers gets significantly better performance than two layers, and increasing

the LSTM sizes from 200 to 300 or 400 dimensions likewise signficantly improves performance.2 This

suggests that the numbers reported in the other systems could be improved simply through larger

networks (with more regularization) and further hyperparameter optimization.

Recurrent cell

GRU cells have been promoted as a faster and simpler alternative to LSTM cells, and are used in

the approach of Cheng et al. (2016); this discussion aims to weigh in on the debate. The primary

difference between GRU cells and LSTM cells, which makes the former in some sense simpler than

the latter, is twofold: they combine the input and forget gates into one; and they apply the output

gate at the beginning of the cell update rather than at the end, allowing the cell state and output

1In the version of TensorFlow used for these experiments, the model’s memory requirements during training
exceeded the available memory on a single GPU when default settings were used, so the FFNN hidden size was
reduced to 200

2The model with 400-dimensional recurrent states significantly outperforms the 300-dimensional one on the vali-
dation set, but not on the test set

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 115

Model UAS LAS Sents/sec
LSTM 95.75 94.22 410.91
GRU 93.18* 91.08* 435.32
Cif-LSTM 95.67 94.06* 463.25

Table 5.4: Comparison of recurrent cell types. Test accuracy and speed on PTB-SD 3.5.0. Statisti-
cally significant differences are marked with an asterisk.

state to be collapsed. The former change may be well-motivated, since it was shown in Section 5.4.2

that conserving parameters can reduce overfitting and increase inference speed; however, it was

also shown that providing the RNN component with more rather than less power is beneficial for

achieving higher accuracy at the dependency parsing task. The latter change may reduce memory

consumption during training (and inference to a lesser extent), but the network’s inability to hide

information makes it strictly less powerful. Table 5.4 compares systems trained with three different

types of RNN cells: LSTMs, GRUs, and the coupled input-forget gate LSTM cells (Cif-LSTM)

suggested by Greff et al. (2016), though the first tanh nonlinearity is no longer needed when using

a coupled gate, so in this study it was removed.

While the LSTM and Cif-LSTM cells were fairly comparable, GRU cells performed quite abys-

mally compared to both LSTM variants. The reason for this may have to do with the high levels

of dropout needed to achieve optimal performance. It seems likely that dropout encourages sparser

output representations: if only 50% of nodes are kept after applying dropout, and the network uses

sigmoid gates to manually set 50% of the nodes to near zero, then the system is only “surprised” by

25% of the zeros in the state. The idea that sparser output representations should be preferred to

dense ones is supported by the generally accepted superiority of ReLU—which makes sparsity easy

to achieve—over tanh. GRU cells, however, cannot effectively sparsify their states because their

coupled input/forget gate forces each cell to update with either the current input or the previous

cell but not neither, and the lack of output gate means that whichever value it takes is guaranteed

to be revealed in the output state. By contrast, the output gate in the Cif-LSTM model allows it to

maintain a sparse output state, which may help it adapt to the high levels of dropout needed to pre-

vent overfitting. A manual examination of the LSTM gate biases learned by the fully trained vanilla

model supports this dropout hypothesis. Most of these bias terms are nontrivially negative across

all layers in all three gates, indicating that the network attempted to set the cell and output state to

zero whenever possible. Table 5.4 also suggests that Cif-LSTM gates slightly underperform vanilla

LSTM cells, but the difference is much smaller. Regarding speed, because the gate and candidate

cell activations can be computed simultaneously with one matrix multiplication in the Cif-LSTM

model, it turns out to be faster than the GRU version even though both cell types have the same

number of parameters. This suggests that Cif-LSTM cells should be preferred to GRU cells when

inference speed or parameter conservation is critical, being faster and more effective when trained

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 116

Model UAS LAS
Default 95.75 94.22
No word dropout 95.74 94.08*
No tag dropout 95.28* 93.60*
No tags 95.77 93.91*

Table 5.5: Ablation of embedding dropout. Test Accuracy on PTB-SD 3.5.0. Statistically significant
differences are marked with an asterisk.

Model UAS LAS
β2 = .9 95.75 94.22
β2 = .999 95.53* 93.91*

Table 5.6: Comparison of optimizer hyperparameters. Test Accuracy on PTB-SD 3.5.0. Statistically
significant differences are marked with an asterisk.

with dropout regularization.

Embedding Dropout

Because the parser has a lot of power, it also needs a lot of regularization. Thus the system includes

embedding dropout, where whole words and tags are dropped as well as individual hidden nodes.

Words and tags are dropped independently at a rate of 33% during training: when one is dropped

the other is scaled by a factor of two to compensate, and when both are dropped together, the

model simply gets an input of zeros. The labeled training dataset is relatively small (only about

40,000 sentences) and the system trains relatively fast (about 75 sents/sec), so a single pass through

the entire training dataset takes under 10 minutes. Consequently, the system could see the same

exact sequence more than a hundred times over the course of training. When whole embeddings

are dropped 33% of the time, on the other hand, the probability of seeing a unique ten-word input

sequence twice during the course of training is only about 0.1%. Thus embedding dropout (and

dropout more generally) can be seen not only as a regularizer, but also as a quick-and-dirty means

of data augmentation. Table 5.5 shows that models trained with only word or tag dropout but not

both wind up signficantly overfitting, hindering label accuracy and—in the latter case—attachment

accuracy. This suggests that preventing the system from seeing the same sequences repeatedly helps

generalization accuracy. Interestingly, not using any tags at all actually results in better performance

than using tags without dropout. While tags are still useful for neural parsing, it’s clear that there

needs to be some mechanism in place to keep the network from relying on them too much.

Optimizer

The system was optimized with Adam (Kingma and Ba, 2015), which (among other things) keeps a

moving average of the L2 norm of the gradient for each parameter throughout training and divides

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 117

English PTB-SD 3.3.0 Chinese PTB 5.1
Type Model UAS LAS UAS LAS

Transition
Ballesteros et al. (2016) 93.56 91.42 87.65 86.21
Andor et al. (2016) 94.61 92.79 – –
Kuncoro et al. (2016) 95.8 94.6 – –

Graph

Kiperwasser and Goldberg (2016) 93.9 91.9 87.6 86.1
Cheng et al. (2016) 94.10 91.49 88.1 85.7
Hashimoto et al. (2017) 94.67 92.90 – –
Deep Biaffine 95.74 94.08 89.30 88.23

Table 5.7: Basic system results on the English PTB and Chinese PTB parsing benchmarks.

Catalan Chinese Czech
Model UAS LAS UAS LAS UAS LAS

Andor et al. 92.67 89.83 84.72 80.85 88.94 84.56
Deep Biaffine 94.69 92.02 88.90 85.38 92.08 87.38

English German Spanish
Model UAS LAS UAS LAS UAS LAS

Andor et al. 93.22 91.23 90.91 89.15 92.62 89.95
Deep Biaffine 95.21 93.20 93.46 91.44 94.34 91.65

Table 5.8: Basic system results on the CoNLL ’09 shared task datasets.

the gradient for each parameter by this moving average, ensuring that the magnitude of the gradients

will on average be close to one and that the average update will be close in magnitude to the learning

rate. However, the value for β2 recommended by Kingma and Ba—which controls the decay rate for

this moving average—appears to be too high for this task (and we suspect more generally). When

this value is very large, the magnitude of the current update is heavily influenced by the larger

magnitude of gradients very far in the past, with the effect that the optimizer can’t adapt quickly

to recent changes in the model. Thus setting β2 to .9 instead of .999 makes a large positive impact

on final performance.

5.4.3 Results

This model gets nearly the same UAS performance on PTB-SD 3.3.0 as the current SOTA model

from Kuncoro et al. (2016) in spite of its substantially simpler architecture, and gets SOTA UAS

performance on CTB 5.1 as well as SOTA performance on all CoNLL 09 languages. It is worth

noting that the CoNLL 09 datasets contain many non-projective dependencies, which require special

augmentations for transition-based—but not arc-factored—parsers to predict. This may account for

some of the large, consistent difference between this model and Andor et al.’s 2016 transition-based

model applied to these datasets.

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 118

Where this model appears to lag behind the SOTA model is in LAS, indicating one of a few

possibilities. Firstly, it may be the result of inefficiencies or errors in the GloVe embeddings or

POS tagger, in which case using alternative pretrained embeddings or a more accurate tagger might

improve label classification. Secondly, the SOTA model is specifically designed to capture phrasal

compositionality; so another possibility is that this one doesn’t capture this compositionality as

effectively, and that this results in a worse label score. Finally, it may be the result of a more

general limitation of arc-factored parsers, which have access to less explicit syntactic information

than transition-based parsers when making decisions. Addressing these latter two limitations would

require a more innovative architecture than the relatively simple one used in current neural arc-

factored parsers.

5.5 Subsequent Work

5.5.1 Language transfer

The model proposed in Dozat and Manning (2017) has inspired or been extended by other researchers

working on dependency parsing. Wang et al. (2017) aims to adapt the parser for low-resource

languages with related high-resource languages, focusing on Singapore English (Singlish). They

construct a small treebank of attested Singlish sentences with vocabulary and grammar very different

from Standard American English. The crux of their approach involves “neural stacking” (Chen

et al., 2016; Zhang and Weiss, 2016); they first train a deep biaffine parser on English Universal

Dependencies (Nivre et al., 2016), and then they use its latent feature representations as additional

input to another parser for Singlish with the same basic architecture (but different hyperparameters).

First the English parser is run on the Singlish sentence, and the topmost recurrent state and each

FFNN layer in the biaffine classifiers are extracted. Then the topmost recurrent state is concatenated

to the Singlish word and tag embedding, and each FFNN representations of the pretrained English

model is added to the parallel representation of the Singlish model. This allows a newly-trained

Singlish parser to leverage knowledge of English when making decisions, and achieves quite dramatic

improvement over just using a monolingual English or Singlish parser.

5.5.2 Transition-based parsing

Ma et al. (2018) take the biaffine approach to arc-factored parsing and work it into a neural

transition-based parser. Instead of using FFNNs like Chen and Manning (2014); Andor et al.

(2016) or Stack-LSTMs Kuncoro et al. (2016), they use a novel stack-pointer architecture. Their

stack-pointer networks build on pointer networks (Vinyals et al., 2015), which can be thought of

as sequence-to-sequence models where the input sequence is of token embeddings and the output

sequence is of indices into the input sequence. It maintains a stack of words whose dependents have

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 119

not yet been partially but not fully parsed. The stack-pointer network, after being primed by the

input sequence, “writes” to the output sequence all dependents of the word on top of the stack.

When a word has multiple dependents, it is trained to parse its leftward dependents first, beginning

with the closest one, then to parse its rightward dependents, starting with the closest one. Once all

of a word’s dependents have been fully parsed, the system points to the word itself, indicating that

the word should be popped from the stack and that its parent should continue searching for more

dependents. Critically, it uses a biaffine variable-class classifier like the one described in this chapter

to identify a word’s dependents. They compare this approach to their own reimplementation of the

parser described here, finding that the two achieve comparable performance for English, Chinese,

and German PTB datasets.

5.5.3 Constituency parsing

Teng and Zhang (2018) adapt the dependency parser for constituency parsing. They build two

models, both of which use the biaffine transformations proposed in Dozat and Manning (2017) to

generate scores. In one model (the span model), they use a biaffine scorer to compute the probability

of a word i beginning a span (i.e. syntactic constituent) that another word j ends. In another model

(the rule model), they use one biaffine scorer to compute the probability that a span between words

i, j has left span i, k and another to compute the probability that it has right span k + 1, j, where

i ≤ k < j. Both are formulated so as to be decodable using the CKY parsing algorithm. They

find that the biaffine components significantly improve over the affine alternatives. Their system

achieves excellent performance on the PTB dataset, achieving comparable performance to the best

published model that foregoes using ensembling or reranking.

5.5.4 Multitask dependency parsing/semantic role labeling

Shi and Zhang (2017) train a multitask system with two objectives: dependency parsing and semantic

role labeling (SRL), focusing on the latter. Their approach involves training a shared sentence-

encoding BiLSTM that feeds into smaller task-specific modules. The dependency parsing module

includes one more BiLSTM layer, followed by the deep biaffine transformation described in Section

5.3. The SRL module likewise uses one more BiLSTM layer, but in addition to providing it with

the topmost output state of the shared BiLSTM, they provide it with a lemma embedding and

an indicator embedding, which indicates whether the word is a semantic predicate or not. They

train their system with a weighted cross-entropy loss, finding that the joint training improves SRL

significantly. Their multitask system achieves state-of-the-art performance on the CoNLL 2009

datasets for English, Chinese, and German (Hajič et al., 2009), which contain both dependency and

SRL parses. It also reaches state-of-the-art performance on the English WSJ and Brown corpus

SRL dataset without needing to use model ensembling or reranking.

CHAPTER 5. BIAFFINE DEPENDENCY PARSING 120

5.5.5 Coreference resolution

Zhang et al. (2018a) build a coreference system that uses a biaffine variable-class classifier. They

use a sigmoid classifier to classify each possible span of words as either being a mention or not

(pruning away the most unlikely ones), and then use a biaffine scorer to classify each mention as

being coreferent with a preceding one (or a special empty token). Their approach is relatively simple

and intuitive but still consistently achieves state-of-the-art F1. Critically, they find in an ablation

study that replacing the biaffine classifier with a traditional FFNN one reduces performance down

to just above the accuracy of the previous state-of-the-art system.

5.6 Conclusion

This chapter has focused on a dependency parser based on the biaffine classifiers motivated in Chap-

ter 3.2. The deep biaffine parser was found to increase both speed and accuracy over alternatives

that used feedforward classifiers or shallow biaffine classifiers. The larger but more heavily regular-

ized network outperforms other neural arc-factored parsers and gets fairly comparable performance

to the current state-of-the-art transition-based parser. This chapter has also provided empirical mo-

tivation for the proposed architecture and configuration over similar ones in the existing literature.

Chapter 6 will explore ways to push this performance even higher, emphasizing languages with more

productive morphology and orthography than English. Then Chapter 7 will extend the system to

more challenging dependency schemes that relax the assumption that each token has a unique head.

Chapter 6

Multilingual Augmentations

6.1 Introduction

The previous chapter laid out a relatively simple neural dependency parser, and emphasized its per-

formance on the standard English benchmark dataset, since the majority of competitive alternatives

only evaluated on English. However, most languages aren’t English, and present challenges that the

basic, English-centric system is ill-equipped to handle. This chapter—originally published as Dozat

et al. (2017) and Qi et al. (2018)—has a few goals, focusing primarily on adapting the system to

languages that display a wider variety of linguistic phenomena. The biggest adaptation addresses

the observation that many languages mark functional relationships with case inflections rather than

with function words and word order. The system needs a way to identify these case inflections and

what they contribute to the sentence; since inflections are generally recoverable from orthography,

I provide the system with a character-level network that learns to construct word embeddings from

the sequence of characters. In addition to building in a way of learning morphology from tokens,

I explicitly incorporate the relative locations of each pair of tokens into the scoring function. This

way, parsers trained on languages with more free word order can take advantage of the distance

between two words when deciding how likely an edge is between them, and parsers trained on lan-

guages with more rigid word order can explicitly condition the score on linear order. Furthermore,

I take advantage of the fact that variable-class classification is a kind of sequence labeling to train

a deep affine (and subsequently deep biaffine) part-of-speech (POS) tagger analogous to the deep

biaffine dependency parser that uses most of the same hyperparameters. This is to simultaneously

ensure that an accurate POS tagger is available for the language being parsed (which may not be

true for lower-resource languages) and to address the concern in the previous chapter that currently

available taggers may not be accurate enough to maximize downstream parsing performance.

In order to fairly evaluate the efficacy of these adaptations, it’s necessary to examine the system’s

performance on a wide variety of different languages and compare the results against a wide variety

121

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 122

of alternatives. To this end, the CoNLL shared task on Universal Dependency parsing (Nivre et al.,

2016; Zeman et al., 2017; Nivre et al., 2017b,a) is an excellent testbed. Not only does it include train-

ing datasets for 45 different languages, but several dozen teams participated in it, providing many

strong baselines. Many of these baselines use transition-based systems, an alternative paradigm to

the arc-factored system proposed in this thesis. One advantage of the arc-factored approach over the

transition-based one is that predicting crossing dependency edges is no more difficult than predicting

non-crossing edges. Transition-based parsers, on the other hand, require more planning for these

kinds of non-local constructions. Since crossing dependencies are common in languages with less

restrictive word order, this raises the question—explored in this chapter—of whether arc-factored

parsers are better at capturing crossing dependencies in such languages. Ultimately, the system

achieved the highest performance on the 2017 shared task during the evaluation period according to

all five relevant metrics: universal part-of-speech (UPOS), language-specific part-of-speech (XPOS),

unlabeled attachment score (UAS), labeled attachment score (LAS), and content word labeled at-

tachment score (CLAS).

One noteworthy feature of this approach is its relative simplicity. It uses a single tagger/parser

pair per language, trained on only words and tags; there is no ensembling or language model pre-

training, either of which could potentially push accuracy even higher. Because of its simplicity,

accuracy, and speed, several independent teams extended it for the subsequent CoNLL 2018 shared

task (Zeman et al., 2018).

6.2 Architecture

6.2.1 Deep biaffine parser

The basic architecture is the same as in Chapter 5, and will be reiterated here. In this parser, the

input to the model is a T -length sequence of tokens and their part-of-speech tags (w
(word)
t , w

(pos)
t).

Each word and tag in the sequence is given an embedding (the exact process will be described in

Section 6.2.2), and for each token, its word and tag embeddings are concatenated. The sequence of

embeddings is then put through a multilayer bidirectional LSTM network. The output state of the

final LSTM layer is then fed through four separate ReLU layers, producing four specialized vector

representations: one for the word as a dependent seeking its head; one for the word as a head seeking

all its dependents; another for the word as a dependent deciding on its label; and a fourth for the

word as head deciding on the labels of its dependents. These vectors are then used in two biaffine

classifiers: the first computes a score for each pair of tokens, with the highest score for a given token

indicating that token’s most probable head; the second computes a score for each label for a given

token/head pair, with the highest score representing the most probable label for the arc from the

head to the dependent. This is shown graphically in Figure 6.1.

Put formally, given sentence i’s sequence of T word embeddings (x
(word)
i,1 , . . . ,x

(word)
i,T) and T

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 123

. . .

