This talk is part of the NLP Seminar Series. Unfortunately, this week's talk is not open to the public.

On Question Answering on Images and Databases

Dzmitry Bahdanau, Element AI
Date: 10:00am - 11:00am PT, Apr 1 2021
Venue: Zoom (link hidden)


The ability of AI to answer questions that are grounded in context is interesting from both academic and practical perspectives. In this talk, I will present two projects that study question answering (QA) in visual and symbolic database contexts. In the first project my collaborators and I show that a neuro-symbolic visual QA system can learn variable bindings from the top-down QA training signal only. The system successfully learns both conventional bindings (e.g. objects) and less trivial ones (e.g. groups). In our second project my colleagues at Element AI and I explore text2sql systems for answering questions about databases. We perform extensive ablation testing to understand what is really necessary for such systems to achieve best performance. I will end the talk with a quick preview of our on-going few-shot text2sql research efforts.


Dzmitry (Dima) Bahdanau is a research scientist at Element AI, a ServiceNow company. He is also an adjunct professor at McGill University. Prior to these appointments, Dzmitry obtained his PhD at Mila and Université de Montréal working with Yoshua Bengio. He is interested in fundamental and applied questions concerning natural language understanding. His main research areas include semantic parsing, language user interfaces, systematic generalization and hybrid neural-symbolic systems. He invented the content-based neural attention that is now a core tool in deep-learning-based natural language processing.