This talk is part of the NLP Seminar Series.

Fine-tuning language models to find agreement among humans with diverse preferences

Michiel Bakker, Deepmind
Date: 11:00am - 12:00pm, December 8th 2022
Venue: Zoom (link hidden)


Recent work in large language modeling (LLMs) has used fine-tuning to align outputs with the preferences of a prototypical user. This work assumes that human preferences are static and homogeneous across individuals, so that aligning to a single "generic" user will confer more general alignment. Here, we embrace the heterogeneity of human preferences to consider a different challenge: how might a machine help people with diverse views find agreement? We fine-tune a 70 billion parameter LLM to generate statements that maximize the expected approval for a group of people with potentially diverse opinions. Human participants provide written opinions on thousands of questions touching on moral and political issues (e.g., "should we raise taxes on the rich?"), and rate the LLM's generated candidate consensus statements for agreement and quality. A reward model is then trained to predict individual preferences, enabling it to quantify and rank consensus statements in terms of their appeal to the overall group, defined according to different aggregation (social welfare) functions. The model produces consensus statements that are preferred by human users over those from prompted LLMs (>70%) and significantly outperforms a tight fine-tuned baseline that lacks the final ranking step. Further, our best model's consensus statements are preferred over the best human-generated opinions (>65%). We find that when we silently constructed consensus statements from only a subset of group members, those who were excluded were more likely to dissent, revealing the sensitivity of the consensus to individual contributions. These results highlight the potential to use LLMs to help groups of humans align their values with one another.


Michiel Bakker is a senior research scientist at DeepMind, where he focuses on large language models and human-AI interaction. Before joining DeepMind fulltime in early 2021, he was a computer science PhD student at MIT EECS and the MIT Media Lab working with Prof. Alex Pentland. During his PhD he worked on algorithmic fairness in sequential decision making and on machine learning systems to accelerate data science. He holds a bachelor's and master's degree in physics from TU Delft, where he worked on quantum computing at QuTech and IBM Quantum. Prior to continuing his education at MIT, he co-founded the flower startup Bloomon in London.