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Abstract

We extend the dependency grammar induc-
tion model of Klein and Manning (2004)
to incorporate further valence information.
Our extensions achieve significant improve-
ments in the task of unsupervised depen-
dency grammar induction. We use an ex-
panded grammar which tracks higher orders
of valence and allows each valence slot to be
filled by a separate distribution rather than
using one distribution for all slots. Addition-
ally, we show that our performance improves
if our grammar restricts the maximum num-
ber of attachments in each direction, forc-
ing our system to focus on the common case.
Taken together, these techniques constitute a
23.4% error reduction in dependency gram-
mar induction over the model by Klein and
Manning (2004) on English.

1 Introduction

Unsupervised dependency grammar induction aims
to uncover syntactic dependency structures of sur-
face text using no annotated examples. In this sec-
tion, we will motivate why we learn dependency

grammars rather than constituency grammars as well
as why it is important to perform this task in an unsu-
pervised fashion. While constituency grammars pro-
vide sets of labeled brackets, a dependency grammar
produces a graph. Each node in this directed acyclic
graph represents a word and directed edges between
words denote governance of one word over the other.
A virtual root node is connected to the head of the
sentence. A more complete description of depen-
dency grammars can be found in Nivre (2005). De-
pendency grammars have increased in popularity in
recent years, in part because many parsing appli-
cations only require these modification structures
rather than the more complex constituency informa-
tion.

Our task is unsupervised. As input, our system
takes only sequences of part-of-speech tags. With
the exception of these part-of-speech tags, we do
not use any labeled data.1 Labeled data is harder
to acquire than unlabeled data since it is expensive
to annotate and often not available for less common
languages or domains. As many problems in nat-
ural language processing increasingly rely on cap-
turing statistics from corpora, there is a strong push
towards the more portable semi-supervised and un-
supervised techniques.

In Section 2, we describe the Dependency Model
with Valence (DMV ) by Klein and Manning (2004)
and some of its extensions since the model is the
starting point for our work. Next, we present some

1For a fully unsupervised approach, Klein and Manning
(2004) show that tags may be induced instead, resulting in a per-
formance penalty. For a deeper investigation of the interactions
between tag and grammar induction systems, see Headden III
et al. (2008).



empirical properties of valence which have influ-
enced the design of our model (Section 3). In this
paper, valence will refer to the number and type of
arguments accepted by a word. Naturally, learning
valence is a considerable portion of inducing correct
grammars (dependency or otherwise). Our model
and its estimation are described in Sections 4 and
5, respectively. In Section 6, we describe how we
will evaluate and present our results on English. Our
analysis of the results follows in Section 7 and we
conclude in Section 8.

2 Previous Work

This work is a direct extension of the work on de-
pendency grammar induction by Klein and Manning
(2004) (see also Klein (2005)). Klein and Manning’s
Dependency Model with Valence (DMV ) is a simpli-
fied version of some of the models used by super-
vised dependency parsers. The model is an exam-
ple of a generative head-outward process. In this
process, first we choose the head word of the sen-
tence from the distributionProot. A head chooses its
arguments in one direction until it generates a spe-
cial stop symbol,∆, then generates arguments in
the other direction. Each of these child arguments
recursively generates its own arguments using this
process. LetDleft(h) and Dright(h) be functions
which provide the arguments of headh in the left
and right directions, respectively. The probability of
generating the subtree for headh is given by

P (h) =
∏

d∈{left,right}

[

∏

a∈Dd(h)

Pstop(¬∆ | h, d, adj)

× Parg(a | h, d)P (D(a))

]

× Pstop(∆ | h, d, adj)

whereadj is an adjacency bit which is true if and
only if an argument has been generated in the current
direction.Pstop is a distribution over two symbols,∆
(indicating we should not produce further arguments
in this direction) and¬∆ (indicating the opposite).
An important note for subsequent discussion is that
while Pstop is conditioned on the adjacency bit,Parg is
not.

Let the vocabulary be the set of part of speech tagsΣ.