. . .
BiLSTM: ht

w
(word)
0 w

(pos)
0 w

(word)
T w

(pos)
T

Embed: xt

Input: wt

FNN: vt

Heads Labels | HeadBiaff: S

Figure 6.1: Basice parser architecture, repeated from Chapter 5. Word embeddings xt are fed into
a BiLSTM, which uses FNNs to get four separate representations vt for each word. Two biaffine
scorers turn these into score matrices S, where each cell represents the score of an edge or label
between two tokens.

tag embeddings (x
(pos)
i,1 , . . . ,x

(pos)
i,T), each pair is concatenated together and fed into a BiLSTM. As

elsewhere in this thesis, lowercase italics will be for scalars, lowercase bold for vectors, uppercase

italics for matrices, and uppercase bold for tensors, except where otherwise noted. The convention

will be maintained when indexing and stacking; so ai is the ith vector of matrix A, and matrix

A is the stack of all vectors ai. Indices into function output will be notated before the function’s

arguments. To avoid notational clutter, the sentence index i will be dropped in following expressions.

xt = x
(word)
t ⊕ x

(pos)
t (6.1)

ht = BiLSTMt

(
X)
)

(6.2)

As described in Chapter 5, the system then produces four distinct vectors from each recurrent

hidden state ht using feedforward ReLU layers. The dependent representations are annotated with-

out a tilde diacritic, and the head representations are annotated with. Similarly, vector pairs for

the unlabeled arc (edge) classifier are annotated with a superscript (e), and vectors for the label

classifier are annotated with (l).

v
(e)
t = FNN(ht) Edge-dep (6.3)

v
(l)
t = FNN(ht) Label-dep (6.4)

ṽ
(e)
t = FNN(ht) Edge-head (6.5)

ṽ
(l)
t = FNN(ht) Label-head (6.6)

As in the previous chapter, the edge score is a variable-class biaffine function (VCBiaff) of the edge

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 124

i n f e r

LSTM: htt′

Embed: xtt′

Summary

Embed: e
(char)
t

Attn: h̄t Final cell: ctT ′

Input: wtt′

Figure 6.2: The architecture of the character-level embedding model. Character embeddings are
fed into an LSTM, which is then summarized with attention and the final cell state. Finally, the
concatenation of these is linearly transformed to the desired size.

representations (see Eq. 5.13), and the predicted head t̃t is the token that maximizes this score for

word t.

s
(e)
t = Ṽ (e)

(
Uv

(e)
t + w

)
(6.7)

= VCBiaff(v
(e)
t , Ṽ (e)) (6.8)

t̃t = arg max s
(e)
t (6.9)

After deciding on a head t̃t for word t, a fixed-class biaffine transformation (FCBiaff) of the label-dep

representation and the predicted head’s label-head representation predicts the label:

s
(l)
t = ṽ

>(r)
t̃t

Uv
(l)
t +W

(
v
(l)
t ⊕ ṽ

(l)

t̃t

)
+ b (6.10)

= FCBiaff(v
(l)
t , ṽ

(l)

t̃t
) (6.11)

The biaffine approaches to classification in Eqs. (6.7, 6.10) have intuitive probabilistic and inform-

ation-theoretic interpretations, described in detail in Chapter 3.

These two biaffine classifiers are optimized jointly by summing their softmax cross-entropy losses.

At test time, a spanning tree algorithm that iteratively identifies and fixes cycles ensures that the

tree is well-formed.1

6.2.2 Character-level model

The system in Chapter 5 represented words as the sum of a pretrained vector2 and a holistic word

embedding for frequent words. However, that approach seems insufficient for languages with rich

1The version used in the 2017 shared task uses a simpler version of the Chu-Liu/Edmonds algorithm (Chu and
Liu, 1965; Edmonds, 1967) that doesn’t guarantee a maximum spanning tree. The version for the 2018 shared task
does, however.

2The pretrained vectors were provided for the shared task for most languages and were trained using word2vec
(Mikolov et al., 2013); for Gothic, which had no provided vector embeddings, the embeddings came from Facebook’s
FastText vectors (Bojanowski et al., 2016).

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 125

Freq W2V Char UPOS XPOS

Input: et

Embed: xt

Figure 6.3: Total embedding architecture. The three diffierent kinds of word embeddings (frequent
token, pretrained word2vec, and character-level) are added together. In the parser, the two different
kinds of POS embeddings (UPOS, XPOS) are added together and concatenated with the word
embeddings.

morphology. The system with only holistic embeddings will miss out on information about words

that are absent or infrequent in the pre-training corpus but that have highly predictive morphological

suffixes. To address this limitation, the system here generates an additional embedding composed

from an LSTM over characters. Here, each character is given a trainable vector embedding, and the

sequence of character embeddings is fed into a unidirectional LSTM. However, the LSTM produces

a sequence of recurrent states, which must then be converted into a single vector. The simplest

approach is to take the last one—which would represent a summary of all the information aggregated

one character at a time—and linearly transform it to the desired dimensionality. Another approach,

suggested by Cao and Rei (2016), is to use attention over the hidden states, and then transform

the resulting context vector to the desired size. In theory, this should allow the model to learn

morpheme information more easily by attending more closely to the LSTM output at morpheme

boundaries. To get the best of both worlds, the system uses the recurrent output states for attention

and the cell state for summarizing, shown in Figure 6.2. Formally, given a sequence of T ′ character

embeddings for the t-th unique word in the minibatch, an LSTM computes a cell and hidden state

for each character t′ in the sequence. For notational simplicity, the word index t will be excluded

from these equations, leaving only the character index t′.

xt′ = x
(char)
t′ (6.12)

ht′ , ct′ = LSTM&Cellt′(X) (6.13)

A linear attention mechanism then weights each hidden vector in H (Eqs. 6.14, 6.15). The weighted

average of H is concatenated with the final cell state, and the two states together are linearly

transformed to have the desired dimensionality (Eq. 6.16). Similar to the deep biaffine transformation

proposed in Chapter 5, this allows for a large recurrent state but a smaller final embedding.

a = softmax(Hw) (6.14)

h̄ = H>a (6.15)

e(char) = W (h̄⊕ cT ′) (6.16)

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 126

In this way the hidden states are used for attention and the cell state is used as a holistic summary

vector. The approach used here is admittedly somewhat arbitrary, and more empirical work is

needed to determine the best way of generating word embeddings from a character-level LSTM for

the dependency parsing task. After computing the character-level word embedding, the three types of

word embeddings—word2vec (w2v), frequent token (freq), and character (char)—get added together

element-wise. Similarly, the UPOS and XPOS tags are added together before being concatenated

with the final word embedding. This is shown in Figure 6.3.

x
(word)
t = e

(w2v)
t + e

(freq)
t + e

(char)
t (6.17)

x
(pos)
t = e

(upos)
t + e

(xpos)
t (6.18)

The resulting two vectors are used as input to the BiLSTM parser in Eq. (6.1).

6.2.3 POS tagger

The final piece of this system is a separately-trained part of speech tagger. The architecture for

the tagger is almost identical to that of the parser (and shares fundamental properties with other

neural taggers; cf. Ling et al. (2015); Plank et al. (2016))—it uses a BiLSTM over word vectors

(using the tripartite representation from Section 6.2.2), then uses ReLU layers to produce one vector

representation for each type of tag.

Thus the system uses a BiLSTM over word embeddings, as with the parser architecture.

xt = x
(word)
t (6.19)

ht = BiLSTMt(X) (6.20)

It then predicts each tag type (UPOS and XPOS, but not UFeats) using a different deep affine

classifier. That is, it generates separate representations for each of UPOS and XPOS, and uses

those as the input to affine classifiers. This makes the tagger maximally analogous to the dependency

parser.

v
(upos)
t = FNN(ht) (6.21)

v
(xpox)
t = FNN(ht) (6.22)

s
(u/xpos)
t = Aff(v

(u/xpos)
t) (6.23)

The tag classifiers are trained jointly using cross-entropy losses that are summed together during

optimization, but the tagger is trained independently from the parser. Initial experiments involving

jointly training the tagger and parser from one BiLSTM failed to produce results on par with the

pipelined approach. These experiments included predicting tags, labels, and parses independently;

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 127

predicting tags from two lower layers of the BiLSTM and the labels and parses; and predicting tags

first, then concatenating tag embeddings to the BiLSTM layers before making parse and label pre-

dictions. Even when unlabeled accuracy remained the same, labeled accuracy consistently suffered.

There are two possible overlapping explanations for this. One is that the parser needs to incorporate

POS tag information into the BiLSTM in order to accurately predict the label. The other is that

error signal from the POS tagger during optimization overwhelms gradient from the labeler. What-

ever the cause, the performance drop was too significant to justify using a single-network system

over the two-network system used in this work.

6.3 Training details

This version of the system largely adopts the same hyperparameter configuration in the previous

chapter, with a few exceptions. The parser uses three BiLSTM layers with 100-dimensional word and

tag embeddings and 200-dimensional recurrent states (in each direction); the arc classifier uses 400-

dimensional head/dependent vector states and the label classifier uses 100-dimensional ones; word

and tag embeddings are dropped independently with 33% probability;3 same-mask dropout (Gal

and Ghahramani, 2016) is used in the LSTM, ReLU layers, and classifiers, with input and recurrent

connections dropped with 33% probability; and the system is optimized with Adam (Kingma and

Ba, 2015), at a learning rate of .002 and with β1 = β2 = .9. Models are trained for up to 30,000

training steps (where one step/iteration is a single minibatch with approximately 5,000 tokens), at

first saving the model every 100 steps if fewer than 1,000 iterations have passed, and afterwards only

saving if validation accuracy increases (or training accuracy for languages with no validation data).

Training terminates when 5,000 training steps pass without improving accuracy.

The character model uses 100-dimensional uncased character embeddings with 400-dimensional

recurrent states. Characters are not dropped, but similar to the core system the character model

includes 33% dropout in the LSTM and attention connections.

The tagger uses nearly identical settings, except that the BiLSTM is only two layers deep, the

dropout between recurrent connections is increased to 50%, and the character embeddings are case-

sensitive.

There’s substantial variability in training and testing speed across treebanks, but on an NVIDIA

Titan X GPU the models train at 100 to 1000 sentences/sec and test at 1000 to 5000 sentences/sec.

Even without GPU acceleration a tagger or parser can be run on an entire test treebank in ten to

twenty seconds. By far the greatest runtime overhead comes not from the model itself, but from

reading in the large matrices of pretrained embeddings, which can take several minutes. A full run

over the 81 test sets on the TIRA virtual machine (Potthast et al., 2014) takes about 16 hours, but

when parallelized on faster machines it can be done in under an hour.

3When only one is dropped, the other is scaled by a factor of two

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 128

UPOS XPOS UAS LAS CLAS

ar 89.36 87.66 76.59 71.97 68.17
ar pud 71.17 0.00 58.87 49.50 46.06
bg 98.75 96.71 92.89 89.81 86.53
bxr 84.12 99.35 51.19 30.00 25.37
ca 98.59 98.58 92.88 90.70 86.70
cs 98.83 95.86 92.62 90.17 88.44
cs cac 99.05 95.16 93.14 90.43 88.31
cs cltt 97.91 89.98 86.02 82.56 79.62
cs pud 96.42 92.60 89.11 84.42 81.60
cu 95.90 96.20 77.10 71.84 70.49
da 97.40 99.69 85.33 82.97 80.03
de 94.41 97.29 84.10 80.71 76.97
de pud 85.71 20.89 80.88 74.86 73.96
el 97.74 97.76 89.73 87.38 83.59
en 95.11 94.82 84.74 82.23 78.99
en lines 96.64 95.41 85.16 82.09 78.71
en partut 95.22 95.08 86.10 82.54 77.40
en pud 95.40 94.29 88.22 85.51 82.63
es 96.59 99.69 90.01 87.29 82.08
es ancora 98.72 98.73 92.11 89.99 86.15
es pud 88.39 1.76 88.14 81.05 74.60
et 93.01 95.05 78.08 71.65 69.85
eu 95.89 99.96 85.28 81.44 79.71
fa 97.15 97.12 89.64 86.31 82.93
fi 96.62 97.37 87.97 85.64 84.25
fi ftb 96.30 95.31 89.24 86.81 84.12
fi pud 97.54 0.00 90.60 88.47 86.82
fr 96.20 98.87 88.57 85.51 82.14
fr partut 96.16 95.88 88.64 85.05 79.49
fr pud 89.32 2.40 83.45 78.81 77.37
fr sequoia 97.41 99.06 88.48 86.53 83.37
ga 92.43 91.31 78.50 70.06 61.38
gl 97.72 97.50 85.87 83.23 78.05
gl treegal 94.51 91.65 78.28 73.39 66.02
got 95.74 96.49 73.10 66.82 63.87
grc 92.64 84.47 78.42 73.19 67.59
grc proiel 97.06 97.51 78.30 74.25 68.83
he 82.42 82.45 67.70 63.94 56.78
hi 97.50 97.01 94.70 91.59 87.92
hi pud 85.48 34.82 67.24 54.49 48.87
hr 97.68 99.93 90.11 85.25 82.36

UPOS XPOS UAS LAS CLAS

hsb 90.30 99.84 67.83 60.01 56.32
hu 95.34 99.82 82.35 77.56 76.08
id 94.09 99.99 85.17 79.19 77.15
it 98.04 97.93 92.51 90.68 86.18
it pud 93.74 2.48 91.08 88.14 84.49
ja 88.14 89.68 75.42 74.72 65.90
ja pud 89.41 7.50 78.64 77.92 68.95
kk 57.36 55.72 43.51 25.13 19.32
kmr 90.04 89.84 47.71 35.05 28.72
ko 96.14 93.02 85.90 82.49 80.85
la 90.67 76.69 72.56 63.37 58.96
la ittb 98.36 94.79 89.44 87.02 84.94
la proiel 96.72 96.93 73.71 69.35 66.56
lv 93.59 80.05 79.26 74.01 70.22
nl 93.24 90.61 85.17 80.48 75.19
nl lassysmall 98.39 99.93 89.56 87.71 85.22
no bokmaal 98.35 99.75 91.60 89.88 87.67
no nynorsk 98.11 99.85 90.75 88.81 86.41
pl 98.15 91.97 93.98 90.32 87.94
pt 97.24 83.04 89.90 87.65 83.27
pt br 98.22 98.22 92.76 91.36 87.48
pt pud 88.99 0.00 83.27 77.14 71.68
ro 97.59 96.98 90.43 85.92 81.87
ru 96.99 96.73 87.15 83.65 81.80
ru pud 86.85 80.17 82.31 75.71 73.13
ru syntagrus 98.59 99.57 94.00 92.60 90.11
sk 96.87 85.00 89.58 86.04 83.86
sl 98.63 94.74 93.34 91.51 88.98
sl sst 94.04 86.87 61.71 56.02 51.04
sme 86.81 88.98 51.13 37.21 39.22
sv 97.70 96.40 88.50 85.87 83.71
sv lines 96.74 94.84 86.51 82.89 79.92
sv pud 94.33 92.33 81.90 78.49 76.48
tr 93.86 93.11 69.62 62.79 60.01
tr pud 72.73 0.00 58.72 37.72 31.71
ug 76.65 78.69 56.86 39.79 30.11
uk 94.31 79.42 81.44 75.33 71.72
ur 93.95 92.30 87.98 82.28 75.88
vi 75.28 73.56 46.14 42.13 38.59
zh 85.26 85.07 68.95 65.88 62.03

UPOS XPOS UAS LAS CLAS

All treebanks 93.09 82.27 81.30 76.30 72.57
Large treebanks 95.58 94.56 85.16 81.77 78.40
Parallell treebanks 88.25 30.66 80.17 73.73 69.88
Small treebanks 87.02 82.03 70.19 61.02 54.76
Surprise treebanks – – 54.47 40.57 37.41

Table 6.1: Results on the CoNLL 2017 shared task. Includes each treebank in the shared task plus
the macro average over all of them. State of the art performance by the system is in bold.

6.4 Results

This model uses the base tokenization and segmentation generated by an external system (UDPipe;

Straka et al. 2016) and produces UPOS tags, XPOS tags, dependency arcs, and dependency labels.

Thus the relevant metrics for the system are UPOS accuracy, XPOS accuracy, unlabeled attachment

score, labeled attachment score, and content labeled attachment score. The results of the shared

task are presented in Table 6.1; the system achieves the highest aggregated score on all five of these

metrics. Following discussion explores where the model does particularly well, and where it can likely

be improved. Evaluations are done on CLAS performance, which is a principled extension of the

common practice of removing punctuation from evalution. The shared task included four surprise

languages, which lacked training data and thus required some sort of transfer learning approach.

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 129

Because of the substantially different training and testing conditions, surprise languages will be

excluded from the following analyses.

One small point to that end is that arc-factored systems such as this require tokenization and

segmentation to have already been done. Jointly training a segmenter and arc-factored parser would

be difficult, either requiring a reinforcement learning objective or consuming a large amount of

memory quadratic in the number of characters in each paragraph or document. The system was

therefore trained on gold segmentation and evaluated using the segmentation provided by UDPipe

(maintained in the following experiments). For most treebanks this was easily sufficient, but for

Vietnamese, Chinese, Japanese, and Arabic, UDPipe’s lower performance at segmenting or tok-

enizing was correlated with a relatively large gap between CLAS and gold-aligned CLAS. Because

the model achieves comparable CLAS and gold-aligned CLAS for nearly all other treebanks, this

probably indicates that alignment errors propagated through the system into parsing errors.

6.4.1 Nonprojectivity

In Universal Dependencies, unlike many other popular benchmarks, several treebanks have a rela-

tively large number of crossing dependencies. This means that any competitive system will need to

be able to produce non-projective arcs. One of the most frequently used approaches for producing

fully non-projective parsers in transition-based systems is to add the swap action (Nivre, 2009). This

makes any arbitrary non-projective arc possible, but increases the number of transition steps and

the degree of planning required to produce that arc. One potential concern is that it might be more

difficult to produce these longer chains of transition sequences, which would bias the model toward

overproducing projective arcs. In an arc-factored system, by contrast, there’s little reason to think

non-projective arcs should be harder to predict than projective ones. One might hypothesize that

because of this, a transition-based swapping system would need to see more examples of crossing

dependencies than a arc-factored system in order to generalize well. Thus this first study aims to

explore how the fraction of non-projective arcs in a treebank affects the performance of the two

types of systems.

To test the relative performance of an arc-factored and a transition-based model, the differ-

ence in per-treebank CLAS performance between this parser and the transition-based UDPipe v1.1

baseline (Straka et al., 2016) is plotted against the frequency of non-projective arcs in the test set

in Figure 6.4a. To determine whether there is a significant relationship between the difference in

performance, the data is fit to a generalized linear mixed effects regression model (Fisher, 1930),

using Markov chain Monte Carlo sampling (Hadfield, 2010). Log data size, morphological complex-

ity (see Section 6.5.2), and training set projectivity are included as random effects. The learned

regression lines are plotted alongside the data. The difference between the performance of the arc-

factored and transition-based parsers increases with the nonprojectivity of the test set significantly

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 130

0 5 10 15

Nonprojectivity in test (%)

0

5

10

15

20

25

C
L
A

S
 d

if
fe

re
n
ce

Effect of Nonprojectivity

0.60x+ 8.70

(a) By absolute percentage of crossing dependencies
in the test set. Difference in CLAS between this
system and the transition-based UDPipe v1.1 as a
function of the nonprojectivity of the test set.

-4 -2 0 2 4

Nonprojectivity train/test difference (%)

0

5

10

15

20

25

C
L
A

S
 d

if
fe

re
n
ce

Effect of Nonprojectivity Difference

1.73x+ 9.99

(b) By relative percentage of crossing dependencies
in the test set. Difference in CLAS between this sys-
tem and UDPipe v1.1 as a function of the difference
between the nonprojectivity of the test and training
sets.

Figure 6.4: Comparison of parsing paradigm on crossing edges. How the percentage of non-projective
arcs in the training and test set influence the accuracy of the proposed arc-factored and a transition-
based parser. The transition-based sysem underperforms more in the presence of more crossing
edges.

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 131

(p < 0.001). This remains significant even when outliers4 are excluded (p < 0.05). To the extent

that UDPipe represents a typical non-projective transition-based parser, this result suggests that

an arc-factored approach is better suited to parsing UD treebanks that have significant syntactic

freedom or complexity than a transition-based one.

The data shown in Figure 6.4b further support the hypothesis that arc-factored parsers are better

at handling nonprojectivity than transition-based ones. Figure 6.4b shows the difference between

the projectivity of each test and training set, with regression lines generated analogously to Figure

6.4a (with data size, morphological complexity, and train/test nonprojectivity as random effects).

