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Abstract

Searching for educational resources on the
web would be greatly facilitated by the
availability of classificatory metadata, but
most web educational resources put up by
faculty members provide no such metadata.
We explore using text classification and in-
formation extraction techniques to automat-
ically gather such metadata. Text classi-
fications orthogonal to topic matter appear
possible with high (> 90%) accuracy, and
exact-match information extraction has an F
measure around 50%.

1 Introduction
In order to be able to do semantically rich queries
over distributed heterogeneous data collections like
the web, a key tool is the use of metadata to explicitly
annotate documents with relevant information. This
is the general goal of the semantic web[1], and such
markup schemes exist for education resources, for ex-
ample, IEEE LOM[2]. In the particular context of
the Edutella project[3], learning resources such as les-
son plans, tutorials, assignments, and so on are anno-
tated with the educational topic to which they pertain,
the education level of the intended audience, and so
on. The presence of such attributes allows highly cus-
tomized searches, as well as quick summaries of avail-
able documents.

A major challenge to building a metadata-rich
repository is that someone has to manually annotate
all the documents. This is a slow and costly process,
and many producers of educational content are prob-
ably not interested in going back and annotating all
their work. In the Edutella context, semantic metadata
is available for documents within the Edutella peer-
to-peer network, but it would be useful to be able to
conveniently access the mass of other educational re-
sources available on the web: there are numerous valu-
able educational resources available, but finding them
using traditional keyword searches is hard, and most
of them are not annotated with any useful metadata.

While searches can use available metadata when
present, there is thus a clear need to develop tools that
can perform some or all of this annotation automati-
cally. Such tools would save content creators time and

would allow content consumers to utilize the web as if
it were part of the same metadata rich environment to
which they were accustomed. In cases where fully au-
tomatic annotation cannot be accomplished with suf-
ficient accuracy, there is still value in providing sug-
gestions to human annotators. Or, one could highlight
information that is relevant to the annotation decision,
such as word features that a classifier has found to be
relevant in text classification discrimination.

There are two major technical avenues for automatic
metadata extraction. First is the classification of doc-
uments into appropriate categories on various dimen-
sions (e.g., what language the document is written in,
what type of learning resource it is, or what level of
student it is intended for). Second is the extraction
of text from documents for summary fields (e.g., title
and author of the document, topics covered in a course
description, or readings assigned on a syllabus). In
both cases, it is reasonable to seek systems that work
from limited training data: for any fine-grained topic
there is only a limited amount of material on the web,
and if people have to find and annotate most of those
pages, then there is little to be gained. So methods that
can quickly generalize are of particular interest. When
dealing with web pages, another interesting question
is whether HTML markup can be usefully exploited in
addition to the text content for classification or extrac-
tion.

In this paper, we present some early results on this
task of providing metadata for educational web pages,
considering first text classification, and then informa-
tion extraction.

2 Data Collection and Annotation
We downloaded text web pages for both classification
and information extraction. While it would be useful
to extend analysis to other formats such as PDF and
postscript, the present experiments used just HTML
pages. For classification, we collected 4 different
types of resources: syllabi, assignments, tutorials, and
exams. Such a text classification task is orthogonal
to typical topic-based classification decisions, but it
seems reasonable that good results should still be pos-
sible based on features present in the documents.

When collecting pages, we restricted ourselves to
artificial intelligence and machine learning courses,
since the syllabi in this case were also used for infor-



Table 1: Reachable Relevant Pages out of Top 20

Search Term Num Returned Num Relevant
syllabus 20.3K 15
class 442K 10
course 550K 7
introduction 552K 7

mation extraction (see below). For the most part, we
found these pages by a web search engine using the
terms “artificial intelligence” or “machine learning”
with “course,” “class,” or “syllabus.” We also used
some directories and lists of such courses of which we
were aware. We then proceeded from the main course
page to find connected pages with assignments or on-
line exams. For the tutorials, we used similar search
terms and directories.

