When is Self-training Effective for Parsing?

dmcc@cs.brown.edu

Brown Laboratory for Linguistic Information Processing (BLLIP) Joint work with Eugene Charniak and Mark Johnson

Outline

- What is self-training?
- Previous work
- Experimental setup
- Four hypotheses
- Conclusions

Outline

- What is self-training?
- Previous work
- Experimental setup
- Four hypotheses
- Conclusions

Self-training Requirements

- Labeled data
- Large amount of unlabeled data
- Statistical model:
 - model = train(labeled data)
 - labels = label(model, unlabeled data)

Self-training Pseudocode

- 1 base = train(labeled)
- 2 autolabeled = label(base, unlabeled)
- 3 combined = labeled + autolabeled
- 4 selftrained = train(combined)

(Not pictured: data selection, iteration, weighting, etc.)

Outline

- What is self-training?
- Previous work
- Experimental setup
- Four hypotheses
- Conclusions

Previous Work

	Parser type	Seed size	Iterations	Improved ?
Charniak (1997)	Generative	Large	Single	No
McClosky et al. (2006)	Gen.+Disc.	Large	Single	Yes
Steedman et al. (2003)	Generative	Small	Multiple	No
Reichart and	Generative	Small	Single	Yes
Rappoport (2007)				

 $(large = \sim 40k \text{ sentences}, small = <1k \text{ sentences})$

Summary of self-training for parsing experiments

Previous Work

Charniak (1997)	Generative	Large	Single	No
McClosky et al. (2006	6) Gen.+Disc.	Large	Single	Yes
Steedman et al. (200	3) Generative	Small	Multiple	No
Reichart and	Generative	Small	Single	Yes
Rappoport (2007)				

(large = ~40k sentences, small = <1k sentences)

Summary of self-training for parsing experiments

In large seed case, generative + discriminative parser is necessary.

Previous Work

	Parser type	Seed size	Iterations	Improved?
Charniak (1997)	Generative	Large	Single	No
McClosky et al. (2006)	Gen.+Disc.	Large	Single	Yes
Steedman et al. (2003)	Generative	Small	Multiple	No
Reichart and	Generative	Small	Single	Yes
Rappoport (2007)				

 $(large = \sim 40k \text{ sentences}, small = <1k \text{ sentences})$

Summary of self-training for parsing experiments

- In large seed case, generative + discriminative parser is necessary.
- Performing only one iteration is better than multiple iterations.

Previous Analysis

	Seed		Predictor	
	size	Length	# unknown words	
McClosky et al. (2006)	Large	+	-	
Reichart and Rappoport (2007)	Small	+	+	

Previous Analysis

	Seed	Predictor		
	size	Length	# unknown words	•
McClosky et al. (2006)	Large	+	—	
Reichart and Rappoport (2007)	Small	+	+	

• Unknown words are a good predictor of selftraining's success **only** in the small seed case.

Outline

- What is self-training?
- Previous work
- Experimental setup
- Four hypotheses
- Conclusions

Experimental Setup

- Labeled data: WSJ (Marcus et al., 1993)
- Unlabeled data: NANC (Graff, 1995)
- Parser: Charniak and Johnson (2005) reranking parser

Experimental Setup

- Labeled data: WSJ (Marcus et al., 1993)
- Unlabeled data: NANC (Graff, 1995)
- Parser: Charniak and Johnson (2005) reranking parser

Experimental Setup

- Labeled data: WSJ (Marcus et al., 1993)
- Unlabeled data: NANC (Graff, 1995)
- Parser: Charniak and Johnson (2005) reranking parser

Outline

- What is self-training?
- Previous work
- Experimental setup
- Four hypotheses
- Conclusions

Hypotheses for Self-training

- 1 Phase Transition
- 2 Search Errors
- 3 Non-generative Reranker Features
- **4 Bilexical Dependencies**

→ There is no phase transition for self-training.

See also: Reichart and Rappoport (2007)

→ There is no phase transition for self-training.