When the training set has drastically fewer crossing dependencies than the test set, the arc-factored

model achieves relatively higher accuracy; but when the transition-based parser can train on many

crossing arcs, the models are closer in performance (p < 0.001), even when excluding the same

outliers (p < 0.05). This suggests that the arc-factored approach learns and generalizes crossing

dependencies more efficiently than the transition-based approach, although again this comes with

the assumption that UDPipe’s parser is representative of most transition-based swapping parsers

when it comes to producing nonprojective parses.

One important caveat is that the reported results for UDPipe v1.1 for each treebank use the

transition system that maximized the validation accuracy for that language, which may have included

transition systems without the swap action. This means that for languages with a relatively small

fraction of nonprojective edges, the swapping system may have achieved lower performance than

what is reported here. Consequently, whenever UDPipe chose not to use swap, it tacitly admitted

that swap isn’t a one-size-fits-all solution to handling different proportions of crossing dependencies.

6.4.2 Data size

All trained parsers here use the same hyperparameter configuration, regardless of how much training

data there is for the treebank each one was trained on. This means some systems may have overfit

to small training datasets or underfit to large ones. One way to test this hypothesis is to compare

performance of the system presented here to the highest-performing alternative system for each

treebank in the shared task. Thus Figure 6.5 shows the per-treebank difference between the test

CLAS performance of the model proposed in this work and that of the highest-performing model

other than this one, plotted against the log training data size. On average, this system tends to do

relatively better on larger datasets compared to other approaches and worse on smaller ones, accord-

ing to a mixed effects regression model with train/test projectivity and morphological complexity

set as random effects (p < 0.001). When the outliers are excluded,5 this tendency is still significant

(p < 0.001). This suggests that the model is overfitting to smaller datasets, and that increasing

regularization or decreasing model capacity may improve accuracy for lower-resource languages.

4Korean (top); Ancient Greek, Latin (right)
5Kazakh, Uyghur (left); Japanese (bottom); Czech-CAC, Russian-SynTagRus, Czech (right)

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 132

103 104 105 106

Training size

-15

-10

-5

0

5

C
L
A

S
 d

if
fe

re
n
ce

Effect of Training Size

2.59log10(x)− 11.89

Figure 6.5: Evaluation of treebank size. Performance difference between this model and the highest-
performing model other than ours as a function of log training data size. It tends to do better on
larger datasets.

6.5 Ablation Studies

6.5.1 POS Tagger

This system uses its own tagger instead of provided ones; here, the goal is to motivate this choice

with extrinsic tagger evaluation. That is, the question under investigation is “does using a more

accurate tagger significantly increase parser accuracy?” This can be ascertained by comparing the

performance of a system trained with the tagger presented here to an identical system trained on the

baseline tags provided by UDPipe v1.1. Figure 6.6 plots the difference in accuracy between these

parsers against the difference in accuracy between the taggers for each treebank. One can observe two

things from this. The first is that the performance difference between the set of models trained on

the deep affine tagger is statistically significantly better than the performance of the models trained

on UDPipe tags, according to a Wilcoxon signed-rank test (p < 0.001). The second is that this can

be explained by the improvement of the deep affine tagger over UDPipe v1.1, again accounting for

dataset size, nonprojectivity, and morphology in a mixed effects model (p < 0.001). That is, as the

performance of the tagger gets higher and higher, so does the accuracy of the parser trained on its

output. This suggests that improving upstream tagger performance is an effective way of improving

downstream parser accuracy. One small final note is that there was no significant correlation between

the effect of training size on the difference in system/UDPipe-tagged parser performance (p > 0.05).

That is, one might think that high-quality tags are only useful for smaller datasets, whereas larger

datasets can compensate for low-quality tags through sheer volume of training data. However, there

is no evidence here that this is the case.

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 133

0 2 4 6 8 10

UPOS difference

0

2

4

6

8

C
L
A

S
 d

if
fe

re
n
ce

Effect of Tagger Improvement

0.35x+ 0.75

Figure 6.6: Comparison of relative tagger accuracy on parser performance. CLAS performance
difference between a version of the system trained on its predicted tags and a version trained on
UDPipe v1.1 tags as a function of the performance difference between the system’s tagger and
UDPipe’s tagger. Using the proposed tagger improves performance.

0 2 4 6 8

CLAS difference

0.0

0.1

0.2

0.3

0.4

Own Tagger vs. No Tagger

µ= 1.35, σ2 = 1.64

median = 1.16

-8 -6 -4 -2 0 2 4

CLAS difference

0.0

0.2

0.4

0.6

UDPipe Tagger vs. No Tagger

µ= − 0.21, σ2 = 2.05

median = − 0.10

Figure 6.7: Comparison of tagger choice on parser performance. Performance difference between
parsers using the system tagger and parsers without tags (left) and between parsers using UDPipe
v1.1’s tags and parsers without tags (right), with both histograms fit to normal distributions. Only
using the proposed tagger improves performance over not using any tags.

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 134

The parsing approach laid out in this chapter uses one neural network to tag the sequences of

tokens, and a second neural network to produce a parse from the tokens and tags. One might ask to

what extent the tagger network is actually necessary, for a number of reasons: presumably whatever

predictive patterns it learns from the token sequences would also be learnable by the parser network;

errors by the tagger are likely to be propagated by the parser; and Ballesteros et al. (2015) found

that POS tags are drastically less important for character-based parsers. If somewhat accurate

tags always help, then a system without any tags should underperform a system trained with only

UDPipe tags (Notag < UDPipe < DeepAff). If only highly accurate tags improve performance, then

the base system should outperform the no-tag system but the UDPipe-tagged system should perform

no different or worse (UDPipe ≤ Notag < DeepAff). Finally, if tags are no longer useful for modern

neural parsers, but less accurate tags can propagate errors, then the UDPipe-tagged system should

be worse than the other two, with no difference between the no-tag parser and base parser (UDPipe

< Notag = DeepAff). Figure 6.7 makes this comparison, showing the difference between the base

system and a variant trained without tags as well as the difference between a system trained with

baseline UDPipe tags and a variant without them. It can be seen that the variant with no POS tag

input is likewise significantly worse than the proposed model according to a Wilcoxon signed-rank

test (p < 0.001), but not statistically different from the one trained with UDPipe tags (p > 0.05).

This suggests that predicted POS tags are still useful for achieving maximal parsing accuracy in

this system, provided the tagger’s performance is high enough, and that the UDPipe baseline POS

tagger isn’t accurate enough for downstream tasks.

6.5.2 Character model

Many languages express grammatical relationships with inflectional morphology. Orthographically,

these inflections are normally written as part of the (whitespace-separated) word they inflect. This

creates problems for systems that represent words holistically; whole-token embeddings have no built-

in mechanism for giving similar representations to orthographically similar words, so the system will

be unable to identify any highly predictive case ending or infectional suffix in a rare or unseen

token. Inflectional morphology often takes the place of word order or function words, which systems

trained with only whole-token embeddings rely on. As such, any competitive system will need a

way of addressing this limitation of token embeddings. Character-based embedding models, such as

the one proposed here (which is similar to that of Ballesteros et al. (2015)), are designed to learn

relationships between words with similar orthography. By hypothesis, it should allow the model to

more effectively learn the relationships between words in languages with productive orthographic

conventions and loose word order without an abundance of function words.

This hypothesis can be tested using another ablation study. As the inflectional complexity of UD

treebanks increases, so too should the difference in performance between a model with a character-

level word embedding compared to a model without. In this study, a second set of taggers and

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 135

parsers was trained on the dataset with only whole token and pretrained vectors, leaving out the

vector composed from character sequences (for maximal comparability, the token-based parsers were

trained with the original character-based taggers).

Of course, investigating this requires having some means of approximating the inflectional com-

plexity of a language. Quantifying inflectional complexity directly for a given language at minimum

requires text with not just morphological features, but morphological segmentation. Since Universal

Dependencies lacks morphological segmentation, inflectional complexity can only be approximated.

A reasonable approach to approximate inflectional complexity involves Herdan’s law (Eq. 6.24; Her-

dan 1960; also known as Heaps’ law, Heaps 1978), which more or less follows from Zipf’s law (Zipf,

1949; van Leijenhorst and Van der Weide, 2005). Herdan’s law observes that as one reads through

a corpus of text, the log number of unique tokens one has read will be an affine function of the log

total tokens (including repeats) that one has read.

ln(|V |) = β ln(|X|) + α (6.24)

Intuitively, in an inflectionally complex language, the ratio between the size of the vocabulary

|V (X)| of a corpus to the size of the corpus itelf |X| will be relatively high, because the same

lemma may occur with many different contexts with many different forms; but in an inflectionally

simplex language, that ratio will be smaller for the same size corpus, because a given lemma will

normally appear with only a few forms. Put another way, given a corpus X of an inflectionally rich

language, the addition of a word randomly drawn according to a Zipf distribution has a relatively

high probability of being a lemma seen in X but with a new morphological form. Adding this

word to X would increase both the size of the corpus |X| and the size of the vocabulary |V |. In

an inflectionally poor language, a randomly choosen word with a lemma already present in X is

unlikely to have a new morphological form not seen in X, meaning the corpus size |X| will increase

but the vocabulary size |V | won’t. Therefore, one would expect the parameter β of Equation 6.24

to be higher for languages with rich morphology. Of course, it should be noted other kinds of

morphological or orthographic complexity could also be responsible for a large vocabulary-to-corpus

ratio, such as the kind of productive compounding found in German. Thus this approach is using

orthographic productivity as an approximation for inflectional complexity.

Computing this β value for each treebank, the results are generally intuitive (although not

without some variation, attributable to domain and dataset size). Somewhat surprisingly, Hindi

and Urdu, which have some fusional morphology, are among the lowest, having β = .555 and .585

respectively, though this could be attributed to them coming from an unusually restricted domain.

English and Vietnamese, fairly analytic languages, are also relatively low, with .631 and .661. Spanish

and Portuguese, which have fusional morphology but still rely heavily on function words, have .7

and .704. The highly agglutinative Finnish, Estonian, and Hungarian have some of the highest, at

.806, .822, and .846. Thus it is reasonable to conclude that the coefficient β in Equation 6.24 can

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 136

0.5 0.6 0.7 0.8 0.9

Herdan’s coefficient (β)

0

2

4

6

8

C
L
A

S
 d

if
fe

re
n
ce

Effect of Morphological Complexity
on Parser

7.57x− 4.42

0.5 0.6 0.7 0.8 0.9

Herdan’s coefficient (β)

0

2

4

6

8

10

12

14

U
P

O
S
 d

if
fe

re
n
ce

Effect of Morphological Complexity
on Tagger

14.37x− 8.34

Figure 6.8: Character-level model ablation. Performance difference between the character-based
approach and a pure token-based approach for parsing (left) and tagging (right) as a function of
approximate morphological productivity. More productive languages see more improvement from
the character model.

be used as a good approximation for inflectional richness.

Figure 6.8 plots the difference between models trained with and without character-level word

embeddings against this value in Figure 6.8. According to a Wilcoxon signed rank test, the difference

between the two approaches is statistically significant for the taggers (p < 0.001) and parsers (p <

0.001). Figure 6.8 also includes the regression line for a mixed effects model of the data with

treebank size and training/test projectivity as random effects. Again, the character-level approach

tends to significantly improve performance more as orthographic productivity grows both for parsing

(p < 0.005) and tagging (p < 0.001). This suggests that incorporating subword information into

UD parsing models is a promising way to improve performance on languages with rich inflection

systems.

6.6 2018 Shared Task Extensions

The previous sections laid out extensions to the deep biaffine dependency parser discussed in Chapter

5 and the impact that they had on the 2017 CoNLL shared task. The first extension—a deep affine

POS tagger—was designed to improve label accuracy, which is one place where the original version

underperformed. The second extension—a word embedding composed from character sequences—

was designed to improve accuracy on rare words in languages with heavy inflectional morphology.

This section will describe several more extensions, including those used in Stanford’s submission

to the 2018 CoNLL Shared Task on UD parsing (Zeman et al., 2018): forcing consistency between

the different kinds of tags, and building into the parser the explicit ability to capture distance and

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 137

linearization between a dependent and its possible heads.

6.6.1 Biaffine tagger

One evaluation metric not discussed previously is the “AllTags” metric, which measures what fraction

of tokens were perfectly tagged according to their Universal POS tag (UPOS), their language-specific

POS tag (XPOS), and their Universal Features (UFeats). For now, the discussion will focus on UPOS

and XPOS, bringing in UFeats after an initial solution is found. The original tagger used a näıve

approach to multitask tagging: use one deep affine classifier to predict the UPOS tags, and one more

deep affine classifier to predict the XPOS tags. However, in this näıve approach, both modules makes

errors independently (Eq. 6.28; note that the (u/x) superscript means that the equation applies for

both UPOS or XPOS tags).

v
(u/x)
t = FNN(ht) (6.25)

s
(u/x)
t = Aff

(
v
(u/x)
t

)
(6.26)

P
(
c
(u/x)
k |f

)
= softmaxk(s

(u/x)
t) (6.27)

P

(
c
(u)
k , c

(x)
k′ |f

)
= P

(
c
(u)
k |f

)
P

(
c
(x)
k′ |f

)
(6.28)

The consequence of Eq. (6.28) is that if one tagging module (say, UPOS) has an accuracy of 95% and

the other (say, XPOS) has an accuracy of 90%, then the two modules together will have an expected

accuracy of 90%% = 85.5%. This is a hardly trivial 4.5% lower than the highest possible accuracy

that the joint probability model can achieve, which occurs if the higher-accuracy module only makes

mistakes on the same tokens that the lower-accuracy modules makes them (90% in this example).

Furthermore, the lower bound occurs when no errors overlap, and in this example is 85.0%, a mere

half a percent lower than the expected accuracy. These inconsistent tags could confuse downstream

systems, which might not know which of the annotations to trust. Of course, in practice errors

aren’t going to be independent, since some sentences or constructions are a priori more confusing

than others. But this example highlights the dangers of falsely assuming independence.

To empirically motivate this problem, I trained taggers that assume independence between UPOS

and XPOS on the 36 treebanks in the CoNLL 2018 shared task with official validation data and fewer

than 250 unique XPOS tags. On average, in 2.70% of tokens (macro-averaged across treebanks),

the system got one of the UPOS or XPOS tag right, and the other one wrong. This suggests that

there is room for improvement for the multitask tagger.

The ideal classifiers for this task can be derived from the joint probability, where errors are by

definition not independent. The joint conditional probability of a UPOS/XPOS tag pair can be

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 138

rewritten into the product of two dependent conditional probabilities.

P (c
(u)
k , c

(x)
k′ |f) =

P (c
(u)
k , c

(x)
k′ , f)

P (f)
(6.29)

=
P (c

(u)
k , c

(x)
k′ , f)

P (f)

P (c
(u)
k , f)

P (c
(u)
k , f)

(6.30)

=
P (c

(u)
k , c

(x)
k′ , f)

P (c
(u)
k , f)

P (c
(u)
k , f)

P (f)
(6.31)

= P (c
(x)
k′ |c

(u)
k , f)P (c

(u)
k |f) (6.32)

Eq. (6.32) reduces to Eq. (6.28) if c
(u)
k and c

′(x)
k are assumed to be conditionally independent.

P (c
(u)
k |f) is the same in both equations, so computing it with a deep affine classifier is still sensible.

P (c
(x)
k′ |c

(u)
k , f) has changed, however. This term represents the probability of a particular XPOS

class given not only the neural features f , but also given the UPOS class c
(u)
k . Chapters 3.2 and 5

discuss cases similar to this extensively; it should come as little surprise then that this probability

reduces to a biaffine softmax classifier. In these equations, the input features f are—as usual—a

function of the BiLSTM. The predicted UPOS class c
(u)
k will need its own features f f̃ , which will

actually be fixed, independent of the BiLSTM. When making a dependency label classification in

the biaffine parser, the label is conditioned on one of Ti possible heads, which change from example

to example and don’t have a fixed representation. This precludes using a fixed embedding matrix

to represent the possible classes (in that case, head words). On the other hand, when making an

XPOS classification in the biaffine tagger, the tag is conditioned on one of m classes that don’t vary

by example. Consequently, the class features F̃ can have a fixed embedding representation E(u),

usable in a biaffine classifier.

s
(u)
t = DeepAff(ht) (6.33)

P (c
(u)
k |f) = softmaxk(s

(u)
t) (6.34)

k̃t = arg max s
(u)
t (6.35)

s
(x)
t = Biaff(v

(x)
t , e

(u)

k̃t
) (6.36)

P (c
(x)
k′ |c

(u)
k , f , F̃ = E(u)) = softmaxk(s

(x)
t) (6.37)

Eqs. (6.33–6.35) make a UPOS prediction, and Eqs. (6.36, 6.37) use the predicted UPOS tag to

inform the XPOS prediction. The XPOS tag is now conditionally dependent on the UPOS tag;

the system will have access to more information when making XPOS predictions. This means that

when the UPOS tag is right, the system should have a higher chance of getting the XPOS tag right

than if it had no additional information, but when the UPOS tag is wrong, the error is more likely

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 139

to propagate. This is actually the desired behavior—UPOS and XPOS tags should be correct or

incorrect together more often, which will increase the AllFeats accuracy; and even when the UPOS

and XPOS tags are both wrong, they’re at least more likely to be internally consistent with each

other.

The UFeats tags can be done similarly. In the version of the system used in the CoNLL 2018

shared task Qi et al. (2018), the classifier for each universal feature is conditioned on a dedicated

UFeats vector v
(f)
it similar to the UPOS and XPOS representations v

(u/x)
it , as well as the UPOS

embedding of the gold or predicted tag. There are other ways this could be done, such as by

conditioning it on an XPOS embedding instead, or by adding or concatenating the UPOS and

XPOS embeddings and conditioning on the result.

One issue that arises from this approach is that when the XPOS tagset (which varies by language)

is large—perhaps because the tags are compositional, with each character representing a distinct

morphological feature of the token—the bilinear tensor U can be prohibitively large. Computing the

gradient normally means constructing multiple tensors of shape (b× d×m), where b is the number

of tokens per batch, m is the number of tags, and d is the hidden sizes of the two feature vectors.

When using a tagset of about m = 50 (as in the UD dependency labels) a training batch size of

b = 2000 tokens, hidden sizes of d = 400, and 32-bit floats, this can be computed with a perfectly

manageable 120MB of GPU memory. However, expanding the tagset up to m = 1000 (which can

happen for composite tagsets) increases memory requirements by the same factor, resulting in a

2.4GB memory footprint for each (b × d ×m), which can result in resource allocation errors. One

way around this is to enforce that each slice of U be diagonal. Then the bilinear component reduces

to Eq. (6.38), which is much more computationally feasible.

x̃iUxi = U(x� x̃i) (6.38)

Computing the gradient can be done with tensors of size (b×m), and (b×d), which require much less

memory. Thus a diagonal U tensor can be used to conserve parameters when necessary, although it

was not explored for the 2018 shared task.

