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Self-training Requirements

● Labeled data

● Large amount of unlabeled data

● Statistical model:
– model  = train(labeled data)

– labels = label(model, unlabeled data)
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Self-training Pseudocode

1 base = train(labeled)

2 autolabeled = label(base, unlabeled)

3 combined = labeled + autolabeled

4 selftrained = train(combined)

(Not pictured: data selection, iteration, weighting, etc.)
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Previous Work

Parser type Seed size Iterations Improved?
Generative Large Single No
Gen.+Disc. Large Single Yes
Generative Small Multiple No
Generative Small Single Yes

Charniak (1997)
McClosky et al. (2006)
Steedman et al. (2003)
Reichart and
Rappoport (2007)
(large = ~40k sentences, small = <1k sentences)

Summary of self-training for parsing experiments



COLING 2008 88.18.2008

Previous Work

Parser type Seed size Iterations Improved?
Generative Large Single No
Gen.+Disc. Large Single Yes
Generative Small Multiple No
Generative Small Single Yes

Charniak (1997)
McClosky et al. (2006)
Steedman et al. (2003)
Reichart and
Rappoport (2007)

● In large seed case, generative + discriminative parser is 

necessary.

(large = ~40k sentences, small = <1k sentences)

Summary of self-training for parsing experiments
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Previous Work

Parser type Seed size Iterations Improved?
Generative Large Single No
Gen.+Disc. Large Single Yes
Generative Small Multiple No
Generative Small Single Yes

Charniak (1997)
McClosky et al. (2006)
Steedman et al. (2003)
Reichart and
Rappoport (2007)

● In large seed case, generative + discriminative parser is 

necessary.

● Performing only one iteration is better than multiple iterations.

(large = ~40k sentences, small = <1k sentences)

Summary of self-training for parsing experiments
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Seed Predictor
size Length # unknown words

McClosky et al. (2006) Large + -

Small + +
Reichart and
Rappoport (2007)

Previous Analysis
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Seed Predictor
size Length # unknown words

McClosky et al. (2006) Large + -

Small + +
Reichart and
Rappoport (2007)

Previous Analysis

● Unknown words are a good predictor of self-

training's success only in the small seed case.
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Experimental Setup

● Labeled data: WSJ (Marcus et al., 1993)

● Unlabeled data: NANC (Graff, 1995)

● Parser: Charniak and Johnson (2005) reranking parser

sentence generative
parser

parse
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parseparse

Experimental Setup

● Labeled data: WSJ (Marcus et al., 1993)

● Unlabeled data: NANC (Graff, 1995)

● Parser: Charniak and Johnson (2005) reranking parser

sentence
n-best

generative
parser

parsesparseparses
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parseparse

Experimental Setup

● Labeled data: WSJ (Marcus et al., 1993)

● Unlabeled data: NANC (Graff, 1995)

● Parser: Charniak and Johnson (2005) reranking parser

sentence
n-best

generative
parser

parses

discriminative
reranker

parse

parseparses
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Hypotheses for Self-training

1 Phase Transition

2 Search Errors

3 Non-generative Reranker Features

4 Bilexical Dependencies
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● Self-training works after a phase transition

self-training
helps

self-training
doesn't help

Phase Transition

accuracy (f-score)

threshold
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self-training
helps

self-training
doesn't help

Phase Transition

accuracy (f-score)
sections 1, 22, 24

Parser
89.9%

Reranking Parser
91.5%
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self-training
helps

self-training
helps

self-training
doesn't help

Phase Transition

accuracy (f-score) 
sections 1, 22, 24

Parser
85.8%
10% WSJ

Parser
89.9%

100% WSJ

Reranking Parser
87.0%
10% WSJ

Reranking Parser
91.5%

100% WSJ

➔There is no phase transition for self-training.
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self-training
helps

self-training
helps

self-training
doesn't help

Phase Transition

accuracy (f-score) 
sections 1, 22, 24

Parser
85.8%
10% WSJ

Parser
89.9%

100% WSJ

Reranking Parser
87.0%
10% WSJ

Reranking Parser
91.5%

100% WSJ

➔There is no phase transition for self-training.

See also: Reichart and Rappoport (2007)
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Search Errors
● Self-trained models have fewer search errors

(Daniel Marcu, p.c.)

errors

model search
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model search
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worse parse
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Search Errors
● Self-trained models have fewer search errors

(Daniel Marcu, p.c.)

errors

model search

model prefers
worse parse

best parse for 
model not found
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Some notation

orig ← parses from original parser

st ← parses from self-trained parser

←top
m
(P) best parse in P for reranker model m

(m  in {orig,st})
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Comparing n-best lists

66.0%
42.4%
60.3%

Search errors 2.5%

Overlap of st and orig
topst(st) = toporig(orig)
topst(st) in orig

● Search errors =

      topst(st) not in orig and 

      toporig(st U orig) = topst(st)