Search Errors

Self-trained models have fewer search errors

Search Errors

Self-trained models have fewer search errors

Search Errors

Self-trained models have fewer search errors

Some notation

orig ← parses from original parser
st ← parses from self-trained parser
top_m(P) ← best parse in P for reranker model m
(m in {orig,st})

Comparing n-best lists

Overlap of st and orig	66.0%
$top_{st}(st) = top_{orig}(orig)$	42.4%
top _{st} (st) in orig	60.3%
Search errors	2.5%

(statistics on 5,039 sentences in sections 1, 22, 24)

• Search errors =

 $top_{st}(st) not in orig and$ $top_{orig}(stUorig) = top_{st}(st)$

Decreasing Search Errors

• Add parses from self-trained n-best list to original parser's n-best list, rescoring by original parser

Evaluation

Evaluation

🔍 Non-generative reranker features help self-training more

reranker features (1.3 million total)

🔍 Non-generative reranker features help self-training more

🛰 Non-generative reranker features help self-training more

Non-generative reranker features help self-training more (reranking parser f-score on section 24) 90.4% 91.1% generative non-generative (448k) (885k) reranker features (1.3 million total) 91.3%

→ Non-generative reranker features are essential for self-training with a reranker. (reranking parser f-score on section 24)

Bilexical Dependencies

Self-training teaches the parser about bilexical dependencies

Bilexical Dependencies

Self-training teaches the parser about bilexical dependencies

(Mitch Marcus, p.c.)

Two ways to test:

- Factor analysis (as in previous work)
- Transfer biheads distribution from self-trained model to original model

Factor analysis: Words

Number of unknown words in tree

Factor analysis: Words

Number of unknown words in tree

Factor Analysis: Biheads

Number of unknown biheads in tree

Factor Analysis: Biheads

Number of unknown biheads in tree

• If self-trained model learns more about biheads, can we transfer that knowledge to original model?

dangerously oversimplified Charniak parsing model!

• If self-trained model learns more about biheads, can we transfer that knowledge to original model?

• If self-trained model learns more about biheads, can we transfer that knowledge to original model?

• If self-trained model learns more about biheads, can we transfer that knowledge to original model?

(generative parser f-score on sections 1, 22, 24)

• If self-trained model learns more about biheads, can we transfer that knowledge to original model?

(generative parser f-score on sections 1, 22, 24)

→ Self-training improves biheads distribution, but also expansions distribution.

(generative parser f-score on sections 1, 22, 24)

Outline

- What is self-training?
- Previous work
- Experimental setup
- Four hypotheses
- Conclusions

Hypothesis Results

- 1 Phase Transition Disproved.
- 2 Search Errors

Reducing search errors helps but model errors remain.

- 3 Non-generative Reranker Features Reranker features must be different from generative parser.
- 4 Bilexical Dependencies Biheads correlated with self-training improvements. Self-training helps all parts of the parser, not just biheads.

Two different cases?

	Predictor					Need
	Length	unk. wo	rds	unk.	biheads	reranker?
Large seed	+	-			+	+
Small seed	+	+			?	-

A Possible Connection

- **Small seed case:** Vocabulary is sparse so unknown words may be resolved in unlabeled text.
- Large seed case: Learn new head information in unlabeled text. Nongenerative features in the reranker needed to handle more complex constructions.

Future Work

- "Bilexical dependencies" experiments with small seed size.
- Different parsers (Collins, LTAG, discriminative, ...) with and without rerankers.
- More hypotheses... (Audience participation?)

Acknowledgments

This work was supported by DARPA GALE contract HR0011-06-2-0001.

We would like to thank Roi Reichart, Matt Lease and the rest of the BLLIP team, and our anonymous reviewers for their comments.

Questions?

http://bllip.cs.brown.edu/selftraining/

Extra Slides

Bigrams and Biheads

Bigrams and Biheads

Number of unknown bigrams in tree

Number of unknown biheads in tree