This biaffine approach to XPOS tagging and UFeats tagging was motivated by the desire to

improve consistency between the tags. In fact, an actual comparison of the deep biaffine approach

to a baseline system paints an even more favorable picture. The baseline system aims to improve

consistency by sharing the ReLU layer in the deep affine classifers across the three types of tags. In

theory, the three tagsets will be forced to use the same features, encouraging them to fit the data

along similar patterns. Figure 6.9 shows the accuracy of the differing tagging metrics across the

datasets in the CoNLL 2018 shared task for the biaffine and shared layer approaches. The UPOS

accuracy is comparable across the two conditions, which is to be expected because both variants use a

deep affine classifier for the UPOS tags. This suggests that restricting the representational capacity

to encourage consistency in the shared layer condition didn’t hurt performance over the original

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 140

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

UPOS difference

0

1

2

3

4
µ= 0.03, σ2 = 0.05

median = 0.03

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

XPOS difference

0.0

0.5

1.0

1.5

µ= 0.17*, σ2 = 0.22

median = 0.07*

0 2 4 6

UFeats difference

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

µ= 0.88***, σ2 = 1.46

median = 0.44***

0 2 4 6

AllTags difference

0.0

0.2

0.4

0.6

0.8

1.0
µ= 1.20***, σ2 = 1.45

median = 0.76***

Effect of Biaffine Tagger on Accuracy

Figure 6.9: Tagger biaffinity ablation, evaluating on accuracy. Difference in raw accuracy between
the biaffine and shared hidden approaches to maintaining consistency. Statistical significances are
marked with an asterisk. The biaffine approach improves XPOS and UFeats accuracy.

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 141

-6 -4 -2 0

AllTags Mutually Exclusive Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Effect of Biaffine Tagger
on Tag MEA

µ= − 1.39***, σ2 = 1.70

median = − 0.86***

(a) Difference in mutually exclusive accuracy (get-
ting some but not all tags correct) between the
shared and biaffine approaches (lower is better).

-1 0 1

AllTags Pointwise Mutual Information

0.0

0.5

1.0

1.5

2.0

Effect of Biaffine Tagger
on Tag PMI

µ= 0.17 · , σ2 = 0.30

median = 0.11*

(b) Difference in pointwise mutual information (how
non-independent the three accuracy measures are)
between the shared and biaffine approaches (higher
is better).

Figure 6.10: Tagger biaffinity ablation, evaluating on consistency.
Difference in consistency between the biaffine and shared hidden approaches. The biaffine

approach appears to improve consistency by both measures.

deep affine tagger with separate hidden layers. Unexpectedly, XPOS accuracy actually improved

globally when conditioned on UPOS predictions. Rather than making more mistakes when the

UPOS module made mistakes and making fewer mistakes when the UPOS module was correct, the

XPOS module actually made fewer mistakes overall. This effect is even more dramatic in the UFeats

module. While the UPOS difference is not statistically significant according to a paired t-test (which

tests the average difference) or a paired rank-sum test (which tests the median), both other modules

are significant by both tests ((p < .05) for XPOS and (p < .001) for UFeats, respectively). This

substantial improvement impacts the AllFeats metric as well (p < .001). In the four histograms,

there are three clear outliers. These represent Ancient Greek (Perseus), Czech (PDT), and Czech

(CAC), which all have very large tagsets where each character represents a morphological feature.

This suggests that the UPOS prediction significantly prunes the possible XPOS label space and

helps to identify which morphological features are possible for the token under consideration. This

may help the system identify morphological patterns among different parts-of-speech, such as that

adjectives and nouns but not verbs are defined for case and gender.

By hypothesis, the consistency of the biaffine approach should be superior to the consistency

of the shared layer. There are at least two ways that consistency can be measured. The first is

by looking at what might be called the mutually exclusive accuracy (MEA), the fraction of times

that the system gets some tags right but not all of them. However, the mutually exclusive accuracy

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 142

doesn’t take into consideration the accuracies of the individual sub-taggers. For example, improving

XPOS accuracy globally without changing its relative consistency with UPOS will decrease the

MEA, indicating that MEA isn’t the optimal measure for consistency. Another way of measuring

consistency uses pointwise mutual information (PMI), or how much more or less often the system gets

all three tags correct than one would expect if the three types of accuracy are perfectly uncorrelated.

In a baseline system with no mechanism to encourage consistency, UPOS errors and XPOS errors

would be expected to occur more or less independently. Letting c stand in for c = yi|f = xi,

indicating that the predicted one-hot class vector c is equal to the gold yi, it can be shown that the

PMI of the two uncorrelated accuracy distributions should be about zero.

P (c(u), c(x)) ≈ P (c(u))P (c(x)) (6.39)

P (c(u), c(x))

P (c(u))P (c(x))
≈ 1 (6.40)

PMI(c(u), c(x)) ≈ 0 (6.41)

On the other hand, in a system that does successfully encourage consistency, the probability of the

two modules making the correct prediction simultaneously should be greater than the product of

the independent probabilities.

P (c(u), c(x)) > P (c(u))P (c(x)) (6.42)

P (c(u), c(x))

P (c(u))P (c(x))
> 1 (6.43)

PMI(c(u), c(x)) > 0 (6.44)

Thus consistency can be computed straightforwardly given only the four accuracy metrics, because

the AllTags metric is the conjunction of the other three.

Consistency = ln

(
AllTags

UPOS ·XPOS ·UFeats

)
(6.45)

Figure 6.10 shows the effect that the biaffine approach has on consistency compared to the base-

line. The mutually exclusive accuracy drops significantly (p < .001) when switching to the biaffine

tagger; however, this is expected given that the biaffine tagger achieved generally higher perfor-

mance on XPOS and UFeats tagging. The same outliers in Figure 6.10 are outliers in Figure 6.10a,

demonstrating the (undesired) correlation between raw accuracy and mutually exclusive accuracy.

The pointwise mutual information, on the other hand, takes into consideration the accuracies of the

individual subtasks, immunizing it to the same correlation to raw accuracy. The effect of the biaffine

tagger on consistency as measured by PMI in Figure 6.10b is much smaller. The median is signif-

icantly greater than zero (p < .05;V = 484) according to a signed-rank test, but the mean is only

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 143

marginal (p < .1; t = 1.85) according to a t-test. This shows that conditioning tagging decisions on

each other improves the overall accuracy of the taggers independently, but it also encourages them

to make predictions that make sense together.

6.6.2 Distance and linearization

The biaffine approach to parsing laid out in previous discussions only compares intrinsic features

of the head and dependent when making predictions. That is, the approach makes no attempt

to explicitly model the effects of distance and word order beyond what the RNN is able to learn.

One might hypothesize that BiLSTMs are powerful enough to learn and represent linearization and

distance information on their own without additional augmentation; but on the other hand, it’s

possible that explicitly providing the system with these features could improve performance when

there are many syntactically and semantically plausible distractors. Consider (6.1).

(6.1)

The quick brown fox jumped over the big lazy dog
DT JJ JJ NN VBD IN DT JJ JJ NN

root
det

amod

amod nsubj

case

det

amod

amod

obl

root

Even a simple system with only POS information would know that articles depend on nouns, and

not on verbs; that is, P (at̃ = 1|Dep POS = DET,Head POS = NOUN) � P (at̃ = 1|Dep POS =

DET,Head POS = VERB). However, in (6.1), there are two determiners and two nouns, meaning that

more information is needed to resolve the dependency structure. There are two additional facts

about English that the system can leverage here. The first is that in English, determiners precede

nouns; and the second is that determiners are normally close to the noun they modify. How can a

model capable of explicitly learning these patterns be constructed?

The first step is to formalize the objective. The absolute locations of dependent t and head

t̃ probably aren’t useful here; instead, the relevant information is the location of t and t̃ relative

to each other, which is the difference between their indices t̃ − t. When the dependent precedes

the head, sign(t̃ − t) = `t̃ will be positive; otherwise, it will be negative. Similarly, the absolute

value abs(t̃ − t) = δt̃ will indicate the distance between the head and the dependent. There may

be relationships for which only the linearization matters and the distance is irrelevant, or vice

versa. Thus it may make sense to condition the probability of an edge at̃ on both of these values

independently. This yields the probability objective in Eq. (6.46), which can then be simplified by

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 144

assuming conditional independence between the linearization terms ~̀ and distance ~δ (Eq. 6.47).

P (at̃|f , F̃ , ~̀, ~δ) =
P (~̀|~δ, f , F̃ , at̃)P (~δ|f , F̃ , at̃) P (f , F̃ |at̃)P (at̃)

P (~̀, ~δ, f , F̃)
(6.46)

=
P (~̀|f , F̃ , at̃) P (~δ|f , F̃ , at̃)P (f , F̃ |at̃)P (at̃)

P (~̀, ~δ, f , F̃)
(6.47)

The expression in Eq. (6.47) is very dense and may need some elucidation. The first two terms

in the numerator—P (~̀|at̃, f , F̃) and P (~δ|at̃, f , F̃)—are new, having been added in to capture lin-

earization and distance features. The third term in the numerator—P (f , F̃ |at̃)—is the likelihood

of the data in a variable-class biaffine classifier, and can be expressed with a deep or shallow bi-

affine function. The last term of the numerator—P (at̃)—is uniform, and can be ignored. The

denominator—P (f , F̃ , ~̀, ~δ)—ultimately gets used to normalize the softmax function. Putting these

together, and making some reasonable conditional independence assumptions, the equation simplifies

to Eq. (6.52).

s
(f)

tt̃
= ln(P (f , f̃ |at̃)) (6.48)

s
(f)
t = DeepVCBiaff(ht, H̃i) (6.49)

s
(`)

tt̃
= ln(P (`t̃|f , f̃ , at̃)) (6.50)

s
(δ)

tt̃
= ln(P (δt̃|f , f̃ , at̃)) (6.51)

P (at̃|f , F̃ , ~̀, ~δ) = softmaxt̃

(
s
(f)
t + s

(`)
t + s

(δ)
t

)
(6.52)

These two new terms have somewhat counterintuitive interpretations. The first is the probability

of the linearization given a correct arc, not the probability of a correct arc given the lineariation.

Consider example (6.1); there, a count-based approximation of the probability of an arc between a

determiner and a noun given that the determiner precedes the noun is only 67%, because the first

instance of the precedes both nouns but only depends on one of them. However, in both gold arcs,

the determiner precedes the noun; thus the probability of `t̃ = 1 (dependent to the left) given at̃

is 100%. Similarly, the second term is the probability of the distance given a correct arc. In the

example, the probability of an arc between a determiner and a noun given that the determiner is

two words away from the noun is 67%, because the second instance of the is two words away from

both nouns; but in both correct edges, the noun is two words away from its determiner. Thus the

probability of the distance given an edge provides a stronger signal than the direct probability of

an edge given the distance. So the model will try to predict the order and distance between a word

t and its possible head t̃ given only their LSTM features and the assumption that there is an edge

between them, and penalize the score stt̃ relative to how incorrect its prediction is. Put another

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 145

way, the model asks itself, “if there’s an edge between t and t̃, what order should they be in and

how close should they be?” and then looks at the actual order and distance. If the model’s answer

to its self-imposed question differs significantly from the actual order and distance, then it’s less

likely that there’s an edge between them. Yet another, higher-level way to think of this is that the

system is trying to learn probabilistic predicate logic rules that govern where edges can appear, like

the following:

(NOUN(t̃) ∧ DET(t)⇒ (edge(t̃, t)⇒ (t̃ > t))) = 1 (6.53)

(NOUN(t̃) ∧ DET(t)⇒ (edge(t̃, t)⇒ (t̃ 6� t ∧ t̃ 6� t))) = 1 (6.54)

These can be read, “if t̃ is a noun and t is a determiner, then if there’s an edge between t̃ and t, t̃ must

follow t,” and “if t̃ is a noun and t is a determiner, then if there’s an edge between t̃ and t, t̃ must

not be significantly far from t.” The system takes in the raw features of the two words t̃ and t, like

their parts of speech, and from these produces a probabilistic rule that dictates where the two words

should be in relation to each other. Then, if the righthand side of the generated rule is not true—for

example, if t̃ < t—then it follows that an edge between them is unlikely. This amounts to predicting

which order or which distance the words should be in if there’s an edge between them, as with the

other views of the probability. Critically, this means that the order and distance prediction modules

will only be trained on gold arcs, in order to ensure that the system learns e.g. P (`t̃|f , f̃ , at̃)—the

order of two words with an edge between them—not P (`t̃|f , f̃)—the order of two arbitrary words in

the sentence. The next step is to decide on parametric probability distributions for the two variables.

Linearization

The linearization term can take one of two values, conditioned on both the input features f and

the contextual features f̃ . This means that using a Bernoulli distribution with its single parameter

generated as a function of f and f̃ is the natural way to approach this probability. The parameter

p
(`)

tt̃
must be conditioned on two feature vectors, f and f̃ ; if interactions are permitted between the

two feature vectors, then it can be computed as the sigmoid of a deep or shallow fixed-class biaffine

function with a single output. The log of this probability—the linearization score—is then added

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 146

to the base score term, as according to Eqs. (6.50, 6.52).

Bernoulli(x, p) = exp
(
x ln(p) + (1− x) ln(1− p)

)
(6.55)

y
(`)

tt̃
=

sign(t̃− t) + 1

2
(6.56)

p
(`)

tt̃
= sigmoid(Biaff(ht,ht̃)) (6.57)

P (`t̃ = y
(`)

tt̃
|f , f̃ , at̃) = Bernoulli(y

(`)

tt̃
, p

(`)

tt̃
) (6.58)

s
(`)

tt̃
= ln(P (`t̃ = y

(`)

tt̃
|at̃, f , f̃)) (6.59)

= y
(`)

tt̃
ln(p

(`)

tt̃
) + (1− ytt̃) ln(1− p(`)

tt̃
) (6.60)

Note that the model’s predicted linearization can be described as round(p
(`)

tt̃
), where—as with ytt̃—1

is “head to the right” and 0 is “head to the left”. In predicate logic terms, this is the same as having

the system generate the probabilistic rule in Eq. (6.61).

((ht ∧ ht̃)⇒ (edge(t, t̃)⇒ t < t̃)) = p
(`)

tt̃
(6.61)

While the linearization score is used in the edge classifier, it needs to be optimized separately, in

order to ensure that the model conditions the probability on gold edges only. Letting ỹt be the

gold head for dependent t, the linearization loss of word t is simply the cross entropy—the negative

score—for its head, shown in Eq. (6.62).

ε
(`)
t = y

(`)
t,ỹt

ln(p
(`)
t,ỹt

) + (1− yt,ỹt) ln(1− p(`)t,ỹt) (6.62)

= −s(`)t,ỹt (6.63)

This explicitly shows the model in what contexts heads precede dependents and in what contexts

heads follow them, allowing it to generate the correct penalties in the edge scorer. Optimizing

the linearization module by backpropagating through the score would be comparable to training

the label classifier with the dependent’s predicted head, rather than its gold one, which allows for

inconsistent head/label predictions. The linearization loss is added to the edge loss and the label

loss. In sum, parsing decisions can be explicitly conditioned on word order by training an additional

module to predict the order of true edges and adding its cross-entropy on possible edges to the raw

biaffine score of a potential edge. If the model judges two words to be in the wrong order for an

edge to exist between them—such as a noun that precedes a determiner—then it is discouraged from

assigning a dependency arc.

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 147

Distance

Incorporating distance is a bit trickier. So far, the discussions have been restricted to categorical

features and classes, but the distance term now under consideration is numeric. Consequently,

neither a Bernoulli nor a Categorical distribution will work here, and it turns out that there are

a variety of potential options. One possible probability model for the distance between two words

P (δt̃|f , F̃ , at̃) is a Poisson distribution, which is single-parameter, discrete, and bounded to be in the

interval [0,∞). Additionally, larger distances will have higher variance, which reflects the intuition

that it’s more permissible to misjudge the distance by five or six words when there’s a larger gap

between head and dependent. The basic approach would involve generating a Poisson distribution

over all possible distances between t and t̃, and then seeing how likely the true distance actually is

according to the model. The Poisson distribution is given in Eq. (6.64), with its rate parameter λ

being the mean of the distribution, and—when λ is an integer—the mode.

Poisson(x, λ) =
λx exp(−λ)

x!
(6.64)

While the Poisson distribution has a number of advantages, it has some disadvantages as well; most

of these can be worked around or tolerated, with one exception. The biggest issue that arises with

the Poisson model is that the penalty for making an error scales exponentially with the size of the

error λ
(δ)

tt̃
− y(δ)

tt̃
. That is, the score scales more or less linearly with the error (though it’s slightly

more than linear for edges that are too long), but the score is ultimately exponentiated by the

softmax function. This can result in severe instability during training.

ln(Poisson(x, λ)) = x ln(λ)− λ − ln(x!) (6.65)

Ultimately, all that’s needed is a function that converts two vectors and an integer into a penalty, so

one could attempt to modify the Poisson probability mass function in order to address this concern.

This might work empirically, but there are too many possible functions one could propose to consider

them all, and the ideal situation would be to use an approach that makes clear and interpretable

assumptions. So one might think the Poisson distribution might be a good fit for modeling the

likelihood of arc lengths; but while it does have some appealing properties, in practice it penalizes

unexpectedly long distances much too harshly.

Another initially appealing approach to modeling the distance stably involves utilizing a different

distribution entirely. This other approach is to have the model place a Gaussian distribution on the

possible distances. Ultimately the Gaussian distribution will be exchanged for a very similar but less

common distribution, but the intuition here will hold for that one as well. The mean µ then would

be the distance that the system is the most confident is correct, and the variance would be fixed

at some constant σ2, or left as a learnable parameter independent of the input. Technically, the

normal distribution has a problem that any continuous distribution will have—the probability of the

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 148

variable taking any individual value δt̃ is infinitessimally small. However, the softmax normalization

renders this a non-issue because its output must sum to one, allowing it to distinguish between

infinitessimally small values.6

Gaussian(x, µ, σ2) =
1√
τσ2

exp

(
−1

2

(x− µ)2

σ2

)
(6.66)

P (δtt̃|at̃, f , F̃) = Gaussian(y
(δ)

tt̃
, µ

(δ)

tt̃
, σ2) (6.67)

ln
(
P (δtt̃|at̃, f , F̃)

)
= ln

(
Gaussian(y

(δ)

tt̃
, µ

(δ)

tt̃
, σ2)

)
(6.68)

s
(δ)

tt̃
= −1

2

ln(τσ2) +
(µ

(δ)

tt̃
− y(δ)

tt̃
) 2

σ2

 (6.69)

Unfortunately, this maintains the exponential penalty; the score is quadratic in (µ
(δ)

tt̃
− y(δ)

tt̃
), which

then gets exponentiated in the softmax function. Exponential penalties would appear to be a com-

mon theme of the exponential family of distributions, suggesting that a distribution outside that

family may be ideal in this situation. The Cauchy distribution is one such non-exponential distribu-

tion, having a very similar shape to the Gaussian distribution. In fact, it can even be parameterized

to have a probability density function expressed very similarly to the Gaussian distribution.

Gaussian(x, µ, σ2) =
1√
τ σ2

exp

(
1

2

(x− µ)2

σ2

)−1
(6.70)

Cauchy(x, µ, σ2) =
1√
τ2

2 σ2

(
1+

1

2

(x− µ)2

σ2

)−1
(6.71)

Critically, the Cauchy distribution has a quadratic rather than exponential penalty, resulting in

a long tail. For large differences in µ
(δ)

tt̃
and y

(δ)

tt̃
where the 1 is negligible, the only meaningful

difference between the Gaussian-based score in Eq. (6.69) and the Cauchy-based score in Eq. (6.74)

is the logarithm in the Cauchy score. This logarithm cancels out with the exponentiation in the

softmax, which is what yields the quadratic rather than exponential penalty. This makes it a natural

way to address the exponentially decreasing probability assigned by the Gaussian distribution to

unusually long or short edges.