For eachX ∈ Σ, we define two nonterminals. Let
←−−→
X

indicate a symbol that has not generated any stops and
−→
X be the symbol after it has generated a left stop.
∀H,A ∈ Σ:

Dependency action Equivalent CFG rule

Choose head of sentenceRoot→
←−−→
H

H attaches left toA
←−−→
H →

←−−→
A
←−−→
H

H generates left stop
←−−→
H →

−→
H

H attaches right toA
−→
H →

−→
H
←−−→
A

H generates right stop
−→
H → H

Figure 1: Simplified version of the grammar used by
(Klein and Manning, 2004; Smith and Eisner, 2006),
demonstrating corresponding CFG rules for depen-
dency grammar actions. This grammar schema
does not properly handle adjacency and the situation
whenH = A.

Klein and Manning (2004) show how each de-
pendency action corresponds to a context-free rule
and derive a corresponding probabilistic context-
free grammar (PCFG). SinceDMV assumes left and
right attachments are independent from each other,
we will follow Klein and Manning (2004) in choos-
ing to make left attachments before right attach-
ments. We present a simplified version of the gram-
mar inDMV in Figure 1.

Once the dependency grammar has been con-
verted into a context-free grammar, standard tech-
niques for estimating PCFGs can be used, e.g. the
inside-outside algorithm (Baker, 1979).

However, estimating the simplified PCFG from
the schema from Figure 1 with the inside-outside al-
gorithm does not achieve above baseline parsing ac-
curacy (Table 4; baselines will be discussed later).
Klein and Manning (2004) describe two changes
which improve performance significantly. First, the
model must be initialized reasonably before estima-
tion. We discuss this in detail in Section 5. The
second change is the presence of the adjacency bit:
after the first attachment is made, the distribution of
future attachments changes. WhileDMV conditions
only the stop probabilities on this valence informa-



tion, we will show that there is an added benefit if
the entire attachment distribution is conditioned on
it.

Smith and Eisner (2006) (see also Smith (2006))
present a different type of extension of the models by
Klein and Manning (2004). The authors adopt Klein
and Manning’s models as testbeds for better param-
eter estimation techniques. While their new esti-
mators significantly outperform the commonly used
Expectation-Maximization algorithm (EM), their es-
timation methods are minimally supervised and re-
quire a small amount of labeled held-out data to tune
parameters. Our work continues to use EM since we
assume the scenario of having no labeled data avail-
able. Furthermore, since we are primarily concerned
with changing the model rather than the estimation
procedure, our work and theirs are complementary
and can be expected to yield further improvements
in combination. This remains as future work.

In addition to the dependency model, Klein
and Manning (2004) provide a constituency model
which induces unlabeled bracketings from sen-
tences. Furthermore, the authors demonstrate a
method of combining the two models. The com-
bined model performs better on both constituency
and dependency grammar induction tasks, as the
two models are sensitive to different aspects of
the data. Haghighi and Klein (2006) describe a
minimally-supervised extension to the constituency
model where a small number of constituent proto-
types are provided as additional input. As our model
provides similar probabilities asDMV , it is conceiv-
able that it could be combined with either of these
constituency models in a similar fashion.

3 Valence Effects

A key part of grammar induction is learning va-
lence,2 i.e. the number and types of arguments ac-
cepted by a word. For example, the verb “walk”
takes a subject and optionally a location as an object.
Thus, “walk” has one argument slot to the left and an
optional argument slot to the right. In this section,
we present some empirical properties of dependen-
cies involving valence. These properties drive sev-
eral decisions of our grammar design and parame-

2In this paper, we will use valence in its most general sense
where it applies to all parts of speech.

terization.
Since we deal with part of speech tags rather than

words in this paper, our models of valence will be
restricted in power and significantly coarser. For ex-
ample, it will group all mass and count nouns to-
gether and attempt to learn some sort of average
of their valence. Worse, transitive and ditransitive
verbs will be grouped together. Nevertheless, even
with this simplification, valence information can be
very discriminating.

