
avm.sty

Christopher Manning

manning@cs.stanford.edu

Version 1.00 – March 29, 1992
Version 1.03 – December 8, 2013

avm.sty is a TEX macro package that makes it easy to draw attribute-value matrices (AVMs,
also known as feature structures and signs), things like (1):

(1)

indexed-obj

index

index

variable 1

variable

per 3rd

num sing

gend neut

restriction

psoa

[

relation book

instance 1

]

avm.sty is designed to be compatible with all of plain TEX, LATEX 2.09, and LATEX2ε; the few
differences between using these different formats are mentioned at the appropriate places below. It
is a special mode, like math mode, in which various things are redefined in order to make it easy
to typeset a certain type of thing. In fact, avm.sty supports multiple modes of AVM entry that are
tailored to different needs. This document first describes the basic mode of avm.sty and then shows
how the specialized modes deviate from it. Everything that can be done in one of the specialized
sub-modes can also be done in the main mode; it’s just that you might need more keystrokes.

1 Loading this option

If you are using LATEX, avm.sty should be included among the other packages that you load. For
example, you might type at the beginning of a LATEX2e document:

(2) \documentclass[11pt]{article}

\usepackage{graphicx}

\usepackage{avm}

In TEX, you input the file by including the following near the beginning of your document:

(3) \input avm.sty

Either of these assumes that the file avm.sty is somewhere on the search path for input files (the
TEXINPUTS environment variable). This search path usually includes the current directory.

1

2 The ‘standard’ environment

Most commands (except those that establish defaults) are only available within an AVM environ-
ment. To enter and exit this environment, in LATEX you type:

(4) \begin{avm}

...

\end{avm}

while in (Plain) TEX you type:

(5) \avm

...

\endavm

2.1 Making AVMs in square brackets

The commands \[and \] begin and end a square-bracketed AVM. Within an AVM, a new line is
begun by typing \\.1 It is unnecessary to type \\ following the last row of the AVM. Within a line
columns are divided by the ampersand ‘&’. There can actually be any number of columns, although
in most applications of AVMs there are only two. For example:2

(6) a.

cat | subcat
〈

NPit, NP
2
, S[comp]: 3

〉

content

relation bother

bothered 2

soa-arg 3

b.

subj

pers 3

num sg

gend masc

pred ‘pro’

pred ‘eat〈SUBJ, OBJ〉’

obj

pers 3

num pl

gend fem

pred ‘pro’

(7) a. \begin{avm}
\[cat\|subcat & \<NP$_{it}$, NP$_{\@2}$, S[comp]:\@3\> \\

1TEX users can use \cr instead. LATEX users (only!) can follow the \\ with things that can follow \\ in tabular

environments. So you can put extra space below one line of an AVM by typing \\[2ex]. However, this means that
a left square bracket following a \\ must be put inside braces, or it will be misinterpreted as the argument of \\.

2Here is one in a footnote (note the smaller fonts):

(i)

ind

pers 3

num sg

gend masc

refind 12

2

content & \[relation & \bf bother\\

bothered & \@2 \\

soa-arg & \@3 \] \]

\end{avm}

b. \begin{avm}
\[subj & \[pers & 3 \\

num & sg \\

gend & masc\\

pred & \rm ‘pro’ \]\\

pred & \rm ‘eat\q<SUBJ, OBJ\q>’\\

obj & \[pers & 3 \\

num & pl \\

gend & fem \\

pred & \rm ‘pro’ \]

\]

\end{avm}

The underlying environment is based on TEX’s \halign (which also underlies LATEX’s tabular

environment), and so the normal conventions of these apply. Note that spaces are ignored on both
sides of an & or \\, as in LATEX’s tabular environment (but not in Plain TEX’s \halign).

2.1.1 When you don’t want to align columns

There are some occasions when you don’t want things lined up in columns. For example, with a
long HPSG path, we probably want the output to look as in (8a) not (8b).

(8) a.

synsem | local |content 2

qstore

det forall

restpar 2

para 1

restr

[

reln book

inst 1

]

b.

synsem | local |content 2

qstore

det forall

restpar 2

para 1

restr

[

reln book

inst 1

]

There are several ways to achieve this, which will be presented in order from the quick and dirty
fix to the best solution. One way is just to not use &s. That way everything will be in one column:

(9) a.
[

short value1

extremely-loooooooooong value2

]

b. \begin{avm}
\[short \rm value$_1$ \\

3

extremely-loooooooooong \rm value$_2$ \]

\end{avm}

However, the discerning eye will notice that there is then only a normal space width between
attributes and values, and that looks bad. But avm.sty defines a command \; analogous to the
‘thick space’ in math mode that will put in the normal spacing between attributes and values. So
the above example can be improved by typing it as follows.