P (δtt̃|at̃, f , F̃) = Cauchy(y
(δ)

tt̃
, µ

(δ)

tt̃
, σ2) (6.72)

ln
(
P (δtt̃|at̃, f , F̃)

)
= ln

(
Cauchy(y

(δ)

tt̃
, µ

(δ)

tt̃
, σ2)

)
(6.73)

s
(δ)

tt̃
= −

(
1

2
ln

(
τ2

2
σ2

)
+ ln

(
1 +

1

2

(µ
(δ)

tt̃
− y(δ)

tt̃
)2

σ2

))
(6.74)

6τ = 2π

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 149

100 101 102

Distance (words)

10-6

10-5

10-4

10-3

10-2

10-1

100

F
re

q
u
en

cy

Edge Distance Frequencies

Actual

Zipf β= 2

Cauchy γ2 = . 5

Poisson λ= 1

Gaussian σ2 = 1

Figure 6.11: Distribution of arc distances in the English Web Treebank. Shown on a log-log scale.
The non-exponential Zipf and Cuachy distributions fit the data much better than the exponential
distributions.

The Cauchy distribution does not technically have a defined mean or variance; but the parameteri-

zation in Eq. (6.71) uses parameters analogous to the mean and variance parameters of the Gaussian

distribution, so in this case the Gaussian distribution can be swapped for the Cauchy distribution

with no other changes.

Not only is this a very numerically stable approach to conditioning edge predictions on relative

distances, but it also turns out to more accurately reflect the prior distribution of edges in the

Universal Dependencies corpus. This is shown for the English Web Trebank in Figure 6.11. The

Poisson, Gaussian, and Cauchy distributions are graphed with their canonical probability density

functions and µ = 0. Edge distances can be seen to follow a roughly Zipf-Mendelbrot distribution,

the probability mass function of which is shown in Eq. (6.75).7

Zipf-Mendelbrot(x, α, β) =
1

ζ

(
xβ

α

)−1
(6.75)

The Zipf-Mendelbrot distribution is closely related to the Cauchy distribution (consider the case

where β = 2 and α = 2σ2), but its mode cannot be shifted, making it unsuitable for predicting

distances. The Cauchy distribution can be conceptualized as a version of the Zipf distribution that

has been modified to allow the mode to shift. Because of this relationship, a Cauchy distribution

is an observably better fit to the prior probability of edge distances than a Poisson or Gaussian

distribution, which assigns unreasonably low probability to unexpectedly long edges. This further

suggests that the Cauchy distribution would be well suited to modeling the edge likelihood given

7In Eq. (6.75), ζ is a normalization constant

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 150

the features.

As with the linearization term, this module must be trained independently of the edge classifier.

The obvious way to train it is to maximize the probability of the correct distance of each gold head.

Normally one would use an L2 loss to learn a real value; but the L2 loss imposes the assumption

that the conditional probability of the output variable follows a Gaussian distribution. Since it’s

been argued that the conditional probability of the edge distances follows a Cauchy distribution,

it’s more sensible here to use the log L2 loss, which is simply the negative distance score of t’s gold

head.

ε
(δ)
t = − ln

(
1 +

(yt,ỹt − µt,ỹt)2

2σ2

)
(6.76)

= −s(δ)t,ỹt (6.77)

Complete edge classifier

The algorithm for the whole edge classifier, including the linearization and distance modules, is

summarized below.

y
(`)

tt̃
=

sign(t̃− t) + 1

2
(6.78)

y
(δ)

tt̃
= |t̃− t| (6.79)

s
(f)

tt̃
= DeepBiaff(ht,ht̃) (6.80)

p
(`)

tt̃
= sigmoid(DeepBiaff(ht,ht̃)) (6.81)

s
(`)

tt̃
= y

(`)

tt̃
ln(p

(`)

tt̃
) + (1− y(`)

tt̃
) ln(1− p(`)

tt̃
) (6.82)

µ
(δ)

tt̃
= softplus(DeepBiaff(ht,ht̃)) (6.83)

s
(δ)

tt̃
= − ln

(
1 +

1

2

(µ
(δ)

tt̃
− y(δ)

tt̃
)2

σ2

)
(6.84)

s
(e)
t = s

(f)
t + StopGrad(s

(`)
t) + StopGrad(s

(δ)
t) (6.85)

ŷ
(e)
t = softmax(s

(e)
t) (6.86)

ε
(e)
t = −y

>(e)
t (ln(ŷ

(e)
t) + s

(`)
t + s

(δ)
t) (6.87)

Eqs. (6.78, 6.79) define the target values of the linearization and distance modules. Eq. (6.80) defines

the base score of the edge from word t̃ to t. Eqs. (6.81, 6.82) defines the linearization score, which is

the model’s attempt to answer the question “are these words in the right order for there to be an edge

from t̃ to t?” Eqs. (6.83, 6.84) defines the distance score, where the model asks “are these words close

enough together or far enough apart for there to be an edge from t̃ to t?” Eqs. (6.85, 6.86) combines

the raw score, the linearization score, and the distance score into one edge score and then applies

the softmax function to turn it into a probability. Note that the linearization and distance scores

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 151

should not be backpropagated through here, indicated by the StopGrad function—error should only

be backpropagated to the raw score. Eq. (6.87) defines the error term to be minimized, which is the

sum of the log probability of the gold edge under a Categorical distribution, the log probability of

the observed linearization of the gold edge under a Bernoulli distribution, and the log (normalized)

probability of the observed distance of the gold edge under a Cauchy distribution.

6.6.3 Results

These discussions explained in depth how to incorporate the relative locations of two words into

the edge classifier. The new classifier includes a module that learns to predict the order of words

in a gold edge, and another that learns to predict the distance between those words. The entropy

of these modules is then used to augment the raw biaffine score. Having motivated this approach

mathematically, what impact do these additional features make on final performance? Figure 6.12

shows the macro-averaged difference in LAS on the CoNLL 2018 datasets between the baseline and

parsers with explicit relative location information. Languages without validation data are excluded.

Adding the linearization module can be seen to make a small but statistically significant difference

in mean (t = −2.5; p < .05) and median (V = 640; p < .05) performance. One might expect that

adding the linearization score would make a large improvement, given the importance of linearization

to most linguistic theory. However, adding the linearization term makes only a small improvement

over the baseline. This could indicate that the basic system is already very good at capturing word

order information, which seems reasonable given the sequential nature of the LSTM. It could also

reflect the unordered nature of the exact linguistic representation that the UD annotation scheme

is designed to model, since the functional structure of Lexical Functional Grammar doesn’t have

the same notion of headedness that the constituency structures have. Alternatively, it could be

that the linearization score didn’t assign a high enough penalty to make an impact. This final

possibility could be addressed in future work by introducing positive weights onto the linearization

and distance scores and either tuning the weights by hand or by leaving them as trainable parameters

in the model.

The distance module makes a more substantial mean and median impact (p < .001), and having

both modules together yields the largest performance gain (p < .001). The improvement from the

distance prediction suggests that the baseline system may be getting confused on longer sentences

when there are more semantically feasible head words; building in a way to explicitly identify which

of the feasible head words are closer and which are farther may allow it to narrow down the possible

heads more efficiently. This can be tested by plotting the accuracy of the different variations for

different edge lengths and different sentence lengths. Figure 6.13 provides these plots. Systems

with a distance module actually appear to slightly underperform ones without on longer edges; this

can be attributed to them picking up on the abundance of short arcs in the dependency tree and

overgeneralizing. On the other hand, distance-augmented systems perform noticeably better on

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 152

-0.2 0.0 0.2 0.4

LAS difference

0

1

2

3

4

5

Baseline vs. Linearization

µ= 0.06*, σ2 = 0.03

median = 0.04*

-0.4 -0.2 0.0 0.2 0.4 0.6

LAS difference

0

1

2

3

Baseline vs. Distance

µ= 0.13***, σ2 = 0.04

median = 0.12***

-0.5 0.0 0.5 1.0

LAS difference

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Baseline vs. Linearization+Distance

µ= 0.20***, σ2 = 0.07

median = 0.21***

Figure 6.12: Distance/linearization ablation, evaluated on total accuracy. Difference in LAS for
systems with the basic biaffine scorer, systems with a linearization module, systems with a distance
module, and systems with both. Statistically significant differences from the baseline are marked
with asterisks. The linearization module makes a slight improvement, but the distance module is
fairly substantial.

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 153

100 101 102

Edge length

60

65

70

75

80

85

90

95

L
A

S

Baseline

+Lin

+Dist

+Lin +Dist

100 101 102

Sentence length

80

85

90

95

100

L
A

S

Baseline

+Lin

+Dist

+Lin +Dist

Effect of Relative Location on Parser Accuracy

Figure 6.13: Distance/linearization ablation, evaluated by sentence length. Labeled accuracy of
the four system variants across different gold edge lengths (left) and sentence lenghts (right). The
distance module improves accuracy on longer sentences.

extremely long sentences, suggesting that the additional distance module helps to avoid distractors.

The fact that primarily extremely long sentences benefit may reflect that the distance penalty is

actually not quite harsh enough. As with the linearization score, adding a learned parameter that

the system can use to increase the distance score may help the system to take further advantage of

this additional information.

This section has proposed a mathematically and empricially well-motivated approach to incor-

porating distance and linearization into variable-class classifiers over sequences. The approach was

applied to dependency parsing, but in principle it can be applied to any task that can be cast as in-

volving variable-class classifiers, including tasks like neural machine translation that take advantage

of attention mechanisms.

6.6.4 Other CoNLL 2018 extensions

The system that achieved the highest performance on the CoNLL 2018 shared task, Che et al.

(2018), built heavily on the parser described in this thesis. They used two powerful techniques to

improve accuracy: firstly, they outfitted the system with ELMo (Peters et al., 2018), a recently

proposed alternative to pretrained word embeddings; secondly, they used model ensembling to make

predictions from multiple trained systems. ELMo involves training an LSTM language model on

an extremely large corpus. In downstream applications, the language model is run on a sentence

to process, with the hidden features of the LSTM then being extracted for each word and used as

embeddings. Che et al. (2018) augmented the tagger and parser with ELMo embeddings, finding

that it improved tagging performance by 0.56% and parsing performance by 0.84%. The parser

ensemble averaged the probabilities predicted by three systems, using the resulting distribution to

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 154

make final parsing decisions. This likewise improved performance over a baseline, especially for

smaller treebanks, averaging a 0.55% improvement.

(Straka, 2018), who achieved the second-highest performance, modify the described model by

sharing subsets of the weights in the tagger and parser. They examine two variants: a loosely joint

one only shares the word embeddings (defined as the concatenation of a pretrained embedding, a

trainable whole-token embedding, and a character-based LSTM embedding), and a tightly joint one

that additionally shares the BiLSTM weights. They found that the loosely joint model performed

slightly better on tagging (improving UPOS, XPOS, and UFeats by .057% on average, and AllTags

by .09%), whereas the tightly joint model performed slightly better on parsing (outperforming in

UAS and LAS by .2%). Since the multitask setup can be conceptualized as a way of regularizing

the system, this suggests that the dependency parser is more prone to overfitting than the tagger

(either by virtue of the task or the particular hyperparameter configuration).

(Kanerva et al., 2018) modified the tagger to include UFeats, but found that the “embarrassingly”

simple approach of concatenating the UFeats feature set into the XPOS tags worked better than more

complex approaches. That is, rather than predicting an XPOS tag and a UFeats feature set, they

designed the system to predict a single atomic XPOS+UFeats tag. They found that conditioning

parsing decisions on the XPOS+UFeats tags instead of the XPOS tags improved parsing performance

for a subset of languages with simplex XPOS tags but many morphological features, whereas this

approach had little effect on languages with XPOS tags that contained more or less the same

information as the UFeats. They point to concatenating the UFeats features with the UPOS tag

instead as a direction of future research, since this will minimize redundancy and avoids the slight

inconsistency of concatenating universal features to a language-specific part of speech tag.

6.7 Conclusion

This chapter recapitulated the relatively simple neural system for parsing described in Chapter

5, and extended it to achieve state-of-the-art performance on the 2017 CoNLL Shared Task on

UD parsing without utilizing ensembling or language model pretraining. It provided some further

analysis of the original system, comparing the relative performance of nonprojective arc-factored

and transition-based architectures on this task. It found evidence that modern arc-factored parsers

might be better at producing nonprojective arcs (though this claim is not without some caveats).

Additionally, this system performs better when there’s an abundance of data, suggesting that more

regularization could improve accuracy on lower-resource languages. This chapter also added several

new components to the system and then examined how they impact performance. For the 2017

shared task, it added an analogous POS tagger and a character-level word embedding model. For

the 2018 shared task, it added a method for conditioning universal features and language-specific

POS tags on universal POS tags and a method for conditioning edges on the relative locations of

CHAPTER 6. MULTILINGUAL AUGMENTATIONS 155

two words.

This chapter also sought to quantitatively justify the additional complexity of the new compo-

nents over the simpler variant in Chapter 5. It examined how important the POS tagger is to the

system, comparing the downstream performance of parsers using the proposed tagger, the baseline

tagger, and no tagger at all. The proposed tagger beats both baselines significantly, whereas the

two baselines in fact don’t statistically differ from each other, indicating that POS tags can help this

system but must be sufficiently accurate. The character-based approach was found to significantly

boost performance on languages that scored high on the metric for morphological complexity—both

for parsing and tagging—suggesting that constructing token representation from subtoken informa-

tion is effective for capturing the influence of morphology on syntax, and the näıve approach of

using only holistic word embeddings is insufficient. The success at the shared task demonstrates

that a well-tuned, straightforward neural approach to parsing and tagging can get state-of-the-art

performance for datasets with a wide variety of syntactic properties.

This chapter made further improvements to the system for the CoNLL 2018 shared task. Modi-

fying the POS tagger to condition features and language-specific tags on the system’s own universal

tag predictions was found to not only slightly improve the consistency of the different tag metrics,

but also to globally improve the accuracy of the other tags. Including linearization and especially

distance features in the system made further improvements over the baseline, with the distance

feature proving particularly useful in extremely long sentences.

The system proposed in Chapter 5 and extended for the CoNLL 2017 and 2018 shared tasks

has already made an impact in the world of dependency parsing. Many other teams used the

system as a starting point for their submission to the CoNLL 2018 shared task, including the three

highest-performing teams, who made relatively small changes (if any) to the original system.

The following chapter extends the parser once more, this time aiming at a slightly different

parsing paradigm where a word can have more than one head word, or potentially none at all.

Chapter 7

Extension to Semantic

Dependencies

7.1 Introduction

The previous two chapters described in detail a neural approach to parsing basic Stanford De-

pendencies (De Marneffe et al., 2006) and Universal Dependencies (Nivre et al., 2016). Both of

these formalisms are tree-structured, which makes them easy for transition-based parsers to parse.

However, the tree structure restriction sacrifices some potentially critical information about the sen-

tence. For example, in the sentence Sandy wants to buy a book, the word Sandy is the subject of

both want and buy—either or both relationships could be useful in a downstream task, but a strictly

tree-structured representation of this sentence (as in Figure 7.1a) can only represent one of them.

A number of formalisms inspired by syntactic fameworks other than Lexical Functional Grammar

(Kaplan and Bresnan 1982; see Chapter 2) have been developed to have richer representations that

can capture more information in a single sentence.

Because of this, the collapsed SD and enhanced UD representations (SD+/UD+) relax the

tree-structure constraint. Parsing the syntactic frameworks directly normally requires brittle, hand-

engineered grammars and formalisms-specific parsers, as explained in Chapter 4; and parsing the sim-

plified graph-structured dependency representations is very difficult for transition-based approaches,

which are optimized for generated a much more restrictive class of structures. This chapter explores

how to adapt the arc-factored system described above so that it can produce other graph-structured

formalisms with as few changes as possible. Achieving high performance on graph-structured for-

malisms as well as tree-structured formalisms would further legitimize the techniques proposed in

this thesis.

The 2014 SemEval shared task on Broad-Coverage Semantic Dependency Parsing (Oepen et al.,

156

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 157

Sandy wants to buy a book

nsubj

root

det

xcomp

mark

obj

nsubj

(a) UD+

Sandy wants to buy a book

top

arg1

arg2arg1

arg2

bv

(b) DM

Sandy wants to buy a book

top

verb arg1

verb arg1

verb arg2

det arg1verb arg2

comp arg1

(c) PAS

Sandy wants to buy a book

top

act-arg

pat-argact-arg pat-arg

(d) PSD

Figure 7.1: Comparison between syntactic and semantic dependency schemes.

2014) introduced three dependency representations that do away with the assumption of strict

tree structure in favor of a richer graph-structured representation, allowing them to capture more

linguistic information in a sentence. The graph structure opens up the possibility of providing more

useful information to downstream tasks (Reddy et al., 2017; Schuster et al., 2017), but increases the

difficulty of automatically extracting that information. It is more difficult not only because most

recent work on dependency parsing has focused on generating tree-structured formalisms, but also

because the formalism is less restrictive—that is, in a dependency tree, knowing that word i depends

on word j entails that it doesn’t depend on word k 6= i, j, but in a dependency graph, knowing that

i depends on j provides no information on whether it depends on k as well. The SemEval datasets

are ideal for testing the graph-structured formalism because there are a number of strong baselines

for them, and they introduce no parsing complications beyond their graph-structured nature (as

opposed to UD+, which also introduces empty nodes).

Chapter 5 described a successful syntactic dependency parsing system with few task-specific

sources of complexity. This chapter, relating work published in Dozat and Manning (2018), extends

that system to be able to train on and produce the graph-structured data of semantic dependency

schemes. It also considers straightforward extensions of the system that are likely to increase perfor-

mance over the straightforward baseline. Chapter 6 found that part-of-speech tags made a significant

positive impact on performance; since (gold) lemmas are provided with the dataset, and they add

linguistic information complementary to part-of-speech tags, it’s worth investigating what impact

they make on performance as well. Chapter 6 also found that building in a character-level word

embedding model was helpful for many languages and wouldn’t depend on an external lemmatizer

that could propagate errors. Lastly, this chapter briefly examines some of the design choices of that

architecture, in order to assess which components are necessary for achieving the highest accuracy

and which have little impact on final performance.

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 158

7.2 Background

7.2.1 Semantic dependencies

The 2014 SemEval (Oepen et al., 2014, 2015) shared task introduced three new semantic dependency

formalisms, applied to the Penn Treebank (shown in Figure 7.1), compared to enhanced Universal

Dependencies (UD+; Nivre et al. 2016): DELPH-IN MRS (DM; Flickinger et al. 2012; Oepen and

Lønning 2006); Predicate-Argument Structures (PAS; Miyao and Tsujii 2004); and Prague Semantic

Dependencies (PSD; Hajic et al. 2012). Whereas syntactic dependencies generally annotate gram-

matical relationships between words—such as subject and object—semantic dependencies aim to

reflect semantic relationships—such as agent and patient (cf. semantic role labeling (Gildea and

Jurafsky, 2002)). The SemEval semantic dependency schemes are directed acyclic graphs (DAGs)

instead of trees, allowing them to annotate function words as being heads (following modern se-

mantic theory) without lengthening paths between content words (as in 7.1c). This is slightly more

restrictive than UD+, which allows cycles in some constructions.

7.2.2 Related work

This approach to semantic dependency parsing builds off the work from Chapters 5 and 6 at syntac-

tic dependency parsing and Peng et al. (2017) at semantic dependency parsing. In these approaches,

parsing involves first using a multilayer bidirectional LSTM over word and part-of-speech tag em-

beddings. Parsing is then done using directly-optimized self-attention over recurrent states to attend

to each word’s head (or heads), and labeling is done with an analogous multi-class classifier.