3.1 Number of arguments

To start, we study the distribution over the number
of arguments accepted by a word. In Table 1, we
show the empirical distribution of the number of ar-
guments taken by a head. Our data comes from
seven languages in the CoNLL 2006 Shared Task
(Buchholz and Marsi, 2006).3 Since the models that
we consider make attachments in a single direction
before considering the other direction and because
we wish to ignore any asymmetries of specific lan-
guages, we group arguments by direction and then
count the number of arguments in each direction.
Thus, a head with three left attachments and two
right attachments contributes one raw count to each
of the “2” and “3+” buckets. From Table 1 we can
see that these distributions are fairly similar across
languages, with a standard deviation of about 3-4%.
Also note that there is a relatively small amount of
probability mass in the “3+” bucket — less than 3%
on average. We will return to this figure later when
we present our Restricted Valence Grammar (Sec-
tion 4). The figures come from sentences of up
to 10 words, but we see similar trends on longer
sentences. If we instead consider sentences of all
lengths, the “3+” bucket still only receives 5.0%
probability mass on average and the variance is still
small.

DMV can approximate this distribution with the
help of the adjacency bit: stop probabilities are
conditioned on whether any attachments have been
made (as well as the head and current direction).
Thus, for each head, the model can learn a first ap-
proximation of how many arguments it should take

3Arabic (Hajič et al., 2004), Bulgarian (Simov et al., 2005),
Czech (Böhmová et al., 2003), German (Brants et al., 2002),
Japanese (Kawata and Bartels, 2000), Portuguese (Afonso et
al., 2002), and Swedish (Nilsson et al., 2005)



Number of arguments
Language 0 1 2 3+

Arabic 44.5 46.9 7.1 1.5
Bulgarian 35.6 49.2 11.4 3.8
Czech 36.1 53.0 8.6 2.3
German 34.1 44.9 16.5 4.6
Japanese 40.9 51.6 6.1 1.4
Portuguese 35.4 54.6 8.3 1.6
Swedish 33.2 51.8 12.1 2.9

Mean 37.1 50.3 10.0 2.6
Standard deviation 4.1 3.5 3.6 1.3

Table 1: Empirical distribution of the number of
arguments taken by a head in both directions, first
grouping arguments by direction. In other words,
a head with 3 left attachments and 2 right attach-
ments contributes one raw count to each of the “2”
and “3+” buckets of this distribution.

in each direction (0, 1, or 2+). It is clear now why
DMV only needs a single adjacency bit.

3.2 Type of arguments

To learn correct valence information, we also need
to learn the types (parts of speech, in our case) of
arguments accepted by a tag. Even though we are
using part of speech tags instead of word forms, we
can still learn some useful properties about which
part of speech tags can fill each argument slot.DMV

has a mechanism which can approximate the distri-
bution over the number of arguments. However, it
cannot learn which arguments fill each valence slot
since the distribution of children,Parg, is conditioned
only on the head and direction.

To demonstrate the importance of conditioning
arguments on valence, we present some empirical
statistics on dependencies extracted from the Wall
Street Journal (WSJ) section of the Penn Treebank
(Marcus et al., 1993): the empirical distribution over
arguments given the argument slot. Table 2 shows
three distributions for the two most frequent parents
in this corpus – left attachments for singular nouns
(NN) and left and right attachments for past tense
verbs (VBD). In each table, we show the probability
of attaching to a tag given which slot we are filling.
The “All” row shows the overall distribution ignor-
ing argument slots. Since the most common num-

Slot CD DT JJ NN NNP Others

1st 6.6 38.7 23.9 13.5 4.3 13.0
2nd 3.4 55.1 15.6 8.6 4.7 12.5
3rd+ 3.5 51.6 14.4 7.8 8.0 14.6

All 5.2 45.5 20.1 11.2 5.0 13.1

(a) Distribution of left attachments from NN

Slot CC NN NNP NNS PRP Others

1st 0.1 27.7 18.2 21.6 19.2 13.3
2nd 11.2 10.1 7.4 8.8 8.1 54.4
3rd+ 20.9 14.2 5.2 12.7 11.9 35.1

All 3.6 23.1 15.1 18.3 16.3 23.6

(b) Distribution of left attachments from VBD

Slot IN NN RB TO VBN Others

1st 8.2 19.3 12.9 8.8 9.2 41.6
2nd 30.1 8.3 6.6 19.1 10.9 25.1
3rd+ 20.6 9.9 11.3 5.0 6.4 46.8