As noted previously, finding these resources via
keyword search alone is difficult. We measured in-
formally the difficulty of the task. We combined
the search term “artificial intelligence” with each of
“course,” “class,” “syllabus,” and “introduction,” and
measured the number of useful pages that were easily
reachable from the pages of the top 20 search terms
returned. Table 1 summarizes the results. Even these
figures are fairly lenient, as we included in the count
both duplicates between the four terms and pages that
we could find by following one or two links from the
page returned by the search. An automated crawler
would fare much worse in distinguishing the desirable
pages.

Finally, for the extraction task, we took the syl-
labi collected above and used an annotation tool to tag
them with a set of 5 tags, course number, course title,
instructor, year, and readings. This tool also removed
certain HTML material, such as SCRIPT blocks and
comments; these features were also removed from the
pages before classification was applied.

3 Classification
For the classification task, we used a classifier to
distinguish between different resource types. Clas-
sification was done with a maximum entropy classi-
fier, which here used just word-category features, and
hence is simply a multiclass logistic regression model.
The model uses a Gaussian prior on feature weights for
regularization, and is fit by conjugate gradient search.
The model is essentially similar to[4], and actually
uses the classifier within the sequence model described
in [5].

We collected 385 pages in all: 131 assignment
pages, 219 syllabus pages, 22 tutorial pages, and 13
exam pages. Given this data distribution, we are close
to dealing with a two-class classification problem, so
we looked at accuracy both for the two class case and
for the more unbalanced data set. So for both cases,
for five random splits of the data, we trained the clas-
sifier on 80% of the pages and tested on the remaining
20%. The training set accuracy on these splits was
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Figure 1: Classification Accuracy for Resource Type

Table 2: Multi-way accuracy per label

Category Prec Rec F1

assignment 89.6 91.6 91
syllabus 95.3 100 98
exam 50 27.5 35
tutorial 68.75 51.78 59

uniformly 100% accurate. We created learning curves
for both cases, training on increasingly larger portions
of the training set, and testing classification accuracy
on the test set. The trends are shown in Figure 1. For
the full training set in the multi-class case, the average
test set accuracy was 92.5% and the number of word
features was about 22,160 on average. For the binary
case, the average accuracy was 98.6% and the number
of word features was 20,235.

For the binary case, errors are fairly evenly split be-
tween mistakingassignment for syllabus and vice
versa, with a slight tendency in some splits to mislabel
assignment assyllabus more than the reverse mis-
take, but both types of mistakes were made in at least
one training set size for every split. For the multi-class
case, the results were more mixed. The precision, re-
call, and F1 are shown in Table 2. Forexam, all errors
were due to their incorrect labeling asassignment.
This is not surprising given the similar nature of the
two. For tutorial, they either got mislabeled asas-
signment or syllabus, almost equally, but never as
exam. We examined the weights learned in two of the
splits: for assignment, the maximum weighted fea-
ture in both splits wasforbidden, coming from state-
ments prohibiting copying from other students or on-
line sources!

4 Information Extraction
For many types of metadata, including course titles
and instructors, the possible values for fields are not
confined to a closed set, and are therefore beyond the
extraction capabilities of classification. Information
extraction is a promising alternative, since it allows us
to accommodate variation in the values of the field,



as well as exploit the surrounding context for extrac-
tion. Our general approach to information extraction
is the use of class HMMs, in the general tradition of
[6]. In this model, the mathematics of which is clearly
described in[7], each hidden state generates not only
a word, but also a class label: the name of a field to be
extracted or ‘Background’. At training time, the state
sequence is partially constrained by observed class la-
bels, but not full determined, and parameter estimation
is done by the EM algorithm. For unknown words, the
model uses a class-based model, based on features of
words, such as capitalization and the presence of num-
bers. Figure 2 indicates one kind of HMM topology
used in the experiments. This structure seeks to ex-
tract a single target field, uses a unigram model for the
background, and attempts to model the target prefix
and suffix with three states. Not shown are self-loops
on every state, and forward arcs on the target states.
We experimented some with target chains of different
lengths based on the field being extracted, but since
skipping is allowed in target chains, a longer chain
structure can still model targets of shorter lengths, and
this parameter did not have much effect.

We also experimented with a single large HMM
which contained states corresponding to all of the tar-
get fields. The beginning and end of these target chains
were fully connected to each other and eight back-
ground states (an ergodic context model), with param-
eter estimation used to find a suitable model structure.