(statistics on 5,039 sentences in sections 1, 22, 24)
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Decreasing Search Errors

parseparseparsesparseparses
parseparseparsesparseparses

self-trained
parser

original
parser

● Add parses from self-trained n-best list to original 

parser's n-best list, rescoring by original parser

parseparseparsesparseparsesparseparseparses
parseparses

augmented
original parser

zero probability
under original parser
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Evaluation

parseparseparsesparseparses

parseparseparsesparseparses

self-trained
reranking parser

original
reranking parser

parseparseparsesparseparsesparseparseparses

augmented original
reranking parser

91.5%

92.0%

91.7%

(reranking parser f-score on sections 1, 22, 24)
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Evaluation

parseparseparsesparseparses

parseparseparsesparseparses

self-trained
reranking parser

original
reranking parser

parseparseparsesparseparsesparseparseparses

91.5%

92.0%

91.7%

(reranking parser f-score on sections 1, 22, 24)

➔ The original parser makes

both model and search
errors relative to the
self-trained model.

augmented original
reranking parser
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● Non-generative reranker features help self-training more

reranker features
(1.3 million total)

Reranker features
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● Non-generative reranker features help self-training more

non-generative
(885k)

generative
(448k)

Reranker features

reranker features
(1.3 million total)
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bilexical
dependencies

● Non-generative reranker features help self-training more

non-generative
(885k)

generative
(448k)

Reranker features

CFG rules edge

n-gram treecoordination

... ...

reranker features
(1.3 million total)
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● Non-generative reranker features help self-training more

non-generative
(885k)

generative
(448k)

Reranker features

90.4% 91.1%

91.3%

(reranking parser f-score on section 24)

reranker features
(1.3 million total)
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● Non-generative reranker features help self-training more

non-generative
(885k)

generative
(448k)

Reranker features

90.4% 91.1%

91.3%
reranking parser

without self-training

90.5%

(reranking parser f-score on section 24)

reranker features
(1.3 million total)
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non-generative
(885k)

generative
(448k)

Reranker features

90.4% 91.1%

91.3%
reranking parser

without self-training

90.5%

(reranking parser f-score on section 24)

reranker features
(1.3 million total)

➔ Non-generative reranker features are essential for self-training

with a reranker.
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● Self-training teaches the parser about bilexical dependencies

Bilexical Dependencies

(Mitch Marcus, p.c.)

bilexical dependency 
or “bihead”
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● Self-training teaches the parser about bilexical dependencies

Bilexical Dependencies

(Mitch Marcus, p.c.)
Two ways to test:
● Factor analysis (as in previous work)

● Transfer biheads distribution from self-trained model 

to original model

bilexical dependency 
or “bihead”
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Factor analysis: Words
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Factor analysis: Words

biggest improvement when no unknown words!
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Factor Analysis: Biheads
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Factor Analysis: Biheads

seeing more unknown biheads helps
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Just biheads?

● If self-trained model learns more about biheads, can 

we transfer that knowledge to original model?

parent

head

                                         biheads distribution

                                             expansion distribution

dangerously oversimplified Charniak parsing model!
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Just biheads?

● If self-trained model learns more about biheads, can 

we transfer that knowledge to original model?

rest

89.8%

90.8%expansions biheads

expansions biheads restoriginal model

self-trained
model

(generative parser f-score on sections 1, 22, 24)
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89.8%

90.8%

90.1%
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Just biheads?

● If self-trained model learns more about biheads, can 

we transfer that knowledge to original model?

rest

89.8%

90.8%

90.1%

90.4%

expansions biheads

expansions biheads rest

expansions biheads rest

expansions biheads restoriginal model

self-trained
model

(generative parser f-score on sections 1, 22, 24)
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Just biheads?

● If self-trained model learns more about biheads, can 

we transfer that knowledge to original model?

rest

89.8%

90.8%

90.1%

90.4%

90.7%expansions biheads

expansions biheads

rest

expansions biheads rest

expansions biheads rest

expansions biheads restoriginal model

self-trained
model

(generative parser f-score on sections 1, 22, 24)
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Just biheads?

➔Self-training improves biheads distribution, but also 

expansions distribution.

rest

89.8%

90.8%

90.1%

90.4%

90.7%expansions biheads

expansions biheads

rest

expansions biheads rest

expansions biheads rest

expansions biheads restoriginal model

self-trained
model

(generative parser f-score on sections 1, 22, 24)
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Hypothesis Results

1 Phase Transition
Disproved.

2 Search Errors
Reducing search errors helps but model errors remain.

3 Non-generative Reranker Features
Reranker features must be different from generative parser.

4 Bilexical Dependencies
Biheads correlated with self-training improvements.
Self-training helps all parts of the parser, not just biheads.
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Two different cases?

Predictor Need
Length unk. words

Large seed + - + +
Small seed + + ? -

unk. biheads reranker?
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A Possible Connection

● Small seed case: Vocabulary is sparse 
so unknown words may be resolved in 
unlabeled text.

● Large seed case: Learn new head 
information in unlabeled text.  Non-
generative features in the reranker 
needed to handle more complex 
constructions.
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Future Work

● “Bilexical dependencies” experiments 
with small seed size.

● Different parsers (Collins, LTAG, 
discriminative, ...) with and without 
rerankers.

● More hypotheses...
(Audience participation?)
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Extra Slides



COLING 2008 558.18.2008

Bigrams and Biheads
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Bigrams and Biheads

seeing more unknown bigrams/biheads helps
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