Peng et al.’s (2017) system uses a max-margin classifer on top of a BiLSTM, with the score for

each graph coming from several sources. First, it scores each word as either taking dependents or

not. Then, for each ordered pair of words, it scores the arc from the first word to the second. Lastly,

it scores each possible labeled arc between the two words. The graph that maximizes these scores

may not be consistent—with an edge coming from a non-predicate, for example—so they enforce

hard constraints in order to prune away invalid semantic graphs. Decisions are not independent, so

in order to find the highest-scoring graph that follows these constraints, they use the AD3 decoding

algorithm (Martins et al., 2011).

The approach in Chapter 5 to syntactic dependency parsing is similar to their approach, but

avoids the possibility of generating internally inconsistent trees by fully factorizing the system.

Rather than summing the scores from multiple modules and then finding the valid structure that

maximizes that sum, the system makes parsing and labeling decisions sequentially, choosing the

labels for each edge only after the edges in the tree have been finalized by an MST algorithm.

Wang et al. (2018) take a different approach in their recent work, using a transition-based parser

built on stack-LSTMs (Dyer et al., 2015). They extend Choi and McCallum’s (2013) transition

system for producing non-projective trees so that it can produce arbitrary DAGs and they modify

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 159

the stack-LSTM architecture slightly to make the network more powerful.

7.3 Approach

7.3.1 Basic approach

The semantic dependency parsing task can be formulated as labeling each edge in a directed graph,

with null being the label given to pairs with no edge between them. Using only one module that

labels each edge in this way would be an unfactorized approach. However, it can also be factorized

into two modules: one that predicts whether or not a directed edge (wj , wi) exists between two

words, and another that predicts the best label for each potential edge.

The approach described here closely follows the approach to tree-structured dependency parsing

of Dozat and Manning (2017), described in Chapter 4. As with many successful recent parsers, word

and POS tag embeddings are concatenated, and fed into a multilayer bidirectional LSTM to get

richer representations. Formally, letting sentence i be composed of T embeddings xit, the recurrent

layer is as in Eq. (7.1).

Hi = BiLSTM(Xi) (7.1)

To avoid notational clutter, the sentence and timestep indices it will be dropped in subsequent

expressions. For each of the two modules—the edge module (e) that predicts which words have

edes, and label module (l) that generates the best label for every edge—two single-layer feedforward

networks (FFNN) split the top recurrent states into two parts—a dependent representation (notated

without tilde), as in Eq. (7.2, 7.3), and a head representation (notated with tilde), as in Eq. (7.4,

7.5). This allows for reduced recurrent sizes, which helps to avoid overfitting in the classifer without

weakening the LSTM’s representational capacity.

v
(e)
t = FFNN(ht) Edge-dep (7.2)

v
(l)
t = FFNN(ht) Label-dep (7.3)

ṽ
(e)
t = FFNN(ht) Edge-head (7.4)

ṽ
(l)
t = FFNN(ht) Label-head (7.5)

Bilinear or biaffine classifiers—which are generalizations of linear classifiers to include multiplicative

interactions between two vectors, motivated in Chapter 3—predict edges and labels. The bilinear/

biaffine classifiers can be single-class (SC; Eqs. 7.6, 7.7), generating a single score to be used in a

binary classifier, or multi-class (MC; 7.8, 7.9), generating multiple scores to be used in a categorical

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 160

. . .

. . .
BiLSTM: ht

w
(word)
0 w

(pos)
0 w

(word)
T w

(pos)
T

Embed: xt

Input: wt

FNN: vt

Edges Labels | EdgeBiaff: S

Figure 7.2: The basic architecture of the factorized system. Word embeddings xt are fed into a
BiLSTM, which uses FNNs to get four separate representations vt for each word. Two biaffine
scorers turn these into score matrices S, where each cell represents the score of an edge or label
between two tokens.

classifier.

SCBilin(x, x̃) = x>U x̃ (7.6)

SCBiaff(x, x̃) = x>U x̃ + w>(x⊕ x̃) + b (7.7)

MCBilin(x, x̃) = x>Ux̃ (7.8)

MCBiaff(x, x̃) = x>Ux̃ +W (x⊕ x̃) + b (7.9)

s
(e)

t,t̃
= SCBiaff

(
v
(e)
t , ṽ

(e)

t̃

)
(7.10)

s
(l)

t,t̃
= MCBiaff

(
v
(l)
t , ṽ

(l)

t̃

)
(7.11)

The tensor U in the single-class variant or U in the multi-class one can optionally be diagonal (such

that ujkj′ = 0 wherever j 6= j′) to conserve parameters. The unlabeled parser (trained with sigmoid

cross-entropy) scores every edge between pairs of words in the sentence—these scores can be decoded

into a graph by keeping only edges that received a positive score. The labeler (trained with softmax

cross-entropy) scores every label for each pair of words, so it simply assigns each edge predicted by

the edge classifier its highest-scoring label. The system is trained according to the sum of these two

losses, with error backpropagating to the labeler only through gold edges. This system is shown

graphically in Figure 7.2. Unfortunately, sometimes the loss for one module overwhelms the loss

for the other, causing the system to underfit. Including a tunable interpolation constant λ ∈ (0, 1)

successfully evens out the two error terms ε(e) and ε(l).

ε = (1− λ)ε(e) + λε(l) (7.12)

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 161

Worth noting is that the removal of the maximum spanning tree algorithm and change from

softmax cross-entropy loss to weighted sigmoid cross-entropy in the unlabeled parser represent the

only changes needed to allow the original syntactic parser in Chapter 4 to generate fully graph-

structured semantic dependency output. Note also that this system is general enough that it could

be used for any graph-structured dependency scheme, including the enhanced dependencies of the

Universal Dependencies formalism (with the exception of gapped constructions, which are absent

from the SemEval datasets).

7.3.2 Comparison with Peng et al

In the original syntactic parser, the problem of finding the best labeled incoming edge for each

dependent was factorized into two steps: finding the best head for each dependent, and then labeling

the dependent based on the information provided by the predicted head. Formally, let gt̃k (for graph)

be a categorical variable representing the edge from token t̃ to a given, fixed token t with label k.

The matrix G of all the gt̃k variables will be one-hot, since each token has exactly one head and

one label in the syntactic setup. The tree-structured dependency parser splits gt̃k into two separate

variables: at̃, representing the row of the correct class in G, and ck, representing the column of the

correct class. The single probability of the two variables can then be equivalently represented as the

product of two separate probabilities of one variable each.

P (g
t̃k

= 1|f , F̃) = P (c
k

= 1, a
t̃

= 1|f , F̃) (7.13)

=
P (ck, at̃, f , F̃)

P (f , F̃)
(7.14)

=
P (ck, at̃, f , F̃)

P (f , F̃)

P (at̃, f , F̃)

P (at̃, f , F̃)
(7.15)

=
P (ck, at̃, f , F̃)

P (at̃, f , F̃)

P (at̃, f , F̃)

P (f , F̃)
(7.16)

= P (ck|at̃ , f , F̃)P (at̃ |f , F̃) (7.17)

= P (ck|at̃ , f , f̃t̃)P (at̃ |f , F̃) (7.18)

Eq. (7.13) splits the matrix variable into a row variable and a column variable. Eq. (7.14) expands the

definition of conditional probability. Eq. (7.15) multiplies by x
x . Eq. (7.16) swaps the denominators

of the fractions. Eq. (7.17) reapplies the definition of conditional probability, proving that the two

expressions are the same. Eq. (7.18) assumes conditional independence between ck and f̃t̃′ 6=t̃ give

at̃—that is, features of the alternative candidate heads don’t influence the probability of the label

of the dependent. An advantage of this approach is that it makes imposing hard constraints that

only refer to one variable easier. If the tree where each word depends on its highest scoring head is

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 162

malformed, it can be corrected into a single-root maximum spanning tree without having to take into

consideration how the choice of label affects the probability of the head. An additional advantage

is that the two probabilities can be computed with classifiers that use different hyperparameters.

While this increases the hyperparameter space, it also allows for more finely-tuned systems. Finally,

the independence assumptions of the factorized approach has implications for optimization. Under

a standard softmax cross-entropy loss objective, the unfactorized approach during training will aim

to reduce the probability of all non-gold edge/label pairs gt̃k according to how much probability

mass the model assigned them. The factorized approach only decreases the probability of incorrect

labels for the correct edge, without touching the probabilities of incorrect labels for incorrect edges.

One might expect that the factorized approach will be easier to optimize because it won’t put extra

resources into reducing the probabilities of labeled edges pruned away by the edge classifier, but this

hypothesis warrants additional experimentation.

The approach to graph-structured dependency parsing laid out in this chapter straightforwardly

extends this idea. In a graph-structured dependency representation, the matrix variable G is no

longer one-hot, because a token can have multiple heads. Now, each row of G is either null or one-

hot, meaning G can’t be split into a “row” variable and a “column” variable as before. Instead, a

vector of variables a that are strictly less informative than G will be introduced. The new variables

will indicate whether or not a row of G has a 1 in it, meaning that there is an edge from word

t̃ to t but providing no information about the label of that edge. This additional variable allows

the probability to be factorized in the same way as the tree-structure parser, though this time no

additional independence assumptions are actually being made. For consistency of notation, G will

also be renamed C where a is introduced.

P (gt̃k = 1|f , F̃) = P (ct̃k = 1, at̃ = 1|f , F̃) (7.19)

= P (ct̃k|at̃ , f , F̃)P (at̃ |f , F̃) (7.20)

This mimics some of the advantages in the original parser: post-processing constraints on structure

are easier to enforce; the two modules can use different hyperparameters; and optimization may be

slightly easier and more efficient.

(Peng et al., 2017) likewise used an arc-factored BiLSTM parser to tackle the SemEval datasets.

However, their approach lacks some of the theoretical and practical advantages of the biaffine ap-

proach presented here. Their system predicts three things from the BiLSTM state: given one token

t̃, whether it’s a predicate capable of taking dependents pt̃ (p); given two tokens t and t̃, whether

there’s an edge (arc) between them at̃ (e); and given two tokens, what labeled edge (if any) is

between them ct̃k (le). However, their system doesn’t condition each successively more complex

prediction on the output of previous predictions, as the systems proposed in this thesis do. Instead,

they simply multiply the independent probabilities together. Formally, they insert two redundant

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 163

variables into the original objective (Eq. 7.21) and rewrite it into the product of three probabili-

ties (Eq. 7.22)—similar to this work—but then they assume conditional independence between the

variables (Eq. 7.23).

P (gt̃k|f , F̃) = P (ct̃k, at̃, pt̃ |f , F̃) (7.21)

= P (ct̃k|at̃, pt̃ , f , F̃)P (at̃|pt̃ , f , F̃)P (pt̃ |̃f , F̃) (7.22)

≈ P (ct̃k |f , F̃)P (at̃ |f , F̃)P (pt̃ |̃f , F̃) (7.23)

The additional independence assumption (which clearly doesn’t hold, since the variables are partially

redundant) means that the new expression no longer maintains exact equivalence to the original ob-

jective. Additionally, by removing the redundant conditioning variables, the system can no longer

simplify postprocessing steps to ensure well-formed structures; in fact, ensuring that the differ-

ent modules don’t produce contradictory predictions makes finding the best dependency graph at

inference time more rather than less complicated.

Another difference from Peng et al.’s (2017) approach is that they use feedforward variable-class

classifiers rather than biaffine ones to compute the probabilities for ct̃k and at̃. That is, in their

approach, the final score for an edge from token t̃ to token t with label k is computed using three

feedforward scorers. For clarity, the weight vectors u are all distinct, and none of them depend on

anything in the input sequence i.

s
(p)

t̃
= u>FFNN(ht̃) (7.24)

s
(e)

t̃t
= u>FFNN(ht ⊕ ht̃) (7.25)

s
(le)

tt̃k
= u>k FFNN(ht ⊕ ht̃) (7.26)

stt̃k = s
(le)

tt̃k
+ s

(e)

tt̃
+ s

(p)

t̃
(7.27)

Chapter 5 argued against the FFNN approach to variable-class classification on theoretical and

empirical grounds. In this instance, their system is missing some logically possible (and theoretically

necessary) terms. The feedforward term FFNN(ht ⊕ t̃) in Peng et al.’s model and the bilinear term

h>
t̃

Uht in ours are both ways of modeling nonlinear interactions between the head and dependent.

Abstracting away from the exact scoring function that gets applied to the BiLSTM hidden states

and emphasizing which representations are interacting (the dependent state ht, the head state ht̃,

and label weights k), Peng et al.’s scorer is shown in Eq. (7.28). The factorized system in this

chapter uses two separate scorers, which are not added together—one to score each possible edge

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 164

Eq. (7.29), and one to compute each possible label for each predicted edge Eq. (7.30).

stt̃k = f (k)(ht,ht̃) + f(ht,ht̃) + f(ht̃) PTS17 (7.28)

stt̃ = f(ht,ht̃) + f(ht) + f(ht̃) + f() DM18 (Edges) (7.29)

stt̃k = f (k)(ht,ht̃) + f (k)(ht) + f (k)(ht̃) + f (k)() DM18 (Labels) (7.30)

f (k) means that the function is parameterized for label k. Functions with no arguments represent

constant bias terms. In Eq. (7.29), the score for each unlabeled edge comes from the full range of

possible constant, first-order, and second-order terms, and likewise in Eq. (7.30). However, Peng

et al.’s scorer in Eq. (7.28) uses only the two interaction terms f (k)(ht,ht̃) and f(ht,ht̃) and one

non-interaction term f(ht̃). Not only does this mean that their scorer is slightly less powerful than

the one proposed here, but it’s also not perfectly sound theoretically. As shown in Chapter 3, the

lower-order terms are necessary for ensuring that the only assumption needed to make Eq. (7.31)

true is conditional independence between input features.

P (ct̃k|f , F̃) = softmaxk(sitt̃) (7.31)

To briefly recapitulate Chapter 3, when features are binary and modeled with categorical distri-

butions, the lower-order terms absorb the probability of the class when the higher-order feature

interactions are absent (i.e. P (ck|(fj ∧ fj′) = 0)). When features are continuous and thus modeled

with continuous distributions, the story can be a bit more complex, but the lower-order terms still

perform similar roles. If the full range of terms are included in the score st̃k, then the probability of

the labeled edge given the features simplifies to the softmax of the score vector. Conversely, if the

full range of terms are not included in the score, then the probability of the labeled edge does not

actually simplify to the simple softmax of the score, meaning that the softmax classifier is technically

inappropriate for the task. On the one hand, neural networks are normally powerful enough to be

able to compensate for this theoretical inefficiency, but on the other hand, it’s not clear why one

should favor a theoretically less sound approach over a theoretically sound one that achieves similar

or better performance.

This discussion is to show that the basic approach to semantic dependency parsing used by

Peng et al. lacks many of the appealing properties that the biaffine parser has. It should be

noted though that they include a number of techniques not included in this work. Specifically,

they explore two orthogonal approaches to multitask parsing across the three different semantic

dependencies datasets. In the basic multitask version, they train a system with a shared BiLSTM

that parses all three formalisms simultaneously. In one extension to this, they use frustratingly

easy domain adaptation (Daumé III, 2007; Kim et al., 2016), where the top layer of the shared

BiLSTM is concatenated with the top layer of a task-specific BiLSTM as well. In another, they use

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 165

a tensor-product scorer (a higher-order generalization of the biaffine one motivated here) designed

to ensure consistent predictions across the three tasks. Their scorer uses a decomposed sixth-order

tensor to model this, but in principle it could be done with a third-order one. For each module

(predicate, edges, labeled edges), the outer product of the vector representation vtt̃ = FFNN(ht,ht̃)

for each of the three datasets is weighted and summed in order to get the score. This allows the

system to learn relationships among the three representations. The simple shared BiLSTM approach

to multitasking makes no apparent improvement over the single-task system, but adding in either

the task-specific BiLSTM states or the third-order decoder improves the micro average by about a

quarter of a percent, with the improvement seemingly additive. Either or both multitask additions

could in principle help the biaffine system, although neither of them has been tried at this point.

7.3.3 Augmentations

Ballesteros et al. (2016), Dozat et al. (2017) (described in Chapter 6), and Ma et al. (2018) find

that character-level word embedding models improve performance for syntactic dependency parsing,

so it seems sensible to explore the impact it has on semantic dependency parsing. Dozat et al.

(2017) confirm that the syntactic parser performs better with POS tags, which raises the ques-

tion of whether word lemmas—another form of low-level lexical information—might also improve

dependency parsing performance. Section 7.4.2 below explores both of these options for semantic

dependency parsing.

7.4 Results

7.4.1 Hyperparameters

Hidden Sizes Drop Prob

Embedding 100 20%
GloVe linear 125 0%
Char LSTM 1 @ 400 33%/33% (FF/recur)
Char linear 100 33%
BiLSTM 3 @ 600 45%/25% (FF/recur)
Arc/Label FFNN 600/600 25%/33%

Loss & Optimizer

Interpolation (λ) .025
L2 regularization 3e−9

Learning rate 1e−3

Adam β1 0
Adam β2 .95

Table 7.1: Final hyperparameter configuration of the semantic dependency parser.

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 166

DM PAS PSD Avg
ID OOD ID OOD ID OOD ID OOD

Du et al. (2015) 89.1 81.8 91.3 87.2 75.7 73.3 85.3 80.8
Almeida and Martins (2015) 88.2 81.8 90.9 86.9 76.4 74.8 85.2 81.2
WCGL18 90.3 84.9 91.7 87.6 78.6 75.9 86.9 82.8
PTS17: Basic 89.4 84.5 92.2 88.3 77.6 75.3 87.4 83.6
PTS17: Freda3 90.4 85.3 92.7 89.0 78.5 76.4 88.0 84.4

Ours: Basic 92.4 87.6 94.0 90.8 80.1 78.0 89.6 86.3
Ours: +Char 92.6 88.0 94.0 90.7 80.3 78.2 89.7 86.4
Ours: +Lemma 93.6 88.9 93.9 90.7 80.9 79.1 90.2 86.9
Ours: +Char +Lemma 93.4 88.8 94.0 91.0 81.0 79.2 90.2 87.0

Table 7.2: Semantic dependency parsing performance.
Comparison between the proposed system and the previous state of the art on in-domain (WSJ)

and out-of-domain (Brown corpus) data, according to labeled F1 (LF1).

The hyperparameters for the basic system (that is, without character embeddings or lemmas)

were tuned fairly extensively on the DM development data. The hyperparameter configuration for

the final system is given in Table 7.1. All input embeddings (word, pretrained, POS, etc.) are

concatenated, and the system uses the gold POS tags and lemmas provided with the datasets. The

pretrained GloVe embeddings are 100-dimensional (Pennington et al., 2014), but linearly trans-

formed to be 125-dimensional to allow the system to rearrange the embedding space in a way that’s

optimized for the high degree of dropout. Only words or lemmas that occurred 7 times or more

are included in the word and lemma embedding matrix; including less frequent words appears to

facilitate overfitting. Character-level word embeddings are generated using a one-layer unidirec-

tional LSTM that convolved over three character embeddings at a time, whose end state is linearly

transformed to be 100-dimensional. The core BiLSTM is three layers deep. The different types of

word embeddings—word, GloVe, and character-level—are dropped simultaneously during training,

but independently from POS and lemma embeddings (which are likewise dropped independently of

each other). This is done to encourage the different kind of word embeddings from learning repre-

sentations that are too similar, defeating the purpose of dropout. Dropped embeddings are replaced

with learned <DROP> tokens. LSTMs use same-mask recurrent dropout (Gal and Ghahramani, 2016),

applied in both “horizontal” connections and “vertical” ones. The systems are trained with batch

sizes of 3,000 tokens for up to 75,000 training steps, terminating early after 10,000 steps pass with

no improvement in validation accuracy.