All 14.6 16.0 11.2 11.3 9.5 37.5

(c) Distribution of right attachments from VBD

Table 2: Empirical probability of attaching a tag
conditioned on the valence slot. “All” shows these
probabilities marginalizing over all slots. Bold face
indicates the most likely attachment for each slot.
Note how “All” ignores important shifts in the dis-
tribution as arguments are attached.

ber of attachments is one, the overall distribution is
fairly close to the distribution of the first argument.
However, note that after making the first attachment,
the distributions change drastically: nouns increase
their preference for determiners (Table 2a), verbs
making left attachments lose their preference for
nouns in favor of a more uniform distribution (Table
2b), and verbs making right attachments shift from
preferring nouns and adverbs to prepositions, (Ta-
ble 2c). Together, these tables should demonstrate
the need for learning different distributions per ar-
gument slot.

4 Model

Our generative process is based on the head-outward
process used byDMV . As in DMV , we pick the head
of a sentence from a distribution,Proot. We first pick
the number of argument slots to the left conditioned



on the head.4 These valence numbers come from a
distribution calledPval. Next, we fill each slot with
an argument conditioned on the head, direction, and
the index of the slot. Each argument recursively gen-
erates its own arguments according this process. Fi-
nally, we repeat the process to generate arguments
to the right. We present the generative process as a
series of context free rewrites in Figure 2. Because
this grammar places a hard limit on the number of
attachments in a particular direction, we call this the
Restricted Valence Grammar(RVG).

There are two differences between the Restricted
Valence Grammar and the grammar used inDMV .
First, whileDMV conditions arguments on the head
and direction, we also condition on the slot index.
Second, we draw from the valence distribution,Pval,
before making any attachments rather than drawing
stop probabilities fromPstop.

In fact, it was not our original intention to restrict
the maximum valence of our grammar. The intended
implementation allowed symbols to make any num-

ber of attachments. The change is that
←−−→
H N is not

required to decrease its valence after making attach-
ments.5 When it is finished making attachments at

theN level, it can rewrite as
←−−→
H N−1 . We will refer

to this grammar as theUnrestricted Valence Gram-
mar (URVG).

The Unrestricted Valence Grammar with a va-
lence of one is very similar toDMV ’s grammar.
TheDMV stop probabilities correspond to two rules
in our grammar. The probability of a head tak-
ing no leftward arguments (Pstop(∆ | H, dir =
left, adj = false)) in DMV is the probability of

the rule
←−−→
H →

←−−→
H 0 in our model. The probabil-

ity of a head taking additional arguments to the left
(Pstop(∆ | H, dir = left, adj = true)) in DMV is

the probability of the rule
←−−→
H 1 →

←−−→
H 0 in our model.

The same holds for arguments to the right.

5 Model Estimation

Following Klein and Manning (2004), we estimate
the parameters in our model, using the Inside-

4As in Klein and Manning (2004), our decision to go left
first is arbitrary.

5
N indicates the highest valence we keep track of instead of

the maximum valence.

Let N be the maximum valence allowed.
∀H,A ∈ Σ, n ∈ 1, . . . , N :

Description Equivalent CFG rule

Choose head of sentenceRoot→
←−−→
H

Left valence selection
←−−→
H →

←−−→
H n

Left attachment
←−−→
H n →

←−−→
A
←−−→
H n−1

Left stop
←−−→
H 0 →

−→
H

Right valence selection
−→
H →

−→
Hn

Right attachment
−→
Hn →

−→
Hn−1

←−−→
A

Right stop
−→
H 0 → H

Figure 2: Schema for the Restricted Valence Gram-
mar used in our experiments.

Outside algorithm (Baker, 1979), a specific version
of the Expectation-Maximization algorithm (EM)
(Dempster et al., 1977) for learning PCFGs.6

It is well known that setting a proper initial state
when using the EM algorithm is critical (Carroll
and Charniak, 1992). Since EM can only find lo-
cal maxima, the initial state given to EM essentially
determines which peak EM will discover (modulo
any noise introduced by the estimation procedure).
Techniques such as adding noise and random restarts
will help EM find different and sometimes better
peaks. However, we will often achieve an addi-
tional benefit from domain-specific information. In
our case, this takes the form of general trends in the
statistics of dependency attachments.