(10) a.
[

short value1

extremely-loooooooooong value3

]

b. \begin{avm}
\[short\; \rm value$_1$ \\

extremely-loooooooooong\; \rm value$_3$ \]

\end{avm}

However, to make elegant AVMs it is often the case that you want most columns to be lined up,
and in this case, you should use & in most columns as usual, but make the entire exceptional rows
an argument of the command \avmspan as shown below:

(11) a.

content

reln cause

causer 1

causee 2

caused-event |reln 3

b. \begin{avm}
\[content & \[reln & \bf cause \\

causer & \@1 \\

causee & \@2 \\

\avmspan{caused-event\|reln\;\@3} \] \]

\end{avm}

2.2 Other types of brackets and braces

avm.sty also provides other types of large extendable braces and brackets. One uses \{ and \} for
curly braces, \(and \) for round parentheses, \< and \> for angle brackets and \avml and \avmr

for no brackets at all. Note that angle brackets have a maximum size, though, and are not infinitely
stretchable like the other types of brackets. As is usual in TEX, an opening bracket must be matched
by a closing bracket, but the two need not be of the same sort. All these commands provide exactly
the same internal environment as was described above for square brackets (e.g., use of & and \\),
although, in general, these fancier options are less used with these types of braces. Some examples
follow. Note (12c–d), which both shows the ‘misuse’ of a 3 column AVM for formatting purposes,
and a reasonable way to typset HPSG abbreviation macros.3

3A future version of avm.sty might include more integrated support for this idiom.

4

(12) a.

qstore

det the

restpar

para 1

restr

reln poss

possessor 3

possessed 1

union { 2 }

b. \begin{avm}
\[qstore & \{ \[det & \rm the \\

restpar & \[para & \@1 \\

restr & \{ \[reln & \rm poss \\

possessor & \@3 \\

possessed & \@1\]\}\ \bf union \q\{\@2\q\}

\] \] \} \]

\end{avm}

c. kak

subcat

〈 NP
[

case nom

ind 1

]

,

NP
[

case acc

ind 2

]

〉

=⇒

kak-ase

subcat

〈 NP
[

case nom

ind 3

]

,

NP
[

case dat

ind 1

]

,

NP
[

case acc

ind 2

]

〉

d. \begin{avm}
\avml

\avml \normalsize\rm kak\\

\[subcat \< \avml \hfil NP \hfil \\[-1ex] \[case&nom\\ind&\@1\]\avmr,

\avml \hfil NP \hfil \\[-1ex] \[case&acc\\ind&\@2\] \avmr \>\]

\avmr

& \Longrightarrow &

\avml \normalsize\rm kak-ase\\

\[subcat \< \avml \hfil NP \hfil \\[-1ex] \[case&nom\\ind&\@3\] \avmr,

\avml \hfil NP \hfil \\[-1ex] \[case&dat\\ind&\@1\] \avmr,

\avml \hfil NP \hfil \\[-1ex] \[case&acc\\ind&\@2\] \avmr \>\]

\avmr \avmr

\end{avm}

e.

pred ‘see〈girl, Mary〉’

subj ‘girl’

obj ‘Mary’

pred ‘heard〈girl, Bill〉’

subj ‘girl’

obj ‘Bill’

f. \begin{avm}
\{ \[pred & \rm ‘see\q<girl, Mary\q>’ \\

subj & \rm ‘girl’ \\

obj & \rm ‘Mary’ \] \\

5

\[pred & \rm ‘heard\q<girl, Bill\q>’ \\

subj & \rm ‘girl’ \\

obj & \rm ‘Bill’ \] \}

\end{avm}

For normal text size brackets, [,], (and) work in the usual way. Curly braces and angle
brackets can be made using the \q (‘quote’ command), by writing \q\{, \q\}, \q< and \q>, as in
(12b,f). Or they can be made by going into math mode in the usual way.