7.4.2 Performance

Table 7.2 compares the system’s performance with the alternative systems. The system uses biaffine

classifiers (Eqs. 7.7, 7.9), with no ReLU nonlinearities in the FFNN layers, and a diagonal U tensor

in the label classifier (Eq. 7.10) but a full, square U tensor in the edge classifier (Eq. 7.11). The

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 167

system trains at a speed of about 300 sequences/second on an NVIDIA Titan X and parses about

1,000 sequences/second. Du et al. (2015) and Almeida and Martins (2015) are the systems that

won the 2015 shared task (closed track). PTS17: Basic represents the single-task versions of Peng

et al. (2017), which they make multitask across the three datasets in Freda3 by adding frustratingly

easy domain adaptation and the third-order decoding mechanism. WCGL18 is Wang et al.’s (2018)

transition-based system. The fully factorized basic system already substantially outperforms both

Peng et al.’s single-task baseline and their much more complex multi-task approach. Including a

character-level word embedding model (similar to Dozat et al.’s (2017)) can improve performance

slightly, and providing gold lemma embeddings likewise improves performance even further. These

effects appear additive, so that including both together generally pushes performance even higher.

Many infrequent words were excluded from the frequent token embedding matrix, so it makes sense

that the system should improve when provided more lexical information that’s harder to overfit on.

Surprisingly, the PAS dataset seems not to benefit substantially from lemma or character embed-

dings. It has been noted that PAS is the easiest of the three datasets to achieve good performance for;

so one possible explanation is that 94% LF1 may simply be near the ceiling of what can be achieved

for the dataset without using unsupervised pretraining methods on large unlabeled corpora. Alter-

natively, the main difference bewteen PAS and DM/PSD is that PAS includes semantically vacuous

function words in its representation. Because function words are extremely frequent, it’s possible

that they are being disproportionately represented in the loss or LF1 score. Using a hinge loss (like

Peng et al. (2017)) instead of a cross-entropy loss might help, since the system would stop focusing

on potentially “easy” functional predicates once it learned to predict their argument structures con-

fidently, allowing it to pour more resources into modeling more challenging phenomena. Similarly,

the loss interpolation constant λ was tuned on DM, and may be suboptimal for the other datasets.

7.4.3 Variations

This section examines the impact that slight variations on the architecture have on final performance

in Figure 7.3. Twenty models were trained on the DM treebank for each variation under considera-

tion, keeping all other hyperparameters constant. Rank-sum tests (Lehmann et al., 1975) reveal that

the basic system outperforms variants with no hidden layers in the edge classifier (W = 389; p < .001)

or the label classifier (W = 396.5; p < .001). Diagonal U tensors (W = 384; p < .001), the ReLU

nonlinearity (W = 386, p < .001), and to a lesser extent omitting the linear terms (W = 266, p < .1)

seem to weaken the edge classifier.

The unfactorized system performed as well as the factorized one, indicating that the system

could be simplified even further. This is not terribly surprising though, since they are mathematically

equivalent (see Eqs. 7.13–7.17) and here used the same hyperparameters. The improved performance

of deeper systems (replicating the findings in Chapter 5) likely justifies their added complexity. On

the other hand, the choice between biaffine and bilinear classifiers largely comes down to aesthetics,

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 168

BasicUnfac. Bilin Diag ReLU No
Hidden

Bilin Non-
Diag

ReLU No
Hidden

93.2

93.4

93.6

93.8

L
ab

el
ed

 F
1

Architecture Variations

Both

Parser

Labeler

Figure 7.3: Performance of architecture variations for the semantic dependency parser. Basic+lemma
system; unfactorized (labeler-only); with bilinear classifiers (Eqs. 7.6, 7.8); with nondiagonal U in
the labeler or diagonal U in the parser; with the ReLU nonlinearity; ommitting the hidden layers
(Eqs. 7.4–7.3).

since the change from biaffine to bilinear represents only a small decrease in overall power. The fact

that ReLU makes no difference to the label classifier but badly hurts the edge classifier is difficult to

explain; perhaps ReLU is stripping away too much information critical for unlabeled parsing when it

sparsifies the representations, or perhaps removing the negative numbers in the head and dependent

representation prevents more complex interactions that are useful to the bilinear component. Forcing

the bilinear matrix U in the edge classifier to be diagonal also seems to simplify the biaffine function

too much, taking away power needed for the complex edge discrimination task.

Overall, the labeler displayed considerable invariance to architecture changes, while the edge

classifier proved to be more fragile; however, the biggest drop in median performance represented

only .3% LF1. Since this system is larger and more regularized than the other systems, this relative

robustness to architecture variations suggests that unglamorous, low-level hyperparameters—such

as hidden sizes and dropout rates—can be as critical to performance as high-level architecture

enhancements.

7.5 Discussion

This chapter minimally extended the simple syntactic dependency parser from Chapter 5 to produce

graph-structured dependencies. With only a few tweaks and careful tuning, this system achieves

state-of-the-art performance, further highlighting the generality of the biaffine architecture moti-

vated at great length in this thesis. The high-performing arc-factored parser can be adapted to

different types of dependency graphs (projective tree, non-projective tree, directed graph) with only

CHAPTER 7. EXTENSION TO SEMANTIC DEPENDENCIES 169

small changes without obviously hurting accuracy. By contrast, transition-based parsers—which

were originally designed for parsing projective constituency trees, and have very different structures

(Nivre, 2003; Aho and Ullman, 1972)—require whole new transition sets or even data structures to

generate arbitrary graphs. Arguably, this points to arc-factored parsers like the one in this thesis

being the most natural way to produce dependency graphs with different structural restrictions.

Furthermore, this work demonstrates that a multitask system relying on a complex decoding

algorithm to prune away invalid graph structures isn’t necessary for achieving the level of pars-

ing performance a simpler system can achieve (though in principle it could push performance even

higher). It also finds easier or independently motivated ways to improve accuracy—taking ad-

vantage of provided lemma information provides a boost comparable to one found by drastically

increasing system complexity (though getting this improvement in real-world situations depends on

having an accurate lemmatizer), and paying close attention to hyperparameters ensures that the

system performs as best it can. Thus the biaffine arc-factored parser can efficiently achieve excellent

performance on a wide variety of datasets without requiring significant additional complexity.

Chapter 8

Conclusion

This thesis has laid out a straightforward, fast, accurate, and theoretically sound neural depen-

dency parser. It proved that the primary architecture innovations follow mathematically from the

same principles that yield the standard affine softmax classifier, unlike the more common feedfor-

ward classifiers. The LSTM-based parser was carefully tuned and shown to achieve high accuracy,

nearing the state-of-the-art performance achieved by a much more complex system. The system

is also relatively fast to run at inference time, making it feasible for use as a black-box in non-

academic settings. Comparing the proposed arc-factored system against a transition-based baseline

reveals evidence suggesting that the arc-factored approach is more effective at generalizing cross-

ing dependencies in languages with more free word order than the transition-based approach. In

addition to using an arc-factored parser, it was found that using a character-level word embed-

ding model improved performance on languages where grammatical functions are dictated more by

orthographically-inferrable morphology than strict word order. Similarly, incorporating components

designed to explicitly model the effects of distance and word order on the probability of there being

a head-dependent relationship between two words was shown to help accuracy on longer sentences

with more distractors. The actual parsing and label classification processes closely mirror more basic

sequence labeling, meaning that only small changes are needed to change the parser into a part-of-

speech tagger; then the part-of-speech tagger itself was made to take advantage of multiplicative

interactions between neural features using similar bilinear components to the ones used in the main

parser, pointing to the potential ubiquity of the innovations made in this paper. In addition to

adapting the tree-structure parser to function as a tagger, this work showed how to adapt it to func-

tion as a graph-structure parser with only a few minimal changes to the architecture. Ultimately, the

parser at the core of this work finds an excellent balance between being fast, accurate, theoretically

satisfying, flexible, and easy-to-extend, having already influenced several other lines of research on

parsing and other related tasks.

170

Bibliography

Steven P Abney and Mark Johnson. 1991. Memory requirements and local ambiguities of parsing

strategies. Journal of Psycholinguistic Research 20(3):233–250.

Alfred V Aho and Jeffrey D Ullman. 1972. The theory of parsing, translation, and compiling ,

volume 1. Prentice Hall.

Chris Alberti, David Weiss, and Slav Petrov. 2015. Improved transition-based parsing and tagging

with neural networks. In EMNLP .

Mariana SC Almeida and André FT Martins. 2015. Lisbon: Evaluating TurboSemanticParser on

multiple languages and out-of-domain data. In SemEval . pages 970–973.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev,

Slav Petrov, and Michael Collins. 2016. Globally normalized transition-based neural networks. In

ACL. volume 1, pages 2442–2452.

Giuseppe Attardi. 2006. Experiments with a multilanguage non-projective dependency parser. In

CoNLL. pages 166–170.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by

jointly learning to align and translate. In ICLR.

James K Baker. 1979. Trainable grammars for speech recognition. The Journal of the Acoustical

Society of America 65(S1):S132–S132.

Miguel Ballesteros, Chris Dyer, and Noah A Smith. 2015. Improved transition-based parsing by

modeling characters instead of words with LSTMs. In EMNLP .

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A Smith. 2016. Training with exploration

improves a greedy stack-LSTM parser. In EMNLP .

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word

vectors with subword information. In EMNLP .

171

BIBLIOGRAPHY 172

Taylor L Booth and Richard A Thompson. 1973. Applying probability measures to abstract lan-

guages. IEEE transactions on Computers 100(5):442–450.

Johan Bos. 1996. Predicate logic unplugged. In 10th Amsterdam Colloquium.

Joan Bresnan. 1995. Morphology competes with syntax: Explaining typological variation in weak

crossover effects. Is the best good enough pages 59–92.

Joan Bresnan. 2001. Lexical-functional syntax , volume 16. Blackwell Oxford.

Kris Cao and Marek Rei. 2016. A joint model for word embedding and word morphology. In ACL.

pages 18–26.

Xavier Carreras. 2007. Experiments with a higher-order projective dependency parser. In EMNLP-

CoNLL.

Arun Tejasvi Chaganty, Ashwin Paranjape, Jason Bolton, Matthew Lamm, Jinhao Lei, Abigail See,

Kevin Clark, Yuhao Zhang, Peng Qi, and Christopher D Manning. 2017. Stanford at TAC KBP

2017: Building a trilingual relational knowledge graph. In TAC .

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and Ting Liu. 2018. Towards better UD parsing:

Deep contextualized word embeddings, ensemble, and treebank concatenation. In CoNLL 2018

Shared Task . ACL, pages 55–64. http://www.aclweb.org/anthology/K18-2005.

Danqi Chen and Christopher D Manning. 2014. A fast and accurate dependency parser using neural

networks. In EMNLP . pages 740–750.

Hongshen Chen, Yue Zhang, and Qun Liu. 2016. Neural network for heterogeneous annotations. In

EMNLP . pages 731–741.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao, and Li Deng. 2016. Bi-directional attention

with agreement for dependency parsing. EMNLP .

Kyunghyun Cho, Bart Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and Yoshua

Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine

translation. In EMNLP .

Jinho D Choi and Andrew McCallum. 2013. Transition-based dependency parsing with selectional

branching. In ACL. volume 1, pages 1052–1062.

Noam Chomsky. 1957. Syntactic structure. Mouton.

Noam Chomsky. 1965. Aspects of the Theory of Syntax . MIT press.

Noam Chomsky. 1970. Remarks on nominalization. In Roderick Jacobs and Peter Rosenbaum,

editors, Reading in English transformational Grammar , Blaisdell.

http://www.aclweb.org/anthology/K18-2005
http://www.aclweb.org/anthology/K18-2005
http://www.aclweb.org/anthology/K18-2005

BIBLIOGRAPHY 173

Noam Chomsky. 1986. Knowledge of language: Its nature, origin, and use. Greenwood Publishing

Group.

Noam Chomsky. 1994. The minimalist program. MIT Press, Cambridge, Massachusetts.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On shortest arborescence of a directed graph. Scientia

Sinica 14(10):1396.

Kevin Clark, Minh-Thang Luong, Christopher D. Manning, and Quoc V. Le. 2018. Semi-supervised

sequence modeling with cross-view training. In EMNLP .

John Cocke and Jacob Schwarts. 1970. Programming languages and their compilers: Preliminary

notes. Ms. (CIMS, NYU).

Michael Collins. 2003. Head-driven statistical models for natural language parsing. Computational

linguistics 29(4):589–637.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A Sag. 2005. Minimal recursion semantics:

An introduction. Research on Language and Computation 3(2-3):281–332.

Michael A Covington. 2001. A fundamental algorithm for dependency parsing. In ACM Southeast .

Citeseer, pages 95–102.

Michal Daniluk, Tim Rocktäschel, Johannes Welbl, and Sebastian Riedel. 2017. Frustratingly short

attention spans in neural language modeling. In ICLR.

Hal Daumé III. 2007. Frustratingly easy domain adaptation. In ACL. pages 256–263.

Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. 2006. Generating

typed dependency parses from phrase structure parses. In LREC . volume 6, pages 449–454.

Marie-Catherine De Marneffe and Christopher D Manning. 2008. The Stanford typed dependencies

representation. In Coling 2008 . pages 1–8.

David Dowty. 1991. Thematic proto-roles and argument selection. Language 67(3):547–619.

Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency

parsing. ICLR .

Timothy Dozat and Christopher D. Manning. 2018. Simpler but more accurate semantic dependency

parsing. In ACL.

Timothy Dozat, Peng Qi, and Christopher D Manning. 2017. Stanford’s graph-based neural depen-

dency parser at the CoNLL 2017 shared task. CoNLL 2017 Shared Task pages 20–30.

BIBLIOGRAPHY 174

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and Xiaojun Wan. 2015. Peking: Building semantic

dependency graphs with a hybrid parser. In SemEval . pages 927–931.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning

and stochastic optimization. The Journal of Machine Learning Research 12:2121–2159.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A Smith. 2015. Transition-

based dependency parsing with stack long short-term memory. In EMNLP .

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. 2016. Recurrent neural

network grammars. In NAACL. pages 199–209.

Jay Earley. 1970. An efficient context-free parsing algorithm. Communications of the ACM 13(2):94–

102.

Jack Edmonds. 1967. Optimum branchings. Journal of Research of the national Bureau of Standards

B 71(4):233–240.

Jason Eisner. 1996. Efficient normal-form parsing for combinatory categorial grammar. In ACL.

pages 79–86.

Joseph E Emonds. 1976. A transformational approach to English syntax: Root, structure-preserving,

and local transformations. Academic Press New York.

Ronald Aylmer Fisher. 1930. The genetical theory of natural selection: a complete variorum edition.

Oxford University Press.

Dan Flickinger, Yi Zhang, and Valia Kordoni. 2012. Deepbank. a dynamically annotated treebank of

the Wall Street Journal. In International Workshop on Treebanks and Linguistic Theories. pages

85–96.

Lyn Frazier. 1987. Sentence processing: A tutorial review. Attention and performance 12: The

psychology of reading pages 559–586.

Harold N Gabow, Zvi Galil, Thomas Spencer, and Robert E Tarjan. 1986. Efficient algorithms for

finding minimum spanning trees in undirected and directed graphs. Combinatorica 6(2):109–122.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In ICML.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Computational

linguistics 28(3):245–288.

Jonathan Ginzburg and Ivan A. Sag. 2000. Interrogative Investigations: The Form, Meaning, and

Use of English Interrogatives. CSLI Publications, Stanford.

BIBLIOGRAPHY 175

Yoav Goldberg and Joakim Nivre. 2012. A dynamic oracle for arc-eager dependency parsing. COL-

ING pages 959–976.

Yoav Goldberg and Joakim Nivre. 2013. Training deterministic parsers with non-deterministic

oracles. ACL 1:403–414.

Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional

LSTM and other neural network architectures. Neural Networks 18(5-6):602–610.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen Schmidhuber.

2016. LSTM: A search space odyssey. In IEEE Transactions on Neural Networks and Learning

Systems.

Jarrod D Hadfield. 2010. Mcmc methods for multi-response generalized linear mixed models: The

MCMCglmm R package. Journal of Statistical Software 33(2):1–22.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia Mart́ı,

Llúıs Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štěpánek, et al. 2009. The

CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple languages. In CoNLL.

pages 1–18.

Jan Hajic, Eva Hajicová, Jarmila Panevová, Petr Sgall, Ondrej Bojar, Silvie Cinková, Eva Fućıková,

Marie Mikulová, Petr Pajas, Jan Popelka, et al. 2012. Announcing Prague Czech-English depen-

dency treebank 2.0. In LREC . pages 3153–3160.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard Socher, et al. 2017. A joint many-task model:

Growing a neural network for multiple nlp tasks. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing . pages 1923–1933.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.

pages 770–778.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. Deep semantic role labeling:

What works and whats next. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). volume 1, pages 473–483.

Harold Stanley Heaps. 1978. Information retrieval: Computational and theoretical aspects. Academic

Press, Inc.

Gustav Herdan. 1960. Type-token mathematics, volume 4. Mouton.

BIBLIOGRAPHY 176

Geoffrey E Hinton. 2012. A practical guide to training restricted boltzmann machines. In Montavon

G., Orr G.B., and Mller KR, editors, Neural networks: Tricks of the trade, Springer, pages 599–

619.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation

9(8):1735–1780.

Richard A Hudson. 1984. Word grammar . Blackwell Oxford.

Ray Jackendoff. 1977. X-bar syntax . The MIT Press.

Peng Jin, Yue Zhang, Xingyuan Chen, and Yunqing Xia. 2016. Bag-of-embeddings for text classifi-

cation. In IJCAI . volume 16, pages 2824–2830.

Jenna Kanerva, Filip Ginter, Niko Miekka, Akseli Leino, and Tapio Salakoski. 2018. Turku neural

parser pipeline: An end-to-end system for the CoNLL 2018 shared task. In CoNLL 2018 Shared

Task . pages 133–142. http://www.aclweb.org/anthology/K18-2013.

Ronald M. Kaplan and Joan Bresnan. 1982. Lexical-functional grammar: A formal system for

grammatical representation. In Joan Bresnan, editor, The Mental Representation of Grammatical

Relations, MIT Press, Cambridge, Massachusetts, MIT Press Series on Cognitive Theory and

Mental Representation, chapter 4, pages 173–281.

Tadao Kasami. 1966. An efficient recognition and syntax-analysis algorithm for context-free lan-

guages. In Coordinated Science Laboratory Report no. R-257 . Coordinated Science Laboratory,

University of Illinois at Urbana-Champaign.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya. 2016. Frustratingly easy neural domain adapta-

tion. In COLING . pages 387–396.

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In ICLR.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using

bidirectional LSTM feature representations. In ACL. volume 4, pages 313–327.

Dan Klein and Christopher D Manning. 2003. Accurate unlexicalized parsing. In ACL. volume 1,

pages 423–430.

Terry Koo and Michael Collins. 2010. Efficient third-order dependency parsers. In ACL.