Klein and Manning (2004) and Smith and Eis-
ner (2006) start their system with the preference for
short attachments over long ones. They express this
by initializing their system before the M step with a
distribution over trees rather than before the E step
with initial rules on probabilities. A somewhat gen-
eralized version of their initializers follows:

∀t ∈ T (W ), u(W, t) =

|W |
∏

p=1

∏

c∈Ct(p)

1

|p− c|
+ λ

whereT (·) is function which returns all possi-
6Inside-outside estimation code fromhttp://www.cog.

brown.edu/ ˜ mj/Software.htm



ble parse trees over the tags in its input,u(W, t)
gives the weight of parse treet over tagsW , Ct(·)
gives the children of wordw in tree t, andλ is a
constant (λ = 0 for Klein and Manning’s,λ = 1
for Smith and Eisner’s “Local” initializer). Broadly
speaking, their initializer assigns weight to a parse
inversely proportional to the distance between par-
ents and their children under that parse. In other
words, the initializer starts EM with a tendency to-
wards trees with shorter dependencies. We will refer
to this as the Harmonic Tree Initializer (HTI).

Unlike (Klein and Manning, 2004; Smith and Eis-
ner, 2006), we start the EM algorithm before the E
step with initial weights on dependency rules. Ab-
stractly, our initializer uses the same idea, where the
initial weight of a rule is instead inversely propor-
tional to the average distance between the parent and
children as seen in the training data.

Let u(p, c, dir) be the initial weight of the rule for
parentp attaching to childc in directiondir:

u(p, c, dir) =
∑

s∈s

pi,ci∈S(p,c,dir,s)

1

|pi − ci|+ k

whereS(p, c, dir, s) returns the indices of all oc-
currences ofp and c in sentences where the par-
ent follows the child ifdir = left and precedes
the child if dir = right, s is a set of all training
sentences, andk is a constant that determines the
uniformity of the distribution. Because we initialize
rule weights in a harmonic fashion, we will refer to
our initializer as the Harmonic Rule Initializer (HRI).

6 Evaluation

6.1 Experimental Setup and Metrics

The input of our task is sequences of part of speech
tags of length 10 or less after punctuation has been
removed. While the task appears simple, it has
proved to be a difficult unsupervised problem. We
use the Wall Street Journal corpus (Marcus et al.,
1993) for English and four languages from the
CoNLL 2006 Shared Task on Dependency Pars-
ing (Buchholz and Marsi, 2006): Bulgarian (Simov
et al., 2005), Portuguese (Afonso et al., 2002),
Swedish (Nilsson et al., 2005), and German (Brants
et al., 2002). The10 suffix indicates a corpus after
length restrictions.

To evaluate our system, we compare against gold
dependencies. For English, the gold dependencies
are given to us by the Collins head finder (Collins,
1999) as in (Klein and Manning, 2004; Smith and
Eisner, 2006). Our metrics are directed and undi-
rected accuracy. Directed accuracy is the percent-
age of dependencies predicted with the correct par-
ent, child, and direction. Undirected accuracy is the
same, but ignoring direction. As our baselines, we
present a subset of the baselines and results from
(Klein and Manning, 2004) in Table 4. In this table,
“Left branching” denotes a structure where we al-
ways branch left (i.e. the head is the rightmost word
of a constituent) and “Right branching” is the sym-
metric case.

6.2 Results

Table 3 shows the results of our system on En-
glish with different grammars and maximum va-
lences. “(U)RVG” refers to our (Un)restricted Va-
lence Grammar (Figure 2).

To make our model more similar toDMV , we also
present a version of our model whereParg is not con-
ditioned on the index of the argument slot. This
can be achieved via parameter tying in the EM al-
gorithm, and we refer to this model as “(U)RVG
(tied)”.

Finally, we show the results of picking rule
weights in a supervised fashion in “URVG (ora-
cle)”. We use maximum likelihood estimates of rule
weights with simple add-λ smoothing and evaluate
on each section ofWSJ in a round-robin fashion. Our
point is not to compete with supervised dependency
models, but to give an upper-bound on the perfor-
mance of our unsupervised parameter estimation.