2.3 Other features

2.3.1 Sort labels

avm.sty was written with extensive integrated support for putting sort labels at the corners of AVMs,
as was done in HPSG until about 1995. This support is described below. It can also be usefully
misappropriated for many other purposes, such as putting index numbers on AVMs. However,
unfortunately, this style fell out of favor in HPSG. We believe this may have been partly because
no one else knew how to typeset such sort labels, but the classic format was arguably also rather
inefficient in its use of the page width. It is also straightforward to use new fashion labels which
appear at the top of an AVM.

2.3.2 The modern way

You can put a sort at the top of an AVM, in the \avmsortfont, if defined, by using the \asort{sort}
command, for example:

(13) a.

adverb-rel

arg

cause-rel

actor k

undergoer i

effect

buy-rel

actor i

undergoer j

b. \avmsortfont{\it}
\avmvalfont{\it}

\begin{avm}

\[\asort{adverb-rel}

arg & \[\asort{cause-rel}

actor & k \\

undergoer & i \\

effect & \[\asort{\it buy-rel}

actor & i \\

undergoer & j \] \] \]

\end{avm}

Note that a \\ should not be inserted after \asort.

6

2.3.3 The classic way

The commands \sort and \osort put sort labels at the corner of any structure. They differ in that
the label of \sort takes up space in the column or text where it appears whereas \osort overlaps
its label into the previous column or text. \osort does not check for collisions so you have to use
your judgment. For example, (1) was typeset with these commands:

(14) \avmvalfont{\it}

\begin{avm}

\sort{indexed-obj}{\[index & \osort{index}{\[

variable & \@1 \osort{variable}{\[per & 3rd \\

num & sing \\

gend & neut \]} \\

restriction & \osort{psoa}{\[relation & book \\

instance & \@1 \]} \]} \]}

\end{avm}

If one wants (almost) all square-bracketed feature structures sorted, it is more convenient to use
the sub-mode sorted (see Section 4.2). See also Section 4.1 for how to vary the sort label position.

Another use for this sort support is for giving index numbers to AVMs, for example:

(15)

1

subj

2

pred ‘pro’

num sg

pers 1

pred ‘want〈 2 , 3 〉’

xcomp

3

[

pred ‘go〈 4 〉’

subj 4

]

2.3.4 Bars, index boxes, nodes and lines

The command \| will produce a vertical bar with a little space on either side. The command
\@{...} will produce a labeled index box, as used in PATR and HPSG. If the index is a single
digit, the braces may be omitted. The \@ command only works within the AVM environment, but
since you often want to refer to index boxes in the text of your paper, the additional command
\avmbox{...} can be used anywhere to draw an index box.

For curved lines connecting AVMs (as widely used in LFG), Emma Pease’s tree-dvips.sty can
be used as normal, but avm.sty also adds the shortcut whereby \! can be used instead of \node.
One often wants these curved lines to connect to a dash or an empty feature structure. So avm.sty

provides the one-parameter commands \avmd and \avmb (for dash and box, respectively), that
draw such an object and label it with their parameter. These are illustrated below:

(16) a.

subj

pred ‘pro’

num sg

pers 1

pred ‘want〈—, — 〉’

xcomp

[

pred ‘go〈—〉’

subj []

]

7

b. \begin{avm}
\[subj & \!{a}{\[pred & \rm ‘pro’\\

num & sg \\

pers & 1 \]} \\

pred & \rm ‘want\q<\avmd{aa}, \avmd{bb}\ \q>’ \\

xcomp & \!{b}{\[pred & \rm ‘go\q<\avmd{aaaa}\q>’ \\

subj & \avmb{aaa} \]} \]

\end{avm}

\nodecurve[r]{a}[t]{aa}{.4in}

\nodecurve[b]{aa}[t]{aaaa}{.2in}

\nodecurve[r]{aaa}[b]{aaaa}{.15in}

\nodecurve[r]{bb}[r]{b}{.5in}[.5in]

If one wants (almost) all square-bracketed feature structures labeled, it is more convenient to use
the sub-mode labeled (see Section 4.2).