Terry Koo, Alexander M Rush, Michael Collins, Tommi Jaakkola, and David Sontag. 2010. Dual

decomposition for parsing with non-projective head automata. In EMNLP . pages 1288–1298.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham Neubig, and Noah A.

Smith. 2016. What do recurrent neural network grammars learn about syntax? In CoRR.

http://www.aclweb.org/anthology/K18-2013
http://www.aclweb.org/anthology/K18-2013
http://www.aclweb.org/anthology/K18-2013

BIBLIOGRAPHY 177

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent convolutional neural networks for

text classification. In AAAI . volume 333, pages 2267–2273.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. 2015. A simple way to initialize recurrent

networks of rectified linear units. In CoRR.

Geraldine Legendre, Yoshiro Miyata, and Paul Smolensky. 1990. Can connectionism contribute to

syntax? harmonic grammar, with an application. In M Ziolkowski, M Noske, and K Deaton,

editors, CLS . pages 273–252.

Erich Leo Lehmann, HJM D’Abrera, et al. 1975. Nonparametrics. Holden-Day.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2014. Low-rank tensors for

scoring dependency structures. In ACL. volume 1, pages 1381–1391.

Zhenghua Li, Min Zhang, and Wenliang Chen. 2014. Ambiguity-aware ensemble training for semi-

supervised dependency parsing. In ACL. volume 1, pages 457–467.

Wang Ling, Tiago Lúıs, Lúıs Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris Dyer, Alan W

Black, and Isabel Trancoso. 2015. Finding function in form: Compositional character models for

open vocabulary word representation. In NAACL.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective approaches to

attention-based neural machine translation. In EMNLP .

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard Hovy. 2018.

Stack-pointer networks for dependency parsing. In ACL.

Diego Marcheggiani and Ivan Titov. 2017. Encoding sentences with graph convolutional networks

for semantic role labeling. In EMNLP . pages 1506–1515.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large anno-

tated corpus of english: The penn treebank. Computational linguistics 19(2):313–330.

William Marslen-Wilson. 1973. Linguistic structure and speech shadowing at very short latencies.

Nature 244(5417):522.

André FT Martins, Noah A Smith, Pedro MQ Aguiar, and Mário AT Figueiredo. 2011. Dual

decomposition with many overlapping components. In EMNLP . pages 238–249.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005. Non-projective dependency

parsing using spanning tree algorithms. In HLT/EMNLP . pages 523–530.

Ryan T McDonald and Fernando CN Pereira. 2006. Online learning of approximate dependency

parsing algorithms. In EACL.

BIBLIOGRAPHY 178

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word

representations in vector space. ICLR .

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason

Weston. 2016. Key-value memory networks for directly reading documents. In ACL. pages 1400–

1409.

Yusuke Miyao and Jun’ichi Tsujii. 2004. Deep linguistic analysis for the accurate identification of

predicate-argument relations. In ACL.

Eric Moulines and Francis R Bach. 2011. Non-asymptotic analysis of stochastic approximation

algorithms for machine learning. In NeurIPS . pages 451–459.

Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In The International

Workshop on Parsing Technologies.

Joakim Nivre. 2004. Incrementality in deterministic dependency parsing. In The Workshop on

Incremental Parsing . pages 50–57.

Joakim Nivre. 2009. Non-projective dependency parsing in expected linear time. In ACL. volume 1,

pages 351–359.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranz-

abe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Lies-

beth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Verginica

Barbu Mititelu, John Bauer, Sandra Bellato, Kepa Bengoetxea, Riyaz Ahmad Bhat, Erica Bi-

agetti, Eckhard Bick, Rogier Blokland, Victoria Bobicev, Carl Börstell, Cristina Bosco, Gosse

Bouma, Sam Bowman, Adriane Boyd, Aljoscha Burchardt, Marie Candito, Bernard Caron, Gau-

thier Caron, Gülşen Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Savas Cetin, Fabricio Chalub,

Jinho Choi, Yongseok Cho, Jayeol Chun, Silvie Cinková, Aurélie Collomb, Çağrı Çöltekin,

Miriam Connor, Marine Courtin, Elizabeth Davidson, Marie-Catherine de Marneffe, Valeria

de Paiva, Arantza Diaz de Ilarraza, Carly Dickerson, Peter Dirix, Kaja Dobrovoljc, Timothy

Dozat, Kira Droganova, Puneet Dwivedi, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž Er-

javec, Aline Etienne, Richárd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cláudia Freitas,

Kataŕına Gajdošová, Daniel Galbraith, Marcos Garcia, Moa Gärdenfors, Kim Gerdes, Filip Ginter,

Iakes Goenaga, Koldo Gojenola, Memduh Gökırmak, Yoav Goldberg, Xavier Gómez Guinovart,

Berta Gonzáles Saavedra, Matias Grioni, Normunds Grūz̄ıtis, Bruno Guillaume, Céline Guillot-

Barbance, Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag

Haug, Barbora Hladká, Jaroslava Hlaváčová, Florinel Hociung, Petter Hohle, Jena Hwang, Radu

Ion, Elena Irimia, Tomáš Jeĺınek, Anders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara, Syl-

vain Kahane, Hiroshi Kanayama, Jenna Kanerva, Tolga Kayadelen, Václava Kettnerová, Jesse

BIBLIOGRAPHY 179

Kirchner, Natalia Kotsyba, Simon Krek, Sookyoung Kwak, Veronika Laippala, Lorenzo Lam-

bertino, Tatiana Lando, Septina Dian Larasati, Alexei Lavrentiev, John Lee, Phng Lê H`ông,

Alessandro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li, Kyung-

Tae Lim, Nikola Ljubešić, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macketanz,

Aibek Makazhanov, Michael Mandl, Christopher Manning, Ruli Manurung, Cătălina Mărănduc,

David Mareček, Katrin Marheinecke, Héctor Mart́ınez Alonso, André Martins, Jan Mašek, Yuji

Matsumoto, Ryan McDonald, Gustavo Mendonça, Niko Miekka, Anna Missilä, Cătălin Mititelu,

Yusuke Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Shinsuke Mori, Bjar-

tur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Yugo Murawaki, Kaili Müürisep, Pinkey

Nainwani, Juan Ignacio Navarro Horñiacek, Anna Nedoluzhko, Gunta Nešpore-Bērzkalne, Lng

Nguy˜ên Thi., Huy`ên Nguy˜ên Thi. Minh, Vitaly Nikolaev, Rattima Nitisaroj, Hanna Nurmi,

Stina Ojala, Adédayo. Olúòkun, Mai Omura, Petya Osenova, Robert Östling, Lilja Øvrelid, Niko

Partanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk, Siyao Peng, Cenel-Augusto Perez,

Guy Perrier, Slav Petrov, Jussi Piitulainen, Emily Pitler, Barbara Plank, Thierry Poibeau, Mar-

tin Popel, Lauma Pretkalniņa, Sophie Prévost, Prokopis Prokopidis, Adam Przepiórkowski, Tiina

Puolakainen, Sampo Pyysalo, Andriela Rääbis, Alexandre Rademaker, Loganathan Ramasamy,

Taraka Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real, Siva Reddy, Georg Rehm, Michael

Rießler, Larissa Rinaldi, Laura Rituma, Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa, Da-

vide Rovati, Valentin Roca, Olga Rudina, Shoval Sadde, Shadi Saleh, Tanja Samardžić, Stephanie

Samson, Manuela Sanguinetti, Baiba Saul̄ıte, Yanin Sawanakunanon, Nathan Schneider, Sebas-

tian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shimada, Muh

Shohibussirri, Dmitry Sichinava, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin Simkó,

Mária Šimková, Kiril Simov, Aaron Smith, Isabela Soares-Bastos, Antonio Stella, Milan Straka,

Jana Strnadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji, Yuta Takahashi, Takaaki

Tanaka, Isabelle Tellier, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire

Uematsu, Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van Niekerk,

Gertjan van Noord, Viktor Varga, Veronika Vincze, Lars Wallin, Jonathan North Washington,

Seyi Williams, Mats Wirén, Tsegay Woldemariam, Tak-sum Wong, Chunxiao Yan, Marat M.

Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman, Manying Zhang, and

Hanzhi Zhu. 2018. Universal dependencies 2.2. LINDAT/CLARIN digital library at the Insti-

tute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles

University. http://hdl.handle.net/11234/1-2837.

Joakim Nivre, Željko Agić, Lars Ahrenberg, et al. 2017a. Universal dependencies 2.0 CoNLL 2017

shared task development and test data. LINDAT/CLARIN digital library at the Institute of

Formal and Applied Linguistics, Charles University. http://hdl.handle.net/11234/1-2184.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christopher

Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and

http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184

BIBLIOGRAPHY 180

Daniel Zeman. 2016. Universal Dependencies v1: A multilingual treebank collection. In LREC .

European Language Resources Association, Portoro, Slovenia, pages 1659–1666.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Maltparser: A data-driven parser-generator for

dependency parsing. In LREC . volume 6, pages 2216–2219.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav

Marinov, and Erwin Marsi. 2007. Maltparser: A language-independent system for data-driven

dependency parsing. Natural Language Engineering 13(02):95–135.

Joakim Nivre et al. 2017b. Universal Dependencies 2.0. LINDAT/CLARIN digital library at the

Institute of Formal and Applied Linguistics, Charles University, Prague, http://hdl.handle.

net/11234/1-1983. http://hdl.handle.net/11234/1-1983.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinková, Dan Flickinger,

Jan Hajic, and Zdenka Uresova. 2015. Semeval 2015 task 18: Broad-coverage semantic dependency

parsing. In SemEval . pages 915–926.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajic, An-

gelina Ivanova, and Yi Zhang. 2014. Semeval 2014 task 8: Broad-coverage semantic dependency

parsing. In SemEval . pages 63–72.

Stephan Oepen and Jan Tore Lønning. 2006. Discriminant-based mrs banking. In LREC . pages

1250–1255.

Pān. ini and Sumitra M Katre. 1987. Astadhyayi of Panini . University of Texas Press.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An annotated

corpus of semantic roles. Computational linguistics 31(1):71–106.

Hao Peng, Sam Thomson, and Noah A Smith. 2017. Deep multitask learning for semantic depen-

dency parsing. In ACL. volume 1, pages 2037–2048.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for

word representation. In EMNLP .

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and

Luke Zettlemoyer. 2018. Deep contextualized word representations. In NAACL. volume 1, pages

2227–2237.

Barbara Plank, Anders Søgaard, and Yoav Goldberg. 2016. Multilingual part-of-speech tagging with

bidirectional long short-term memory models and auxiliary loss. ACL .

Carl Pollard and Ivan A Sag. 1994. Head-driven phrase structure grammar . University of Chicago

Press.

http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983

BIBLIOGRAPHY 181

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo Rosso, Efstathios Stamatatos, and Benno

Stein. 2014. Improving the reproducibility of PAN’s shared tasks: Plagiarism detection, author

identification, and author profiling. In Evangelos Kanoulas, Mihai Lupu, Paul Clough, Mark

Sanderson, Mark Hall, Allan Hanbury, and Elaine Toms, editors, CLEF . Springer, Berlin Heidel-

berg New York, pages 268–299.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christopher D. Manning. 2018. Univer-

sal dependency parsing from scratch. In CoNLL 2018 Shared Task . pages 160–170.

http://www.aclweb.org/anthology/K18-2016.

Peng Qi and Christopher D Manning. 2017. Arc-swift: A novel transition system for dependency

parsing. In ACL. volume 2, pages 110–117.

Siva Reddy, Oscar Täckström, Slav Petrov, Mark Steedman, and Mirella Lapata. 2017. Universal

semantic parsing. In EMNLP . pages 89–101.

Scott E. Reed and Nando de Freitas. 2016. Neural programmer-interpreters. In ICLR.

Louisa Sadler and Douglas J Arnold. 1994. Prenominal adjectives and the phrasal/lexical distinction.

Journal of linguistics 30(01):187–226.

Ivan A Sag. 1997. English relative clause constructions. Journal of Linguistics 33(02):431–483.

Ivan A. Sag. 2012. Sign-based construction grammar: An informal synopsis. In Hans C. Boas and

Ivan A. Sag, editors, Sign-Based Construction Grammar , CSLI Publications, Stanford.

Sebastian Schuster, Joakim Nivre, and Christopher D. Manning. 2018. Sentences with gapping:

Parsing and reconstructing elided predicates. In NAACL.

Sebastian Schuster, Éric Villemonte de la Clergerie, Marie Candito, Benôıt Sagot, Christopher D.

Manning, and Djamé Seddah. 2017. Paris and Stanford at EPE 2017: Downstream evaluation of

graph-based dependency representations. In EPE .

Petr Sgall, Eva Hajicová, and Jarmila Panevová. 1986. The meaning of the sentence in its semantic

and pragmatic aspects. Springer Science & Business Media.

Peng Shi and Yue Zhang. 2017. Joint bi-affine parsing and semantic role labeling. In International

Conference on Asian Language Processing . IEEE, pages 338–341.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In CoNLL 2018 Shared

Task . pages 197–207. http://www.aclweb.org/anthology/K18-2020.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UDPipe: trainable pipeline for processing

CoNLL-U files performing tokenization, morphological analysis, POS tagging and parsing. In

LREC . European Language Resources Association, Portoro, Slovenia.

http://www.aclweb.org/anthology/K18-2016
http://www.aclweb.org/anthology/K18-2016
http://www.aclweb.org/anthology/K18-2016
http://www.aclweb.org/anthology/K18-2020
http://www.aclweb.org/anthology/K18-2020

BIBLIOGRAPHY 182

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. 2018.

Linguistically-informed self-attention for semantic role labeling. In EMNLP .

Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved semantic representa-

tions from tree-structured long short-term memory networks. In ACL.

Sachin S Talathi and Aniket Vartak. 2015. Improving performance of recurrent neural network with

relu nonlinearity. In ICLR.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document modeling with gated recurrent neural network

for sentiment classification. In EMNLP . pages 1422–1432.

Robert Endre Tarjan. 1977. Finding optimum branchings. Networks 7(1):25–35.

Zhiyang Teng and Yue Zhang. 2018. Two local models for neural constituent parsing. In ACL. pages

119–132.

Lucien Tesnière. 1959. Eléments de syntaxe structurale. Klincksieck.

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003. Feature-rich

part-of-speech tagging with a cyclic dependency network. In NAACL. volume 1, pages 173–180.

Kristina Toutanova and Christopher D Manning. 2002. Feature selection for a rich hpsg grammar

using decision trees. In CoNLL. volume 20, pages 1–7.

Dick C van Leijenhorst and Th P Van der Weide. 2005. A formal derivation of heaps’ law. Information

Sciences 170(2-4):263–272.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. 2015.

Grammar as a foreign language. In NeurIPS . pages 2773–2781.

Hongmin Wang, Yue Zhang, GuangYong Leonard Chan, Jie Yang, and Hai Leong Chieu. 2017.

Universal dependencies parsing for colloquial singaporean english. In ACL. volume 1, pages 1732–

1744.

Sida Wang and Christopher D Manning. 2012. Baselines and bigrams: Simple, good sentiment and

topic classification. In ACL. pages 90–94.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu. 2018. A neural transition-based approach

for semantic dependency graph parsing. In AAAI .

David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. 2015. Structured training for neural

network transition-based parsing. In ACL.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency analysis with support vector

machines. In IWPT . volume 3, pages 195–206.

BIBLIOGRAPHY 183

Daniel H Younger. 1967. Recognition and parsing of context-free languages in time n3. Information

and control 10(2):189–208.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter, Joakim Nivre,

and Slav Petrov. 2018. CoNLL 2018 shared task: Multilingual parsing from raw text to universal

dependencies. In CoNLL 2018 Shared Task . pages 1–21. http://www.aclweb.org/anthology/K18-

2001.

Daniel Zeman, Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Filip Ginter, Juhani Luoto-

lahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, Memduh

Gökırmak, Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr., Jaroslava Hlaváčová, Václava Ket-

tnerová, Zdeňka Urešová, Jenna Kanerva, Stina Ojala, Anna Missilä, Christopher Manning, Sebas-

tian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de Marn-

effe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de Paiva, Kira Droganova,

Hěctor Mart́ınez Alonso, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris,

Katrin Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu,

Emily Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirchner, Hector Fernandez Alcalde, Jana

Strnadova, Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak,

Gustavo Mendonça, Tatiana Lando, Rattima Nitisaroj, and Josie Li. 2017. CoNLL 2017 Shared

Task: Multilingual Parsing from Raw Text to Universal Dependencies. In CoNLL 2017 Shared

Task . Association for Computational Linguistics.

Rui Zhang, Cicero Nogueira dos Santos, Michihiro Yasunaga, Bing Xiang, and Dragomir Radev.

2018a. Neural coreference resolution with deep biaffine attention by joint mention detection and

mention clustering. arXiv preprint arXiv:1805.04893 .

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata. 2017. Dependency parsing as head selection.

EACL .

Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yaco, Sanjeev Khudanpur, and James Glass. 2016.

Highway long short-term memory RNNs for distant speech recognition. In ICASSP . IEEE, pages

5755–5759.

Yuan Zhang and David Weiss. 2016. Stack-propagation: Improved representation learning for syntax.

In ACL. volume 1, pages 1557–1566.

Yuhao Zhang, Peng Qi, and Christopher D Manning. 2018b. Graph convolution over pruned depen-

dency trees improves relation extraction. In ACL.

GK Zipf. 1949. Human Behaviour and the Principle of Least-Effort . Addison-Wesley.

http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001

	Abstract
	Introduction
	Syntax: From Theory to Practice
	Introduction
	Constituency structure
	Phrase structure grammars vs dependency grammars

	From Transformational Grammar to the Penn Treebank
	From Lexical Functional Grammar to Universal Dependencies
	From Minimal Recursion Semantics to DELPH-IN MRS
	From Head-driven Phrase Structure Grammar to Pre-dicate-Argument Structures
	From Functional Generative Description to Prague Semantic Dependencies
	Conclusion

	Machine Learning
	Affine classification
	Naïve Bayes and Maximum Entropy Classifiers
	Alternative parameterizations

	Biaffine classification
	Fixed-class classification
	Variable-class classification

	Neural classification
	Feedforward networks
	Recurrent neural networks
	Gated recurrent neural networks

	Conclusion

	Statistical Parsing
	Grammar-based parsing
	Transition-based Parsing
	The shift-reduce algorithm
	Neural transition-based models

	Arc-factored parsing
	The algorithm
	Neural arc-factored models

	Conclusion

	Biaffine Dependency Parsing
	Introduction
	Background and Related Work
	Proposed Dependency Parser
	Basic architecture
	Comparison with traditional attention
	Hyperparameter configuration

	Experiments & Results
	Datasets
	Hyperparameter choices
	Results

	Subsequent Work
	Language transfer
	Transition-based parsing
	Constituency parsing
	Multitask dependency parsing/semantic role labeling
	Coreference resolution

	Conclusion

	Multilingual Augmentations
	Introduction
	Architecture
	Deep biaffine parser
	Character-level model
	POS tagger

	Training details
	Results
	Nonprojectivity
	Data size

	Ablation Studies
	POS Tagger
	Character model

	2018 Shared Task Extensions
	Biaffine tagger
	Distance and linearization
	Results
	Other CoNLL 2018 extensions

	Conclusion

	Extension to Semantic Dependencies
	Introduction
	Background
	Semantic dependencies
	Related work

	Approach
	Basic approach
	Comparison with Peng et al
	Augmentations

	Results
	Hyperparameters
	Performance
	Variations

	Discussion

	Conclusion
	Bibliography