Our results on English are quite strong. In di-
rected accuracy, we get 56.5% dependencies cor-
rect, 22.9% more than the left branching baseline
and 13.3% more thanDMV . We see similar results in
Swedish with a directed accuracy of 45.4%, 17.1%
better than the left branching baseline of 28.3%.
Given these results, we were surprised to learn that
our system performs worse than the baselines for
German, Portuguese, and Bulgarian. We are not
certain of the cause of this. Our current theory is
that the Harmonic Rule Initializer is not as portable
as we had hoped. Given that it is the only part of
DMV which do not implement, we feel it is likely



Model Directed Undirected
Left branching 33.6 56.7
Right branching 24.0 55.9
Klein and Manning (2004) 43.2 64.5
This paper 56.5 69.7

Table 4: Performance of Klein and Manning (2004)
and our model versus baselines on English (WSJ10).
Directed and undirected scores refer to the percent-
age of directed and undirected dependencies correct,
respectively.

the source of the problem. While the Harmonic Rule
Initializer is useful for induction on English, it fails
to provide a useful starting state for other languages.
We believe this is because the Harmonic Rule Ini-
tializer is based on overly local information or that
there is a bug in our implementation.

7 Discussion

Our best models result from restricting our maxi-
mum valence. RVG’s performance is always at least
that of URVG. Even with a maximum valence of
one, RVG performs better thanDMV in the directed
case and only slightly worse in the undirected case.
It is best to set the maximum valence to two, which
can potentially model almost all dependencies and
has far fewer rules than higher valences. If we give
EM a model with higher valences, it seems that we
find worse estimates under the load of additional pa-
rameters (6,880 vs. 10,160 initial rules). From Ta-
ble 1, we know that a maximum valence of three
can only improve performance by about 3%. Given
our current levels of accuracy, it is better to focus on
getting the more common first and second attach-
ments correctly. It may be possible to use a model
with lower maximum valence to initialize a model of
higher valence, though we leave this for future work.

Table 3 also confirms our belief that tying param-
eters is too restrictive. When maximum valence is
set to 2, parameter tying hurts performance by about
4%.

Our improvements appear to come mostly from
limiting the maximum valence and learning param-
eters untied but not from our initializer. URVG with
a valence of one is nearlyDMV , but with HRI it per-
forms significantly worse. Much of this damage is

alleviated by switching to RVG, but this begs the
question of how our system would perform if prop-
erly initialized by the Harmonic Tree Initializer. For
now, we leave this to future work.

8 Conclusions and Future Work

We have presented several techniques which im-
prove unsupervised dependency grammar induction.
First, we have shown that there is a benefit in
restricting the maximum valence of the grammar.
Since approximately 97% of the time heads only
make 0 to 2 attachments crosslinguistically, it is ben-
eficial to limit the degrees of freedom in this respect
(at least, as a first pass to grammar induction). Sec-
ond, we have shown that parameter tying, i.e. forc-
ing each argument slot to have the same distribution,
is overly restrictive. Finally, we have shown that the
distribution over the number of arguments taken by
a head is fairly constant across languages. This may
be useful to both supervised and unsupervised de-
pendency parsing. We are not aware of any previous
work which shows this. Unfortunately, while our
model performs very well on English and Swedish,
it is not competitive crosslinguistically in its current
form. Given that the main difference is our use of
a different initializer, our working hypothesis is that
switching to a better initializer will allow our tech-
niques to function across languages. Testing this hy-
pothesis is at the heart of our ongoing work.

We believe that a promising extension of this
work would be to use the Bayesian equivalent of
the Inside-Outside algorithm (Johnson et al., 2007),
which would allow us to incorporate priors into
this task. Priors can encourage the resulting gram-
mar to obey crosslinguistic statistics of dependen-
cies, for example, those seen in Table 1 or ensuring
that the grammar is mostly left- or right-branching.
Additionally, a Bayesian framework may be more
amenable to the joint learning of tags and syntax.
With access to words and their tags, this may allow
us to induce more fine-grained valence information.
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