3 Fonts

By default, avm.sty puts AVMs in the type size and style that is currently being used. This allows
one to easily type things like the following (in LATEX):

(17) a.

content

reln cause

causer 1

causee 2

caused-event | reln 3

b. {\footnotesize\sf \begin{avm}

\[content \[reln & \bf cause \\

causer & \@1 \\

causee & \@2 \\

\avmspan{caused-event\|reln\;\@3} \] \]

\end{avm}}

However, one often wants all AVMs to be set in certain fonts and so avm.sty lets you specify default
fonts for AVMs. This is done with the following commands:

(18) a. \avmfont{...}

b. \avmvalfont{...}

c. \avmsortfont{...}

This is how fonts work: (i) index box contents are set in the \scriptstyle (smaller subscript
size) of the current math font; (ii) if \avmsortfont is defined, sort names for AVMs are set in the
\avmsortfont; (iii) if \avmvalfont is defined, value names (items in the second and subsequent
columns of the AVM environment) are set in the \avmvalfont; (iv) everything not assigned a font
so far is set in the \avmfont, if this is defined, and in the current default font otherwise.

Most of the examples in this document are set in small capitals using the following (LATEX)
defaults:

8

(19) \avmfont{\sc}

\avmsortfont{\scriptsize\it}

After setting up a default font, to reset things so that avm.sty uses the current font, simply call the
same commands with an empty argument, for example, \avmfont{}.

Note for Plain TEX users: by default, neither the small capitals font nor the equivalent of
LATEX’s \scriptsize italic font is loaded. To get similar output in Plain TEX, the minimum you
must add somewhere near the beginning of your file is:

(20) \font\tensc=cmcsc10

\font\seveni=cmti7

\avmfont{\tensc}

\avmsortfont{\seveni}

However, more setup would be required to fully integrate these fonts into Plain TEX or to get things
to work with different font sizes or scalings.

The font of any individual item can be changed in the usual way with a font changing command,
as shown in (14). Note that in any of the bracketed structures, font changes are always only local
(having scope until the next & or \\), so it is generally not necessary to use braces to delimit font
changes.

4 User-specified options

avm.sty has various (well, eight) options that you can specify. Three of these activate sub-modes
which alter how you input AVMs, while the others alter the way AVMs appear in the output.
You activate these options by using the \avmoptions command. This command takes a comma-
separated list of options to be turned on and all the other options are turned off. So, three
options are turned on with (21a) and all are turned off (returning things to the default mode)
with the command (21b). Just labeled can be selected with command (21c). Note that the
parameter to an \avmoptions command must not contain any spaces! The options are active;
sorted, labeled; center and bottom; topleft, topright, and bottomright. Options within each
semicolon-separated set are mutually exclusive, but otherwise the options can be freely combined.

(21) a. \avmoptions{active,sorted,bottom}

b. \avmoptions{}

c. \avmoptions{labeled}

Setting these options is local to a group and so the domain of effect can be delimited with braces.
Also, since all LATEX environments (things enclosed in \begin . . . \end pairs) define their own
group, including an options command within such a \begin . . . \end pair will affect only the
processing of the rest of that environment.

4.1 Sort labels in different corners: topleft, topright, and bottomright

While HPSG normally places sort labels in the bottom left corner of AVMs, with avm.sty you can
actually have sort labels in any corner that you wish. You select different corners for the \sort and
\osort commands and the sorted option with the options topleft, topright, and bottomright.
This is illustrated in the next section.

9

4.2 The sorted and labeled sub-modes

These modes both affect just the behavior of the square brackets commands (in either the default
mode or the active sub-mode) and are mutually exclusive. Left square-bracket commands take
one argument, which is the sort or node label name for this AVM. The labeled mode gives the
same results as using \! (i.e., \node), but lessens the typing required:

(22) a.

subj
[

num pl
]

tense pres

pred ‘bark〈—〉’

b. \avmoptions{labeled}
\begin{avm}

\[{a} subj & \[{b} num & pl \] \\

tense & pres \\

pred & \rm ‘bark\q<\avmd{c}\q>’ \]

\end{avm}

\nodecurve[br]{b}[t]{c}{15pt}

The sorted sub-mode gives a combination of the effects of the \sort and \osort commands
(trying to give you what you probably want). If the corner sub-mode is topright or bottomright
then it always behaves as \sort. If the sub-mode is topleft, or the default which puts labels in
the bottom left, then it behaves like \osort, except at the outermost level of the AVM, where it
behaves like \sort.4 Example (23) was produced by preceding (24) by each of the commands in
(25) in turn.

