This talk is part of the NLP Seminar Series.

Toward Natural Language Supervision

Jacob Andreas, MIT
Date: 11:00am - 12:00 noon PT, Jul 07 2022
Venue: Zoom (link hidden)


In the age of deep networks, "learning" almost invariably means "learning from examples". Image classifiers are trained with large datasets of images, machine translation systems with corpora of translated sentences, and robot policies with rollouts or demonstrations. When human learners acquire new concepts and skills, we often do so with richer supervision, especially in the form of language---we learn new concepts from exemplars accompanied by descriptions or definitions, and new skills from demonstrations accompanied by instructions. In natural language processing, recent years have seen a number of successful approaches to learning from task definitions and other forms of auxiliary language-based supervision. But these successes have been largely confined to tasks that also involve language as an input and an output---what will it take to make language-based training useful for the rest of the machine learning ecosystem? In this talk, I'll present two recent applications of natural language supervision to tasks outside the traditional domain of NLP: using language to guide visuomotor policy learning and inductive program synthesis. In these applications, natural language annotations reveal latent compositional structure in the space of programs and plans, helping models discover reusable abstractions for perception and interaction. This kind of compositional structure is present in many tasks beyond policy learning and program synthesis, and I'll conclude with a brief discussion of how these techniques might be more generally applied.


Jacob Andreas is the X Consortium Assistant Professor at MIT. His research aims to build intelligent systems that can communicate effectively using language and learn from human guidance. Jacob earned his Ph.D. from UC Berkeley, his M.Phil. from Cambridge (where he studied as a Churchill scholar) and his B.S. from Columbia. As a researcher at Microsoft Semantic Machines, he founded the language generation team and helped develop core pieces of the technology that powers conversational interaction in Microsoft Outlook. He has been the recipient of Samsung's AI Researcher of the Year award, MIT's Kolokotrones teaching award, and paper awards at NAACL and ICML.