Table 3 summarizes our experimental results. As
discussed above, the data set was 219 syllabi coded for
5 fields, and we present the average of 10-fold cross-
validation experiments (each test fold is quite small,
and there is quite high variance in the results between
folds). We used the same evaluation metric as[6] –
reporting the F1 score (harmonic mean) of precision
and recall, based on exact target matching, calculated
on the basis of correctly instantiating the fields of a
metadata relation for the page. This is a fairly strin-
gent evaluation criterion (for instance, a mostly correct
evaluation missing a word gets no credit).

Results are in general promising, but some fields are
easier than others. Incorporating basic HTML markup
tags boosted performance. This is not surprising, as
certain HTML tags, such as<title> are strongly
correlated with target fields, and targets frequently oc-
cur within<i> and<b> tags, or following<li> tags.
The two chain lengths are for the length of the tar-
get chain, and of each of the prefix and suffix chains.
Initially target lengths were chosen heuristically based
on the complexity of the fields, but in retrospect sim-
ply choosing a uniform chain length of 4 would have
made no real difference (given that skipping forward
is allowed in target chains). The context chain length
partly determines how much context can be modeled
(but note that the context states have self-loops, unlike
those of[6] – something that we have found useful in
other experiments). Here, the data set is sparse enough
that having more than one context state on each side of
the target does not seem to have any useful discrimi-

Table 3: HMM information extraction results.

Targ/Conx Keep First/
Target Field Chain Len HTML? Best F1
One field at a time results
Course number 4/1 Yes First 78.3
Course number 2/3 Yes First 68.8
Course number 4/1 Yes Best 67.0
Course number 2/3 Yes Best 63.5
Course number 2/3 No Best 51.3

Course title 4/3 Yes First 43.6
Course title 4/3 Yes Best 52.5
Course title 4/3 No Best 37.3

Instructor 3/3 Yes Best 37.0
Instructor 4/1 Yes Best 35.1
Instructor 3/3 No Best 35.5

Date 4/1 Yes Best 53.0
Date 4/3 Yes Best 51.2

Reading 4/3 Yes Best 21.0
All fields at once results
Course number 4/NA Yes Best 55.5
Course title 4/NA Yes Best 53.2
Instructor 4/NA Yes Best 37.8
Date 4/NA Yes Best 49.7
Readings 4/NA Yes Best 31.1

nating power. We also recognized that certain fields,
such as course number and course title, tend to ap-
pear near the top of the page. We attempted to ex-
ploit this (non-stationary) domain knowledge by addi-
tionally trying extracting the first segment labeled as a
target, whereas the standard system returns the “best”
segment (the one with the highest length-normalized
generation probability within a window). This met
with mixed success: it was very helpful for the course-
number field, but didn’t have positive value for the
course-title field. Ways of choosing between targets
picked out by the HMM deserves further thought. Fi-
nally, the all-fields-at-once HMM might be hoped to
do better global modeling of the sequence of entities
in a document, at the cost of having a less detailed
model of the prefix and suffix contexts of individual
fields. But at least for this data set, the two models
seem to give roughly equal results overall.

5 Plans for Future Work
The results indicate that automatic extraction of meta-
data is feasible at least in certain cases, but much could
be done to improve the utility of such an approach. Ex-
tracting summary information is clearly a more diffi-
cult task in general than classifying a page into one of
a set of categories. Additional data would presumably
help, though in many cases it would be unreasonable to
expect more labeled data than was available here. One
promising avenue is to exploit existing domain knowl-
edge top-down to constrain classification and extrac-



Figure 2: Indicative HMM structure used in information extraction experiments.

tion. For example, if one knows the course numbering
system at a university, that can be helpful in determin-
ing whether a course web page is intended primarily
for undergraduates or graduate students. Another is to
realize that word level data is likely to be too sparse for
effective training in many cases, and to make more use
of higher level notions, such as person names, which
could be provided by a generic named entity recog-
nizer. Eventually, the success metric of this approach
is to be measured by whether it saves human annota-
tors time reaching a given standard of annotation qual-
ity for documents, and whether it provides value in
obtaining educational material from the web beyond
simply using a search engine.
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