(23)
index

variable 1

variable

per 3rd

num sing

gend neut

restr

psoa[

relation book

instance 1

]

variable 1

per 3rd

num sing

gend neut

variable

restr

[

relation book

instance 1

]psoa

index

index

variable 1

variable

per 3rd

num sing

gend neut

restr

psoa

[

relation book

instance 1

]

variable 1

per 3rd

num sing

gend neut

variable

restr

[

relation book

instance 1

]

psoa

index

(24) \begin{avm}

\[{index} variable & \@1 \[{variable} per & 3rd \\

num & sing \\

gend & neut \] \\

restr & \[{psoa} relation & book \\

4This is so the outermost sort label will not overlap the text preceding it, whereas if you use the \osort command,
no extra space is added, even at the outermost level. This means that if you are building AVMs with sorts in parts,
you will want to use \osort rather than the sorted sub-mode.

10

instance & \@1 \] \]

\end{avm}

(25) a. \avmvalfont{\rm}
\avmoptions{topleft,sorted}

b. \avmoptions{topright,sorted}

c. \avmoptions{sorted}

d. \avmoptions{bottomright,sorted}

4.3 The active sub-mode

The AVMs above looked okay, but it can get tiring typing all the backslashes. So an alternative
environment in which bracket characters are ‘active’ (i.e., they are commands) is also provided.
Using it, one can type the AVM in (8a) as follows:

(26) \avmoptions{active}

\begin{avm}

[synsem|local|content\; @2 \\

qstore\; \{ [det & \rm forall \\

restpar & @2 [para & @1\\

restr & \{ [reln & \rm book\\

inst & @1] \}]] \}]

\end{avm}

The functionality of this environment is exactly the same as that of the default mode described
above; all that differs is how various commands are called. The following table defines the corre-
spondence between commands in the two versions:

(27) Default active mode Default active mode

\[[\]]

\((\))

\< < \> >

\{ \{ \} \}

[\[] \]

(\() \)

\q< \< \q> \>

\q\{ \q\{ \q\} \q\{

\@{...} @{...} \| |

All other commands in the avm environment are unchanged when the active sub-mode is in effect.
Note that curly braces still require a preceding backslash. This is so curly braces can retain their
usual TEX functions.

Unfortunately, there is a major restriction on being able to use this environment. Because of the
way TEX works, such an environment cannot appear inside the argument of any command (such as
\footnote or the \enumsentence macro of Emma Pease’s lingmacros.sty).5 However, the active

5This is because characters receive a permanent catcode when first read as a macro argument. This is a fundamental
feature of TEX and nothing to do with this package. Hence it isn’t likely to change.

11

sub-mode can be used within LATEX environments or between Plain TEX commands that serve as
a preamble and postamble. For example, the author has an example environment that produces
output similar to the \enumsentencemacro, and using it and the active sub-mode, he could draw
the structure in (28) by using the commands in (29).

(28)

qcontent

〈

det some

restpar

para 3

restr

[

reln poem

inst 3

]

〉

dcontent

relation know

knower 2

[

pers 1

num sg

]

(29) \begin{example}

\avmoptions{active}

\begin{avm}

[qcontent & < [det & \rm some \\

restpar & [para & @3 \\

restr & \{ [reln & \rm poem\\

inst & @3] \}]] > \\

dcontent & [relation & \rm know \\

knower & @2 [pers & 1 \\ num & sg]]]

\end{avm}

\end{example}

Here is one more example of the active sub-mode (in combination with the sorted sub-mode),
included mainly to exercise the other commands in the sub-mode.

(30) a.

test

testing

stuff

widget

attr1 〈 value
1
〉

attr2 (value)

attr3 [{ value }]

b. \avmoptions{active,sorted}
\begin{avm}

[{test} testing & (stuff & [{widget} attr$_1$ & \< value$_{@1}$ \> \\

attr$_2$ & \(value \) \\

attr$_3$ & \[\q\{ value \q\} \]])]

\end{avm}

4.4 The center and bottom options

These parameters determine the positioning of the whole AVM. Although an AVM usually appears
in a display environment, it is actually like one huge character as far as TEX is concerned, and if
you choose to put it near other characters, you might want any of the top, bottom or center of
it aligned with those other characters. By default you get alignment along the top (usually what

12

you want), but you can change this by specifying bottom or center to the \avmoptions command.
Giving any \avmoptions command that does not specify center or bottom will return you to using
alignment along the top. All three possibilities are shown in the below:

(31) a. Top

case acc

gend fem

num pl

, bottom

case acc

gend fem

num pl

or center

case acc

gend fem

num pl

.

b. Top \avmoptions{active}\begin{avm}

[case & acc \\ gend & fem \\ num & pl]

\end{avm},

bottom \avmoptions{active,bottom}\begin{avm}

[case & acc \\ gend & fem \\ num & pl]

\end{avm}

or center \avmoptions{active,center}\begin{avm}

[case & acc \\ gend & fem \\ num & pl]

\end{avm}.

Within the AVM environment, bracketed structures are always aligned along their centers. But you
can get different alignments by nesting AVM environments (as opposed to nesting brackets within
a single AVM environment).

5 Advanced topics

5.1 Layout parameters

Three parameters control the spacing in AVMs. \avmvskip determines the extra vertical space
added at the beginning, end and between every row of an aligned structure. \avmhskip determines
the spacing between two columns of an aligned structure. At the left and right borders of an aligned
structure (between the bracket and the first or last column) the spacing is \avmbskip. The default
values of these parameters (determined by eyeballing) are:

(32) a. \avmvskip{0.385ex}

b. \avmhskip{1em}

c. \avmbskip{0em}

These defaults are defined in terms of the font-dependent units em and ex so that they vary with
the font size, but these parameters can be defined as any 〈dimen〉. For more compressed AVMs
(such as those embedded in phrase-structure trees), the author tends to issue the commands in
(33a) and then the AVM in (1) will appear smaller as in (33b):

(33) a. \avmvskip{.1ex}\avmhskip{.5em}

13

b.

indexed-obj

index

index

variable 1

variable

per 3rd

num sing

gend neut

restriction

psoa

[

relation book

instance 1

]

5.2 Using boxes to build huge AVMs

This section is mainly historical: this was a problem in the early days, but modern TEX implemen-

tations are not so limited in terms of their semantic nest size parameter. However, it is retained

for completeness. It can still be useful if there is a piece of AVM that you wish to have reappear

many times inside larger AVMs.

TEX has only a finite capacity for nesting, and if a structure is too complicated TEX may be
unable to set it. The vertical length of an AVM is fairly unimportant; the critical parameter is
the horizontal depth of nesting of stretchable brackets. On the TEX I was using in 1992, one
could embed stretchable brackets to about the level shown in (28) (when already within a LATEX
list environment). To set a more complex AVM than this, you unfortunately had to set pieces
separately, store them in box registers and then set the whole AVM (or else find a TEX with a larger
semantic nest size). An example of how to do this is shown below. Not the use of the center

sub-mode.6

(34) a.

sign

phonology 〈she〉

synsem

synsem

local

local

category

cat

[

head noun[case nom]

subcat 〈 〉

]

content

ref-obj

para 1

ppro

index

index

per 3rd

num sing

gend fem

restr { }

context

context

backgr

soa

[

reln female

inst 1

]

b. \newbox\mybox \newbox\myboxtoo \avmoptions{center}

\setbox\mybox=\hbox{\begin{avm}

\osort{ppro}{\[index & \osort{index}{\[per & \it 3rd\\

num & \it sing\\

gend & \it fem \]} \]}

\end{avm}}

\setbox\myboxtoo=\hbox{\begin{avm}

\sort{soa}{\[reln & \it female \\

6Note also that TEX box manipulation commands are shown. These work perfectly well under LATEX as well, but
if you want to find out about the official LATEX box manipulation commands, see pp. 96–101 of the LATEX book.

14

inst & \@1 \]}

\end{avm}}

\avmoptions{active,sorted}

\begin{avm}

[{sign} phonology\;\<\rm she\> \\

synsem\;[{synsem} local & [{local} category & [{cat} head &

\it noun{\sc \[case\;{\it nom}\]}\\

subcat & \< \>] \\

content & [{ref-obj} para & @1 \box\mybox \\

restr & \q\{ \q\}] \\

context & [{context} backgr & \{ \box\myboxtoo \}]]]]

\end{avm}

It would be nice if avm.sty could be made more economical in its use of this TEX resource, but I
don’t know how to do that without compromising the functionality or the user interface of avm.sty.

5.3 Known problems

All known bugs having been fixed for each release. Please send bug reports and ideas for improve-
ments to the email address given at the beginning of this document.

However, clearly in 2013, avm.sty should be upgraded to interface to a more modern and portable
line-drawing framework than tree-dvips.sty. That task remains for future work.

15

